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Abstract

This thesis mainly deals with the structure of some classes of perfect graphs that have

been widely investigated, due to both their interesting structure and their numerous

applications. By exploiting the structure of these graph classes, we provide solutions to

some open problems on them (in both the affirmative and negative), along with some

new representation models that enable the design of new efficient algorithms.

In particular, we first investigate the classes of interval and proper interval graphs,

and especially, path problems on them. These classes of graphs have been extensively

studied and they find many applications in several fields and disciplines such as genetics,

molecular biology, scheduling, VLSI design, archaeology, and psychology, among others.

Although the Hamiltonian path problem is well known to be linearly solvable on interval

graphs, the complexity status of the longest path problem, which is the most natural

optimization version of the Hamiltonian path problem, was an open question. We present

the first polynomial algorithm for this problem with running time O(n4). Furthermore,

we introduce a matrix representation for both interval and proper interval graphs, called

the Normal Interval Representation (NIR) and the Stair Normal Interval Representation

(SNIR) matrix, respectively. The whole information of both NIR and SNIR matrices

for a graph with n vertices can be captured in O(n) space. We illustrate the use of this

succinct matrix representation (SNIR) for proper interval graphs to solve in optimalO(n)

time the k-fixed-endpoint path cover problem, which is another optimization variant of

the Hamiltonian path problem.

Next, we investigate the classes of tolerance and bounded tolerance graphs, which gen-

eralize in a natural way both interval and permutation graphs. This class of graphs

has attracted many research efforts since its introduction by Golumbic and Monma

in 1982, as it finds many important applications in bioinformatics, constrained-based

temporal reasoning, resource allocation, and scheduling, among others. We present the

first non-trivial intersection model for tolerance graphs, given by three-dimensional par-

allelepipeds. Apart of being important on its own, this new intersection model enables

the design of efficient algorithms on tolerance graphs. Namely, given a tolerance graph G

with n vertices, we present optimal O(n log n) time algorithms for the minimum coloring

and the maximum clique problems, as well as an improved O(n2) time algorithm for the

maximum weighted independent set problem on G.



iv

In spite of the extensive study of these classes, the recognition of both tolerance and

bounded tolerance graphs have been the most fundamental open problems since their

introduction. Therefore, all existing efficient algorithms assumed that the input graph

is given along with a tolerance or a bounded tolerance representation, respectively. We

prove that both recognition problems are NP-complete, thereby settling a long standing

open question. These hardness results are surprising, since it was expected that the

recognition of these graph classes is polynomial.

Finally, we investigate a scheduling model, which is closely related to the concept of

interval and tolerance graphs. Namely, we deal with the scheduling of weighted jobs

with release times and with equal processing time each on a single machine. In our

model, the scheduling of the jobs is preemptive, i.e. the processing of a job can be

interrupted by another one. Our goal is to find a schedule of the given jobs with the

minimum weighted sum of completion times. The complexity status of this problem

has been stated as an open question. We present for this problem the first polynomial

algorithm for the case where the number of different weights of the jobs is constant.
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Chapter 1

Introduction

A set of graphs defined by a common structure is called a structured family of graphs.

Elaboration of inherent properties of certain structured graph families has motivated a

search for new algorithms on them. In this thesis we investigate properties, algorithms,

and representations of some important graph classes that are based on relations of

intervals, as well as of a scheduling model, which relates to the investigated graph classes.

1.1 Basic definitions and notation

An undirected graph G = (V,E) consists of a finite set V of vertices and a set E of edges,

which are subsets of V with two distinct elements each [45]. For clarity reasons, we may

use the notation V (G) and E(G) to denote the sets of vertices and of edges of the graph

G, respectively. An edge between two vertices u and v in an undirected graph is denoted

by uv or by vu, and in this case u is said to be adjacent to v, or equivalently, u sees v. The

set N(v) = {u ∈ V | uv ∈ E} is called the neighborhood of the vertex v in G, sometimes

denoted by NG(v) for clarity reasons. The set N [v] = N(v) ∪ {v} is called the closed

neighborhood of the vertex v of G. A directed graph G = (V,E) (or digraph) consists

of a finite set V of vertices and a set E of arcs, which are ordered subsets of V with

two distinct elements each. An arc from u to v in a directed graph is denoted by 〈uv〉.
All undirected and directed graphs considered in this thesis are simple, i.e. with no self

loops and no multiple edges or arcs, respectively. In the following of the thesis, any

investigated graph is undirected, unless it is stated otherwise.

1
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A path P of a graph G = (V,E) is a sequence (v1, v2, . . . , vk) of vertices, such

that vivi+1 ∈ E for every i, 1 ≤ i ≤ k − 1. Similarly, a cycle C of G is a se-

quence (v1, v2, . . . , vk, v1) of vertices, such that vkv1 ∈ E and vivi+1 ∈ E, for every i,

1 ≤ i ≤ k − 1. We denote by V (P ) and V (C) the set of vertices of a path P and a

cycle C, respectively. A path P (resp. a cycle C) is called simple if all vertices of V (P )

(resp. of V (C)) are distinct. All paths and cycles considered in this thesis are simple.

Thus, for simplicity, we will refer in the sequel to a simple path and to a simple cycle

just by path and cycle. The length of a path P , denoted by |P |, is defined as the number

of vertices of P , i.e. |P | = |V (P )|. Similarly, the length of a cycle C, denoted by |C|, is

defined as the number of vertices of C, i.e. |C| = |V (C)|. A path P (resp. a cycle C)

is called Hamiltonian if every vertex of G appears in P (resp. in C) exactly once, i.e. if

|P | = |V | (resp. if |C| = |V |). The Hamiltonian path problem and the Hamiltonian cycle

problem are to decide whether a given graph G has a Hamiltonian path or a Hamiltonian

cycle, respectively. Clearly, if a graph G has a Hamiltonian cycle C, we can construct

a Hamiltonian path of G by removing an arbitrary edge of C. In the following of the

thesis, a graph that has at least one Hamiltonian path will be called a Hamiltonian

graph.

The most natural optimization version of the Hamiltonian path problem is the longest

path problem. That is, given a graph G, to compute a path P of G with the greatest

possible length. Another optimization version of the Hamiltonian path problem is the

path cover problem. That is, given a graph G, to cover all vertices of G with the smallest

number of simple paths. Clearly, the Hamiltonian path problem is a special case of the

longest path and the path cover problems. Namely, a graph G = (V,E) is Hamiltonian

if and only if the longest path of G has |V | vertices, or equivalently, if the minimum

path cover of G has value one.

For a graph G, G denotes the complement of G, i.e. G = (V,E), where uv ∈ E if and

only if uv /∈ E. Given a subset of vertices S ⊆ V , the graph G[S] denotes the graph

induced by the vertices in S, i.e. G[S] = (S,E′), where for any two vertices u, v ∈ S,

uv ∈ E′ if and only if uv ∈ E. Furthermore, we use E[S] to denote E(G[S]). A subset

S ⊆ V is an independent set in G if the graph G[S] has no edges. For a subset K ⊆ V ,

the induced subgraph G[K] is a complete subgraph of G, or a clique, if each two of

its vertices are adjacent (equivalently, K is an independent set in G). For simplicity

reasons, if G[K] is a clique, we will often refer also to the set K itself as a clique. The
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maximum cardinality of an independent set in G is denoted by α(G) and is termed

the independence number of G. Similarly, the maximum cardinality of a clique in G

is denoted by ω(G) and is termed the clique number of G. A proper coloring of G is

an assignment of different colors to adjacent vertices, which results in a partition of V

into independent sets. The minimum number of colors for which there exists a proper

coloring in G is denoted by χ(G) and is termed the chromatic number of G. A partition

of V into χ(G) independent sets, the color classes, is called a minimum coloring of G.

In any graph G, clearly χ(G) ≥ ω(G).

An important and well studied class of graphs is that of perfect graphs. A graph G

is called perfect if χ(H) = ω(H) for every induced subgraph H of G [57, 100]. A hole

in a graph is a chordless cycle, i.e. an induced cycle, of length at least five, while an

antihole is the complement of a hole. A hole or antihole is even or odd, depending on its

length, i.e. on the number of vertices it contains. It can be easily seen by definition that

odd holes are not perfect. An important result on perfect graphs is the perfect graph

theorem [89], which states that a graph is perfect if and only if its complement is also

perfect. Thus, it follows easily by the definition of perfect graphs and by the perfect

graph theorem that odd antiholes are also not perfect.

Berge conjectured in 1963 that a graph G is perfect if and only if G does not contain any

odd holes or odd antiholes; this conjecture has been known as the strong perfect graph

conjecture. The graphs that do not contain any odd holes or odd antiholes are known as

Berge graphs. Recently, this conjecture has been answered in the affirmative [33], and

thus, it became the strong perfect graph theorem. That is, a graph is Berge if and only

if it is perfect.

The recognition problem for a class G of graphs is, given a graph G, to decide whether

G ∈ G or not. This is a central problem for every class of graphs. The recognition of

perfect graphs is known to be polynomial, by an O(n9) time algorithm given in [32],

where n is the number of vertices in the input graph. The proof of this algorithm is

independent of the proof of the strong perfect graph theorem in [33].

Perfect graphs include many important families of graphs, and serve to unify results

relating colorings and cliques in those families. For instance, in all perfect graphs, the

minimum coloring, maximum clique, and maximum independent set problems can all

be solved in polynomial time [63]. However, these algorithms are not very efficient
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and therefore, it makes sense to devise specific fast algorithms for these problems on

subclasses of perfect graphs that are of particular interest.

A graph G = (V,E) is the intersection graph of a family F = {S1, . . . , Sn} of distinct

nonempty subsets of a set S if there exists a bijection µ : V → F such that for any

two distinct vertices u, v ∈ V , uv ∈ E if and only if µ(u) ∩ µ(v) 6= ∅. In that case, we

say that F is an intersection model of G. It is easy to see that each graph has a trivial

intersection model based on adjacency relations [92]. Some intersection models provide a

natural and intuitive understanding of the structure of a class of graphs, and turn out to

be very helpful to find efficient algorithms to solve optimization problems [92]. Therefore,

it is of great importance to establish non-trivial intersection models for families of graphs.

In the following we review some well known classes of perfect graphs; for an overview

see [21, 57]. A graph is called chordal, or triangulated, if it has no induced cycle of

length strictly greater than three. That is, every cycle of length at least four possesses

a chord, i.e. an edge joining two non-consecutive vertices of the cycle. There are several

known characterizations of chordal graphs. One of them uses the notion of a perfect

elimination ordering, which is defined as follows. A vertex v of a graph G = (V,E) is

called simplicial if N [v] induces a clique in G. An ordering π = (v1, v2, . . . , vn) of the

vertices of V , where |V | = n, is called a perfect elimination ordering if each vertex vi,

1 ≤ i ≤ n, is a simplicial vertex in the induced subgraph G[{vi, vi+1, . . . , vn}] of G.

Then, a graph G is chordal if and only if G has a perfect elimination ordering [50]. This

characterization of chordal graphs leads to a linear time recognition algorithm [86,102].

Another graph class that is characterized using vertex orderings is that of perfectly

orderable graphs. Let G = (V,E) be a graph with n vertices. A vertex ordering

π = (v1, v2, . . . , vn) of the vertices of V is called perfect if G contains no induced path

P = (vi, vj , vk, v`) with i < j and ` < k. A graph is called perfectly orderable if it admits

a perfect ordering. Furthermore, chordal graphs are a subclass of perfectly orderable

graphs.

Another characterization of chordal graphs as intersection graphs, is that chordal graphs

are exactly the intersection graphs of a family of subtrees of a tree [25,55,116]. Let T be

a tree and T = {Ti}ni=1 be a collection of subtrees of a tree. We may think of the host

tree T either as a continuous model of a tree embedded in the plane, thus generalizing the

real line from the one-dimensional case, or as a discrete model of a tree, i.e. a connected
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graph of vertices and edges having no cycles, thus generalizing the notion of an induced

path from the one-dimensional case.

Moreover, the usual definition of the intersection graph G = (V,E) of a collec-

tion T = {Ti}ni=1 of a tree T can be interpreted in two ways. One the one hand, we

may interpret intersection to mean sharing at least one vertex of the host tree T in

the discrete case, or a point in the continuous case; in this case, G is called the vertex

intersection graph. On the other hand, we may interpret intersection to mean sharing

at least one edge of the host tree T in the discrete case, or a measurable segment in

the continuous case; in this case, G is called the edge intersection graph. These two

definitions lead in general to different classes of graphs [62]. Chordal graphs are the

vertex intersection graphs of a family of subtrees of a tree [62]. Two other well known

classes that can be characterized similarly are the classes of vertex and edge intersection

graphs of paths in a tree, also known as VPT and EPT graphs, respectively. The classes

of VPT and EPT graphs are not equal; moreover, none of them is included in the other.

For more details, see [62].

A graph is called interval if it is the intersection graph of a set of closed intervals on the

real line. It follows now by the definition of interval graphs and by the characterization

of chordal graphs as intersection graphs, that interval graphs are a subclass of chordal

graphs. In particular, interval graphs are a strict subclass of chordal graphs [21]. An

intersection model of an interval graph is often called an interval representation of it. If

an interval graph G has an interval representation, in which no interval properly includes

another, then G is called a proper interval graph. Proper interval graphs form a strict

subclass of interval graphs, since they are exactly interval graphs without containing

any induced claw K1,3 [19, 21]. Furthermore, if an interval graph G has an interval

representation, in which all intervals have equal length, then G is called a unit interval

graph. The subclasses of proper and unit interval graphs are equal [19, 101], Another

well known subclass of interval graphs is that of threshold graphs. A graph G = (V,E)

is called threshold if there exists a real number s (the threshold) and a real weight wv

for every vertex v ∈ V , such that uv is an edge if and only if wu + wv ≥ s.

A graph G is called trapezoid, if it is the intersection graph of trapezoids between two

parallel lines L1 and L2 [57]. Similarly, a graph G is called parallelogram (resp. permu-

tation), if it is the intersection graph of parallelograms (resp. line segments) between
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two parallel lines L1 and L2 [57]. Such a representation with trapezoids (resp. parallel-

ograms, line segments) is called a trapezoid (resp. parallelogram, permutation) represen-

tation of G. Permutation graphs are a strict subclass of parallelogram graphs [21], while

parallelograms graphs are a strict subclass of trapezoid graphs [103]. Interval graphs can

be viewed as the intersection graphs of rectangles between two parallel lines L1 and L2,

and thus, interval graphs are a subclass of parallelogram graphs. In particular, interval

graphs are a strict subclass of parallelogram graphs, since for instance the induced cycle

with four vertices is a parallelogram graph but not an interval graph (since it is also not

a chordal graph, by the definition of chordal graphs).

Two classes of perfect graphs that share a similar structure with interval graphs, are

the those of convex and biconvex graphs. Recall first that a graph G = (V,E) is called

bipartite if its vertex set V can be partitioned into two sets V1 and V2, such that every

edge of E connects a vertex of V1 to a vertex of V2; i.e. V1 and V2 are independent sets. In

this case, G is often writen as G = (V1, V2, E). Equivalently, a bipartite graph is a graph

that does not contain any odd-length cycles [21]. An ordering π of the vertices of V1 in

a bipartite graph G = (V1, V2, E) has the adjacency property if for every vertex v ∈ V2,

N(v) consists of vertices that are consecutive (an interval) in the ordering π of V1. A

graph G is convex if it is a bipartite graph G = (V1, V2, E), such that there is an ordering

of V1 (or of V2) that fulfills the adjacency property. Furthermore, a graph G is biconvex

if it is a bipartite graph G = (V1, V2, E), such that there is an ordering of V1 and an

ordering of V2 that both fulfill the adjacency property.

The classes of chordal, VPT, EPT, interval, proper interval, threshold, trapezoid, paral-

lelogram, permutation, bipartite, convex, and biconvex graphs are hereditary. That is,

if G is a graph that belongs to one of these classes, then every induced subgraph of G

belongs also to the same class.

A graph is called comparability if it admits a transitive orientation [21]. Such an ori-

entation consists of an assignment of a direction to each edge of the graph such that

the resulting directed graph satisfies a transitive law: if the directed arcs 〈xy〉 and 〈yz〉
exist, then the arc 〈xz〉 exists as well. In other words, a comparability graph connects

pairs of elements that are related to each other in a partial order. These graphs are also

known as transitively orientable graphs, partially orderable graphs, and containment

graphs [21]. A cocomparability graph is a graph whose complement is a comparability
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graph. Interval, trapezoid, parallelogram, and permutation graphs are all cocompara-

bility graphs [57]. In particular, the class of permutation graphs coincides with the

intersection of comparability and cocomparability graphs [57,98].

A graph G = (V,E) on n vertices is called tolerance if there is a set I = {Ii | i = 1, . . . , n}
of closed intervals on the real line and a set T = {ti > 0 | i = 1, . . . , n} of positive real

numbers, called tolerances, such that for any two vertices vi, vj ∈ V , vivj ∈ E if and only

if |Ii ∩ Ij | ≥ min{ti, tj}, where |I| denotes the length of the interval I. In other words,

tolerance graphs model interval relations in such a way that intervals can tolerate a

certain degree of overlap without being in conflict. The pair 〈I, t〉 is called a tolerance

representation of G. If G has a tolerance representation 〈I, t〉, such that ti ≤ |Ii| for every

i = 1, 2, . . . , n, then G is called a bounded tolerance graph and 〈I, t〉 a bounded tolerance

representation of G. A graph is bounded tolerance if and only if it is a parallelogram

graph [18,83], and thus, also a cocomparability graph. On the contrary, tolerance graphs

are not cocomparability graphs [57,62].

Similarly to the case of interval graphs, if 〈I, t〉 is a tolerance representation of G such

that no interval is properly included in another (resp. all intervals have equal length),

then G is called a proper (resp. unit) tolerance graph and 〈I, t〉 a proper (resp. unit)

tolerance representation of G. Although the subclasses of unit and proper interval graphs

are equal [19,101], the corresponding tolerance subclasses are different [18].

1.2 Interval and proper interval graphs

Interval and proper interval graphs arise naturally in biological applications, such as

the physical mapping of DNA and the genome reconstruction [28, 56, 57, 107, 117]. Fur-

thermore, they find applications in genetics, molecular biology, scheduling, VLSI circuit

design, information storage retrieval, as well as in archaeology, psychology, and social

sciences [57]. Except due to their applicability to several practical problems, interval

graphs have been extensively studied also due to their interesting structure. Namely,

many NP-hard problems admit efficient algorithms, such as maximum clique [64], min-

imum coloring [96], maximum independent set [64, 69], Hamiltonian cycle [76], Hamil-

tonian path, path cover [3, 29], domination problems [99], domatic partition [29], and

bandwidth [108] among others. These algorithms exploit several structural properties of

interval graphs. However, some interesting problems remain NP-hard, when the input
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is restricted to be an interval graph, such as optimal linear arrangement [34], sum color-

ing [91,110], hypo-coloring [51], harmonious coloring [4], and pair-complete coloring [17].

In Chapters 2 and 3, we investigate two different path problems on interval and proper

interval graphs, as well as we introduce two matrix representations of them. First, we

investigate in Chapter 2 the complexity status of the longest path problem on the class of

interval graphs. Even if a graph is not Hamiltonian, it makes sense in several applications

to search for a longest path, or equivalently, to find a maximum induced subgraph of the

graph that is Hamiltonian. However, computing a longest path seems to be more difficult

than deciding whether or not a graph admits a Hamiltonian path. Indeed, it has been

proved that even if a graph is Hamiltonian, the problem of computing a path of length

n−nε for any ε < 1 is NP-hard, where n is the number of vertices of the input graph [74].

Moreover, there is no polynomial-time constant-factor approximation algorithm for the

longest path problem unless P=NP [74]. In contrast to the Hamiltonian path problem,

there are only few known polynomial algorithms for the longest path problem, and

these restrict to trees and some other small graph classes. In particular, the complexity

status of the longest path problem on interval graphs was as an open question [113,114],

although the Hamiltonian path problem on an interval graph G = (V,E) is well known

to be solved by a greedy approach in linear time O(|V |+|E|) [3]. We resolve this problem

by presenting in Chapter 2 the first polynomial algorithm for the longest path problem

on interval graphs with running time O(n4), which is based on a dynamic programming

approach [P1].

Next, we present in Chapter 3 a new matrix representation of both interval and proper

interval graphs, called the Normal Interval Representation (NIR) and the Stair Normal

Interval Representation (SNIR) matrix, respectively [P2]. Given a (proper) interval

graph G, the (S)NIR matrix of G is a special form of its adjacency matrix, according

to a specific ordering of the vertices. Although an adjacency matrix of a graph with n

vertices needs O(n2) space in worst case, the whole information of the (S)NIR matrix

can be captured in O(n) space. Apart of being important on its own, we use this

succinct representation (SNIR) for proper interval graphs to solve efficiently another

optimization variant of the Hamiltonian path problem, namely the k-fixed-endpoint

path cover problem [P5]. The k-fixed-endpoint path cover problem is, given a graph G

and k arbitrary vertices of G, to cover all vertices of G with the smallest possible

number of simple paths, such that the given k vertices are only allowed to be endpoints
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of these paths. In particular, exploiting the SNIR structure, we provide in Chapter 3 an

optimal O(n) time algorithm for this problem on proper interval graphs [P5], assuming

that the endpoints of the intervals are sorted.

1.3 Tolerance and bounded tolerance graphs

Tolerance graphs were introduced by Golumbic and Monma in 1982 [59], in order to

generalize some of the well known applications of interval graphs. The main motivation

was in the context of resource allocation and scheduling problems, in which resources,

such as rooms and vehicles, can tolerate sharing among users [62]. If we replace in

the definition of tolerance graphs the operator min by the operator max, we obtain

the class of max-tolerance graphs. Both tolerance and max-tolerance graphs find in a

natural way applications in biology and bioinformatics, as in the comparison of DNA

sequences from different organisms or individuals [75], by making use of a software tool

like BLAST [2, 75]. Tolerance graphs find numerous other applications in constrained-

based temporal reasoning, data transmission through networks to efficiently scheduling

aircraft and crews, as well as contributing to genetic analysis and studies of the brain [61,

62]. This class of graphs has attracted many research efforts [18,26,46,60,61,62,66,77,95],

as it generalizes in a natural way both interval graphs (when all tolerances are equal)

and permutation graphs (when ti = |Ii| for every i = 1, 2, . . . , n) [59]. For a detailed

survey on tolerance graphs we refer to [62].

As already mentioned in Section 1.1, the existence of a suitable non-trivial intersection

model for some graph class may be very helpful, in order to design efficient algorithms

for difficult optimization problems [92]. The class of bounded tolerance graphs is well

known to be equal to that of parallelogram graphs [18, 83]. However, no non-trivial

intersection model for tolerance graphs was known until now. Therefore, all algorithms

have been based on a given tolerance representation 〈I, t〉 of the input graph G, which

however is no intersection model (two intervals may intersect in 〈I, t〉, but the corre-

sponding vertices may be not adjacent). We present in Chapter 4 the first non-trivial

intersection model for tolerance graphs, given by three-dimensional parallelepipeds [P3],

which extends the widely known intersection model of parallelograms in the plane that

characterizes bounded tolerance graphs. This new intersection model enables the de-

sign of efficient algorithms on tolerance graphs. Namely, we illustrate its usefulness by
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presenting in Chapter 4 optimal O(n log n) time algorithms for the minimum coloring

and the maximum clique problems, as well as an improved O(n2) time algorithm for the

maximum weighted independent set problem on a tolerance graph G with n vertices [P3].

In spite of the extensive study of these classes, the recognition of both tolerance and

bounded tolerance graphs have been the most fundamental open problems since their

introduction [62]. Therefore, all existing algorithms assumed that the input graph is

given along with a tolerance or a bounded tolerance representation, respectively. Since

very few subclasses of perfect graphs are known to be NP-hard to recognize (for instance,

perfectly orderable graphs [93] or EPT graphs [58]), it was believed that the recognition

of tolerance graphs was polynomial. Furthermore, as bounded tolerance graphs –which

are equivalent to parallelogram graphs– are a natural subclass of trapezoid graphs and

share a very similar structure with them, and since the recognition of trapezoid graphs

is well known to be polynomial [90,107], it was plausible that that their recognition was

also polynomial.

Surprisingly, we prove in Chapter 5 that both recognition problems of tolerance and of

bounded tolerance graphs are NP-complete, providing a reduction from the monotone

Not-All-Equal-3-SAT problem [P4]. For the proof of our reduction, we extend the notion

of an acyclic orientation of permutation and trapezoid graphs. Our main tool is a new

algorithm that transforms a given trapezoid graph into a permutation graph by splitting

some specific vertices, while preserving this new acyclic orientation property. One of the

main advantages of this algorithm is that the constructed permutation graph does not

depend on any particular trapezoid representation of the input graph G.

1.4 Preemptive scheduling

As already mentioned in Sections 1.2 and 1.3, both interval and tolerance graphs find

natural applications in scheduling and resource allocation. In Chapter 6 we investigate

a preemptive scheduling model, in which several jobs J1, J2, . . . , Jn have to be scheduled

on a single machine. Here, preemption means job splitting, i.e. the execution of a job Ji

may be interrupted for the execution of another job Jj . In our model, every job Ji

has a release time ri, i.e. a time point, after which Ji is available for execution on the

machine, and a positive weight wi. A schedule of the given jobs is called feasible if the

execution of every job Ji starts not earlier than its release time ri. Furthermore, all
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jobs have equal processing time. In a particular feasible schedule, the time at which

a job Ji is completed is called its completion time Ci. Our goal is to find a feasible

preemptive schedule of the given n jobs, such that the weighted sum of the completion

times
∑n

i=1wiCi is minimized.

The complexity status of this problem has been stated as an open question [11,12,23,14].

On the contrary, the complexity status of most of the closely related problems is already

known [82, 87]. We provide for this problem the first polynomial algorithm for the case

where there is a constant number k of different weight values [P6]. The running time of

this algorithm, which is based on a dynamic programming approach, is O((nk + 1)kn8),

where n is the number of the jobs to be scheduled and k is the number of different

weights. These results provide evidence that the problem under consideration could

admit a polynomial solution even in the case of arbitrarily many different weights.





Chapter 2

The longest path problem on

interval graphs

Since the Hamiltonian path problem is a special case of the longest path problem, it is

clear that the longest path problem is NP-hard on every class of graphs, on which the

Hamiltonian path problem is NP-complete. The Hamiltonian path problem is known

to be NP-complete in general graphs [53, 54], and remains NP-complete even when

restricted to some small classes of graphs such as bipartite graphs [81], split graphs [57],

chordal bipartite graphs, split strongly chordal graphs [94], circle graphs [39], planar

graphs [54], and grid graphs [72]. However, it makes sense to investigate the tractability

of the longest path problem on the classes of graphs for which the Hamiltonian path

problem admits polynomial time solutions. Such classes include interval graphs [3],

circular-arc graphs [40], convex bipartite graphs [94], and cocomparability graphs [41].

Note that the problem of finding a longest path on proper interval graphs is easy, since

all connected proper interval graphs have a Hamiltonian path which can be computed

in linear time [15]. On the contrary, not all interval graphs are Hamiltonian; in the case

where an interval graph has a Hamiltonian path, it can be computed in linear time [3,29].

However, in the case where an interval graph is not Hamiltonian, there was no known

algorithm for computing a longest path on it.

As already mentioned in Section 1.2, computing a longest path seems to be more difficult

than deciding whether or not a graph admits a Hamiltonian path. In contrast to the

Hamiltonian path problem, there are few known polynomial algorithms for the longest

path problem, and these restrict to trees and some small graph classes. Specifically,

13
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a linear time algorithm for finding a longest path in a tree was proposed by Dijkstra

around 1960, a formal proof of which can be found in [24]. Later, through a generalization

of Dijkstra’s algorithm for trees, a linear time algorithm O(n + m) on weighted trees

and block graphs, as well as an O(n2) time algorithm for cacti have been presented for

the longest path problem [114], where n and m denote the number of vertices and edges

of the input graph, respectively.

More recently, polynomial algorithms have been proposed that solve the longest path

problem on bipartite permutation graphs in O(n) time and space [115], and on ptolemaic

graphs in O(n5) time and O(n2) space [111]. Furthermore, a subclass of interval graphs,

namely interval biconvex graphs, has been introduced in [113], which is a superclass of

proper interval and threshold graphs. In the same paper, an O(n3(m+ n log n)) time

algorithm has been presented for the longest path problem on this class. As a corollary,

it has been shown that a longest path of a threshold graph can be computed in O(n+m)

time. The complexity status of the longest path problem on interval graphs has been

left open [113,114].

In this chapter, we present the first polynomial algorithm for the longest path problem

on interval graphs [P1]. This algorithm computes a longest path problem on a given

interval graph G with n vertices in O(n4) time and space, using a dynamic programming

approach. This result, not only answers the open question on interval graphs, but also

improves the known time complexity of this problem on interval biconvex graphs, a

subclass of interval graphs.

The rest of this chapter is organized as follows. In Section 2.1, we review some structural

properties of interval graphs and introduce the notion of a normal path, which is central

for our algorithm. In Section 2.2, we present our algorithm for computing a longest path

problem on an interval graph, which includes three phases. In Section 2.3 we prove the

correctness and compute the time and space complexity of this algorithm.

2.1 Structural properties of interval graphs

One of the most common ways to represent an interval graph G is to sort the intervals of

the intersection model of G according to their right endpoints [3]. This vertex numbering

has been proposed in [99] as follows.
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Lemma 2.1 ([99]). The vertices of any interval graph G can be numbered with integers

1, 2, . . . , |V (G)| such that if i < j < k and ik ∈ E(G), then jk ∈ E(G).

An equivalent vertex numbering has been presented in [96]. This numbering can be ob-

tained in O(|V (G)|+ |E(G)|) time [96,99]. An ordering of the vertices according to this

numbering has been proved quite useful in solving efficiently some graph theoretic prob-

lems on interval graphs [3, 96, 99]. Throughout this chapter, such an ordering is called

a right-end ordering of G. Let u and v be two vertices of G; if π is a right-end ordering

of G, denote u <π v if u appears before v in π. In particular, if π = (u1, u2, . . . , u|V (G)|)

is a right-end ordering of G, then ui <π uj if and only if i < j.

We call right endpoint of a path P = (v1, v2, . . . , vk) the last vertex vk of P . Moreover,

let P = (v1, v2, . . . , vi−1, vi, vi+1, . . . , vj , vj+1, vj+2, . . . , vk) and P0 = (vi, vi+1, . . . , vj) be

two paths of a graph. Sometimes, we shall denote for simplicity reasons the path P by

P = (v1, v2, . . . , vi−1, P0, vj+1, vj+2, . . . , vk). The following lemma appears to be useful

in obtaining some important results in the sequel.

Lemma 2.2. Let G be an interval graph, and let π be a right-end ordering of G.

Let P = (v1, v2, . . . , vk) be a path of G, and let v` /∈ V (P ) be a vertex of G such that

v1 <π v` <π vk and v`vk /∈ E(G). Then, there exist two consecutive vertices vi−1 and vi

in P , 2 ≤ i ≤ k, such that vi−1v` ∈ E(G) and v` <π vi.

Proof. Consider the intersection model F of G, from which we obtain the right-end

ordering π of G. Let Ii denote the interval which corresponds to the vertex vi in F , and

let l(Ii) and r(Ii) denote the left and the right endpoint of the interval Ii, respectively.

Without loss of generality, we may assume that all values l(Ii) and r(Ii) are distinct.

Since P = (v1, v2, . . . , vk) is a path from v1 to vk, it is clear from the intersection model F

of G that at least one vertex of P sees v`. Recall that vkv` /∈ E(G); let vi−1, 2 ≤ i ≤ k,

be the last vertex of P such that vi−1v` ∈ E(G), i.e. vjv` /∈ E(G) for every index j,

i ≤ j ≤ k. Thus, since v` <π vk, it follows that r(I`) < l(Ij) < r(Ij) for every index j,

i ≤ j ≤ k, and thus, v` <π vj . Therefore, in particular, v` <π vi. This completes the

proof.
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2.1.1 Normal paths

Our algorithm for constructing a longest path of an interval graph G uses a specific

type of paths, namely normal paths. We next define the notion of a normal path of an

interval graph G.

Definition 2.1. Let G be an interval graph, and let π be a right-end ordering

of G. The path P = (v1, v2, . . . , vk) of G is called normal, if v1 is the leftmost ver-

tex of V (P ) in π, and for every i, 2 ≤ i ≤ k, the vertex vi is the leftmost vertex

of N(vi−1) ∩ {vi, vi+1, . . . , vk} in π.

In Figure 2.1 an interval representation of an interval graph G with six ver-

tices u1, u2, u3, u4, u5, u6 is presented. The right-end ordering of these vertices is

π = (u1, u2, u3, u4, u5, u6) (the intervals are sorted increasingly according to their right

endpoints). In this example, the path P = (v1, v2, v3, v4, v5, v6) = (u1, u2, u4, u3, u6, u5),

which is indicated by the directed arrows in the figure, is a normal path of G.

u2 u3

u4

u5

I1

I2 I3

I4

I5

u1

u6

I6

Figure 2.1: The right-end ordering π = (u1, u2, u3, u4, u5, u6) of the vertices of an
interval graph G, and the normal path P = (v1, v2, v3, v4, v5, v6) = (u1, u2, u4, u3, u6, u5)

of G.

The notion of a normal path of an interval graph G is an extension of the notion of a

typical path of G; the path P = (v1, v2, . . . , vk) of an interval graph G is called a typical

path, if v1 is the leftmost vertex of V (P ) in π. The notion of a typical path has been

introduced in [3], in order to solve the path cover problem on interval graphs, where the

following result has been proved.

Lemma 2.3 ([3]). Let P be a path of an interval graph G. Then, there exists a typical

path P ′ in G such that V (P ′) = V (P ).

The following lemma extends Lemma 2.3, and is the basis of our algorithm for solving

the longest path problem on interval graphs.
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Lemma 2.4. Let P be a path of an interval graph G. Then, there exists a normal

path P ′ of G, such that V (P ′) = V (P ).

Proof. Let G be an interval graph, let π be a right-end ordering of G, and let

P = (v1, v2, . . . , vk) be a path of G. If k = 1, the lemma clearly holds. Suppose

that k ≥ 2. We will prove that for every index i, 2 ≤ i ≤ k, there exists a path

Pi = (v′1, v
′
2, . . . , v

′
k), such that V (Pi) = V (P ), v′1 is the leftmost vertex of V (Pi)

in π, and for every index j, 2 ≤ j ≤ i, the vertex v′j is the leftmost vertex of

N(v′j−1) ∩ {v′j , v′j+1, . . . , v
′
k} in π. The proof will be done by induction on i.

Due to Lemma 2.3, we may assume that P = (v1, v2, . . . , vk) is typical, i.e. that v1 is the

leftmost vertex of V (P ) in π. Let i = 2. Assume that vj ∈ V (P ), j > 2, is the leftmost

vertex of N(v1) ∩ {v2, v3, . . . , vk} in π. Then, since G[V (P )] is an interval graph, and

since v1 <π vj <π v2 and v1v2, v1vj ∈ E(G), it follows that N [vj ] ∩ {v1, v2, . . . , vk} ⊆
N [v2] ∩ {v1, v2, . . . , vk}. Thus, there exists a path

P2 = (v′1, v
′
2, . . . , v

′
k) = (v1, vj , vj−1, . . . , v3, v2, vj+1, vj+2 . . . , vk)

of G, such that V (P2) = V (P ), v′1 is the leftmost vertex of V (P2) in π, and v′2 is the

leftmost vertex of N(v′1) ∩ {v′2, v′3, . . . , v′k} in π. This proves the induction basis.

Consider now an arbitrary index i, 2 ≤ i ≤ k− 1, and let Pi = (v′1, v
′
2, . . . , v

′
k) be a path

of G, such that V (Pi) = V (P ), v′1 is the leftmost vertex of V (Pi) in π, and for every

index j, 2 ≤ j ≤ i, the vertex v′j is the leftmost vertex of N(v′j−1) ∩ {v′j , v′j+1, . . . , v
′
k}

in π. In particular, it follows that the subpath (v′1, v
′
2, . . . , v

′
i) of Pi is normal. We

will now prove that for any vertex v′` ∈ {v′i+1, v
′
i+2, . . . , v

′
k}, where v′` <π v′i, it holds

v′`v
′
i ∈ E(G). Indeed, suppose otherwise that v′`v

′
i /∈ E(G), for such a vertex v′`. Then,

since v′1 <π v
′
` <π v

′
i, it follows by Lemma 2.2 that there are two consecutive vertices v′j−1

and v′j in Pi, 2 ≤ j ≤ i, such that v′j−1v
′
` ∈ E(G) and v′` <π v

′
j . Thus, v′j is not the

leftmost vertex of N(v′j−1) ∩ {v′j , v′j+1, . . . , v
′
`, . . . , v

′
k} in π, which is a contradiction.

Therefore, for any vertex v′` ∈ {v′i+1, v
′
i+2, . . . , v

′
k}, where v′` <π v

′
i, it holds v′`v

′
i ∈ E(G).

Assume that v′j ∈ V (Pi), j > i+ 1, is the leftmost vertex of N(v′i) ∩ {v′i+1, v
′
i+2, . . . , v

′
k}

in π. Consider first the case where v′i <π v
′
j . Then, for every vertex

v′` ∈ {v′i+1, v
′
i+2, . . . , v

′
k} it holds v′i <π v

′
`. Indeed, suppose otherwise that v′` <π v

′
i <π v

′
j

for such a vertex v′`. Then, as we have proved above, v′`v
′
i ∈ E(G), which is a contra-

diction, since v′j is the leftmost vertex of N(v′i) ∩ {v′i+1, v
′
i+2, . . . , v

′
k} in π and v′` <π v

′
j .
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Thus, v′i <π v
′
` for every vertex v′` ∈ {v′i+1, v

′
i+2, . . . , v

′
k}. Therefore, since G[V (Pi)] is

an interval graph, and since v′i <π v
′
j <π v

′
i+1 and v′iv

′
i+1, v

′
iv
′
j ∈ E(G), it follows that

N [v′j ] ∩ {v′i, v′i+1, . . . , v
′
k} ⊆ N [v′i+1] ∩ {v′i, v′i+1, . . . , v

′
k}. Then, there exists the path

Pi+1 = (v′′1 , v
′′
2 , . . . , v

′′
i , v
′′
i+1, . . . , v

′′
k) = (v′1, v

′
2, . . . , v

′
i, v
′
j , v
′
j−1, . . . , v

′
i+2, v

′
i+1, v

′
j+1, . . . , v

′
k)

of G, such that V (Pi+1) = V (Pi), v′′1 is the leftmost vertex of V (Pi+1) in π, and for every

index j, 2 ≤ j ≤ i+1, the vertex v′′j is the leftmost vertex of N(v′′j−1)∩{v′′j , v′′j+1, . . . , v
′′
k}

in π.

Consider now the case where v′j <π v′i. Then, v′j is the leftmost vertex of

{v′i+1, v
′
i+2, . . . , v

′
k} in π. Indeed, suppose otherwise that v′` <π v′j <π v′i for a ver-

tex v′` ∈ {v′i+1, v
′
i+2, . . . , v

′
k}. Then, as we have proved above, v′`v

′
i ∈ E(G), which

is a contradiction, since v′j is the leftmost vertex of N(v′i) ∩ {v′i+1, v
′
i+2, . . . , v

′
k} in π

and v′` <π v′j . Thus, there exists by Lemma 2.3 a typical path P0, such that

V (P0) = {v′i+1, v
′
i+2, . . . , v

′
k}. Since P0 is typical and v′j is the leftmost vertex of V (P0)

in π, it follows that v′j is the first vertex of P0. Then, since v′iv
′
j ∈ E(G), there exists

the path

Pi+1 = (v′′1 , v
′′
2 , . . . , v

′′
i , v
′′
i+1, . . . , v

′′
k) = (v′1, v

′
2, . . . , v

′
i, P0)

of G, such that V (Pi+1) = V (Pi), v′′1 is the leftmost vertex of V (Pi+1) in π, and for every

index j, 2 ≤ j ≤ i+1, the vertex v′′j is the leftmost vertex of N(v′′j−1)∩{v′′j , v′′j+1, . . . , v
′′
k}

in π. This proves the induction step.

Thus, the path P ′ = Pk is a normal path of G, such that V (P ′) = V (P ).

2.2 Interval graphs and the longest path problem

In this section we present our algorithm (Algorithm 2.3) for solving the longest path

problem on interval graphs; it consists of three phases and works as follows:

• Phase 1: construct an auxiliary interval graph H from the input interval graph G;

• Phase 2: compute a longest path P of H using Algorithm 2.1;

• Phase 3: compute a longest path P̂ on G from the path P ;

The proposed algorithm computes a longest path P of the graph H using dynamic

programming techniques, and then it computes a longest path P̂ of G from the path P .
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We next describe in detail the three phases of our algorithm and prove properties of the

constructed graph H which will be used for proving the correctness of the algorithm.

2.2.1 The stable-connection interval graph H

In this section we present Phase 1 of Algorithm 2.3: given an interval graph G and a

right-end ordering π of G, we construct the auxiliary interval graph H and a right-end

ordering σ of H.

I Construction of H and σ: Let G be an interval graph and let

π = (v1, v2, . . . , v|V (G)|) be a right-end ordering of G. Initially, set V (H) = V (G),

E(H) = E(G), σ = π, and A = ∅. Traverse the vertices of π from left to

right and do the following: for every vertex vi add two vertices ai,1 and

ai,2 to V (H) and make both these vertices to be adjacent to every vertex in

NG[vi] ∩ {vi, vi+1, . . . , v|V (G)|}; add ai,1 and ai,2 to A. Update σ such that

a1,1 <σ a1,2 <σ v1, and vi−1 <σ ai,1 <σ ai,2 <σ vi for every i, 2 ≤ i ≤ |V (G)|.

u2 u3

u4

u5

I1

I2 I3

I4

I5

u1

u6

I6

a1,1 a1,2

a2,1 a2,2 a3,1 a3,2

a4,1 a4,2

a5,1 a5,2

a6,1 a6,2

Figure 2.2: The stable-connection graph H of the graph G of Figure 2.1.

We call the constructed graph H the stable-connection graph of the graph G. It is easy to

see by the construction of H that G is an induced subgraph of H. The stable-connection

graph H of the graph G of Figure 2.1 is illustrated in Figure 2.2. Hereafter, we will

denote by n the number |V (H)| of vertices of the graph H and by σ = (u1, u2, . . . , un)

the constructed ordering of H. By construction, the vertex set of the graph H consists

of the vertices of the set C = V (G) and the vertices of the set A. We will refer to C

as the set of the connector vertices c of the graph H and to A as the set of stable

vertices a of the graph H; we denote these sets by C(H) and A(H), respectively. Note

that |A(H)| = 2|V (G)|.
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By the construction of the stable-connection graph H, all neighbors of a stable vertex

a ∈ A(H) are connector vertices c ∈ C(H), such that a <σ c. Moreover, observe that all

neighbors of a stable vertex form a clique in G, and thus, also in H. For every connector

vertex ui ∈ C(H), we denote by uf(ui) and uh(ui) the leftmost and rightmost neighbor

of ui in σ that appears before ui in σ, respectively, i.e. uf(ui) <σ uh(ui) <σ ui. Note that

uf(ui) and uh(ui) are distinct stable vertices, for every connector vertex ui.

Lemma 2.5. Let G be an interval graph. The stable-connection graph H of G is an

interval graph, and the vertex ordering σ is a right-end ordering of H.

Proof. Consider the intersection model F of G, from which we obtain the right-end

ordering π = (v1, v2, . . . , v|V (G)|) of G. Let Ii denote the interval which corresponds to

the vertex vi in F , and let l(Ii) and r(Ii) denote the left and the right endpoint of the

interval Ii, respectively. Without loss of generality, we may assume that all values l(Ii)

and r(Ii) are distinct. Let ε be the smallest distance between two interval endpoints

in F .

For every interval Ii which corresponds to a vertex vi ∈ C, we replace its right endpoint

r(Ii) by r(Ii) + ε
2 , and we add two non-intersecting intervals Ii,1 = [r(Ii), r(Ii) + ε

8 ] and

Ii,2 = [r(Ii) + ε
4 , r(Ii) + 3ε

8 ] (one for each vertex ai,1 and ai,2 of A, respectively). The two

new intervals do not intersect with any interval Ik, such that r(Ik) < r(Ii). Additionally,

the two new intervals intersect with the interval Ii, and with every interval I`, such that

r(I`) > r(Ii) and I` intersects with Ii. After processing all intervals Ii, 1 ≤ i ≤ |V (G)|,
of the intersection model F of G, we obtain an intersection model of H. Thus, H is an

interval graph, and the ordering which results from numbering the intervals after sorting

them according to their right endpoints is identical to the vertex ordering σ of H, and

thus, σ is a right-end ordering of H.

Definition 2.2. Let H be the stable-connection graph of an interval graph G, and

let σ = (u1, u2, . . . , un) be the right-end ordering of H. For every pair of indices i, j,

1 ≤ i ≤ j ≤ n, we define the graph H(i, j) to be the subgraph H[S] of H, induced by the

set S = {ui, ui+1, . . . , uj} \ {uk ∈ C(H) | uf(uk) <σ ui}.

The stable-connection H of Figure 2.2 is illustrated in Figure 2.3, where its 18 vertices

(both stable and connector vertices) are numbered according to the right-end ordering σ

of H. The subgraph H(2, 12) for i = 2 and j = 12 is illustrated in Figure 2.3, where
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the vertices V (H(2, 12)) = {u2, u4, u5, u7, u8, u9, u10, u11, u12} are drawn bold for better

visibility.

u1 u2
u3

u4 u5

u6
u7 u8

u9

u10 u11
u12

u13 u14

u15

u16 u17

u18

Figure 2.3: The subgraph H(2, 12) of the stable-connection H of Figure 2.2,
for i = 2 and j = 12.

The following properties hold for every induced subgraph H(i, j), 1 ≤ i ≤ j ≤ n, and

they are used for proving the correctness of Algorithm 2.1. In particular, the next two

observations follow easily by the construction of H and σ.

Observation 2.1. Let uk be a connector vertex of H(i, j), i.e. uk ∈ C(H(i, j)). Then,

for every vertex u` ∈ V (H(i, j)), such that uk <σ u` and uku` ∈ E(H(i, j)), u` is also a

connector vertex of H(i, j).

Observation 2.2. No two stable vertices of H(i, j) are adjacent.

Lemma 2.6. Let P = (v1, v2, . . . , vk) be a normal path of H(i, j). Then:

(a) For any two stable vertices vr and v` in P , vr appears before v` in P if and only

if vr <σ v`.

(b) For any two connector vertices vr and v` in P , if v` appears before vr in P and

vr <σ v`, then vr does not see the previous vertex v`−1 of v` in P .

Proof. The proof will be done by contradiction.

(a) Let vr and v` be any two stable vertices of H(i, j) that belong to the normal path

P = (v1, v2, . . . , vk), such that vr appears before v` in P , and assume that v` <σ vr.

Then, clearly v` 6= v1, since vr appears before v` in P . Since P is a normal path

of H(i, j), v1 is the leftmost vertex of V (P ) in σ. Thus, v1 <σ v` <σ vr, and since

no two stable vertices of H(i, j) are adjacent due to Observation 2.2, it follows

that vrv` /∈ E(H(i, j)). Thus, by Lemma 2.2 there exist two consecutive vertices u

and u′ in P that appear between v1 and vr in P , such that uv` ∈ E(H(i, j)) and

v` <σ u
′. Thus, since P is a normal path, v` should be the next vertex of u in P

instead of u′, which is a contradiction. Therefore, vr <σ v`.
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(b) Let vr and v` be any two connector vertices of H(i, j) that belong to the normal

path P = (v1, v2, . . . , vk), such that v` appears before vr in P and vr <σ v`. Since P

is a normal path of H(i, j), v1 is the leftmost vertex of V (P ) in σ. Since vr <σ v`,

it follows that v` 6= v1, and thus, there exists a vertex v`−1 which appears be-

fore v` in P . Assume that vrv`−1 ∈ E(H(i, j)). Since vr <σ v`, and since P is a

normal path, vr should be the next vertex of v`−1 in P instead of v`, which is a

contradiction. Therefore, vrv`−1 /∈ E(H(i, j)).

2.2.2 Computing a longest path of H

In this section we present Phase 2 of Algorithm 2.3. Let G be an interval graph and

let H be the stable-connection graph of G constructed in Phase 1. We next provide

Algorithm 2.1, which computes a longest path of the graph H. Let us first give some

definitions and notations necessary for the description of the algorithm.

Definition 2.3. Let H be a stable-connection graph, and let P be a path of H(i, j),

1 ≤ i ≤ j ≤ n. The path P is called binormal if P is a normal path of H(i, j), both

endpoints of P are stable vertices, and no two connector vertices are consecutive in P .

Algorithm 2.1 Computation of a longest binormal path of H

Input: A stable-connection graph H and the right-end ordering σ = (u1, u2, . . . , un)
of H

Output: A longest binormal path of H

1: for j = 1 to n do
2: for i = j downto 1 do
3: if i = j and ui ∈ A(H) then
4: `(ui; i, i)← 1; P (ui; i, i)← (ui)
5: if i 6= j then
6: for every stable vertex uk ∈ A(H), i ≤ k ≤ j − 1 do
7: `(uk; i, j)← `(uk; i, j − 1); P (uk; i, j)← P (uk; i, j − 1) {initialization}
8: if uj is a stable vertex of H(i, j), i.e. uj ∈ A(H) then
9: `(uj ; i, j)← 1; P (uj ; i, j)← (uj)

10: if uj is a connector vertex of H(i, j), i.e. uj ∈ C(H) and i ≤ f(uj) then
11: Execute Procedure 2.2 on H(i, j)

12: Compute ` = max{`(uk; 1, n) | uk ∈ A(H)} and the corresponding path
P = P (uk; 1, n)

13: return ` and P
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Procedure 2.2 Computation of all binormal paths of H(i, j)

Input: A subgraph H(i, j) of H, where i 6= j, uj ∈ C(H), and i ≤ f(uj)
Output: The paths P (uk; i, j) for every uk ∈ A(H(f(uj) + 1, j − 1))

1: for y = f(uj) + 1 to j − 1 do
2: for x = f(uj) to y − 1 do {ux and uy are adjacent to uj}
3: if ux, uy ∈ A(H) then
4: w1 ← `(ux; i, j − 1); P ′1 ← P (ux; i, j − 1)
5: w2 ← `(uy;x+ 1, j − 1); P ′2 ← P (uy;x+ 1, j − 1)
6: if w1 + w2 + 1 > `(uy; i, j) then
7: `(uy; i, j)← w1 + w2 + 1; P (uy; i, j)← (P ′1, uj , P

′
2)

8: return the value `(uk; i, j) and the path P (uk; i, j), ∀uk ∈ A(H(f(uj) + 1, j − 1))

Notation 2.1. Let H be a stable-connection graph, and let σ = (u1, u2, . . . , un) be the

right-end ordering of H. For every stable vertex uk ∈ A(H(i, j)), we denote by P (uk; i, j)

a longest binormal path of H(i, j) with uk as its right endpoint, and by `(uk; i, j) the

length of P (uk; i, j).

Since any binormal path is a normal path, Lemma 2.6 holds also for binormal paths.

Moreover, since P (uk; i, j) is a binormal path, it follows that its right endpoint uk is also

the rightmost stable vertex of P in σ, due to Lemma 2.6(a).

Algorithm 2.1 computes (calling Procedure 2.2 as a subroutine) for every induced sub-

graph H(i, j) and for every stable vertex uk ∈ A(H(i, j)), the length `(uk; i, j) and

the corresponding path P (uk; i, j). Since H(1, n) = H, it follows that the maximum

among the values `(uk; 1, n), where uk ∈ A(H), is the length of a longest binormal path

P (uk; 1, n) of H. In Section 2.3.2 we prove that the length of a longest path of H equals

to the length of a longest binormal path of H. Thus, the binormal path P (uk; 1, n)

computed by Algorithm 2.1 is also a longest path of H.

2.2.3 Computing a longest path of G

During Phase 3 of Algorithm 2.3, we compute a path P̂ from the longest binormal path P

of H, computed by Algorithm 2.1, by simply deleting all the stable vertices of P . In

Section 2.3.2 we prove that the resulting path P̂ is a longest path of the interval graph G.

Note that Steps 1, 2, and 3 of Algorithm 2.3 correspond to the presented Phases 1, 2,

and 3, respectively.
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Algorithm 2.3 Computation of a longest path of an interval graph G

Input: An interval graph G and a right-end ordering π of G
Output: A longest path P̂ of G

1: Construct the stable-connection graph H of G and the right-end ordering σ of H;
let V (H) = C ∪A, where C = V (G) and A are the sets of the connector and stable
vertices of H, respectively

2: Compute a longest binormal path P of H, using Algorithm 2.1; let
P = (v1, v2, . . . , v2k, v2k+1), where v2i ∈ C, 1 ≤ i ≤ k, and v2i+1 ∈ A, 0 ≤ i ≤ k

3: Compute the longest path P̂ = (v2, v4, . . . , v2k) of G, by deleting all stable vertices
{v1, v3, . . . , v2k+1} from the longest binormal path P of H

2.3 Correctness and complexity

In this section we prove the correctness of our algorithm and compute its complexity.

More specifically, in Section 2.3.1 we show that Algorithm 2.1 computes a longest bi-

normal path P of the graph H (this path is also a longest path of H, cf. Lemma 2.13),

while in Section 2.3.2 we show that the length of a longest binormal path P of H is

equal to 2k + 1, where k is the length of a longest path of G. Finally, we show that the

path P̂ computed by Algorithm 2.3 (at at Step 3) is indeed a longest path of G.

2.3.1 Correctness of Algorithm 2.1

We next prove that Algorithm 2.1 correctly computes a longest binormal path of the

stable-connection graph H. The following three lemmas appear useful in the proof of

the algorithm’s correctness.

Lemma 2.7. Let H be a stable-connection graph, and let σ = (u1, u2, . . . , un) be the

right-end ordering of H. Let P be a longest binormal path of H(i, j) with uy as

its right endpoint, let uk be the rightmost connector vertex of H(i, j) in σ, and let

uf(uk)+1 ≤σ uy ≤σ uh(uk). Then, there exists a longest binormal path P ′ of H(i, j) with

uy as its right endpoint, which contains the connector vertex uk.

Proof. Let P be a longest binormal path of H(i, j) with uy as its right endpoint, which

does not contain the connector vertex uk. Assume first that P = (uy). Since uk is

a connector vertex of H(i, j) and uf(uk) is a stable vertex of H(i, j), we have that

ui ≤σ uf(uk) <σ uy <σ uk. Thus, there exists the binormal path P1 = (uf(uk), uk, uy),
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where |P1| > |P |. However, this is a contradiction to the assumption that P is a longest

binormal path of H(i, j).

Therefore, assume now that P = (up, . . . , uq, u`, uy). By assumption, P is a longest

binormal path of H(i, j) with uy as its right endpoint that does not contain the connector

vertex uk. Since the connector vertex u` sees the stable vertex uy and, also, since uk

is the rightmost connector vertex of H(i, j) in σ, it follows by Observation 2.1 that

uf(uk) <σ uy <σ u` <σ uk. Thus, uk sees the connector vertex u`. Consider first the case

where uk does not see the stable vertex uq, i.e. uq <σ uf(uk) <σ uy <σ u` <σ uk. Then,

it is easy to see that the connector vertex u` sees uf(uk), where uf(uk) is always a stable

vertex, and also, from Lemma 2.6(a) it follows that the vertex uf(uk) does not belong to

the path P . Therefore, there exists a binormal path P2 = (up, . . . , uq, u`, uf(uk), uk, uy)

in H(i, j), such that |P2| > |P |. This is a contradiction to our assumption that P is a

longest binormal path.

Consider now the case where uk sees the stable vertex uq. Then, there exists a path

P ′ = (up, . . . , uq, uk, uy) of H(i, j) with uy as its right endpoint that contains the con-

nector vertex uk, such that |P | = |P ′|; since P is a binormal path, it is easy to see

that P ′ is also a binormal path. Thus, the path P ′ is a longest binormal path of H(i, j)

with uy as its right endpoint, which contains the connector vertex uk.

Lemma 2.8. Let H be a stable-connection graph, and let σ be the right-end ordering

of H. Let P = (P1, v`, P2) be a binormal path of H(i, j), and let v` be a connector vertex

of H(i, j). Then, P1 and P2 are binormal paths of H(i, j).

Proof. Let P = (v1, v2, . . . , v`−1, v`, v`+1, . . . , vk) be a binormal path of H(i, j). Then,

from Definition 2.1, v1 is the leftmost vertex of V (P ) in σ, and for every index r,

2 ≤ r ≤ k, the vertex vr is the leftmost vertex of N(vr−1) ∩ {vr, vr+1, . . . , vk} in σ.

It is easy to see that P1 = (v1, v2, . . . , v`−1) is a normal path of H(i, j). Indeed, since

V (P1) ⊂ V (P ), v1 is also the leftmost vertex of V (P1) in σ, and additionally, vr is the

leftmost vertex of N(vr−1) ∩ {vr, vr+1, . . . , v`−1} in σ, for every index r, 2 ≤ r ≤ ` − 1.

Furthermore, since P is binormal and v` is a connector vertex, it follows that v`−1 is a

stable vertex, and thus, P1 is a binormal path of H(i, j) as well.

Consider now the path P2 = (v`+1, v`+2, . . . , vk) of H(i, j). Since P is a binormal path

and v` is a connector vertex, it follows that v`+1 is a stable vertex, and thus, v`+1 <σ v`

due to Observation 2.1. We first prove that v`+1 is the leftmost vertex of V (P2) in σ.
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Since P is a binormal path, we obtain from Lemma 2.6(a) that v`+1 is the leftmost

stable vertex of V (P2) in σ. Moreover, consider a connector vertex vt of P2. Then, its

previous vertex vt−1 in P2 is a stable vertex and, thus, vt−1 <σ vt due to Observation 2.1.

Since v`+1 is the leftmost stable vertex of V (P2) in σ, we have that v`+1 ≤σ vt−1, and

thus, v`+1 <σ vt. Therefore, v`+1 is the leftmost vertex of V (P2) in σ. Additionally,

since P is a binormal path, it is straightforward that for every index r, ` + 2 ≤ r ≤ k,

the vertex vr is the leftmost vertex of N(vr−1) ∩ {vr, vr+1, . . . , vk} in σ. Thus, P2 is a

normal path. Finally, since P is binormal and v`+1 is a stable vertex, P2 is a binormal

path as well.

Lemma 2.9. Let H be a stable-connection graph, and let σ = (u1, u2, . . . , un) be the

right-end ordering of H. Let P1 be a binormal path of H(i, j − 1) with ux as its right

endpoint, and let P2 be a binormal path of H(x+ 1, j − 1) with uy as its right endpoint,

such that V (P1) ∩ V (P2) = ∅. Suppose that uj is a connector vertex of H and that

ui ≤σ uf(uj) ≤σ ux. Then, P = (P1, uj , P2) is a binormal path of H(i, j) with uy as its

right endpoint.

Proof. Let P1 be a binormal path of H(i, j − 1) with ux as its right endpoint, and

let P2 be a binormal path of H(x + 1, j − 1) with uy as its right endpoint, such that

V (P1) ∩ V (P2) = ∅. Let uz be the first vertex of P2. Since uj is a connector vertex of H

such that ui ≤σ uf(uj) ≤σ ux, it follows that uj sees the right endpoint ux of P1. Addi-

tionally, since uz ∈ V (H(x+ 1, j − 1)), we have uf(uj) ≤σ ux <σ ux+1 ≤σ uz <σ uj , and

thus uj sees uz. Therefore, since V (P1) ∩ V (P2) = ∅, it follows that P = (P1, uj , P2)

is a path of H. Additionally, since H(i, j − 1) and H(x + 1, j − 1) are induced sub-

graphs of H(i, j), it follows that P is a path of H(i, j). In the rest of this proof

P1 = (v1, v2, . . . , vp−1), P2 = (vp+1, vp+2, . . . , v`), ux = vp−1, uy = v`, and uj = vp.

We first show that P = (v1, v2, . . . , vp, . . . , v`) is a normal path. Since v1 is the leftmost

vertex of V (P1) in σ, it follows that v1 ≤σ ux. Furthermore, since for every vertex

vk ∈ V (P2) it holds ux <σ ux+1 ≤σ vk, it follows that v1 is the leftmost vertex of V (P )

in σ. We next show that for every k, 2 ≤ k ≤ `, the vertex vk is the leftmost vertex of

N(vk−1) ∩ {vk, vk+1, . . . , v`} in σ.

Consider first the case where 2 ≤ k ≤ p− 1, i.e. vk ∈ V (P1). Since P1 is a normal path,

vk is the leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , vp−1} in σ. Assume that vk−1

is a stable vertex. Then, Lemma 2.6(a) implies that vk−1 <σ vp−1 = ux and, due to
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Observation 2.2, it follows that N(vk−1) ∩ {vk, vk+1, . . . , v`} is a set of connector vertices.

Since every connector vertex vr ∈ V (P2) is a vertex of H(x + 1, j − 1), it follows that

vk−1 <σ ux+1 ≤σ uf(vr), and thus, vr /∈ N(vk−1). Additionally, since vp = uj is the

rightmost vertex of H(i, j) in σ, it follows that vk <σ vp. Therefore, since vk is the

leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , vp−1} in σ, it follows that vk is the leftmost

vertex of N(vk−1)∩{vk, vk+1, . . . , v`} in σ. Assume now that vk−1 is a connector vertex.

Since P1 is a binormal path, vk is a stable vertex, such that vk ≤σ ux and vk is the

leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , vp−1} in σ. Since for every r, p+ 1 ≤ r ≤ `,
the vertex vr ∈ V (H(x + 1, j − 1)), it follows that vk ≤σ ux <σ vr. Additionally,

vk <σ ux+1 <σ vp. Therefore, vk is the leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , v`}
in σ.

Consider now the case where k = p. Since P1 is a normal path and vp−1 = ux is

a stable vertex, N(vp−1) ∩ {vp, vp+1, . . . , v`} is a set of connector vertices, due to

Observation 2.2. Additionally, since every connector vertex vr ∈ V (P2) is a vertex

of H(x + 1, j − 1), it follows that vp−1 <σ ux+1 ≤σ uf(vr), and thus, vr /∈ N(vp−1).

Therefore, N(vp−1) ∩ {vp, vp+1, . . . , v`} = {vp}, and thus, vp is the leftmost vertex of

N(vp−1) ∩ {vp, vp+1, . . . , v`} in σ. Now, in the case where k = p+ 1, we have that vp+1

is the leftmost vertex of V (P2) = {vp+1, vp+2, . . . , v`} in σ, since P2 is a normal path.

Therefore, it easily follows that vp+1 is the leftmost vertex of N(vp) ∩ {vp+1, vp+2, . . . , v`}
in σ. Finally, in the case where p+ 2 ≤ k ≤ `, since P2 is a normal path it directly follows

that vk is the leftmost vertex of N(vk−1) ∩ {vk, vk+1, . . . , v`} in σ.

Concluding, we have shown that P is a normal path of H(i, j). Additionally, since P1

and P2 are binormal paths of H(i, j), the path P has stable vertices as endpoints and no

two connector vertices are consecutive in P . Therefore, P is a binormal path of H(i, j)

with uy as its right endpoint.

Now, we are ready to prove the correctness of Algorithm 2.1.

Lemma 2.10. Let H be a stable-connection graph, and let σ be the right-end ordering

of H. For every induced subgraph H(i, j) of H, 1 ≤ i ≤ j ≤ n, and for every stable vertex

uy ∈ A(H(i, j)), Algorithm 2.1 computes the length `(uy; i, j) of a longest binormal path

of H(i, j), which has uy as its right endpoint, and also the corresponding path P (uy; i, j).

Proof. Let P be a longest binormal path of the stable-connection graph H(i, j), which

has a vertex uy ∈ A(H(i, j)) as its right endpoint. Consider first the case where
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C(H(i, j)) = ∅; the graph H(i, j) is consisted of a set of stable vertices A(H(i, j)), which

is an independent set, due to Observation 2.2. Therefore, in this case Algorithm 2.1 sets

`(uy; i, j) = 1 for every vertex uy ∈ A(H(i, j)), which is indeed the length of the longest

binormal path P (uy; i, j) = (uy) of H(i, j) which has uy as its right endpoint. Therefore,

the lemma holds for every induced subgraph H(i, j), for which C(H(i, j)) = ∅.

We examine next the case where C(H(i, j)) 6= ∅. Let C(H) = {c1, c2, . . . , ck, . . . , ct}
be the set of connector vertices of H, where c1 <σ c2 <σ . . . <σ ck <σ . . . <σ ct. Let

σ = (u1, u2, . . . , un) be the vertex ordering of H constructed in Phase 1. Recall that, by

the construction of H, n = 3t, and A(H) = V (H) \ C(H) is the set of stable vertices

of H.

Let H(i, j) be an induced subgraph of H, and let ck be the rightmost connector vertex

of H(i, j) in σ. The proof of the lemma is done by induction on the index k of the

rightmost connector vertex ck of H(i, j). More specifically, given a connector vertex ck

of H, we prove that the lemma holds for every induced subgraph H(i, j) of H, which

has ck as its rightmost connector vertex in σ. To this end, in both the induction basis and

the induction step, we distinguish three cases on the position of the stable vertex uy in

the ordering σ: ui ≤σ uy ≤σ uf(ck), uh(ck) <σ uy ≤σ uj , and uf(ck)+1 ≤σ uy ≤σ uh(ck).

In each of these three cases, we examine first the length of a longest binormal path

of H(i, j) with uy as its right endpoint, and then we compare this value to the length of

the path computed by Algorithm 2.1. Moreover, we prove that the path computed by

Algorithm 2.1 is a binormal path with uy as its right endpoint.

We first show that the lemma holds for k = 1. In the case where ui ≤σ uy ≤σ uf(c1) or

uh(c1) <σ uy ≤σ uj , it is easy to see that the length `(uy; i, j) of a longest binormal path P

of H(i, j) with uy as its right endpoint is equal to 1. Indeed, in these cases, if uy 6= uf(c1),

then uy does not see the unique connector vertex c1 of H(i, j), and thus, the longest

binormal path with uy as its right endpoint is consisted of the vertex uy. Now, in the case

where uy = uf(c1), the connector vertex c1 sees uy, however, c1 does not belong to any

binormal path with uy as its right endpoint, since uy is the leftmost neighbor of c1 in σ.

Therefore, in the case where ui ≤σ uy ≤σ uf(c1) or uh(c1) <σ uy ≤σ uj , Algorithm 2.1

computes the length of the longest binormal path P (uy; i, j) = (uy) of H(i, j) with uy as

its right endpoint. In the case where uf(c1)+1 ≤σ uy ≤σ uh(c1), Algorithm 2.1 computes

(in the call of Procedure 2.2) for every stable vertex ux of H(i, j), such that uf(c1) ≤σ
ux ≤σ uy−1, the value `(ux; i, j − 1) + `(uy;x + 1, j − 1) + 1 = 1 + 1 + 1 = 3 and sets
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`(uy; i, j) = 3. It is easy to see that the path P (uy; i, j) = (ux, c1, uy), computed by

Algorithm 2.1 in this case, is indeed a longest binormal path of H(i, j) with uy as its

right endpoint.

Let now ck be a connector vertex of H, such that 2 ≤ k ≤ t. Assume that the lemma

holds for every induced subgraph H(i, j) of H, which has c` as its rightmost connector

vertex in σ, where 1 ≤ ` ≤ k − 1. That is, we assume that for every such graph H(i, j),

the value `(uy; i, j) computed by Algorithm 2.1 is the length of a longest binormal path

P (uy; i, j) of H(i, j) with uy as its right endpoint. We will show that the lemma holds

for every induced subgraph H(i, j) of H, which has ck as its rightmost connector vertex

in σ.

Case 1: ui ≤σ uy ≤σ uf(ck). In this case, it holds `(uy; i, j) = `(uy; i, h(ck)) (note

that uh(ck) is the previous vertex of ck in σ). Indeed, on the one hand, using similar

arguments as in the induction basis, it easily follows that the connector vertex ck does

not belong to any binormal path of H(i, j) with uy as its right endpoint. On the other

hand, since ck is the rightmost connector vertex of H(i, j), it follows that every vertex u`

of H(i, j), where ck <σ u` ≤σ uj , is a stable vertex, and thus, u` does not see uy, due to

Observation 2.2. Therefore, we obtain that `(uy; i, j) = `(uy; i, h(ck)).

Next, we show that this is the result computed by Algorithm 2.1 in this case. Note first

that, since h(ck) < j, Algorithm 2.1 has already computed the value `(uy; i, h(ck)) at

a previous iteration, where j was equal to h(ck). Additionally, this computed value

`(uy; i, h(ck)) equals indeed to the length of a longest binormal path P (uy; i, h(ck))

of H(i, h(ck)) with uy as its right endpoint. Namely, consider first the case where

H(i, h(ck)) is a graph for which C(H(i, h(ck))) = ∅, i.e. H(i, h(ck)) has only stable ver-

tices. Then, as we have shown in the first paragraph of the proof, the computed value

`(uy; i, h(ck)) = 1 equals the length of a longest binormal path of H(i, h(ck)) with uy

as its right endpoint. Consider now the case where H(i, h(ck)) is a graph for which

C(H(i, h(ck))) 6= ∅, i.e. H(i, h(ck)) has at least one connector vertex, and let c` be its

rightmost connector vertex in σ. Then, c` <σ ck, since uh(ck) <σ ck. Therefore, by the

induction hypothesis, the computed value `(uy; i, h(ck)) by Algorithm 2.1 equals indeed

the length of a longest binormal path of H(i, h(ck)) with uy as its right endpoint.

We now show that in Case 1 Algorithm 2.1 computes `(uy; i, j) = `(uy; i, h(ck)). Consider

first the case where uj is a connector vertex of H(i, j), i.e. uj = ck. Then, Algorithm 2.1
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computes `(uy; i, j) = `(uy; i, j − 1), which equals to `(uy; i, h(ck)), since in this case

j − 1 = h(ck). Consider now the case where uj is a stable vertex; then j − 1 > h(ck).

If j − 1 = h(ck) + 1, then Algorithm 2.1 computes `(uy; i, j) = `(uy; i, j − 1), which is

equal to `(uy; i, h(ck) + 1); moreover, since uh(ck)+1 = ck is a connector vertex, it follows

that `(uy; i, h(ck) + 1) = `(uy; i, h(ck)), and thus, `(uy; i, j) = `(uy; i, h(ck)). Similarly,

if j − 1 > h(ck) + 1, then Algorithm 2.1 computes `(uy; i, j) = `(uy; i, j − 1), which is

again equal to `(uy; i, h(ck)). Therefore, in Case 1, where ui ≤σ uy ≤σ uf(ck), Algo-

rithm 2.1 computes `(uy; i, h(ck)) as the length of a longest binormal path of H(i, j)

with uy as its right endpoint and, also, computes P (uy; i, j) = P (uy; i, h(ck)). Then, by

the induction hypothesis, this path is also binormal. Thus, in Case 1 the lemma holds.

Case 2: uh(ck) <σ uy ≤σ uj . Since ck is the rightmost connector vertex of H(i, j),

and since uy is a stable vertex, it follows that uy does not see any vertex of H(i, j).

Thus, the longest binormal path of H(i, j) with uy as its right endpoint is consisted of

the vertex uy, i.e. `(uy; i, j) = 1. One can easily see that in this case Algorithm 2.1

computes the length `(uy; i, j) = 1, and the path P (uy; i, j) = (uy), which is clearly a

binormal path. Thus, in Case 2 the lemma holds.

Case 3: uf(ck)+1 ≤σ uy ≤σ uh(ck). In this case, the connector vertex ck sees uy. Let

P = (ux′ , . . . , ux, ck, uy′ , . . . , uy) be a longest binormal path of H(i, j) with uy as its right

endpoint, which contains the connector vertex ck; due to Lemma 2.7, such a path always

exists. Let ux be the previous vertex of ck in the path P ; thus, uf(ck) ≤σ ux <σ uy.
Since P is a binormal path, the vertices ux′ , ux, uy′ , and uy are all stable vertices.

Also, since ck sees uy, which is the rightmost stable vertex of P in σ, all stable vertices

of P belong to the graph H(i, h(ck)). Additionally, since ck is the rightmost connector

vertex of H(i, j) in σ, all connector vertices of P belong to the graph H(i, h(ck) + 1).

Therefore, all vertices of P belong to the graph H(i, h(ck) + 1). Thus, the path P is a

longest binormal path of H(i, h(ck) + 1) with uy as its right endpoint, which contains

the connector vertex ck. Therefore, for every graph H(i, j), for which ck is its rightmost

connector vertex in σ and h(ck) + 1 ≤ j, we have that `(uy; i, j) = `(uy; i, h(ck) + 1).

Thus, we will examine only the case where h(ck) + 1 = j, that is, ck is the rightmost

vertex uj of H(i, j) in σ.

Next, we examine the length `(uy; i, j) of a longest binormal path of H(i, j) with uy

as its right endpoint, in the case where h(ck) + 1 = j. Consider removing the con-

nector vertex ck from the path P . Then, we obtain the paths P1 = (ux′ , . . . , ux) and
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P2 = (uy′ , . . . , uy). Since P is a binormal path of H(i, j), we obtain from Lemma 2.8

that P1 and P2 are binormal paths of H(i, j). Since, as we have shown, all vertices

of P belong to H(i, h(ck) + 1), and since ck = uj is the rightmost vertex of H(i, j) in σ,

it follows that all vertices of P1 and P2 belong to the graph H(i, h(ck)) = H(i, j − 1).

Since P is a binormal path, it follows from Lemma 2.6(a) that for every stable ver-

tex u`1 ∈ V (P1), we have ui ≤σ ux′ ≤σ u`1 ≤σ ux. Additionally, for every stable ver-

tex u`2 ∈ V (P2), we have ux <σ u`2 ≤σ uy ≤σ uj−1, where uj−1 = uh(ck) is the right-

most vertex of H(i, j − 1) in σ, since uj = ck. Therefore, for every stable vertex

u`1 ∈ V (P1) it holds u`1 ∈ A(H(i, x)), and for every stable vertex u`2 ∈ V (P2) it holds

u`2 ∈ A(H(x+ 1, j − 1)).

Similarly, since P1 is a binormal path, ux is the rightmost stable vertex of V (P1)

in σ, due to Lemma 2.6(a). Moreover, since P1 is binormal, every connector vertex

c`1 ∈ V (P1) sees at least one stable vertex (in particular, it sees at least two stable

vertices) of P1, and thus, ui ≤σ uf(c`1 ) ≤σ ux. Therefore, for every connector vertex

c`1 ∈ V (P1), we have that c`1 ∈ C(H(i, j − 1)) \ {c` ∈ C(H(i, j − 1)) | ux <σ uf(c`)} =

C(H(i, j − 1)) \ C(H(x+ 1, j − 1)).

Additionally, from Lemma 2.6(b) we have that every connector vertex

c`2 ∈ V (P2) does not see the vertex ux, i.e. ux <σ uf(c`2 ) <σ c`2 ≤σ uj−1; thus,

c`2 ∈ C(H(x+ 1, j − 1)). Summarizing, let H1 and H2 be the induced subgraphs of

H(i, j − 1), with vertex sets V (H1) = A(H(i, x)) ∪ C(H(i, j − 1)) \ C(H(x+ 1, j − 1))

and V (H2) = A(H(x+ 1, j − 1)) ∪ C(H(x+ 1, j − 1)), respectively. Note that

the graphs H1 and H2 are defined with respect to a stable vertex ux, where

uf(ck) ≤σ ux <σ uj−1, and that H2 = H(x+ 1, j − 1). Now, it is easy to see that

V (H1) ∩ V (H2) = ∅. Moreover, note that V (P1) ∩ V (P2) = ∅, since P1 and P2 belong

to H1 and H2, respectively.

Since P = (P1, ck, P2) is a longest binormal path of H(i, j) with uy as its right endpoint,

and since the paths P1 and P2 belong to two disjoint induced subgraphs of H(i, j), it

follows that P1 is a longest binormal path of H1 with ux as its right endpoint, and

that P2 is a longest binormal path of H2 with uy as its right endpoint. Thus, since

H2 = H(x+ 1, j − 1), we obtain that |P2| = `(uy;x+ 1, j − 1). We will now show that

|P1| = `(ux; i, j − 1). To this end, consider a longest binormal path P0 of H(i, j − 1)

with ux as its right endpoint. Due to Lemma 2.6(a), ux is the rightmost stable vertex
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of P0 in σ, and thus, all stable vertices of P0 belong to A(H1) = A(H(i, x)). Further-

more, since P0 is binormal, every connector vertex c` of P0 sees at least one stable

vertex (in particular, it sees at least two stable vertices) of P0, and thus, uf(c`) ≤σ ux,

i.e. c` ∈ C(H1) = C(H(i, j − 1)) \ C(H(x+ 1, j − 1)). It follows that V (P0) ⊆ V (H1),

and thus, |P0| ≤ |P1|. On the other hand, |P1| ≤ |P0|, since H1 is an induced subgraph of

H(i, j − 1). Thus, |P1| = |P0| = `(ux; i, j − 1). Therefore, for the length |P | = `(uy; i, j)

of a longest binormal path P of H(i, j) with uy as its right endpoint, it follows that

`(uy; i, j) = `(ux; i, j − 1) + `(uy;x+ 1, j − 1) + 1.

Hereafter, we examine the results computed by Algorithm 2.1 in Case 3. Let P ′ be the

path of the graph H(i, j) with uy as its right endpoint computed by Algorithm 2.1, in the

case where uf(ck)+1 ≤σ uy ≤σ uh(ck). Consider first the case where uj is a connector ver-

tex of H(i, j), i.e. uj = ck. It is easy to see that the path P ′ constructed by Algorithm 2.1

(in the call of Procedure 2.2) contains the connector vertex ck. Algorithm 2.1 computes

the length of the path P ′ = (P ′1, ck, P
′
2), for two paths P ′1 and P ′2 as follows. The path

P ′1 = P (ux; i, j − 1) is a path of H(i, j − 1) with ux as its right endpoint, where ux is

a neighbor of ck, such that uf(ck) ≤σ ux <σ uy. The path P ′2 = P (uy;x+ 1, j − 1) is a

path of H(x + 1, j − 1) with uy as its right endpoint, where uf(ck)+1 ≤σ uy ≤σ uh(ck).

Actually, in this case, Algorithm 2.1 computes (in the call of Procedure 2.2) the value

w1 + w2 + 1 = |P ′1|+ |P ′2|+ 1, for every stable vertex ux, where uf(ck) ≤σ ux <σ uy, and

sets |P ′| to be equal to the maximum among these values. Additionally, Algorithm 2.1

computes the corresponding path P ′ = (P ′1, ck, P
′
2).

Note that the path P ′1 = P (ux; i, j− 1) (resp. P ′2 = P (uy;x+ 1, j− 1)) has been already

computed by Algorithm 2.1 at a previous iteration, where j was smaller by one. Addi-

tionally, the computed path P (ux; i, j − 1) (resp. P (uy;x+ 1, j − 1)) is indeed a longest

binormal path of H(i, j − 1) (resp. of H(x+ 1, j − 1)) with ux (resp. with uy) as its

right endpoint. Namely, consider first the case where H(i, j − 1) (resp. H(x+ 1, j − 1))

is a graph for which C(H(i, j − 1)) = ∅ (resp. C(H(x+ 1, j − 1)) = ∅), i.e. H(i, j − 1)

(resp. H(x+ 1, j − 1)) has only stable vertices. Then, as we have shown in the first

paragraph of the proof, the computed path P (ux; i, j − 1) (resp. P (uy;x+ 1, j − 1)) is

a longest binormal path of H(i, j − 1) (resp. of H(x+ 1, j − 1)) with ux (resp. with uy)

as its right endpoint. Consider now the case where H(i, j − 1) (resp. H(x+ 1, j − 1))

is a graph for which C(H(i, j − 1)) 6= ∅ (resp. C(H(x+ 1, j − 1)) 6= ∅), i.e. H(i, j − 1)

(resp. H(x+ 1, j − 1)) has at least one connector vertex, and let c` be its rightmost
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connector vertex in σ. Then, c` <σ ck, since uj−1 <σ uj = ck. Therefore, by the

induction hypothesis, the computed path P (ux; i, j − 1) (resp. P (uy;x + 1, j − 1)) by

Algorithm 2.1 is indeed a longest binormal path of H(i, j − 1) (resp. of H(x+ 1, j − 1))

with ux (resp. with uy) as its right endpoint.

Since by the induction hypothesis, P ′1 and P ′2 are binormal paths of H(i, j − 1) with ux

and uy as their right endpoints, respectively, it follows similarly to the above that P ′1
and P ′2 belong to the graphs H1 and H2, respectively. Recall that the graphs H1 and H2

are defined with respect to a stable vertex ux, where uf(ck) ≤σ ux <σ uj−1. Since, as

we have shown, V (H1) ∩ V (H2) = ∅, it follows that V (P ′1) ∩ V (P ′2) = ∅. Therefore, we

obtain from Lemma 2.9 that the computed path P ′ = (P ′1, uj , P
′
2) is a binormal path as

well. Moreover, since Algorithm 2.1 computes (in the call of Procedure 2.2) for every

stable vertex ux, where uf(ck) ≤σ ux <σ uy, the value `(ux; i, j−1)+`(uy;x+1, j−1)+1,

and sets |P ′| to be equal to the maximum among these values, the computed path P ′ is

a longest binormal path of H(i, j) with uy as its right endpoint.

Consider now the case where uj is a stable vertex of H(i, j). Let ck be the

rightmost connector vertex of H(i, j) in σ; then h(ck) + 1 < j. Assume first

that h(ck) + 1 = j − 1. Since uj is a stable vertex and also the rightmost ver-

tex of H(i, j), uj does not see any vertex of H(i, h(ck) + 1). In this case, Algo-

rithm 2.1 correctly computes the path P ′ = P (uy; i, j − 1) = P (uy; i, h(ck) + 1), with

length |P ′| = `(uy; i, h(ck) + 1). Similarly, in the case where h(ck) + 1 < j − 1, Al-

gorithm 2.1 computes the path P ′ = P (uy; i, j − 1) = P (uy; i, h(ck) + 1), with length

|P ′| = `(uy; i, j − 1) = `(uy; i, h(ck) + 1). Algorithm 2.1 has already computed the value

`(uy; i, h(ck) + 1) at a previous iteration, where j was equal to h(ck) + 1 (i.e. uj = ck),

and also the computed path P ′ = P (uy; i, h(ck) + 1) is binormal.

Concluding, in both cases where uj is a connector or a stable vertex of H(i, j), the

path P ′ of H(i, j) with uy as its right endpoint computed by Algorithm 2.1 is a longest

binormal path P (uy; i, j) of H(i, j) with uy as its right endpoint, and |P ′| = `(uy; i, j).

Thus, the lemma holds in Case 3 as well.

Due to Lemma 2.10, and since the output of Algorithm 2.1 is the maximum among the

lengths `(uy; 1, n), uy ∈ A(H(1, n)), along with the corresponding path, it follows that

Algorithm 2.1 computes a longest binormal path of H(1, n) with right endpoint a vertex

uy ∈ A(H(1, n)). Thus, since H(1, n) = H, we obtain the following result.
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Lemma 2.11. Let G be an interval graph. Algorithm 2.1 computes a longest binormal

path of the stable-connection graph H of the graph G.

2.3.2 Correctness of Algorithm 2.3

In this section we show that Algorithm 2.3 correctly computes a longest path of an

interval graph G. The correctness proof is based on the following property: for any

longest path P ofG there exists a longest binormal path P ′ ofH, such that |P ′| = 2|P |+1

and vice versa (cf. Lemma 2.12). Therefore, we obtain that the length of a longest

binormal path P of H computed by Algorithm 2.1, is equal to 2k + 1, where k is the

length of a longest path P̂ of G. Next, we show that the length of a longest binormal

path of H equals to the length of a longest path of H. Finally, we show that the path P̂

computed at Step 3 of Algorithm 2.3 is indeed a longest path of the input interval

graph G.

Lemma 2.12. Let H be the stable-connection graph of an interval graph G. Then,

for any longest path P of G there exists a longest binormal path P ′ of H, such that

|P ′| = 2|P |+ 1 and vice versa.

Proof. Let σ be the right-end ordering of H, constructed in Phase 1.

(⇒) Let P = (v1, v2, . . . , vk) be a longest path of G, i.e. |P | = k. We will show that there

exists a binormal path P ′ of H such that |P ′| = 2k+ 1. Since G is an induced subgraph

of H, the path P of G is a path of H as well. We construct a path P̂ of H from P , by

adding to P the appropriate stable vertices, using the following procedure. Initially, set

P̂ = P and for every subpath (vi, vi+1) of the path P̂ , 1 ≤ i ≤ k − 1, do the following:

consider first the case where vi <σ vi+1; then, by the construction of H, vi+1 is adjacent

to both stable vertices ai,1 and ai,2 associated with the connector vertex vi. If ai,1 has not

already been added to P̂ , then replace the subpath (vi, vi+1) by the path (vi, ai,1, vi+1);

otherwise, replace the subpath (vi, vi+1) by the path (vi, ai,2, vi+1). Similarly, in the

case where vi+1 <σ vi, replace the subpath (vi, vi+1) by the path (vi, ai+1,1, vi+1) or

(vi, ai+1,2, vi+1), respectively. Finally, consider the endpoint v1 (resp. vk) of P̂ . If a1,1

(resp. ak,1) has not already been added to P̂ , then add a1,1 (resp. ak,1) as the first (resp.

last) vertex of P̂ ; otherwise, add a1,2 (resp. ak,2) as the first (resp. last) vertex of P̂ .
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By the construction of P̂ it is easy to see that for every connector vertex v of P we add

two stable vertices as neighbors of v in P̂ , and since in H there are exactly two stable

vertices associated with every connector vertex v, it follows that every stable vertex

of H appears at most once in P̂ . Furthermore, since we add in total k+1 stable vertices

to P , where |P | = k, it follows that |P̂ | = 2k + 1. Denote now by P ′ a normal path

of H such that V (P ′) = V (P̂ ). Such a path exists, due to Lemma 2.4. Due to the above

construction, the path P̂ is consisted of k + 1 stable vertices and k connector vertices.

Thus, since no two stable vertices are adjacent in H due to Observation 2.2, and since P ′

is a normal path of H, it follows that P ′ is a binormal path of H. Thus, for any longest

path P of G there exists a binormal path P ′ of H, such that |P ′| = 2|P |+ 1.

(⇐) Consider now a longest binormal path P ′ = (v1, v2, . . . , v`) of H. Since P ′ is

binormal, it follows that ` = 2k + 1, and that P ′ has k connector vertices and k + 1

stable vertices, for some k ≥ 1. We construct a path P by deleting all stable vertices

from the path P ′ of H. By the construction of H, all neighbors of a stable vertex a are

connector vertices and form a clique in G; thus, for every subpath (v, a, v′) of P ′, v is

adjacent to v′ in G. It follows that P is a path of G. Since we removed all the k + 1

stable vertices of P ′, it follows that |P | = k, i.e. |P ′| = 2|P |+ 1.

Summarizing, we have constructed a binormal path P ′ of H from a longest path P of G

such that |P ′| = 2|P |+ 1, and a path P of G from a longest binormal path P ′ of H such

that |P ′| = 2|P |+ 1. This completes the proof.

In the next lemma, we show that the length of a longest path of H is equal to the length

of a longest binormal path of H.

Lemma 2.13. For any longest path P and any longest binormal path P ′ of H, it holds

|P ′| = |P |.

Proof. Let P be a longest path of H and P ′ be a longest binormal path of H, i.e. a

binormal path of H with maximum length. Then, clearly |P ′| ≤ |P |. Suppose that P

has k connector and ` stable vertices. Since no two stable vertices of H are adjacent due

to Observation 2.2, it holds clearly that ` ≤ k + 1. Similarly to the second part of the

proof of Lemma 2.12, we can obtain a path P̂ of H with k vertices, by removing all `

stable vertices from P . Then, similarly to the first part of the proof of Lemma 2.12, there

exists a binormal path P ′′ of H, where |P ′′| = 2k + 1 ≥ k + ` = |P | ≥ |P ′|. However,
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|P ′′| ≤ |P ′|, since P ′ be a longest binormal path of H. Therefore, |P ′| = |P |. This

completes the proof.

We can now state our main theorem of this chapter.

Theorem 2.1. Algorithm 2.3 computes a longest path of an interval graph G.

Proof. Let P be the longest binormal path of H computed in Step 2 of Algorithm 2.3,

using Algorithm 2.1. Then, Algorithm 2.3 computes in Step 3 the path P̂ by deleting

all stable vertices from P . By the construction of H, all neighbors of a stable vertex a

are connector vertices and form a clique in G; thus, for every subpath (v, a, v′) of P , v is

adjacent to v′ in G. It follows that P̂ is a path of G. Moreover, since P is binormal, it

has k connector vertices and k+ 1 stable vertices, i.e. |P | = 2k+ 1, where k ≥ 1. Thus,

since we have removed all k+ 1 stable vertices of P , it follows that |P̂ | = k, and thus, P̂

is a longest path of G due to Lemma 2.12.

2.3.3 Total complexity

The following theorem states the total complexity of Algorithm 2.3 for computing a

longest path of a given interval graph.

Theorem 2.2. A longest path of an interval graph G = (V,E), where |V | = n and

|E| = m, can be computed in O(n4) time and space, while the computation of the length

of a longest path needs O(n3) space.

Proof. First, we can obtain the right-end ordering π of G, which results from number-

ing the intervals after sorting them on their right endpoints, in O(n+m) time [96, 99].

Step 1 of Algorithm 2.3, which constructs the stable-connection graph H of the graph G,

needs O(n2) time. Indeed, for every of the n vertices of G, we can add the corresponding

two stable vertices to V (H) in O(1) time and we can compute the neighborhoods of these

two vertices in O(n) time. Then, |V (H)| = 3n. Step 2 of Algorithm 2.3 includes the ex-

ecution of Algorithm 2.1. Procedure 2.2 needs O(n2) time, due to the O(n2) pairs of the

neighbors ux and uy of the connector vertex uj in the graph H(i, j). Furthermore, Pro-

cedure 2.2 is executed at most once for each subgraph H(i, j) of H, 1 ≤ i ≤ j ≤ |V (H)|,
i.e. it is executed O(n2) times. Thus, Algorithm 2.1 needs O(n4) time. Step 3 of Al-

gorithm 2.3 can be executed in O(n) time, since we simply traverse the vertices of the
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path P , constructed by Algorithm 2.1, and delete every stable vertex. Therefore, the

total time complexity of Algorithm 2.1 is O(n4).

Regarding the space complexity, in order to compute the length of a longest path,

we need to store one value for every induced subgraph H(i, j) and for every stable

vertex uy of H(i, j). Thus, since there are in total O(n2) such subgraphs H(i, j),

1 ≤ i ≤ j ≤ |V (H)|, and since each one has at most O(n) stable vertices, we can com-

pute the length of a longest path in O(n3) space. Furthermore, in order to compute a

longest path, instead of its length only, we have to store for every one of the above O(n3)

computed values a path of O(n) vertices each. Therefore, the total space complexity of

Algorithm 2.3 is O(n4).





Chapter 3

A matrix representation of

interval and proper interval

graphs

There are several known characterizations of interval graphs, as well as of proper and

unit interval graphs. In particular, an arbitrary graph G is interval if and only if G is

chordal and its complement G is a comparability graph [57], or equivalently if and only

if G is chordal and contains no asteroidal triple (AT) [21]. Furthermore, interval graphs

are characterized by the consecutive ones property [50], i.e. the maximal cliques can be

linearly ordered such that, for every vertex v of G, the maximal cliques containing v

occur consecutively [21,57]. Namely, in the clique-versus-vertex incidence matrix of any

interval graph there is a permutation of its rows, such that the ones in each column

appear consecutively. On the other hand, proper interval graphs are characterized as

graphs containing no astral triples [73], as well as interval graphs without containing any

induced claw K1,3 [19,21]. Very recently, a 2-dimensional structure similar to a matrix,

called bubble model, has been introduced as a new representation for proper interval

graphs [67].

In this chapter a new characterization of interval and proper interval graphs is presented,

which is based on a vertex-versus-vertex zero-one matrix representation of them [P2].

Namely, interval graphs can be represented by the Normal Interval Representation (NIR)

39
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matrix, while proper interval graphs can be represented by the Stair Normal Inter-

val Representation (SNIR) matrix. This matrix representation of a (proper) interval

graph G is a special form of its adjacency matrix, according to a specific ordering of the

vertices. Although an adjacency matrix of a graph with n vertices needs O(n2) space

in worst case, the whole information of the (S)NIR matrix can be captured in O(n)

space. This representation provides insight and may be useful for the efficient formu-

lation and solution of difficult optimization problems. In particular, we illustrate the

usefulness of this succinct representation (SNIR) for proper interval graphs by providing

in Section 3.2 an optimal O(n) time algorithm for another optimization variant of the

Hamiltonian path problem, namely the k-fixed-endpoint path cover problem [P5].

3.1 The NIR and the SNIR matrices

There are several linear O(n + m) time recognition algorithms for interval [20, 37, 38,

65, 78, 79, 80, 105] and for proper interval graphs [35, 36, 42, 43, 97], where n and m

are the number of vertices and edges of the input graph, respectively. These algorithms

compute also an interval and a proper interval representation, respectively. In an interval

representation of an interval graph G = (V,E), where |V | = n, all intervals have been

assumed to be closed. Furthermore, we can assume without loss of generality that all

interval endpoints are integers between 1 and 2n. On the other hand, if we are given

an interval model where endpoints are not all integers, we can sort the endpoints in an

increasing order and use the indices of endpoints in the sorted list to construct a new

interval model, where the endpoints are restricted to distinct integers between 1 and 2n.

Hence, most researchers on interval graphs are interested in the complexity of problems,

where the input graph is given by such a set of intervals [29,70], which we will call a set

of sorted intervals. Throughout this chapter, we will assume that such a set of intervals

is given.

3.1.1 Interval graphs and the NIR matrix

Consider a numbering of the vertices of G according to their left endpoints; that is, if

Ii = [`i, ri] is the interval that corresponds to vertex vi ∈ V , where 1 ≤ i ≤ n, then

`i < `j if and only if i < j. An ordering of the vertices according to this numbering

is called a left-end ordering of G (in contrast to the right-end ordering that has been
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presented in Chapter 2). We introduce in the next definition a special type of an inter-

val representation [P5], where all intervals are semi-closed and there are exactly n + 1

different endpoints (instead of 2n ones).

Definition 3.1. An interval representation with n intervals, satisfying the following

properties, is a Normal Interval Representation (NIR):

1. all intervals are of the form [i, j), where i, j ∈ Z and 0 ≤ i < j ≤ n, and

2. exactly one interval begins at i, for every i ∈ {0, 1, . . . , n− 1}.

Lemma 3.1. Given an interval representation of an interval graph G = (V,E) with

sorted intervals, a NIR of G can be computed in O(n) time, where |V | = n.

Proof. The left-end ordering of the intervals according to their left endpoints

`1 < `2 < . . . < `n is given, since the set of intervals are assumed to be sorted. A NIR

of G can be computed as follows. First, replace every closed interval [`i, ri] by the

semi-closed interval [`i, ri). Since initially all endpoints are distinct, the resulting rep-

resentation with the semi-closed intervals is an intersection model of the same interval

graph G. Second, for every right endpoint rj , where `i < rj < `i+1 for some i ≤ n− 1,

replace [`j , rj) by [`j , `i+1). Also, for every right endpoint rj , where `n < rj , replace

[`j , rj) by [`j , `n + 1). Since all intervals are semi-closed, no new adjacency is introduced

to the interval representation of G by the latter operations. Finally, move bijectively

the point `i to the point i − 1, for i = 1, 2, . . . , n and the point `n + 1 to the point n.

The resulting set of intervals is a NIR of G. Since at every step of the above procedure

we operate on each of the n intervals a constant number of times, the running time of

this procedure is O(n).

The next lemma follows from Lemma 3.1.

Lemma 3.2. An arbitrary graph G is interval if and only if it can be represented by

a NIR.

Proof. Let G be an interval graph. Given an interval representation of G with sorted

intervals, a NIR of G can be constructed by the procedure described in the proof of

Lemma 3.1. Conversely, consider a NIR R with n intervals, and let GR = (V,E) be

the intersection graph of the semi-closed intervals of R. Then, replace every semi-closed

interval [i− 1, j) of R, where 1 ≤ i ≤ n, by the closed interval [i− 1, j − 1
i ]. It is easy to
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see that the resulting set of closed intervals is an interval representation with 2n distinct

endpoints of the same graph GR, and thus, GR is an interval graph.

In a particular NIR of an interval graph G, the ordering of the vertices according to the

left endpoints of the intervals is called the vertex ordering of this NIR. Note that the

NIR of G is not unique. For instance, consider two vertices u, v in an interval graph G,

for which N [u] = N [v]. Then, the left-end ordering of the vertices is not unique, and

thus, the resulting NIR of G is also not unique.

Next, we provide a definition of a special type of square matrices, which will be useful

in the sequel for the characterization of interval graphs in terms of matrices, cf. The-

orem 3.1. Recall first that, given an arbitrary graph G = (V,E) with |V | = n and an

ordering π = (v1, v2, . . . , vn) of the vertices of V , the adjacency matrix of G with respect

to π is a square n × n zero-one matrix AG with zero diagonal, such that AG(i, j) = 1

if and only if vivj ∈ E. Note that the adjacency matrix AG of every (simple, finite,

and undirected) graph G is symmetric. Furthermore, a square matrix H is called lower

triangular if all entries of H above the diagonal are zero, i.e. if i < j then H(i, j) = 0.

Given an adjacency matrix AG of a graph G, the lower triangular part of AG is the

square zero-one matrix HG, where HG(i, j) = 1 if and only if AG(i, j) = 1 and i > j.

Definition 3.2. Let H be a square n×n square zero-one matrix. H is a Normal Interval

Representation (NIR) matrix if:

1. H is lower triangular with zero diagonal, and

2. there is a chain of xi ≥ 0 consecutive 1’s immediately below the ith diagonal element

of H, where 1 ≤ i ≤ n, while all remaining elements of the ith column are zero.

An example of a NIR matrix is given in Figure 3.1(a), where n = 8. The next theorem

characterizes interval graphs by using the notion of a NIR matrix.

Theorem 3.1. An arbitrary graph G is interval if and only there exists an ordering π

of its vertices, such that the lower triangular part of its adjacency matrix with respect

to π is a NIR matrix.

Proof. Let G = (V,E) be an interval graph with |V | = n, and RG be a NIR of G; note

that RG exists by Lemma 3.2. Let π = (v1, v2, . . . , vn) be the vertex ordering of RG,

and Ii be the interval of RG that corresponds to vertex vi, where 1 ≤ i ≤ n. Let HG be
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the lower triangular part of the adjacency matrix of G with respect to π. We will now

prove that HG is a NIR matrix. Consider two arbitrary vertices vi, vk ∈ V , such that

i < k and vivk ∈ E. Then, for the interval Ii = [i− 1, j) that corresponds to vi, it holds

j > k− 1, since otherwise Ii ∩ Ik = ∅, which is a contradiction. Therefore, in particular,

Ii ∩ I` 6= ∅ for every ` ∈ {i + 1, i + 2, . . . , k}, since i, i + 1, . . . , k − 1 ∈ [i − 1, j) = Ii.

Thus, for every unit entry HG(i, k) = 1 of HG, where i < k, it holds HG(i, `) = 1 for

every ` ∈ {i+ 1, i+ 2, . . . , k}, i.e. HG is a NIR matrix.

Conversely, let H be an n × n NIR matrix and let GH = (V,E) be the graph with

|V | = n, such that H is the lower triangular part of the adjacency matrix of GH . Let

xi ≥ 0 be the number of consecutive 1’s immediately below the ith diagonal element

of H. Furthermore, let vi be the vertex of V that corresponds to the ith diagonal

element of H. We will prove that GH is an interval graph. To this end, we define first

a NIR RH with n intervals as follows. The ith interval Ii of RH is Ii = [i − 1, i + xi),

where 1 ≤ i ≤ n. Then, for every pair {i, j} of indices, where 1 ≤ i < k ≤ n, it holds

vivk ∈ E ⇔ H(i, k) = 1

⇔ xi ≥ k − i

⇔ i+ xi > k − 1

⇔ Ii ∩ Ik 6= ∅

Thus, RH is a NIR of GH , i.e. GH is an interval graph. This completes the proof.

Note that, since an interval graph G has not a unique NIR, G has also not a unique

NIR matrix. Although an adjacency matrix of an arbitrary graph with n vertices

needs O(n2) space in worst case, we can capture the whole information about an in-

terval graph G using a NIR matrix HG of G in O(n) space. Indeed, we need just to

store the vertex ordering π = (v1, v2, . . . , vn) that corresponds to HG and the value i+xi

for every vertex vi. Namely, if i+xi = i, i.e. if xi = 0, then all entries in the ith column

of HG are zero; otherwise, if i+xi > i, then i+xi indicates the position of the last unit

entry in the ith column of HG. Recall that a NIR R of G can be computed in O(n)

time by Lemma 3.1, when an interval representation of G with sorted intervals is given.

Then, the intervals in R have the form [i− 1, i+ xi), where i ∈ {1, 2, . . . , n}. Thus, the

values i+ xi, i.e. the whole information of HG, can be also computed in O(n) time.
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(a) (b)

Figure 3.1: (a) The NIR matrix HG of an interval graph G, (b) The SNIR matrix
HG′ of a proper interval graph G′.

The following lemma characterizes the maximal cliques of an interval graph G in a NIR

matrix HG of G.

Lemma 3.3. Let G = (V,E) be an interval graph and HG be a NIR matrix of G. Any

maximal clique of G corresponds bijectively to a row of HG, in which at least one of its

unit elements, or its zero diagonal element, does not have any chain of 1’s below it.

Proof. Consider an arbitrary row of HG; let it be the ith one that corresponds to ver-

tex vi, in which exactly the i1th, i2th, . . ., irth elements equal one. Note that j < i

for every j ∈ {i1, i2, . . . , ir}. Then, the interval Ii intersects the interval Ij in the corre-

sponding NIR of G for every j ∈ {i1, i2, . . . , ir}, since HG(i, j) = 1 for all these values

of j. Moreover, all intervals Ij , j ∈ {i1, i2, . . . , ir}, intersect each other also, due to the

NIR form of HG. Thus, the vertex set Q = {vi, vi1 , vi2 , . . . , vir} induces a clique in G.

Consider now the case where the jth element of the ith row of HG does not have

any chain of 1’s below it, for some j ∈ {i, i1, i2, . . . , ir}. For the sake of contradiction,

suppose that there exists another clique Q′ in G, which strictly includes Q, i.e. Q $ Q′.

That is, there exists at least one vertex vk ∈ Q′ \Q, where k /∈ {i, i1, i2, . . . , ir}. Let

first k < i. Then, since HG(i, `) = 0 for every ` ∈ {1, 2, . . . , i− 1} \ {i1, i2, . . . , ir}, it

follows in particular that HG(i, k) = 0. Thus, vivk /∈ E, which is a contradiction, since

Q′ is a clique and vi, vk ∈ Q′. Let now k > i. Then, since HG(`, j) = 0 for every ` > i, it

follows in particular that HG(k, j) = 0. Thus, vkvj /∈ E, which is again a contradiction,
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since Q′ is a clique and vk, vj ∈ Q′. Therefore, there exists no clique Q′ in G, which

strictly includes Q, i.e. Q is a maximal clique in G.

Conversely, let Q = {vi1 , vi2 , . . . , vi|Q|} be a maximal clique in G, where

i1 < i2 < . . . < i|Q|. Then, since Q induces a clique, Ij ∩ Ii|Q| 6= ∅, i.e. HG(i|Q|, j) = 1,

for every j ∈ {i1, i2, . . . , i|Q|−1}. In the case where i|Q| = n, clearly none of the

i1th, i2th, . . ., i|Q|th elements of the i|Q|th row of HG has any chain of 1’s below it.

Suppose now that i|Q| < n. If HG(i|Q|+1, j) = 1 for every j ∈ {i1, i2, . . . , i|Q|}, then

Q′ = Q∪ {v|Q|+1} is a clique in G, which is a contradiction, since Q is a maximal clique

by assumption. Thus, there exists at least one index j ∈ {i1, i2, . . . , i|Q|}, for which

HG(i|Q|+1, j) = 0, i.e. at least one of the unit elements of the i|Q|th row of HG, or its

zero diagonal element, does not have any chain of 1’s below it in HG. This completes

the lemma.

For instance, the interval graph G that corresponds the NIR matrix of Figure 3.1(a)

has five maximal cliques, which correspond to the 3rd, 4th, 6th, 7th, and 8th rows

of the matrix, respectively. These cliques are Q1 = {v1, v2, v3}, Q2 = {v1, v3, v4},
Q3 = {v1, v3, v5, v6}, Q4 = {v3, v5, v7}, and Q5 = {v3, v7, v8}.

3.1.2 Proper interval graphs and the SNIR matrix

Consider now the case where G is a proper interval graph. Then, since G is also an

interval graph, there exists by Section 3.1.1 a NIR, as well as a NIR matrix HG of G.

We extend now the definition of a NIR (cf. Definition 3.1).

Definition 3.3. A NIR with n intervals is called a Stair Normal Interval Representation

(SNIR), if it has the following additional property:

If for the intervals [i, j) and [k, `), i < k holds, then j ≤ ` also holds.

Similarly to Lemmas 3.1 and 3.2, we obtain the following two lemmas.

Lemma 3.4. Given a proper interval representation of a proper interval graph

G = (V,E) with sorted intervals, a SNIR of G can be computed in O(n) time,

where |V | = n.

Proof. Let R be the given proper interval representation of G with the sorted intervals.

Since G is also an interval graph, we can construct in O(n) time a NIR RG of G by the
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procedure described in the proof of Lemma 3.1. We will prove that RG is also a SNIR.

Indeed, let π = (v1, v2, . . . , vn) be the left-end vertex ordering of the sorted intervals

in R; note that this ordering coincides with the vertex ordering of RG. Furthermore, let

Ii = [`i, ri] be the interval in R that corresponds to vertex vi, where 1 ≤ i ≤ n. Consider

now two indices i, k, where 1 ≤ i < k ≤ n, i.e. `i < `k. Then, also ri < rk in R. Indeed,

otherwise ri > rk, and thus Ik $ Ii, which is a contradiction, since R is a proper interval

representation. Let now [i − 1, r′i) and [k − 1, r′k) be the intervals that correspond to

the vertices vi and vk in the NIR RG. Then, it is easy to see by the construction of RG

(cf. the proof of Lemma 3.1) that r′i ≤ r′k, since ri < rk. Indeed, by this construction,

the intervals for vi and vk may be “aligned” by their right endpoints in RG; however,

their right endpoints do not change their relative order in comparison to R. Thus, RG

satisfies the condition of Definition 3.3, and thus, RG is a SNIR.

Lemma 3.5. An arbitrary graph G is proper interval if and only if it can be represented

by a SNIR.

Proof. Let G be a proper interval graph. Given a proper interval representation of G

with sorted intervals, a SNIR of G can be constructed by Lemma 3.4. Conversely,

consider a SNIR R with n intervals, and let GR = (V,E) be the intersection graph of

the semi-closed intervals of R. Then, replace every semi-closed interval [i − 1, j) of R,

where 1 ≤ i ≤ n, by the closed interval [i− 1, j − 1
i ]. It is easy to see that the resulting

set R′ of closed intervals is an interval representation with 2n distinct endpoints of the

same graph GR, and thus, GR is an interval graph. We will now prove that R′ is a proper

interval representation. Indeed, consider two intervals [i−1, j) and [k−1, `) in R, where

i < k. Then, j ≤ `, since R is a SNIR. If j < `, then j − 1
i < `− 1

k . Otherwise, if j = `,

then again j − 1
i < ` − 1

k , since i < k. Thus, no interval includes another one in R′,

i.e. R′ is a proper interval representation and GR is a proper interval graph.

Similarly to Section 3.1.1, in a particular SNIR of a proper interval graph G, the ordering

of the vertices according to the left endpoints of the intervals is called the vertex ordering

of this SNIR. We extend now the definition of a NIR matrix (cf. Definition 3.2).

Definition 3.4. Let H be a n×n NIR matrix. H is a Stair Normal Interval Represen-

tation (SNIR) matrix if it has the following additional property:

If i < k then i+ xi ≤ k + xk.
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Intuitively, a SNIR matrix H is a NIR matrix, in which the chains of consecutive 1’s

are ordered in such a way that H has a stair-shape, as it is illustrated in Figure 3.1(b),

where n = 8. Similarly to Theorem 3.1, the next theorem characterizes proper interval

graphs by using the notion of a SNIR matrix.

Theorem 3.2. An arbitrary graph G is proper interval if and only there exists an

ordering π of its vertices, such that the lower triangular part of its adjacency matrix

with respect to π is a SNIR matrix.

Proof. Let G = (V,E) be a proper interval graph with |V | = n, and RG be a SNIR of G;

note that RG exists by Lemma 3.5. Let π = (v1, v2, . . . , vn) be the vertex ordering of RG,

and Ii = [i− 1, ri) be the interval of RG that corresponds to vertex vi, where 1 ≤ i ≤ n.

Let HG be the lower triangular part of the adjacency matrix of G with respect to π.

Since G is also an interval graph, and since RG is also a NIR of G, it follows by the proof

of Theorem 3.1 that HG is a NIR matrix. We will now prove that HG is also a SNIR

matrix. For the sake of contradiction, suppose that HG is not a SNIR matrix, i.e. there

exist by Definition 3.4 two indices i, k, where 1 ≤ i < k ≤ n, such that i+ xi > k + xk.

Then, vivi+xi ∈ E, while vkvi+xi /∈ E. Thus, since both HG and RG have the same

vertex ordering π, it follows that rk ≤ i+xi− 1 < ri. That is, i− 1 < k− 1 and rk < ri,

i.e. Ik $ Ii, which is a contradiction, since RG is a SNIR. Thus, HG is a SNIR matrix

of G.

Conversely, let H be an n × n SNIR matrix and let GH = (V,E) be the graph with

|V | = n, such that H is the lower triangular part of the adjacency matrix of GH .

Let xi ≥ 0 be the number of consecutive 1’s immediately below the ith diagonal element

of H. Furthermore, let vi be the vertex of V that corresponds to the ith diagonal element

of H. We will prove that GH is a proper interval graph. To this end, we define first a

SNIR RH with n intervals as follows. The ith interval Ii of RH is Ii = [i− 1, i+xi− 1
i ),

where 1 ≤ i ≤ n. Then, for every pair {i, j} of indices, where 1 ≤ i < k ≤ n, it holds

vivk ∈ E ⇔ H(i, k) = 1

⇔ xi ≥ k − i

⇔ i+ xi > k − 1

⇔ Ii ∩ Ik 6= ∅
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Thus, RH is a NIR of GH , i.e. GH is an interval graph. We will now prove that RH is

also a SNIR of GH . Indeed, consider two indices i, k, where 1 ≤ i < k ≤ n, and thus
1
i >

1
k . Then, i + xi ≤ k + xk by Definition 3.4, since H is a SNIR matrix. Therefore,

i + xi − 1
i < k + xk − 1

k , and thus RH is a SNIR of GH , i.e. GH is a proper interval

graph. This completes the proof.

Similarly to Section 3.1.1, note that both the SNIR and the SNIR matrix of a proper

interval graph G are also not unique. Furthermore, since any proper interval graph is

also an interval graph, and since any SNIR matrix is also a NIR matrix, we can capture

the whole information about a proper interval graph G using a SNIR matrix HG of G

in O(n) space. In particular, this can be done just by storing the vertex ordering

π = (v1, v2, . . . , vn) that corresponds to HG and the positions of the picks of HG, which

are defined as follows.

Definition 3.5. Let G be a proper interval graph and HG be a SNIR matrix of G. The

matrix element HG(i, j) is called a pick of HG, if the following conditions are satisfied:

1. i ≥ j,
2. if i > j then HG(i, j) = 1,

3. HG(i, k) = 0, for every k ∈ {1, 2, . . . , j − 1}, and

4. HG(l, j) = 0, for every l ∈ {i+ 1, i+ 2, . . . , n}.

Note that all picks of HG can be computed in O(n) time, since the positions HG(i, j)

of the picks are exactly the positions HG(i, i + xi), for some special vertices vi of G,

cf. Section 3.1.1.

Definition 3.6. Given the pick HG(i, j) of HG, the set

S = {HG (k, `) | j ≤ ` ≤ k ≤ i}

of matrix entries is the stair of HG, which corresponds to this pick.

In Figure 3.1(b) a stair of the presented SNIR matrix can is drawn dark and the cor-

responding pick is marked by a circle. Similarly to Lemma 3.3, the following lemma

characterizes the maximal cliques of a proper interval graph G in a SNIR matrix HG

of G.

Lemma 3.6. Let G = (V,E) be a proper interval graph and HG be a NIR matrix of G.

Any maximal clique of G corresponds bijectively to a stair of HG.
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Proof. Due to Lemma 3.3, every maximal clique of G corresponds bijectively to a row

of HG, in which at least one of its unit elements, or its zero diagonal element, does not

have any chain of 1’s below it. However, since G is a proper interval graph and due

to Definitions 3.5 and 3.6, it follows that such a row corresponds bijectively to a pick

of HG, and therefore also to a stair of it.

For instance, the proper interval graph G′ that corresponds the SNIR matrix HG′

of Figure 3.1(b) has four maximal cliques, which correspond to the 5rd, 6th, 7th,

and 8th rows of the matrix, respectively. These cliques are Q1 = {v1, v2, v3, v4, v5},
Q2 = {v2, v3, v4, v5, v6}, Q3 = {v4, v5, v6, v7}, and Q4 = {v8}.

3.2 The kPC problem on proper interval graphs

In this section we illustrate the usefulness of the SNIR matrix representation of proper

interval graphs, by presenting an optimal algorithm for a generalization of the path

cover (PC) problem on proper interval graphs, namely the k-fixed-endpoint path cover

problem. Except graph theory, the PC problem finds many applications in the area of

database design, networks, code optimization and mapping parallel programs to parallel

architectures [1, 3, 88,109].

The PC problem is known to be NP-complete even on the classes of planar graphs [54],

bipartite graphs, chordal graphs [57], chordal bipartite graphs, strongly chordal

graphs [94], as well as in several classes of intersection graphs [16]. On the other hand,

it is solvable in linear O(n+m) time on interval graphs with n vertices and m edges [3].

For the greater class of circular-arc graphs there is an optimal O(n)-time approxima-

tion algorithm, given a set of n arcs with endpoints sorted [70]. The cardinality of the

path cover found by this approximation algorithm is at most one more than the optimal

one. Several variants of the Hamiltonian path (HP) and the PC problems are of great

interest. The simplest of them are the 1HP and 2HP problems, where the goal is to

decide whether G has a Hamiltonian path with one, or two fixed endpoints, respectively.

Both problems are NP-hard for general graphs, as a generalization of the HP problem,

while 1HP can be solved in polynomial time on interval graphs [7].

The k-fixed-endpoint path cover (kPC) problem extends the PC problem as follows.

Given a graph G and a set T of k vertices, the goal is to find a path cover of G with
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minimum cardinality, such that the elements of T are endpoints of these paths. Note that

the vertices of V \ T are allowed to be endpoints of these paths as well. For k = 1, 2,

the kPC problem constitutes a direct generalization of the 1HP and 2HP problems,

respectively. For the case where the input graph is a cograph on n vertices and m edges,

the kPC problem can be solved in O(n+m) time [5].

We present an optimal algorithm for the kPC problem on proper interval graphs with

running time O(n) [P5], based on the SNIR matrix HG that characterizes a proper

interval graph G with n vertices, cf. Section 3.1. One of the main properties that we

use, is that every maximal clique of G can be represented by one matrix element in HG,

namely the pick of the corresponding stair in HG, cf. Lemma 3.6. We introduce the

notion of a singular point in a proper interval graph G on n vertices. An arbitrary vertex

ofG is called singular point, if it is the unique common vertex of two consecutive maximal

cliques. Due to the special structure of HG, we need to compute only its O(n) picks, in

order to capture the complete information of this matrix. Recall that all the picks of the

SNIR matrix HG can be computed in O(n) time (during the construction of HG itself),

when an interval representation of G with sorted intervals is given, cf. Section 3.1.2.

Based on this structure, the proposed algorithm detects all singular points of G in O(n)

time and then it determines directly the paths in an optimal solution, using only the

positions of the singular points [P5]. Namely, it turns out that every such path is

a Hamiltonian path of a particular subgraph of G with two specific vertices of it as

endpoints. Since any algorithm for this problem has to visit at least all n vertices of G,

this running time is optimal.

Recently, it has been drawn to our attention that another algorithm has been in-

dependently presented for the kPC problem on proper interval graphs with running

time O(n+m) [6], where m is the number of edges of the input graph. This algorithm

uses a greedy approach to augment the already constructed paths with connect/insert

operations, by distinguishing whether these paths have already none, one, or two end-

points in T . The main advantage of the here presented algorithm, besides its running

time optimality, is that an optimal solution is constructed directly by the positions of

the singular points, which is a structural property of the investigated graph. Given an

interval realization of the input graph G, we do not need to visit all its edges, exploiting

the special structure of the SNIR matrix.
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The rest of this section is organized as follows. First, we introduce in Section 3.2.1

the notion of a singular point in a proper interval graph. In the sequel, we use this

notion in Section 3.2.2 to present an algorithm for the 2HP problem, based on the SNIR

matrix. This algorithm is then used in Section 3.2.3, in order to derive an algorithm

for the kPC problem on proper interval graphs with running time O(n). For simplicity

of the presentation, we will refer in the rest of the section to the vertices of a proper

interval graph G by {1, 2, . . . , n}, instead of {v1, v2, . . . , vn}, where π = (v1, v2, . . . , vn)

is the vertex ordering of G that corresponds to a SNIR matrix HG of G.

3.2.1 Singular points in a proper interval graph

Consider a proper interval graph G = (V,E) with n vertices. Let HG be a SNIR matrix

of G. Since G is equivalent to the SNIR matrix HG, and since HG specifies a particular

ordering of the vertices of G, we identify without loss of generality the vertices of G with

their indices in this ordering, i.e. we denote V = {1, 2, . . . , n}. For an arbitrary vertex

w ∈ {1, 2, . . . , n} of G, we denote by s(w) and e(w) the adjacent vertices of w with

the smallest and greatest index in this ordering, respectively. Due to the stair-shape

of HG, the vertices s(w) and e(w) correspond to the uppermost and lowermost diagonal

elements of HG, which belong to a common stair with w.

Denote now the maximal cliques of G by Q1, Q2, . . . , Qm, m ≤ n and suppose that the

corresponding pick to Qi is the matrix element HG(ai, bi), where i ∈ {1, . . . ,m}. Since

the maximal cliques of G, i.e. the stairs of HG (cf. Lemma 3.6), are linearly ordered

in HG, it holds that 1 ≤ a1 ≤ . . . ≤ am ≤ n and 1 ≤ b1 ≤ . . . ≤ bm ≤ n. Denote for

simplicity a0 = b0 = 0 and am+1 = bm+1 = n + 1. Then, Algorithm 3.1 computes the

values s(w) and e(w) for all vertices w ∈ {1, . . . , n}, as it is illustrated in Figure 3.2.

Since m ≤ n, the running time of Algorithm 3.1 is O(n).

Algorithm 3.1 Computation of the values s(w) and e(w) for all vertices w

Input: The SNIR matrix HG of a proper interval graph G and its picks HG(ai, bi)
Output: The values s(w) and e(w) for all vertices w ∈ {1, 2, . . . , n}

1: for i = 0 to m do
2: for w = ai + 1 to ai+1 do
3: s(w)← bi+1

4: for w = bi to bi+1 − 1 do
5: e(w)← ai
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bi

ai

ai+1

w
Qi

Qi+1

bi+1 = s(w)

(a)

bi

Qi

Qi+1

bi+1

ai = e(w)

ai+1

w

(b)

Figure 3.2: The computation of the values s(w) and e(w).

The vertices {i, . . . , j} of G, where i ≤ j, constitute a submatrix Hi,j of HG, which

is equivalent to the induced subgraph Gi,j by these vertices. Since the proper interval

graphs are hereditary, this subgraph remains a proper interval graph as well. In partic-

ular, H1,n = HG is equivalent to G1,n = G. In the next definition, we state the notion of

a singular point in a proper interval graph. An example of a singular point is illustrated

in Figure 3.3.

Definition 3.7. A vertex w of Gi,j is called singular point of Gi,j, if there exist two

consecutive cliques Q,Q′ of Gi,j, such that

|Q ∩Q′| = {w} (3.1)

Otherwise, w is called regular point of Gi,j. The set of all singular points of Gi,j is

denoted by S(Gi,j).

· · ·

· · ·
w − 1

w

w + 1
Q

Q′

Figure 3.3: A singular point w of Gi,j .

Lemma 3.7. For every singular point w of Gi,j, it holds i+ 1 ≤ w ≤ j − 1.

Proof. Since w is a singular point of Gi,j , there exist two consecutive maximal

cliques Q,Q′ of Gi,j with Q ∩Q′ = {w}. Then, as it is illustrated in Figure 3.3, both Q

and Q′ contain at least another vertex than w, since otherwise one of them would be

included in the other, which is a contradiction. It follows that i+ 1 ≤ w ≤ j − 1.
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Definition 3.8. Consider a connected proper interval graph G and two indices

i ≤ j ∈ {1, . . . , n}. The submatrix Hi,j of HG is called two-way matrix, if all vertices

of Gi,j are regular points of it. Otherwise, Hi,j is called one-way matrix.

The intuition resulting from Definition 3.8 is the following. If Hi,j is an one-way matrix,

then Gi,j has at least one singular point w. In this case, no vertex among {i, . . . , w− 1}
is connected to any vertex among {w+ 1, . . . , j}, as it is illustrated in Figure 3.3. Thus,

every Hamiltonian path of Gi,j passes only once from the vertices {i, . . . , w − 1} to the

vertices {w + 1, . . . , j}, through vertex w. Otherwise, if Hi,j is a two-way matrix, a

Hamiltonian path may pass more than once from {i, . . . , w − 1} to {w + 1, . . . , j} and

backwards, where w is an arbitrary vertex of Gi,j . The next corollary follows directly

from Lemma 3.7.

Corollary 3.1. An arbitrary vertex w of G is a regular point of the subgraphs Gi,w

and Gw,j, for every i ≤ w and j ≥ w.

3.2.2 The 2HP problem

In this section we solve the 2HP problem on proper interval graphs. In particular,

given two fixed vertices u, v of a proper interval graph G, we provide in Section 3.2.2.1

necessary and sufficient conditions for the existence of a Hamiltonian path in G with

endpoints u and v. An algorithm with running time O(n) follows directly from these

conditions, where n is the number of vertices of G.

3.2.2.1 Necessary and sufficient conditions

Denote by 2HP(G, u, v) the particular instance of the 2HP problem on G with fixed

endpoints the vertices u and v of G, where u, v ∈ {1, 2, . . . , n}. Observe at first that if G

is not connected, then there is no Hamiltonian path at all in G. Also, if G is connected

with only two vertices u, v, then there exists trivially a Hamiltonian path with u and v

as endpoints. Thus, we assume in the following that G is connected and n ≥ 3. The

next two theorems provide necessary and sufficient conditions for the existence of a

Hamiltonian path with endpoints u and v in a connected proper interval graph G. If the

conditions of these theorems are satisfied, Algorithm 3.2 constructs such a Hamiltonian

path, as it is described in the proofs of these theorems. Note that, in Algorithm 3.2, we
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use the notation P ← P ◦ (x) to denote the augmentation of a path P = (y, . . . , z) to

the path P = (y, . . . , z, x).

Theorem 3.3. Let G be a connected proper interval graph and u, v be two vertices of G,

where v ≥ u+ 2. There is a Hamiltonian path in G with u, v as endpoints if and only if

the submatrices H1,u+1 and Hv−1,n of HG are two-way matrices.

Proof. Suppose that H1,u+1 is an one-way matrix. Then, due to Definition 3.8, G1,u+1

has at least one singular point w. Since G1,u+1 is connected as an induced subgraph

of G, Lemma 3.7 implies that 2 ≤ w ≤ u. In order to obtain a contradiction, let P be

a Hamiltonian path in G with u and v as endpoints. Suppose first that for the singular

point w it holds w < u. Then, due to the stair-shape of HG, the path P has to visit w

in order to reach the vertices {1, . . . , w− 1}. On the other hand, P has to visit w again

in order to reach v, since w < v. This is a contradiction, since P visits w exactly once as

a Hamiltonian path of G. Suppose now that w = u. The stair-shape of HG implies that

u has to be connected in P with at least one vertex of {1, . . . , u− 1} and with at least

one vertex of {u + 1, . . . , n}. This is also a contradiction, since u is an endpoint of P .

Therefore, there exists no Hamiltonian path P of G with u and v as endpoints, if Hi,u+1

is an one-way matrix. Similarly, we obtain that there exists again no such path P in G,

if Hv−1,n is an one-way matrix. This completes the necessity part of the proof.

For the sufficiency part, suppose that both H1,u+1 and Hv−1,n are two-way matrices.

Then, Algorithm 3.2 constructs a Hamiltonian path P in G having u and v as endpoints,

as follows. In the while-loop of the lines 2-4 of Algorithm 3.2, P starts from vertex u

and reaches vertex 1 using sequentially the uppermost diagonal elements, i.e. vertices,

of the visited stairs of HG. Since H1,u+1 is a two-way matrix, P does not visit any two

consecutive diagonal elements until it reaches vertex 1. In the while-loop of the lines 5-10,

P continues visiting all unvisited vertices until vertex v − 1. Let t be the actual visited

vertex of P during these lines. Since P did not visit any two consecutive diagonal

elements until it reached vertex 1 in lines 2-4, at least one of the vertices t+ 1 and t+ 2

has not been visited yet. Thus, always one of the lines 7 and 10 is executed.

Next, in the while-loop of the lines 11-13, P starts from vertex v−1 and reaches vertex n

using sequentially the lowermost diagonal elements of the visited stairs of HG. During

the execution of lines 11-13, since Hv−1,n is a two-way matrix, P does not visit any

two consecutive diagonal elements until it reaches vertex n. Finally, in the while-loop
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of the lines 14-18, P continues visiting all unvisited vertices until v. Similarly to the

lines 5-10, let t be the actual visited vertex of P . Since P did not visit any two con-

secutive diagonal elements until it reached vertex n in lines 11-13, at least one of the

vertices t− 1 and t− 2 has not been visited yet. Thus, always one of the lines 16 and 18

is executed. Figure 3.4(a) illustrates the construction of such a Hamiltonian path by

Algorithm 3.2 in a small example.

Algorithm 3.2 Construction of a Hamiltonian path P in G with u, v as endpoints

Input: The SNIR matrix HG of a proper interval graph G, all values s(w) and e(w),
and two vertices u, v of G, such that the conditions of Theorems 3.3 and 3.3 are
satisfied

Output: A Hamiltonian path P of G with u, v as endpoints

1: t← u; P ← (u)
2: while t > 1 do
3: p← s(t) {the adjacent vertex of t with the smallest index}
4: P ← P ◦ (p); t← p
5: while t < v − 1 do
6: if t+ 1 /∈ V (P ) then
7: P ← P ◦ (t+ 1); t← t+ 1
8: else
9: if t+ 2 /∈ V (P ) ∪ {v} then

10: P ← P ◦ (t+ 2); t← t+ 2
11: while t < n do
12: p← e(t) {the adjacent vertex of t with the greatest index}
13: P ← P ◦ (p); t← p
14: while t > v do
15: if t− 1 /∈ V (P ) then
16: P ← P ◦ (t− 1); t← t− 1
17: else
18: P ← P ◦ (t− 2); t← t− 2
19: return P

Theorem 3.4. Let G be a connected proper interval graph and u be a vertex of G. There

is a Hamiltonian path in G with u, u + 1 as endpoints if and only if HG is a two-way

matrix and either u ∈ {1, n− 1} or the vertices u− 1 and u+ 2 are adjacent.

Proof. For the necessity part of the proof, assume that G has a Hamiltonian path P

with u and u + 1 as endpoints. Suppose first that HG is an one-way matrix. Then, at

least one of the matrices H1,u+1 and Hu,n is one-way matrix. Similarly to the proof of

Theorem 3.3, there is no Hamiltonian path in G having as endpoints the vertices u and

v = u+ 1, which is a contradiction to our assumption.
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Suppose now that HG is a two-way matrix and let u ∈ {2, . . . , n−2}. Then, both vertices

u − 1 and u + 2 exist in G. Since P starts at u and ends at u + 1, at least one vertex

of {1, . . . , u− 1} has to be connected to at least one vertex of {u+ 2, . . . , n}. Thus, due

to the stair-shape of HG, it follows that the vertices u−1 and u+ 2 are connected. This

completes the necessity part of the proof.

For the sufficiency part, suppose that the conditions of Theorem 3.4 hold. Then, Algo-

rithm 3.2 constructs a Hamiltonian path P in G having u and u+ 1 as endpoints. The

only differences from the proof of Theorem 3.3 about the correctness of Algorithm 3.2

are the following. If u = 1, the lines 2-10 are not executed at all. In this case, P visits

all vertices of G during the execution of lines 11-18, exactly as in the proof of Theo-

rem 3.3. If u ≥ 2, none of the lines 7 and 10 of Algorithm 3.2 is executed when P visits

vertex t = u− 1, since in this case t+ 1 = u ∈ V (P ) and t+ 2 = u+ 1 ∈ V (P )∪{u+ 1}.
If u+1 = n, then P visits the last vertex u+1 in lines 12 and 13. Otherwise, if u+1 < n,

the vertices u− 1 and u+ 2 are adjacent, due to the conditions of Theorem 3.4. In this

case, P continues visiting all the remaining vertices of G, as in the proof of Theorem 3.3.

Figure 3.4(b) illustrates the construction of such a Hamiltonian path by Algorithm 3.2

in a small example.

Algorithm 3.2 operates on every vertex of G at most twice. Thus, since all values s(t)

and e(t) can be computed in O(n) time, its running time is O(n) as well. Figure 3.4

illustrates in a small example the construction by Algorithm 3.2 of a Hamiltonian path

with endpoints u and v, for both cases v ≥ u+ 2 and v = u+ 1.

u

v

(a)

u

u + 1

(b)

Figure 3.4: The construction of a HP with endpoints u, v where (a) v ≥ u+ 2,
(b) v = u+ 1.
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3.2.2.2 The decision of 2HP in O(n) time

We can use now the results of Section 3.2.2.1 in order to decide in O(n) time whether a

given proper interval graph G has a Hamiltonian path P with two specific endpoints u, v

and to construct P , if it exists. The values s(w) and e(w) for all vertices w ∈ {1, . . . , n}
can be computed in O(n) time by Algorithm 3.1. Due to the stair-shape of HG, the

graph G is not connected if and only if there is a vertex w ∈ {1, . . . , n− 1}, for which it

holds e(w) = w and thus, we can check the connectivity of G in O(n) time. If G is not

connected, then it has no Hamiltonian path at all. Finally, a vertex w is singular if and

only if e(w − 1) = s(w + 1) = w and thus, the singular points of G can be computed

in O(n) time.

Since the proper interval graphs are hereditary, the subgraphs G1,u+1 and Gv−1,n of G

remain proper interval graphs as well. Thus, if G is connected, we can check in O(n) time

whether these graphs have singular points, or equivalently, whether H1,u+1 and Hv−1,n

are two-way matrices. On the other hand, we can check in constant time whether the

vertices u− 1 and u+ 2 are adjacent. Thus, we can decide in O(n) time whether there

exists a Hamiltonian path in G with endpoints u, v, due to Theorems 3.3 and 3.4. In the

case of non-existence, we output “NO”, while otherwise we construct by Algorithm 3.2

the desired Hamiltonian path in O(n) time.

3.2.3 The kPC problem

3.2.3.1 The algorithm

In this section we present Algorithm 3.3, which solves in O(n) the k-fixed-endpoint path

cover (kPC) problem on a proper interval graph G with n vertices, for any k ≤ n. This

algorithm uses the characterization of the 2HP problem of the previous section. We

assume that for the given set T = {t1, t2, . . . , tk} it holds t1 < t2 < . . . < tk. Denote

in the sequel a minimum k-fixed-endpoint path cover of G with respect to the set T

by C(G,T ). Denote also for simplicity tk+1 = n+ 1.

Algorithm 3.3 computes an optimal path cover C(G,T ) of G. First, it checks in lines 4-9

the connectivity of G. If G is not connected, the algorithm computes in lines 7-8 recur-

sively the optimal solutions of the first connected component and of the remaining graph.
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Algorithm 3.3 Computation of C(G,T ) for a proper interval graph G

Input: The SNIR matrix HG of a proper interval graph G, all values s(w) and e(w),
and a set T = {t1, t2, . . . , tk} of vertices of G

Output: A minimum k-fixed-endpoint path cover C(G,T ) of G with respect to T

1: if G = ∅ then
2: return ∅
3: Compute the values s(w) and e(w) for every vertex w by Algorithm 3.1
4: w ← 1
5: while w < n do
6: if e(w) = w then {G is not connected}
7: T1 ← T ∩ {1, 2, . . . , w}; T2 ← T \ T1

8: return C(G1,w, T1) ∪ C(Gw+1,n, T2)
9: w ← w + 1

10: if k ≤ 1 then
11: call Algorithm 3.4
12: if t1 ∈ S(G) then
13: P1 ← (1, 2, . . . , t1)
14: return {P1} ∪ C(Gt1+1,n, T \ {t1})
15: call Algorithm 3.5

It reaches line 10 only if G is connected. In the case where |T | = k ≤ 1, Algorithm 3.3

calls Algorithm 3.4 as subroutine.

In lines 12-14, Algorithm 3.3 considers the case, where G is connected, |T | ≥ 2 and t1

is a singular point of G. Then, Lemma 3.7 implies that 2 ≤ t1 ≤ n− 1. Thus, since no

vertex among {1, . . . , t1 − 1} is connected to any vertex among {t1 + 1, . . . , n} and since

t1 ∈ T , an optimal solution must contain at least two paths. Therefore, it is always

optimal to choose in line 13 a path that visits sequentially the first t1 vertices and then

to compute recursively in line 14 an optimal solution in the remaining graph Gt1+1,n.

Algorithm 3.3 reaches line 15 if G is connected, |T | ≥ 2 and t1 is a regular point of G.

In this case, it calls Algorithm 3.5 as subroutine.

Algorithm 3.4 computes an optimal path cover C(G,T ) of G in the case, where G is

connected and |T | = k ≤ 1. If k = 0, then the optimal solution includes clearly only

one path, which visits sequentially the vertices 1, 2, . . . , n, since G is connected. Let

now k = 1. If t1 ∈ {1, n}, then the optimal solution is again the single path (1, 2, . . . , n).

Otherwise, suppose that t1 ∈ {2, . . . , n − 1}. In this case, a trivial path cover is that

with the paths (1, 2, . . . , t1) and (t1 + 1, . . . , n). This path cover is not optimal if and

only if G has a Hamiltonian path P with u = t1 as one endpoint. The other endpoint v

of P lies either in {1, . . . , t1−1} or in {t1 +1, . . . , n}. If v ∈ {t1 +1, . . . , n}, then H1,t1+1
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Algorithm 3.4 Computation of C(G,T ), if G is connected and |T | ≤ 1

Input: The SNIR matrix HG of a connected proper interval graph G, all values s(w)
and e(w), and a set T = {t1, t2, . . . , tk} of k ≤ 1 vertices of G

Output: A minimum k-fixed-endpoint path cover C(G,T ) of G with respect to T

1: if k = 0 then
2: return {(1, 2, . . . , n)}
3: if k = 1 then
4: if t1 ∈ {1, n} then
5: return {(1, 2, . . . , n)}
6: else
7: P1 ← 2HP(G, 1, t1)
8: P2 ← 2HP(G, t1, n)
9: if P1=“NO” then

10: if P2=“NO” then
11: return {(1, 2, . . . , t1), (t1 + 1, . . . , n)}
12: else
13: return {P2}
14: else
15: return {P1}

and Hv−1,n have to be two-way matrices, due to Theorems 3.3 and 3.4. However, due

to Definition 3.8, if Hv−1,n is a two-way matrix, then Hn−1,n is also a two-way matrix,

since Hn−1,n is a trivial submatrix of Hv−1,n.

Thus, if such a Hamiltonian path with endpoints t1 and v exists, then there exists

also one with endpoints t1 and n by Theorems 3.3 and 3.4. Similarly, if there exists a

Hamiltonian path with endpoints v ∈ {1, . . . , t1 − 1} and t1, then there exists also one

with endpoints 1 and t1. Thus, we call the procedures P1 = 2HP(G, 1, t1) and P2 =

2HP(G, t1, n) in lines 7 and 8, respectively. If both outputs are “NO”, then the paths

(1, 2, . . . , t1) and (t1 +1, . . . , n) constitute an optimal solution. Otherwise, we return one

of the obtained paths P1 or P2 in lines 15 or 13, respectively. Since the running time of

Algorithm 3.2 for the 2HP problem is O(n), the running time of Algorithm 3.4 is O(n)

as well.

In lines 5-9 and 12-14, Algorithm 3.3 separates G in two subgraphs and computes their

optimal solutions recursively. Thus, since the computation of all values s(w) and e(w)

can be done in O(n), and since the running time of Algorithms 3.4 and 3.5 (as it will be

proved in Section 3.2.3.2) is O(n), we obtain in the following theorem the main result

of this section.
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Algorithm 3.5 Computation of C(G,T ), where G is connected, |T | ≥ 2, t1 /∈ S(G)

Input: The SNIR matrix HG of a connected proper interval graph G, all values s(w)
and e(w), and a set T = {t1, t2, . . . , tk} of k ≥ 2 vertices of G, where t1 /∈ S(G)

Output: A minimum k-fixed-endpoint path cover C(G,T ) of G with respect to T

1: if {1, . . . , t1 − 1} ∩ S(G) = ∅ then {e1 = t2}
2: if 2HP(G1,t2+1, t1, t2) =“NO” then
3: a← t2
4: else
5: if {t2 + 1, . . . , t3 − 1} ∩ S(G) 6= ∅ then
6: a← min{{t2 + 1, . . . , t3 − 1} ∩ S(G)}
7: else
8: a← t3 − 1
9: P1 ← 2HP(G1,a, t1, t2)

10: C2 ← C(Ga+1,n, T \ {t1, t2})
11: else {e1 = 1}
12: if 2HP(G1,t1+1, 1, t1) =“NO” then
13: a← t1
14: else
15: if {t1 + 1, . . . , t2 − 1} ∩ S(G) 6= ∅ then
16: a← min{{t1 + 1, . . . , t2 − 1} ∩ S(G)}
17: else
18: a← t2 − 1
19: P1 ← 2HP(G1,a, 1, t1)
20: C2 ← C(Ga+1,n, T \ {t1})
21: return {P1} ∪ C2

Theorem 3.5. A minimum k-fixed-endpoint path cover of a proper interval graph G

with n vertices can be computed by Algorithm 3.3 in O(n) time, given the SNIR ma-

trix HG of G.

3.2.3.2 Correctness and complexity of Algorithm 3.5

The correctness of Algorithm 3.5 follows from the technical Lemmas 3.9 and 3.10. To

this end, we prove first the auxiliary Lemma 3.8. For the purposes of these proofs, we

assume an optimal solution C of G. Denote by Pi the path in C, which has ti as one

endpoint and let ei be its second endpoint. Observe that, if ei = tj , then Pi = Pj .

Furthermore, let `i be the vertex of Pi with the greatest index in the ordering of HG. It

holds clearly `i ≥ ti, for every i ∈ {1, . . . , k}.
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Lemma 3.8. If e1 ≤ t1, then w.l.o.g. `1 < t2 and e1 = 1.

Proof. At first, suppose that e1 = t1, i.e. P1 is a trivial path of one vertex. If t1 = 1, the

lemma holds obviously. Otherwise, if t1 > 1, we can extend P1 by visiting sequentially

the vertices t1−1, . . . , 1. Since there is no vertex of T among the vertices {1, . . . , t1−1},
the resulting path cover has not greater cardinality than C and e1 = 1.

Let now e1 < t1. Suppose that `1 ≥ t2. Thus, since `1 is not an endpoint of P1, it holds

that ti < `1 < ti+1 for some i ∈ {2, . . . , k}; recall that tk+1 = n + 1. Suppose first that

ti < `1 < `i, as it is illustrated in Figure 3.5(a). Then, we can clearly transfer to Pi all

vertices of P1 with index between ti + 1 and `1. The obtained path cover has the same

cardinality as C, while the greatest index of the vertices of P1 is less than ti.

Suppose now that ti < `i < `1, as it is illustrated in Figure 3.5(b). Since e1 < t1, the

path P1 is a Hamiltonian path of some subgraph of G1,`1 with endpoints e1 and t1.

Now, we obtain similarly to the proofs of Theorems 3.3 and 3.4 that Ht1−1,`1 is a two-

way matrix, since otherwise the path P1 would visit two times the same vertex, which

is a contradiction. It follows that H`i−1,`1 is also a two-way matrix, as a submatrix

of Ht1−1,`1 . Thus, we can extend Pi by the vertices of P1 with index between `i + 1

and `1. In the obtained path cover, the greatest index `′1 of the vertices of P1 is less

than `i. Finally, if ti < `′1, we can obtain, similarly to the above, a new path cover with

the same cardinality as C, in which the greatest index of the vertices of P1 is less than ti.

e1

t1

ti

`1

`i

P1

Pi

(a)

e1

t1

ti

`1

`i

P1

Pi

(b)

e1 = 1

t2

t1

`1

P1

(c)

Figure 3.5: The case e1 ≤ t1.

It follows now by induction that there is an optimal solution, in which the greatest

index `1 of the vertices of P1 is less than t2, i.e. `1 < t2, as it is illustrated in Figure 3.5(c).

Then, similarly to above, Ht1−1,`1 is a two-way matrix. Now, Theorems 3.3 and 3.4

imply that G1,`1 has a Hamiltonian path with 1 and t1 as endpoints. Thus, it is always
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optimal to choose P1 = 2HP(G1,`1 , 1, t1), for some `1 ∈ {t1, . . . , t2 − 1}, i.e. e1 = 1. This

completes the lemma.

Lemma 3.9. If {1, . . . , t1} ∩ S(G) = ∅, then w.l.o.g. e1 = t2.

Proof. Suppose at first that e1 ≤ t1. Then, Lemma 3.8 implies that e1 = 1. In particular,

the proof of Lemma 3.8 implies that `1 < t2 and that P1 = 2HP(G1,`1 , 1, t1), as it is

illustrated in Figure 3.6(a). Thus, since P1 visits all vertices {1, 2, . . . , `1}, it holds that

|C| = 1 + |C(G`1+1,n, T \ {t1})| (3.2)

Suppose now that e1 > t1. Since there are no singular points of G among {1, . . . , t1}, the

submatrix H1,t1+1 is a two-way matrix. Then, Theorems 3.3 and 3.4 imply that G1,t2

has a Hamiltonian path with endpoints t1 and t2. Thus, we may suppose w.l.o.g. that

P1 = 2HP(G1,a, t1, t2), for an appropriate a ≥ t2, as it is illustrated in Figure 3.6(b).

Since P1 = P2, and thus e2 = t1 < t2, we obtain similarly to Lemma 3.8 that a = `2 < t3.

Since P1 visits all vertices {1, 2, . . . , a}, it follows in this case for the cardinality of C

that

|C| = 1 + |C(Ga+1,n, T \ {t1, t2})| (3.3)

Since in (3.2) it holds `1 < t2 and in (3.3) it holds a ≥ t2, it follows that Ga+1,n is a

strict subgraph of G`1+1,n. Moreover, since T \ {t1, t2} is a subset of T \ {t1}, it follows

that the quantity in (3.3) is less than or equal to that in (3.2). Thus, we may suppose

w.l.o.g. that e1 = t2.

P1

t2

t1

1

`1

t3

(a)

P1

a

t2

t3

t1

1

(b)

Figure 3.6: The case, where there is no singular point of G among {1, . . . , t1}.
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Lemma 3.10. If {1, . . . , t1 − 1} ∩ S(G) 6= ∅ and t1 /∈ S(G), then w.l.o.g. e1 = 1.

Proof. Let w ∈ {1, . . . , t1 − 1} be the singular point of G with the smallest index. Due

to Lemma 3.7, it holds w ≥ 2. Then, there is a path P0 in the optimal solution C, which

has an endpoint t0 ∈ {1, . . . , w − 1}. Indeed, otherwise there would be a path visiting

vertex w at least twice, which is a contradiction.

Thus, since {1, . . . , t0} ∩ S(G) = ∅ and since t0 is an endpoint in the optimal solu-

tion C, Lemma 3.9 implies for the other endpoint e0 of P0 that e0 = t1 and there-

fore P0 = P1. Thus, since the second endpoint of P1 is e1 = t0 < t1, Lemma 3.8 implies

that w.l.o.g. it holds e1 = t0 = 1, and in particular the proof of Lemma 3.8 implies that

P1 = 2HP(G1,a, 1, t1) for some a ∈ {t1, . . . , t2− 1}, as it is illustrated in Figure 3.7.

a

t1P1

1

t2

Figure 3.7: The case, where there are singular points of G among {1, . . . , t1 − 1}
and t1 is a regular point of G.

Algorithm 3.5 considers in lines 1-10 the case where there are no singular points of G

among {1, . . . , t1 − 1}. Lemma 3.9 implies for this case that e1 = t2 and, in particular

the proof of Lemma 3.9 implies that P1 = 2HP(G1,a, t1, t2) for some a ∈ {t2, . . . t3 − 1}.
In order to maximize P1 as much as possible, we choose the greatest possible value of a,

for which G1,a has a Hamiltonian path with endpoints t1, t2. Namely, if G1,t2+1 does

not have such a Hamiltonian path, we set a = t2 in line 3 of Algorithm 3.5. Suppose

now that G1,t2+1 has such a path. In the case, where there is at least one singular point

of G among {t2 + 1, . . . , t3 − 1}, we set a to be this one with the smallest index among

them in line 6. Otherwise, we set a = t3− 1 in line 8. Denote for simplicity G1,n+1 = G.

Then, in the extreme cases t3 = t2 + 1 or t2 = n, the algorithm sets a = t2 = t3 − 1.

Next, in lines 11-20, Algorithm 3.5 considers the case, where there is at least one sin-

gular point of G among {1, . . . , t1 − 1}. Then, Lemma 3.10 implies that e1 = 1 and,

in particular the proof of Lemma 3.10 implies that P1 = 2HP(G1,a, 1, t1), for some
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a ∈ {t1, . . . , t2 − 1}. In order to maximize P1 as much as possible, we choose the great-

est possible value of a, for which G1,a has a Hamiltonian path with endpoints 1 and t1.

Namely, if G1,t1+1 does not have such a Hamiltonian path, we set a = t1 in line 13 of

Algorithm 3.5. Suppose now that G1,t1+1 has such a path. In the case, where there is

at least one singular point of G among {t1 + 1, . . . , t2 − 1}, we set a to be this one with

the smallest index among them in line 16. Otherwise, we set a = t2− 1 in line 18. Note

that in the extreme case t2 = t1 + 1, the algorithm sets a = t1 = t2 − 1.

Algorithm 3.5 computes P1 in lines 9 and 19, respectively. Then, it computes recursively

the optimum path cover C2 of the remaining graph in lines 10 and 20, respectively, and

it outputs {P1} ∪ C2. Thus, since the computation of a 2HP by Algorithm 3.2 can be

done in O(n) time, the running time of Algorithm 3.5 is O(n) as well. This implies now

the main Theorem 3.5 of this section.



Chapter 4

A new intersection model for

tolerance graphs

As already mentioned in Section 1.1, it is of great importance to establish suitable non-

trivial intersection models for classes of graphs, since such models may be very useful

for the design of efficient algorithms for difficult optimization problems on these graph

classes [92]. Such a graph class that admits a very natural intersection model is that of

bounded tolerance graphs; namely, it has been proved that a graph is bounded tolerance

if and only if it is a parallelogram graph [18,83]. However, this intersection model cannot

cope with general tolerance graphs, in which the tolerance of an interval can be greater

than its length.

In this chapter we present the first non-trivial intersection model for general tolerance

graphs [P3], which generalizes the widely known parallelogram representation of bounded

tolerance graphs [18,62,83]. The main idea is to exploit the third dimension in order to

capture the information given by unbounded tolerances, and as a result parallelograms

are replaced by parallelepipeds. The proposed intersection model is very intuitive and

can be efficiently constructed from a given tolerance representation (actually, we show

that it can be constructed in linear time).

Apart from being important on its own, this new representation proves to be a powerful

tool for designing efficient algorithms for general tolerance graphs. Indeed, using our

intersection model, we improve the best existing running times of three problems on

65
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tolerance graphs [P3]. We present algorithms to find a minimum coloring and a maxi-

mum clique in O(n log n) time, where n is the number of vertices of the input tolerance

graph, which turns out to be optimal. The complexity of the best existing algorithms

for these problems was O(n2) [61,62]. We also present an algorithm to find a maximum

weight independent set in O(n2) time, whereas the complexity of the best known algo-

rithm for this problem was O(n3) [62]. We note that an O(n2 log n) algorithm to find

a maximum cardinality independent set on a general tolerance graph with n vertices

has been proposed in [95], and that [62] refers to an algorithm transmitted by personal

communication with running time O(n2 log n) to find a maximum weight independent

set; to the best of our knowledge, this algorithm has not been published.

It is important to note that the complexity of recognizing tolerance and bounded toler-

ance graphs has been a challenging open problem [27, 62, 95] since the introduction of

tolerance graphs in 1982 [59]. This is the reason why all existing algorithms on tolerance

graphs assumed that the input graph is given along with a tolerance representation of it.

We make in this chapter the same assumption as well, while we deal with the recognition

of tolerance and bounded tolerance graphs in Chapter 5.

The rest of this chapter is organized as follows. In Section 4.1 we introduce the new

three-dimensional intersection model of tolerance graphs. In Section 4.2 we present a

canonical representation of tolerance graphs, which is a special case of the new intersec-

tion model, and then we show how this canonical representation can be used in order

to obtain optimal algorithms for finding a minimum coloring and a maximum clique in

a tolerance graph. The running time optimality of these algorithms is being discussed

in Section 4.2.4. In Section 4.3 we present our algorithm for finding a maximum weight

independent set in tolerance graphs, which is also based on the new intersection model.

4.1 A new intersection model

One of the most natural representations of bounded tolerance graphs is given by paral-

lelograms between two parallel lines in the Euclidean plane [18, 62, 83]. In this section

we extend this representation to a three-dimensional representation of general tolerance

graphs. Given a tolerance graph G = (V,E) along with a tolerance representation of

it, recall that vertex vi ∈ V corresponds to an interval Ii = [ai, bi] on the real line with
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Figure 4.1: Parallelograms P i and P j correspond to bounded vertices vi and vj ,
respectively, whereas P k corresponds to an unbounded vertex vk.

a tolerance ti ≥ 0. Without loss of generality we may assume that ti > 0 for every

vertex vi [62].

Definition 4.1. Given a tolerance representation of a tolerance graph G = (V,E),

vertex vi is bounded if ti ≤ |Ii|. Otherwise, vi is unbounded. VB and VU are the sets

of bounded and unbounded vertices in V , respectively. Clearly V = VB ∪ VU .

We can also assume without loss of generality that ti =∞ for any unbounded vertex vi,

since if vi is unbounded, then the intersection of any other interval with Ii is strictly

smaller than ti. Let L1 and L2 be two parallel lines at distance one in the Euclidean

plane.

Definition 4.2. Given an interval Ii = [ai, bi] with tolerance ti, P i is the parallelo-

gram defined by the points ci, bi in L1 and ai, di in L2, where ci = min {bi, ai + ti} and

di = max {ai, bi − ti}. The slope φi of P i is φi = arctan
(

1
ci−ai

)
.

An example is depicted in Figure 4.1, where P i and P j correspond to bounded vertices vi

and vj , and P k corresponds to an unbounded vertex vk. Observe that when vertex vi is

bounded, the values ci and di coincide with the tolerance points defined in [48, 62, 71],

and φi = arctan
(

1
ti

)
. On the other hand, when vertex vi is unbounded, the values ci

and di coincide with the endpoints bi and ai of Ii, respectively, and φi = arctan
(

1
|Ii|

)
.

Observe also that in both cases ti = bi − ai and ti =∞, parallelogram P i is reduced to

a line segment (c.f. P j and P k in Figure 4.1). Since ti > 0 for every vertex vi, it follows

that 0 < φi <
π
2 . Furthermore, we can assume without loss of generality that all points

ai, bi, ci, di and all slopes φi are distinct [48,62,71].

Observation 4.1. Let vi ∈ VU , vj ∈ VB. Then |Ii| < tj if and only if φi > φj.

We are now ready to give the main definition of this chapter.
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Definition 4.3. Let G = (V,E) be a tolerance graph with a tolerance representation

{Ii = [ai, bi], ti | i = 1, . . . , n}. For every i = 1 . . . , n, Pi is the parallelepiped in R3 de-

fined as follows:

(a) If ti ≤ bi− ai (vi is bounded), then Pi = {(x, y, z) ∈ R3 | (x, y) ∈ P i, 0 ≤ z ≤ φi}.
(b) If ti > bi − ai (vi is unbounded), then Pi = {(x, y, z) ∈ R3 | (x, y) ∈ P i, z = φi}.

The set of parallelepipeds {Pi | i = 1, . . . , n} is a parallelepiped representation of G.

I = [1,17] t = 51 1

I = [4,26] t = 2 2
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Figure 4.2: The intersection model for tolerance graphs: (a) a set of inter-
vals Ii = [ai, bi] and tolerances ti, i = 1, . . . , 8, (b) the corresponding tolerance graph G

and (c) a parallelepiped representation of G.

Observe that for each interval Ii, the parallelogram P i of Definition 4.2 (see also Fig-

ure 4.1) coincides with the projection of the parallelepiped Pi on the plane z = 0.

An example of the construction of these parallelepipeds is given in Figure 4.2, where

a set of eight intervals with their associated tolerances is given in Figure 4.2(a). The

corresponding tolerance graph G is depicted in Figure 4.2(b), while the parallelepiped

representation is illustrated in Figure 4.2(c). In the case ti < bi−ai, the parallelepiped Pi

is three-dimensional, c.f. P1, P3, and P5, while in the border case ti = bi − ai it degen-

erates to a two-dimensional rectangle, c.f. P7. In these two cases, each Pi corresponds
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to a bounded vertex vi. In the remaining case ti = ∞ (that is, vi is unbounded), the

parallelepiped Pi degenerates to a one-dimensional line segment above plane z = 0,

c.f. P2, P4, P6, and P8.

We prove now that these parallelepipeds form a three-dimensional intersection model

for the class of tolerance graphs (namely, that every tolerance graph G can be viewed

as the intersection graph of the corresponding parallelepipeds Pi).

Theorem 4.1. Let G = (V,E) be a tolerance graph with a tolerance representation

{Ii = [ai, bi], ti | i = 1, . . . , n}. Then for every i 6= j, vivj ∈ E if and only if Pi∩Pj 6= ∅.

Proof. We distinguish three cases according to whether vertices vi and vj are bounded

or unbounded:

(a) Both vertices are bounded, that is ti ≤ bi−ai and tj ≤ bj−aj . It follows from [62]

that vivj ∈ E(G) if and only if P i ∩ P j 6= ∅. However, due to the definition of

the parallelepipeds Pi and Pj , in this case Pi ∩ Pj 6= ∅ if and only if P i ∩ P j 6= ∅
(c.f. P1 and P3, or P5 and P7, in Figure 4.2).

(b) Both vertices are unbounded, that is ti = tj =∞. Since no two unbounded vertices

are adjacent, vivj /∈ E(G). On the other hand, the line segments Pi and Pj lie on

the disjoint planes z = φi and z = φj of R3, respectively, since we assumed that

the slopes φi and φj are distinct. Thus, Pi ∩ Pj = ∅ (c.f. P2 and P4).

(c) One vertex is unbounded (that is, ti = ∞) and the other is bounded (that is,

tj ≤ bj − aj). If P i ∩ P j = ∅, then vivj /∈ E and Pi ∩ Pj = ∅ (c.f. P1 and P6).

Suppose that P i ∩ P j 6= ∅. We distinguish two cases:

(i) φi < φj . It is easy to check that |Ii ∩ Ij | ≥ tj and thus vivj ∈ E. Since

P i ∩ P j 6= ∅ and φi < φj , then necessarily the line segment Pi intersects the

parallelepiped Pj on the plane z = φi, and thus Pi ∩ Pj 6= ∅ (c.f. P1 and P2).

(ii) φi > φj . Clearly |Ii ∩ Ij | < ti = ∞. Furthermore, since φi > φj , Observa-

tion 4.1 implies that |Ii ∩ Ij | ≤ |Ii| < tj . It follows that |Ii ∩ Ij | < min{ti, tj},
and thus vivj /∈ E. On the other hand, z = φi for all points (x, y, z) ∈ Pi,
while z ≤ φj < φi for all points (x, y, z) ∈ Pj , and therefore Pi ∩ Pj = ∅
(c.f. P3 and P4).

Clearly, for each vi ∈ V the parallelepiped Pi can be constructed in constant time.

Therefore,
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Lemma 4.1. Given a tolerance representation of a tolerance graph G with n vertices,

a parallelepiped representation of G can be constructed in O(n) time.

4.2 Coloring and Clique Algorithms in O(n log n)

In this section we present optimal O(n log n) algorithms for constructing a minimum

coloring and a maximum clique in a tolerance graph G = (V,E) with n vertices, given a

parallelepiped representation of G. These algorithms improve the best known running

time O(n2) of these problems on tolerance graphs [61,62]. First, we introduce a canonical

representation of tolerance graphs in Section 4.2.1, and then we use it to obtain the

algorithms for the minimum coloring and the maximum clique problems in Section 4.2.2.

Finally, we discuss the optimality of both algorithms in Section 4.2.4.

4.2.1 A canonical representation

We associate with every vertex vi of G the point pi = (xi, yi) in the Euclidean plane,

where xi = bi and yi = π
2 − φi. Since all endpoints of the parallelograms P i and all

slopes φi are distinct, all coordinates of the points pi are distinct as well. Similarly

to [61,62], we state the following two definitions.

Definition 4.4. An unbounded vertex vi ∈ VU of a tolerance graph G is

called inevitable (for a certain parallelepiped representation), if replacing Pi by

{(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi} creates a new edge in G. Otherwise, vi is called

evitable.

Note here that, given an arbitrary unbounded vertex vi ∈ VU , replacing Pi by

{(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi} in a parallelepiped representation of G is equivalent

with replacing in the corresponding tolerance representation of G the infinite tolerance

ti =∞ of vi by the finite tolerance ti = |Ii|, i.e. with making vi a bounded vertex.

Definition 4.5. Let vi ∈ VU be an inevitable unbounded vertex of a tolerance graph G

(for a certain parallelepiped representation). A vertex vj is called a hovering vertex of vi

if aj < ai, bi < bj, and φi > φj.

It is now easy to see that, by Definition 4.5, if vj is a hovering vertex of vi, then vivj /∈ E.

Note that, in contrast to [61], in Definition 4.4, an isolated unbounded vertex vi might
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be also inevitable, while in Definition 4.5, a hovering vertex might be also unbounded.

The next two lemmas follow by Definitions 4.4 and 4.5.

Lemma 4.2. Let vi ∈ VU be an inevitable unbounded vertex of the tolerance graph G

(for a certain parallelepiped representation). Then, there exists a hovering vertex vj

of vi.

Proof. Since vi is an inevitable unbounded vertex, replacing Pi by

{(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi} creates a new edge in G; let vivj be such an

edge. Then, clearly P i∩P j 6= ∅. We will prove that vj is a hovering vertex of vi. Other-

wise, φi < φj , aj > ai, or bi > bj . Suppose first that φi < φj . If vj ∈ VU , then vi remains

not connected to vj after the replacement of Pi by {(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi},
since φi < φj , which is a contradiction. If vj ∈ VB, then vi is connected to vj also before

the replacement of Pi, since φi < φj and P i ∩ P j 6= ∅, which is again a contradiction.

Thus, φi > φj . Suppose now that aj > ai or bi > bj . Then, since φi > φj , it is easy to

see that in both cases P i ∩P j = ∅, which is a contradiction. Thus, aj < ai, bi < bj , and

φi > φj , i.e. vj is a hovering vertex of vi by Definition 4.5.

Lemma 4.3. Let vi ∈ VU be an inevitable unbounded vertex of a tolerance graph G

and vj be a hovering vertex of vi (in a certain parallelepiped representation of G).

Then, N(vi) ⊆ N(vj).

Proof. Consider an arbitrary inevitable unbounded vertex vi ∈ VU and a hovering ver-

tex vj of vi. Then, aj < ai, bi < bj , and φi > φj by Definition 4.5. Thus, in particular,

P i ∩ P j 6= ∅. If N(vi) = ∅, then the lemma clearly holds. Otherwise, consider a ver-

tex vk ∈ N(vi). It follows that vk ∈ VB, since vi ∈ VU and no two unbounded vertices

are adjacent in G. Furthermore, since vivk ∈ E, it follows that P i∩P k 6= ∅ and φk > φi.

Then, it is easy to see that also P j ∩P k 6= ∅, and that φk > φi > φj . Thus, Pj ∩Pk 6= ∅,
i.e. vjvk ∈ E, since vk is a bounded vertex. That is, vk ∈ N(vj) for every vk ∈ N(vi),

and thus the lemma follows.

Definition 4.6. A parallelepiped representation of a tolerance graph G is called canon-

ical if every unbounded vertex is inevitable.

For example, in the tolerance graph depicted in Figure 4.2, v4 and v8 are inevitable

unbounded vertices, v3 and v6 are hovering vertices of v4 and v8, respectively, while v2
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and v6 are evitable unbounded vertices. Therefore, this representation is not canonical

for the graph G. However, if we replace Pi by {(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi} for

i = 2, 6, we get a canonical representation for G.

In the following, we present an algorithm that constructs a canonical representation of

a given tolerance graph G.

Definition 4.7. Let α = (xα, yα) and β = (xβ, yβ) be two points in the plane. Then α

dominates β if xα > xβ and yα > yβ. Given a set A of points, the point γ ∈ A is called

an extreme point of A if there is no point δ ∈ A that dominates γ. Ex(A) is the set of

the extreme points of A.

Given a tolerance graph G = (V,E) with the set V = {v1, v2, . . . , vn} of vertices (and

its parallelepiped representation), we can assume without loss of generality that ai < aj

whenever i < j. Recall that with every vertex vi we associated the point pi = (xi, yi),

where xi = bi and yi = π
2 − φi, respectively. We define for every i = 1, 2, . . . , n the set

Ai = {p1, p2, . . . , pi} of the points associated with the first i vertices of G.

Lemma 4.4. Let vi ∈ VU be an unbounded vertex of a tolerance graph G. Then:

(a) If pi ∈ Ex(Ai) then vi is evitable.

(b) If pi /∈ Ex(Ai) and point pj dominates pi for some bounded vertex vj ∈ VB with

j < i then vi is inevitable and vj is a hovering vertex of vi.

Proof. (a) Assume, to the contrary, that vi is inevitable. By Lemma 4.2 there is a

hovering vertex vj of vi. But then, xi = bi < bj = xj and yi = π
2 − φi < π

2 − φj = yj ,

while aj < ai, i.e. j < i. Therefore pj ∈ Ai and pj dominates pi, which is a contradiction,

since pi ∈ Ex(Ai). Thus, vi is evitable.

(b) Suppose that pj dominates pi, for some vertex vj ∈ VB with j < i. The ordering of

the vertices implies aj < ai, while xi < xj and yi < yj imply bi < bj and φi > φj . Thus,

vi is inevitable and vj is a hovering vertex of vi.

The following theorem shows that, given a parallelepiped representation of a tolerance

graph G, we can construct in O(n log n) a canonical representation of G. This result is

crucial for the time complexity analysis of the algorithms of Section 4.2.2.
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Theorem 4.2. Every parallelepiped representation of a tolerance graph G with n vertices

can be transformed by Algorithm 4.1 to a canonical representation of G in O(n log n)

time.

Proof. We describe and analyze Algorithm 4.1 that generates a canonical representation

of G. First, we sort the vertices v1, v2, . . . , vn of G such that ai < aj whenever i < j.

Then, we process sequentially all vertices vi of G. The bounded and the inevitable

unbounded vertices will not be changed, while the evitable unbounded vertices will be

replaced by bounded ones. At step i we update the set Ex(Ai) of the extreme points

of Ai (note that the set Ai itself remains unchanged during the algorithm). For two

points pi1 , pi2 of Ex(Ai), xi1 > xi2 if and only if yi1 < yi2 . We store the elements

of Ex(Ai) in a list P , in which the points pj are sorted increasingly according to their x

values (or, equivalently, decreasingly according to their y values). Due to Lemma 4.4(a),

and since during the algorithm the evitable unbounded vertices of G are replaced by

bounded ones, after the process of vertex vi, all points in the list P correspond to

bounded vertices of G in the current parallelepiped representation.

We distinguish now the following cases:

Case 1. vi is bounded. If there exists a point of P that dominates pi then pi /∈ Ex(Ai).

Thus, we do not change P , and we continue to the process of vi+1. If no point of P

dominates pi then pi ∈ Ex(Ai). Thus, we add pi to P and we remove from P all points

that are dominated by pi.

Case 2. vi is unbounded. If there exists a point pj ∈ P that dominates pi then

pi /∈ Ex(Ai), while Lemma 4.4(b) implies that vi is inevitable and vj is a hovering vertex

of vi. Thus, similarly to Case 1, we do not change P , and we continue to the process

of vi+1. If no point of P dominates pi then pi ∈ Ex(Ai). Thus, we add the point pi to P

and remove from P all points that are dominated by pi. In this case, vi is evitable by

Lemma 4.4(a). Hence, we replace Pi by {(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi} in the current

parallelepiped representation of G and we consider from now on vi as a bounded vertex.

It follows that after the process of each vertex vi (either bounded or unbounded) the

list P stores the points of Ex(Ai). Furthermore, at every iteration of the algorithm,

all points of the list P correspond to bounded vertices in the current parallelepiped

representation of G.
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Algorithm 4.1 Construction of a canonical representation of a tolerance graph G

Input: A parallelepiped representation R of a given tolerance graph G with n vertices
Output: A canonical representation R′ of G

1: Sort the vertices of G, such that ai < aj whenever i < j
2: `0 ← min{xi | 1 ≤ i ≤ n}; r0 ← max{xi | 1 ≤ i ≤ n}
3: ps ← (`0 − 1, π2 ); pt ← (r0 + 1, 0)
4: P ← (ps, pt); R′ ← R
5: for i = 1 to n do
6: Find the point pj ∈ P having the smallest xj with xj > xi
7: if yj < yi then {no point of P dominates pi}
8: Find the point pk ∈ P having the greatest xk with xk < xi
9: Find the point p` ∈ P having the greatest y` with y` < yi

10: if xk ≥ x` then
11: Replace points p`, p`+1 . . . , pk by point pi in the list P
12: else
13: Insert point pi between points pk and p` in the list P
14: if vi ∈ VU then {vi is an evitable unbounded vertex}
15: Replace Pi by {(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi} in R′

16: else {yj > yi; pj dominates pi}
17: if vi ∈ VU then {vi is an inevitable unbounded vertex}
18: Associate vj to vi as a hovering vertex of vi
19: return R′

The processing of vertex vi is done by executing three binary searches in the list P as

follows. Let `0 = min{xi | 1 ≤ i ≤ n} and r0 = max{xi | 1 ≤ i ≤ n}. For convenience,

we add two dummy points ps = (`0 − 1, π2 ) and pt = (r0 + 1, 0). First, we find the

point pj ∈ P with the smallest value xj , such that xj > xi (see Figure 4.3). Note that

pi ∈ Ex(Ai) if and only if yj < yi. If yj > yi then pj dominates pi (see Figure 4.3(a)).

Thus, if vi ∈ VU , Lemma 4.4(b) implies that vi is an inevitable unbounded vertex and vj

is a hovering vertex of vi; note that vj is a bounded vertex in the current parallelepiped

representation of G. In the opposite case yj < yi, we have to add pi to P . In order to

remove from P all points that are dominated by pi, we execute binary search two more

times. In particular, we find the points pk and p` of P with the greatest values xk and y`,

respectively, such that xk < xi and y` < yi (see Figure 4.3(b)). If there are some points

of P that are dominated by pi, then pk and p` have the greatest and smallest values

xk and x` among them, respectively, and xk ≥ x`. In this case, we replace all points

p`, p`+1, . . . , pk by the point pi in the list P . Otherwise, if no point of P is dominated

by pi, then xk < x`. In this case, we remove no point from P and we insert pi between pk

and p` in P .

Finally, after processing all vertices vi of G, we return a canonical representation of the
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Figure 4.3: The cases where the associated point pi to the currently processed ver-
tex vi is (a) dominated by the point pj in Ai and (b) an extreme point of the set Ai.

given tolerance graph G, in which every vertex that remains unbounded has a hovering

vertex assigned to it. Since the processing of every vertex can be done in O(log n) time

by executing three binary searches, and since the sorting of the vertices can be done

in O(n log n) time, the running time of Algorithm 4.1 is O(n log n).

4.2.2 Minimum coloring

In the next theorem we present an optimal O(n log n) algorithm for computing a mini-

mum coloring of a tolerance graph G with n vertices, given a parallelepiped representa-

tion of G. The informal description of the algorithm is identical to the one in [61], which

has running time O(n2); the difference is in the fact that we use our new representation,

in order to improve the time complexity.

Algorithm 4.2 Minimum coloring of a tolerance graph G

Input: A parallelepiped representation of a given tolerance graph G
Output: A minimum coloring of G

1: Construct a canonical representation of G by Algorithm 4.1, where a hovering vertex
is associated with every inevitable unbounded vertex

2: Color G[VB] by the algorithm of [47]
3: for every inevitable unbounded vertex vi ∈ VU do
4: Assign to vi the same color as its hovering vertex in G[VB]

Theorem 4.3. A minimum coloring of a tolerance graph G with n vertices can be

computed in O(n log n) time.

Proof. We present Algorithm 4.2 that computes a minimum coloring ofG. Given a paral-

lelepiped representation of G, we construct a canonical representation of G in O(n log n)
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time by Algorithm 4.1. VB and VU are the sets of bounded and inevitable unbounded

vertices of G in the latter representation, respectively. In particular, Algorithm 4.1 as-

sociates a hovering vertex vj ∈ VB with every inevitable unbounded vertex vi ∈ VU .

We find a minimum proper coloring of the bounded tolerance graph G[VB] in O(n log n)

time using the algorithm of [47]. Finally, we associate with every inevitable unbounded

vertex vi ∈ VU the same color as that of its hovering vertex vj ∈ VB in the coloring

of G[VB].

Consider an arbitrary inevitable unbounded vertex vi ∈ VU and its hovering vertex

vj ∈ VB. Consider also a vertex vk of G, such that vivk ∈ E. Then, vk ∈ VB, since

no two unbounded vertices are adjacent in G. Furthermore, vjvk ∈ E by Lemma 4.3.

It follows that vk does not have the same color as vj in the proper coloring of G[VB],

and thus the resulting coloring of G is proper. Finally, since both colorings of G[VB]

and of G have the same number of colors, it follows that this proper coloring of G is

minimum. Since the coloring of G[VB] can be done in O(n log n) time and the coloring

of all inevitable unbounded vertices vi ∈ VU can be done in O(n) time, Algorithm 4.2

returns a minimum proper coloring G in O(n log n) time.

4.2.3 Maximum clique

In the next theorem we prove that a maximum clique of a tolerance graph G with n ver-

tices can be computed in optimal O(n log n) time, given a parallelepiped representation

of G. This theorem follows from Theorem 4.2 and from the clique algorithm presented

in [47], and it improves the best known O(n2) running time mentioned in [61].

Theorem 4.4. A maximum clique of a tolerance graph G with n vertices can be com-

puted in O(n log n) time.

Proof. We compute first a canonical representation of G in O(n log n) time by Algo-

rithm 4.1. The proof of Theorem 4.3 implies that χ(G) = χ(G[VB]), where χ(H) denotes

the chromaric number of a given graph H. Since tolerance graphs are perfect graphs [60],

ω(G) = χ(G) and ω(G[VB]) = χ(G[VB]), where ω(H) denotes the clique number of a

given graph H. It follows that ω(G) = ω(G[VB]). We compute now a maximum clique Q

of the bounded tolerance graph G[VB] in O(n log n) time. This can be done by the al-

gorithm presented in [47] that computes a maximum clique in a trapezoid graph, since
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bounded tolerance graphs are trapezoid graphs [62]. Since ω(G) = ω(G[VB]), Q is a

maximum clique of G as well.

4.2.4 Optimality of the running time

In this section we use permutation graphs [62]. Given a sequence S = a1, a2, . . . , an of

numbers, a subsequence of S is a sequence S′ = ai1 , ai2 , . . . , aik , where aij ∈ S for every

j ∈ {1, 2, . . . , k}, and 1 ≤ i1 < i2 < . . . < ik ≤ n. S′ is called an increasing subsequence

of S, if ai1 < ai2 < . . . < aik . Clearly, increasing subsequences in a permutation graph G

correspond to independent sets of G, while increasing subsequences in the complement G

of G correspond to cliques of G, where G is also a permutation graph. Since Ω(n log n)

is a lower time bound for computing the length of a longest increasing subsequence in

a permutation [47, 49], the same lower time bound holds for computing a maximum

clique and a maximum independent set in a permutation graph G. Furthermore, since

permutation graphs are perfect graphs [57], the chromatic number χ(G) of a permutation

graph G equals the clique number ω(G) of G. Thus, Ω(n log n) is a lower time bound

for computing the chromatic number of a permutation graph. Finally, since the class of

permutation graphs is a subclass of tolerance graphs [62], the same lower bounds hold for

tolerance graphs. It follows that the algorithms described in Theorems 4.3 and 4.4 for

computing a minimum coloring and a maximum clique in tolerance graphs are optimal.

4.3 Weighted Independent Set Algorithm in O(n2)

In this section we present an algorithm for computing a maximum weight independent

set in a tolerance graph G = (V,E) with n vertices in O(n2) time, given a parallelepiped

representation of G, and a weight w(vi) > 0 for every vertex vi of G. The proposed

algorithm improves the running time O(n3) of the one presented in [62]. In the following,

consider as above the partition of the vertex set V into the sets VB and VU of bounded

and unbounded vertices of G, respectively.

Similarly to [62], we add two isolated bounded vertices vs and vt to G with weights

w(vs) = w(vt) = 0, such that the corresponding parallelepipeds Ps and Pt lie completely

to the left and to the right of all other parallelepipeds of G, respectively. Since both vs



Chapter 4. A new intersection model for tolerance graphs 78

and vt are bounded vertices, we augment the set VB by the vertices vs and vt. In particu-

lar, we define the set of vertices V ′B = VB∪{vs, vt} and the tolerance graph G′ = (V ′, E),

where V ′ = V ′B ∪ VU . Since G′[V ′B] is a bounded tolerance graph, it is a cocompara-

bility graph as well [60, 62]. A transitive orientation of the comparability graph G′[V ′B]

can be obtained by directing each edge according to the upper left endpoints ci of the

parallelograms P i. Formally, let (V ′B,≺) be the partial order defined on the bounded

vertices V ′B, such that vi ≺ vj if and only if vivj /∈ E and ci < cj . Recall that a chain of

elements in a partial order is a set of mutually comparable elements in this order [45].

Observation 4.2 ([62]). The independent sets of G[VB] are in one-to-one correspon-

dence with the chains in the partial order (V ′B,≺) from vs to vt.

For the sequel, recall that for every unbounded vertex vk ∈ VU the parallelepiped Pk de-

generates to a line segment, while the upper endpoints bk and ck of the parallelogram P k

coincide, i.e. bk = ck.

Definition 4.8. For every vi, vj ∈ V ′B with vi ≺ vj, Li(j) = {vk ∈ VU | bi < bk < cj ,

vivk /∈ E} and its weight w(Li(j)) =
∑

v∈Li(j)
w(v).

Definition 4.9. For every vj ∈ V ′B, Rj = {vk ∈ VU | cj < bk < bj , vjvk /∈ E} and its

weight w(Rj) =
∑

v∈Rj
w(v).

For every pair of bounded vertices vi, vj ∈ V ′B with vi ≺ vj , the set Li(j) consists of those

unbounded vertices vk ∈ VU , for which vivk /∈ E and whose upper endpoint bk = ck of P k

lies between P i and P j . Furthermore, vjvk /∈ E for every vertex vk ∈ Li(j). Indeed, in

the case where P k ∩ P j 6= ∅, it holds φk > φj , since bk = ck < cj , and thus Pk ∩ Pj = ∅.
Similarly, the set Rj consists of those unbounded vertices vk ∈ VU , for which vjvk /∈ E
and whose upper endpoint bk = ck of P k lies between the upper endpoints cj and bj

of P j . Furthermore, vivk /∈ E for every vertex vk ∈ Rj as well. Indeed, since vjvk /∈ E,

it follows that φk > φj , and thus, P i ∩ P k = ∅ and Pi ∩ Pk = ∅. In particular, in the

example of Figure 4.4, L1(2) = {v3, v5} and R2 = {v6}. In this figure, the line segments

that correspond to the unbounded vertices v4 and v7, respectively, are drawn with dotted

lines to illustrate the fact that v4v1 ∈ E and v7v2 ∈ E.

Definition 4.10 ([62]). For every vi, vj ∈ V ′B with vi ≺ vj, S(vi, vj) = {vk ∈ VU |
vivk, vjvk /∈ E, bi < bk < bj}.
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L1
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b3 b4 b5 b6 b7

Figure 4.4: The parallelograms P i, i = 1, 2, . . . , 7 of a tolerance graph with the
sets VB = {v1, v2} and VU = {v3, v4, . . . , v7} of bounded and unbounded vertices,

respectively. In this graph, L1(2) = {v3, v5}, R2 = {v6} and S(v1, v2) = {v3, v5, v6}.

Observation 4.3. For every pair of bounded vertices vi, vj ∈ V ′B with vi ≺ vj,

S(vi, vj) = Li(j) ∪Rj

Furthermore, Li(j) ⊆ Li(`) for every triple {vi, vj , v`} of bounded vertices, where vi ≺ vj,
vi ≺ v`, and cj < c`.

In particular, in the example of Figure 4.4, S(v1, v2) = L1(2) ∪R2 = {v3, v5, v6}.

Lemma 4.5 ([62]). Given a tolerance graph G with a set of positive weights

for the vertices of G, any maximum weight independent set of G consists of a

chain of bounded vertices vx1 ≺ vx2 ≺ . . . ≺ vxk
together with the union of the sets

∪{S(vxi , vxi+1) | i = 0, 1, . . . , k}, where vx0 = vs and vxk+1
= vt.

Now, using Lemma 4.5 and Observation 4.3, we can present Algorithm 4.3 for the

maximum weight independent set on tolerance graphs.

Theorem 4.5. A maximum weight independent set of a tolerance graph G with n ver-

tices can be computed in O(n2) time.

Proof. We present Algorithm 4.3 that computes the value of a maximum weight inde-

pendent set of G. A slight modification of Algorithm 4.3 returns a maximum weight

independent set of G, instead of its value. First, we construct the partial order (V ′B,≺)

defined on the bounded vertices V ′B = VB ∪{vs, vt}, such that vi ≺ vj whenever vivj /∈ E
and ci < cj . This can be done in O(n2) time. Then, we sort the bounded vertices

of V ′B, such that ci < cj whenever i < j. This can be done in O(n log n) time. As a

preprocessing step, we compute for every bounded vertex vj ∈ V ′B the set Rj and its

weight w(Rj) in linear O(n) time by visiting at most all unbounded vertices vk ∈ VU .

Thus, all values w(Rj) are computed in O(n2) time.
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Algorithm 4.3 Maximum weight independent set of a tolerance graph G

Input: A parallelepiped representation of a given tolerance graph G
Output: The value of a maximum weight independent set of G

1: Add the dummy bounded vertices vs, vt to G, such that Ps and Pt lie completely to
the left and to the right of all other parallelepipeds of G, respectively

2: V ′B ← VB ∪ {vs, vt}
3: Construct the partial order (V ′B,≺) of the bounded vertices V ′B
4: Sort the bounded vertices V ′B, such that ci < cj whenever i < j

5: for j = 1 to |V ′B| do
6: W (vj)← 0
7: Compute the value w(Rj)

8: for i = 1 to |V ′B| do {initialization}
9: for every vj ∈ V ′B with vi ≺ vj do

10: Update the value w(Li(j))
11: if W (vj) < (w(vj) + w(Rj)) +W (vi) + w(Li(j)) then
12: W (vj)← (w(vj) + w(Rj)) +W (vi) + w(Li(j))
13: return W (vt)

We associate with each bounded vertex vj ∈ V ′B a cumulative weight W (vj) defined as

follows:

W (vs) = 0

W (vj) = (w(vj) + w(Rj)) + max
vi≺vj

{W (vi) + w(Li(j))}, for every vj ∈ V ′B \ {vs}

The cumulative weight W (vj) of an arbitrary bounded vertex vj ∈ V ′B equals the maxi-

mum weight of an independent set S of vertices vk (both bounded and unbounded), for

which bk ≤ bj and vj ∈ S. Initially all values W (vj) are set to zero.

In the main part of Algorithm 4.3, we process sequentially all bounded vertices vi ∈ V ′B.

For every such vertex vi, we update sequentially the cumulative weights W (vj) for all

bounded vertices vj ∈ V ′B with vi ≺ vj by comparing the current value of W (vj) with the

value (w(vj) + w(Rj)) +W (vi) + w(Li(j)), and by storing the greatest of them inW (vj).

After all bounded vertices of V ′B have been processed, the value of the maximum weight

independent set of G is stored in W (vt), due to Lemma 4.5 and Observation 4.3.

While processing the bounded vertex vi, we compute the values w(Li(j)) sequentially for

every j, where vi ≺ vj , as follows. Let vj1 , vj2 be two bounded vertices that are visited

consecutively by the algorithm, during the process of vertex vi. Then, due to Obser-

vation 4.3, we compute the value w(Li(j2)) by adding to the previous value w(Li(j1))
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the weights of all unbounded vertices vk ∈ VU , for which vkvi /∈ E, and whose upper

endpoints bk = ck lie between cj1 and cj2 .

Since we visit all bounded and all unbounded vertices of the graph at most once during

the process of vi, this can be done in O(n) time. Thus, since there are in total at

most n+ 2 bounded vertices vi ∈ V ′B, Algorithm 4.3 returns the value of the maximum

weight independent set of G in O(n2) time. Finally, observe that, storing at every step of

Algorithm 4.3 the independent sets that correspond to the values W (vi), and removing

at the end the vertices vs and vt, the algorithm returns at the same time a maximum

weight independent set of G, instead of its value.





Chapter 5

The recognition of tolerance and

bounded tolerance graphs

Although tolerance and bounded tolerance graphs have been studied extensively, the

recognition problems for both these classes have been the most fundamental open prob-

lems since their introduction in 1982 [27, 57, 62]. Therefore, all existing algorithms

assume that, along with the input tolerance graph, a tolerance representation of it is

given. The only result about the complexity of recognizing tolerance and bounded toler-

ance graphs is that they have a (non-trivial) polynomial sized tolerance representation,

hence the problems of recognizing tolerance and bounded tolerance graphs are in the

class NP [66]. Recently, a linear time recognition algorithm for the subclass of bipar-

tite tolerance graphs has been presented in [27]. Furthermore, the class of trapezoid

graphs (which strictly contains parallelogram, i.e. bounded tolerance, graphs [103]) can

be also recognized in polynomial time [90, 107]. On the other hand, the recognition

of max-tolerance graphs is known to be NP-hard [75]. Unfortunately, the structure of

max-tolerance graphs differs significantly from that of tolerance graphs (max-tolerance

graphs are not even perfect, as they can contain induced C5’s [75]), so the technique

used in [75] does not carry over to tolerance graphs.

Since very few subclasses of perfect graphs are known to be NP-hard to recognize (for

instance, perfectly orderable graphs [93] or EPT graphs [58]), it was believed that the

recognition of tolerance graphs was polynomial. Furthermore, as bounded tolerance

graphs, which are equivalent to parallelogram graphs [18, 83], constitute a natural sub-

class of trapezoid graphs and share a very similar structure with them, and since the

83
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recognition of trapezoid graphs is well known to be polynomial [90,107], it was plausible

that their recognition was also polynomial.

In this chapter, we establish the complexity of recognizing tolerance and bounded toler-

ance graphs. Namely, we prove that both problems are surprisingly NP-complete [P4],

by providing a reduction from the monotone-Not-All-Equal-3-SAT (monotone-NAE-3-

SAT) problem. Consider a boolean formula φ in conjunctive normal form with three

literals in every clause (3-CNF), which is monotone, i.e. no variable is negated. The

formula φ is called NAE-satisfiable if there exists a truth assignment of the variables of

φ, such that every clause has at least one true variable and one false variable. Given a

monotone 3-CNF formula φ, we construct a trapezoid graph Hφ, which is parallelogram,

i.e. bounded tolerance, if and only if φ is NAE-satisfiable. Moreover, we prove that the

constructed graph Hφ is tolerance if and only if it is bounded tolerance [P4]. Thus, since

the recognition of tolerance and of bounded tolerance graphs are in the class NP [66], it

follows that these problems are both NP-complete. Actually, our results imply that the

recognition problems remain NP-complete even if the given graph is trapezoid, since the

constructed graph Hφ is trapezoid.

For our reduction we extend the notion of an acyclic orientation of permutation and

trapezoid graphs. Our main tool is a new algorithm that transforms a given trapezoid

graph into a permutation graph by splitting some specific vertices, while preserving this

new acyclic orientation property [P4]. One of the main advantages of this algorithm is

that the constructed permutation graph does not depend on any particular trapezoid

representation of the input graph G.

The rest of this chapter is organized as follows. We first present in Section 5.1 several

properties of permutation and trapezoid graphs, as well as the algorithm Split-U , which

constructs a permutation graph from a trapezoid graph. In Section 5.2 we present the

reduction of the monotone-NAE-3-SAT problem to the recognition of bounded tolerance

graphs. In Section 5.3 we prove that this reduction can be extended to the recognition

of general tolerance graphs.
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5.1 Trapezoid graphs and representations

In this section we first introduce (in Section 5.1.1) the notion of an acyclic representation

of permutation and of trapezoid graphs. This is followed (in Section 5.1.2) by some

structural properties of trapezoid graphs, which will be used in the sequel for the splitting

algorithm Split-U . Given a trapezoid graph G and a vertex subset U of G with certain

properties, this algorithm constructs a permutation graph G#(U) with 2|U | vertices,

which is independent on any particular trapezoid representation of the input graph G.

Whenever we deal with a trapezoid (resp. permutation and bounded tolerance, i.e. par-

allelogram) graph, we will consider without loss of generality a trapezoid (resp. per-

mutation and parallelogram) representation, in which all endpoints of the trapezoids

(resp. line segments and parallelograms) are distinct [48, 62, 71]. Given a permutation

graph P along with a permutation representation R, we may not distinguish in the fol-

lowing between a vertex of P and the corresponding line segment in R, whenever it is

clear from the context. Furthermore, with a slight abuse of notation, we will refer in the

sequel to the line segments of a permutation representation just as lines.

5.1.1 Acyclic permutation and trapezoid representations

Let P = (V,E) be a permutation graph and R be a permutation representation of P .

For a vertex u ∈ V , denote by θR(u) the angle of the line of u with L2 in R. The

class of permutation graphs is the intersection of comparability and cocomparability

graphs [57]. Thus, given a permutation representation R of P , we can define two partial

orders (V,<R) and (V,�R) on the vertices of P [57]. Namely, for two vertices u and v

of G, u <R v if and only if uv ∈ E and θR(u) < θR(v), while u �R v if and only

if uv /∈ E and u lies to the left of v in R. The partial order (V,<R) implies a transitive

orientation ΦR of P , such that 〈uv〉 ∈ ΦR whenever u <R v.

Let G = (V,E) be a trapezoid graph, and R be a trapezoid representation of G, where

for any vertex u ∈ V , the trapezoid corresponding to u in R is denoted by Tu. Since

trapezoid graphs are also cocomparability graphs [57], we can similarly define the partial

order (V,�R) on the vertices of G, such that u�R v if and only if uv /∈ E and Tu lies

completely to the left of Tv in R. In this case, we may denote also Tu �R Tv, instead

of u�R v.
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In a given trapezoid representation R of a trapezoid graph G, we denote by l(Tu) and

r(Tu) the left and the right line of Tu in R, respectively. Similarly to the case of permu-

tation graphs, we use the relation �R for the lines l(Tu) and r(Tu), e.g. l(Tu)�R r(Tv)

means that the line l(Tu) lies to the left of the line r(Tv) in R. Moreover, if the trape-

zoids of all vertices of a subset S ⊆ V lie completely to the left (resp. right) of the

trapezoid Tu in R, we write R(S)�R Tu (resp. Tu �R R(S)). Note that there are

several trapezoid representations of a particular trapezoid graph G. Given one such

representation R, we can obtain another one R′ by vertical axis flipping of R, i.e. R′ is

the mirror image of R along an imaginary line perpendicular to L1 and L2. Moreover,

we can obtain another representation R′′ of G by horizontal axis flipping of R, i.e. R′′

is the mirror image of R along an imaginary line parallel to L1 and L2. We will use

extensively these two basic operations throughout this chapter. To simplify the presen-

tation, we use throughout this chapter {u1
i , u

2
i }ni=1 to denote the set of n unordered pairs

{u1
1, u

2
1}, {u1

2, u
2
2}, . . . , {u1

n, u
2
n}.

Definition 5.1. Let P be a permutation graph with 2n vertices

{u1
1, u

2
1, u

1
2, u

2
2, . . . , u

1
n, u

2
n}. Let R be a permutation representation and ΦR be the

corresponding transitive orientation of P . The simple directed graph FR is obtained

by merging u1
i and u2

i into a single vertex ui, for every i = 1, 2, . . . , n, where the arc

directions of FR are implied by the corresponding directions in ΦR. Then,

1. R is an acyclic permutation representation with respect to {u1
i , u

2
i }ni=1if FR has

no directed cycle,

2. P is an acyclic permutation graph with respect to {u1
i , u

2
i }ni=1, if P has an acyclic

representation R with respect to {u1
i , u

2
i }ni=1.

In Figure 5.1 we show an example of a permutation graph P with six vertices in Fig-

ure 5.1(a), a permutation representation R of P in Figure 5.1(b), the transitive orien-

tation ΦR of P in Figure 5.1(c), and the corresponding simple directed graph FR in

Figure 5.1(d). In the figure, the pairs {u1
i , u

2
i }3i=1 are grouped inside ellipses. In this

example, R is not an acyclic permutation representation with respect to {u1
i , u

2
i }3i=1,

since FR has a directed cycle of length two. However, note that, by exchanging the lines

u1
1 and u1

2 in R, the resulting permutation representation R′ is acyclic with respect to

{u1
i , u

2
i }3i=1, and thus P is acyclic with respect to {u1

i , u
2
i }3i=1.
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u2 u3
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(d)

Figure 5.1: (a) A permutation graph P , (b) a permutation representation R of P ,
(c) the transitive orientation ΦR of P , and

(d) the corresponding simple directed graph FR.

Definition 5.2. Let G be a trapezoid graph with n vertices and R be a trapezoid rep-

resentation of G. Let P be the permutation graph with 2n vertices corresponding to the

left and right lines of the trapezoids in R, RP be the permutation representation of P

induced by R, and {u1
i , u

2
i } be the vertices of P that correspond to the same vertex ui

of G, i = 1, 2, . . . , n. Then,

1. R is an acyclic trapezoid representation, if RP is an acyclic permutation repre-

sentation with respect to {u1
i , u

2
i }ni=1,

2. G is an acyclic trapezoid graph, if it has an acyclic representation R.

The next lemma follows easily from Definitions 5.1 and 5.2.

Lemma 5.1. Any parallelogram graph is an acyclic trapezoid graph.

Proof. Let G be a parallelogram graph with n vertices {u1, u2, . . . , un} and R be a par-

allelogram representation of G. That is, R is a trapezoid representation of G, such that

the left and right lines l(Tui) and r(Tui) of the trapezoid Tui , i = 1, 2, . . . , n, are parallel

in R, i.e. θR(l(Tui)) = θR(r(Tui)). Let P be the permutation graph with 2n vertices

{u1
1, u

2
1, u

1
2, u

2
2, . . . , u

1
n, u

2
n} corresponding to the left and right lines of the trapezoids

of G in R, i.e. the vertices u1
i and u2

i correspond to l(Tui) and r(Tui), i = 1, 2, . . . , n,

respectively. Let RP be the permutation representation of P induced by R, and ΦRP

be the corresponding transitive orientation of the permutation graph P . Recall that,
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for two intersecting lines a, b in RP , it holds 〈ab〉 ∈ ΦRP
whenever θR(a) < θR(b). It

follows that for any i = 1, 2, . . . , n, the pair {u1
i , u

2
i } of vertices in P has incoming arcs

from (resp. outgoing arcs to) vertices of other pairs {u1
j , u

2
j} in ΦRP

, which have smaller

(resp. greater) angle with the line L2 in RP . Thus, the simple directed graph FRP
de-

fined in Definition 5.1 has no directed cycles, and therefore RP is an acyclic permutation

representation with respect to {u1
i , u

2
i }ni=1, i.e. R is an acyclic trapezoid representation

of G by Definition 5.2.

5.1.2 Structural properties of trapezoid graphs

In the following, we state some definitions concerning an arbitrary simple undirected

graph G = (V,E), which are useful for our analysis. Although these definitions apply

to any graph, we will use them only for trapezoid graphs. Similar definitions, for the

restricted case where the graph G is connected, were studied in [30]. For a vertex

subset U ⊆ V , N(U) =
⋃
u∈U N(u) \ U . If N(U) ⊆ N(W ) for two vertex subsets U

and W , then U is said to be neighborhood dominated by W . Clearly, the relationship of

neighborhood domination is transitive.

Let C1, C2, . . . , Cω, ω ≥ 1, be the connected components of G \N [u] and Vi = V (Ci),

i = 1, 2, . . . , ω. For simplicity of the presentation, we will identify in the se-

quel the component Ci and its vertex set Vi, i = 1, 2, . . . , ω. For i = 1, 2, . . . , ω,

the neighborhood domination closure of Vi with respect to u is the set

Du(Vi) = {Vp | N(Vp) ⊆ N(Vi), p = 1, 2, . . . , ω} of connected components of G \N [u].

A component Vi is called a master component of u if |Du(Vi)| ≥ |Du(Vj)| for all

j = 1, 2, . . . , ω. The closure complement of the neighborhood domination closure Du(Vi)

is the set D∗u(Vi) = {V1, V2, . . . , Vω} \Du(Vi). Finally, for a subset S ⊆ {V1, V2, . . . , Vω},
a component Vj ∈ S is called maximal if there is no component Vk ∈ S such that

N(Vj) $ N(Vk).

Intuitively, if G is a trapezoid graph and R is a trapezoid representation of G,

one can think of a master component Vi of u as the first connected compo-

nent of G \ N [u] to the right, or to the left of Tu in R. For example, con-

sider the trapezoid graph G with vertex set {u, u1, u2, u3, v1, v2, v3, v4}, which is

given by the trapezoid representation R of Figure 5.2. The connected compo-

nents of G \N [u] = {v1, v2, v3, v4} are V1 = {v1}, V2 = {v2}, V3 = {v3}, and V4 = {v4}.
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Then, N(V1) = {u1}, N(V2) = {u1, u3}, N(V3) = {u2, u3}, and N(V4) = {u3}. Hence,

Du(V1) = {V1}, Du(V2) = {V1, V2, V4}, Du(V3) = {V3, V4}, and Du(V4) = {V4}; thus, V2

is the only master component of u. Furthermore, D∗u(V1) = {V2, V3, V4}, D∗u(V2) = {V3},
D∗u(V3) = {V1, V2}, and D∗u(V4) = {V1, V2, V3}.

L1

L2

Tv1

Tv2

Tv3 Tv4

Tu

Tu2Tu1
Tu3

R :

Figure 5.2: A trapezoid representation R of a trapezoid graph G.

Lemma 5.2. Let G be a simple graph, u be a vertex of G, and let V1, V2, . . . , Vω, ω ≥ 1,

be the connected components of G \N [u]. If Vi is a master component of u, such that

D∗u(Vi) 6= ∅, then D∗u(Vj) 6= ∅ for every component Vj of G \N [u].

Proof. Since Vi is a master component, and since D∗u(Vi) 6= ∅, it follows that |Du(Vj)| ≤
|Du(Vi)| < ω for every connected component Vj ∈ {V1, V2, . . . , Vω}. Therefore,

|Du(Vj)| < ω, and thus, D∗u(Vj) 6= ∅ as well.

In the following we investigate several properties of trapezoid graphs, in order to derive

the vertex-splitting algorithm Split-U in Section 5.1.3.

Remark 5.1. Similar properties of trapezoid graphs have been studied in [30], leading

to another vertex-splitting algorithm, called Split-All. However, the algorithm proposed

in [30] is incorrect, since it is based on an incorrect property1, as was also verified

by [31]. In the sequel of this section, we present new definitions and properties. In the

cases where a similarity arises with those of [30], we refer to it specifically.

The next lemma, which has been stated in Observation 3.1(4) in [30] (without a proof),

will be used in our analysis below. For the sake of completeness, we present in the

following its proof.
1In Observation 3.1(5) of [30], it is claimed that for an arbitrary trapezoid representation R of a con-

nected trapezoid graph G, where Vi is a master component of u such that D∗u(Vi) 6= ∅ and R(Vi)�R Tu,
it holds R(Du(Vi))�R Tu �R R(D∗u(Vi)). However, the first part of the latter inequality is not true.
For instance, in the trapezoid graph G of Figure 5.2, V2 = {v2} is a master component of u, where
D∗u(V2) = {V3} = {{v3}}6= ∅ and R(V2)�R Tu. However, V4 = {v4} ∈ Du(V2) and Tu �RTv4 , and
thus, R(Du(V2)) 6�R T u.
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Lemma 5.3. Let R be a trapezoid representation of a trapezoid graph G, and Vi be a

master component of a vertex u of G, such that R(Vi)�RTu. Then, Tu�RR(Vj) for

every component Vj ∈ D∗u(Vi).

Proof. Suppose otherwise that R(Vj)�RTu, for some Vj ∈ D∗u(Vi). Consider first the

case where R(Vj)�RR(Vi)�RTu. Then, since Vi lies between Vj and Tu in R, all

trapezoids that intersect Tu and Vj , must also intersect Vi. Thus, N(Vj) ⊆ N(Vi),

i.e. Vj ∈ Du(Vi), which is a contradiction, since Vj ∈ D∗u(Vi). Consider now the case

where R(Vi)�RR(Vj)�RTu. Then, we obtain similarly that N(Vi) ⊆ N(Vj), and thus,

Du(Vi) ⊆ Du(Vj). Since Vj ∈ Du(Vj) \ Du(Vi), it follows that |Du(Vi)| < |Du(Vj)|.
This is a contradiction to the assumption that Vi is a master component of u. Thus,

Tu�RR(Vj) for every Vj ∈ D∗u(Vi).

In the following two definitions, we partition the neighbors N(u) of a vertex u in a

trapezoid graph G into four possibly empty sets. In the first definition, these sets

depend on the graph G itself and on two particular connected components Vi and Vj of

G \N [u], while in the second one, they depend on a particular trapezoid representation

R of G.

Definition 5.3. Let G be a trapezoid graph, and u be a vertex of G. Let Vi be a master

component of u, such that D∗u(Vi) 6= ∅, and Vj be a maximal component of D∗u(Vi). Then,

the vertices of N(u) are partitioned into four possibly empty sets:

1. N0(u, Vi, Vj): vertices not adjacent to either Vi or Vj,

2. N1(u, Vi, Vj): vertices adjacent to Vi but not to Vj,

3. N2(u, Vi, Vj): vertices adjacent to Vj but not to Vi,

4. N12(u, Vi, Vj): vertices adjacent to both Vi and Vj.

Definition 5.4. Let G be a trapezoid graph, R be a representation of G, and u be a vertex

of G. Denote by D1(u,R) and D2(u,R) the sets of trapezoids of R that lie completely

to the left and to the right of Tu in R, respectively. Then, the vertices of N(u) are

partitioned into four possibly empty sets:

1. N0(u,R): vertices not adjacent to either D1(u,R) or D2(u,R),

2. N1(u,R): vertices adjacent to D1(u,R) but not to D2(u,R),

3. N2(u,R): vertices adjacent to D2(u,R) but not to D1(u,R),

4. N12(u,R): vertices adjacent to both D1(u,R) and D2(u,R).
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Now, the following lemma connects the last two definitions; in particular, it states that,

if R(Vi) �R Tu, then the partitions of the set N(u) defined in Definitions 5.3 and 5.4

coincide. This lemma will enable us to define in the sequel a partition of the set N(u),

independently of any trapezoid representation R of G, and regardless of any particular

connected components Vi and Vj of G \N [u], cf. Definition 5.6.

Lemma 5.4. Let G be a trapezoid graph, R be a representation of G, and u be a

vertex of G. Let Vi be a master component of u, such that D∗u(Vi) 6= ∅, and let Vj be

a maximal component of D∗u(Vi). If R(Vi) �R Tu, then NX(u, Vi, Vj) = NX(u,R) for

every X ∈ {0, 1, 2, 12}.

Proof. Since D∗u(Vi) 6= ∅ and R(Vi)�RTu, it follows by Lemma 5.3 that Tu�RR(Vj),

i.e. Vj ∈ D2(u,R). Suppose that a component V` 6= Vj is the leftmost one of D2(u,R)

in R, i.e. Tu�RR(V`)�RR(Vj). Since V` lies between Tu and Vj in R, all trapezoids

that intersect Tu and Vj , must also intersect V`, and thus, N(Vj) ⊆ N(V`). It follows

that V` ∈ D∗u(Vi), i.e. V` /∈ Du(Vi), since otherwise Vj ∈ Du(Vi), which is a contradiction.

Furthermore, since Vj is a maximal component of D∗u(Vi), and since N(Vj) ⊆ N(V`), it

follows that N(Vj) = N(V`), i.e. NX(u, Vi, Vj) = NX(u, Vi, V`) for every X ∈ {0, 1, 2, 12}.

Suppose that a component Vk 6= Vi is the rightmost one of D1(u,R) in R,

i.e. R(Vi)�RR(Vk)�RTu. Then, Vk ∈ Du(Vi), since otherwise Tu�RR(Vk) by

Lemma 5.3, which is a contradiction. Thus, N(Vk) ⊆ N(Vi). Further-

more, since Vk lies between Vj and Tu in R, all trapezoids that inter-

sect Tu and Vj , must also intersect Vk, and thus, N(Vi) ⊆ N(Vk). Therefore,

N(Vi) = N(Vk), i.e. NX(u, Vi, V`) = NX(u, Vk, V`) for every X ∈ {0, 1, 2, 12}, and thus,

NX(u, Vi, Vj) = NX(u, Vk, V`) for every X ∈ {0, 1, 2, 12}.

Consider now a vertex v ∈ N(u), and recall that Vk (resp. V`) is the rightmost

(resp. leftmost) component of D1(u,R) (resp. D2(u,R)) in R. Thus, if Tv inter-

sects at least one component of D1(u,R) (resp. D2(u,R)), then Tv intersects also

with Vk (resp. V`). On the other hand, if Tv does not intersect any component

of D1(u,R) (resp. D2(u,R)), then Tv clearly does not intersect Vk (resp. V`), since

Vk ⊆ D1(u,R) (resp. Vj ⊆ D2(u,R)). It follows that NX(u, Vk, V`) = NX(u,R), and

thus, NX(u, Vi, Vj) = NX(u,R) for every X ∈ {0, 1, 2, 12}. This proves the lemma.

Note that, given a trapezoid representationR ofG, we may assume in Lemma 5.4 without

loss of generality that R(Vi)�RTu, by possibly performing a vertical axis flipping of R.
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Thus, we can state now the following definition of the sets δu and δ∗u, regardless of the

choice the components Vi and Vj of u.

Definition 5.5. Let G be a trapezoid graph, u be a vertex of G, and Vi be an arbitrarily

chosen master component of u. Then, δu = Vi and

1. if D∗u(Vi) = ∅, then δ∗u = ∅,
2. if D∗u(Vi) 6= ∅, then δ∗u = Vj, for an arbitrarily chosen maximal compo-

nent Vj ∈ D∗u(Vi).

From now on, whenever we speak about δu and δ∗u, we assume that these arbitrary

choices of Vi and Vj have been already made. Now, we are ready to define the following

partition of the set N(u), which will be used for the vertex splitting in Algorithm Split-U ,

cf. Definition 5.7.

Definition 5.6. Let G be a trapezoid graph and u be a vertex of G. The vertices of N(u)

are partitioned into four possibly empty sets:

1. N0(u): vertices not adjacent to either δu or δ∗u,

2. N1(u): vertices adjacent to δu but not to δ∗u,

3. N2(u): vertices adjacent to δ∗u but not to δu,

4. N12(u): vertices adjacent to both δu and δ∗u.

The next corollary follows now from Lemma 5.4 and Definitions 5.5 and 5.6.

Corollary 5.1. Let G be a trapezoid graph, R be a representation of G, and u be a

vertex of G with δ∗u 6= ∅. Let Vi be the master component of u that corresponds to δu.

If R(Vi)�RTu, then NX(u) = NX(u,R) for every X ∈ {0, 1, 2, 12}.

In the following, we state two auxiliary lemmas that will be used in the proof of Theo-

rem 5.1.

Lemma 5.5. Let G be a trapezoid graph and u be a vertex of G. Then, N2(u)∪N12(u) =

∅ if and only if δ∗u = ∅.

Proof. Suppose first that δ∗u = ∅. Then, clearly there exists no vertex v ∈ N(u) adjacent

to δ∗u, and thus, N2(u)∪N12(u) = ∅. Conversely, suppose that N2(u)∪N12(u) = ∅, and

assume that δ∗u 6= ∅. Let δu = Vi and δ∗u = Vj , where Vi is a master component of u

and Vj is a maximal component of D∗u(Vi). If N(Vj) = ∅, then clearly N(Vj) ⊆ N(Vi),
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and thus, Vj ∈ Du(Vi), which is a contradiction. Thus, N(Vj) 6= ∅, i.e. some vertices of

N(u) are adjacent to some vertices of Vj . Since δ∗u = Vj , it follows by Definition 5.6 that

N2(u) ∪N12(u) 6= ∅, which is a contradiction. Thus, δ∗u = ∅.

Lemma 5.6. Let G be a trapezoid graph and u be a vertex of G. If δ∗u 6= ∅, then

N1(u) ∪N12(u) 6= ∅.

Proof. Suppose that δ∗u 6= ∅. Let Vi be the master component that corresponds to

δu, and Vj be the maximal component of D∗u(Vi) that corresponds to δ∗u. Assume

that N1(u) ∪N12(u) = ∅, i.e. no neighbor of u is adjacent to any vertex v ∈ Vi. It

follows that N(Vi) = ∅. On the other hand, since δ∗u 6= ∅, we obtain by Lemma 5.5

that N2(u) ∪N12(u) 6= ∅. That is, some neighbors of u are adjacent to some ver-

tices of Vj , i.e. N(Vj) 6= ∅. Therefore, N(Vi) = ∅ $ N(Vj), and thus, Du(Vi) $ Du(Vj),

i.e. |Du(Vi)| < |Du(Vj)|. This is a contradiction, since Vi is a master component of u.

Thus, N1(u) ∪N12(u) 6= ∅.

5.1.3 A splitting algorithm

We define now the splitting of a vertex u of a trapezoid graph G, where δ∗u 6= ∅. Note

that this splitting operation does not depend on any trapezoid representation of G.

Intuitively, if the graph G was given along with a specific trapezoid representation R,

this would have meant that we replace the trapezoid Tu in R by its two lines l(Tu)

and r(Tu).

Definition 5.7. Let G be a trapezoid graph and u be a vertex of G, where δ∗u 6= ∅. The

graph G#(u) obtained by the vertex splitting of u is defined as follows:

1. V (G#(u)) = V (G) \ {u} ∪ {u1, u2}, where u1 and u2 are the two new vertices.

2. E(G#(u)) = E[V (G)\{u}]∪{u1x | x ∈ N1(u)}∪{u2x | x ∈ N2(u)}∪{u1x, u2x | x ∈
N12(u)}.

The vertices u1 and u2 are the derivatives of vertex u.

We state now the notion of a standard trapezoid representation with respect to a par-

ticular vertex, which will be used in the proof of Theorem 5.1.
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Algorithm 5.1 Split-U

Input: A trapezoid graph G and a vertex subset U = {u1, u2, . . . , uk}, such that δ∗ui
6= ∅

for all i = 1, 2, . . . , k
Output: The permutation graph G#(U)

1: U ← V (G) \ U ; H0 ← G

2: for i = 1 to k do
3: Hi ← H#

i−1(ui) {Hi is obtained by the vertex splitting of ui in Hi−1}
4: G#(U)← Hk[V (Hk) \ U ] {remove from Hk all unsplitted vertices}
5: return G#(U)

Definition 5.8. Let G be a trapezoid graph and u be a vertex of G, where δ∗u 6= ∅. A

trapezoid representation R of G is standard with respect to u, if the following properties

are satisfied:

1. l(Tu)�R R(N0(u) ∪N2(u)),

2. R(N0(u) ∪N1(u))�R r(Tu).

Now, given a trapezoid graph G and a vertex subset U = {u1, u2, . . . , uk}, such that

δ∗ui
6= ∅ for every i = 1, 2, . . . , k, Algorithm Split-U returns a graph G#(U) by splitting

every vertex of U exactly once. At every step, Algorithm Split-U splits a vertex of U ,

and finally, it removes all vertices of the set V (G) \ U , which have not been split.

Remark 5.2. As mentioned in Remark 5.1, a similar algorithm, called Split-All, was

presented in [30]. We would like to emphasize here the following four differences between

the two algorithms. First, that Split-All gets as input a sibling-free graph G (two vertices

u, v of a graph G are called siblings, if N [u] = N [v]; G is called sibling-free if G has

no pair of sibling vertices), while our Algorithm Split-U gets as an input any graph

(though, we will use it only for trapezoid graphs), which may contain pairs of sibling

vertices. Second, Split-All splits all the vertices of the input graph, while Split-U splits

only a subset of them, which satisfy a special property. Third, the order of vertices that

are split by Split-All depends on a certain property (inclusion-minimal neighbor set),

while Split-U splits the vertices in an arbitrary order. Last, the main difference between

these two algorithms is that they perform a different vertex splitting operation at every

step, since Definitions 5.5 and 5.6 do not comply with the corresponding Definitions 4.1

and 4.2 of [30].
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Theorem 5.1. Let G be a trapezoid graph and U = {u1, u2, . . . , uk} be a vertex subset

of G, such that δ∗ui
6= ∅ for every i = 1, 2, . . . , k. Then, the graph G#(U) obtained by

Algorithm Split-U , is a permutation graph with 2k vertices. Furthermore, if G is acyclic,

then G#(U) is acyclic with respect to {u1
i , u

2
i }ki=1, where u1

i and u2
i are the derivatives

of ui, i = 1, 2, . . . , k.

Proof. Let R be a trapezoid representation of G. In order to prove that the graph G#(U)

constructed by Algorithm Split-All is a permutation graph, we will construct from R a

permutation representationR#(U) ofG#(U). To this end, we will construct sequentially,

for every i = 1, 2, . . . , k, a standard trapezoid representation of Hi−1 with respect to ui,

in which all derivatives u1
j , u

2
j , 1 ≤ j ≤ i − 1, are represented by trivial trapezoids,

i.e. lines.

Let u = u1. If R is not a standard representation with respect to u, we construct first

from R a trapezoid representation R′ of G that satisfies the first condition of Defini-

tion 5.8. Then, we construct from R′ a trapezoid representation R′′ of G that satisfies

also the second condition of Definition 5.8, i.e. R′′ is a standard trapezoid representa-

tion R′ of G with respect to u.

Let Vi be the master component of u that corresponds to δu. By possibly performing a

vertical axis flipping of R, we may assume w.l.o.g. that R(Vi)�R Tu. Furthermore, the

sets N0(u), N1(u), N2(u), and N12(u) coincide by Corollary 5.1 with the sets N0(u,R),

N1(u,R), N2(u,R), and N12(u,R), respectively. Recall that, by Definition 5.4, D1(u,R)

and D2(u,R) denote the sets of trapezoids of R that lie completely to the left and to

the right of Tu in R, respectively.

Let px and qx be the endpoints on L1 and L2, respectively, of the left line l(Tx) of an

arbitrary trapezoid Tx in R. Suppose that N0(u) ∪ N2(u) 6= ∅. Let pv and qw be the

leftmost endpoints on L1 and L2, respectively, of the trapezoids of N0(u) ∪N2(u), and

suppose that pv < pu and qw < qu. Note that, possibly, v = w. Then, all vertices x, for

which Tx has an endpoint between pv and pu on L1 (resp. between qw and qu on L2) are

adjacent to u. Indeed, suppose otherwise that Tx ∩ Tu = ∅, for such a vertex x. Then,

Tx �R Tu, i.e. x ∈ D1(u,R), since Tx has an endpoint to the left of Tu inR. Furthermore,

since Tv ∩ Tu 6= ∅ (resp. Tw ∩ Tu 6= ∅), it follows that Tx ∩ Tv 6= ∅ (resp. Tx ∩ Tw 6= ∅).
However, since x ∈ D1(u,R), it follows that v ∈ N1(u,R)∪N12(u,R) = N1(u)∪N12(u)

(resp. w ∈ N1(u,R) ∪N12(u,R) = N1(u) ∪N12(u)), which is a contradiction.
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Figure 5.3: The movement of the left line l(Tu) of the trapezoid Tu, in order to
construct a standard trapezoid representation with respect to u.

Consider now a vertex z ∈ N1(u) ∪ N12(u) with l(Tz) �R l(Tu), where pv < pz < pu.

Then, qz < qw. Indeed, suppose otherwise that qw < qz (recall that all endpoints

are assumed to be distinct). Then, since z ∈ N1(u) ∪ N12(u), there exists a vertex

x ∈ D1(u,R), i.e. with Tx �R Tu, such that Tz ∩ Tx 6= ∅. Since v, w ∈ N0(u)∪N2(u), it

follows that Tv∩Tx = ∅ and Tw∩Tx = ∅, and thus, Tx �R Tv and Tx �R Tw. Therefore,

since pv < pz and qw < qz, we obtain that Tx �R Tz, and thus, Tz ∩ Tx = ∅, which is

a contradiction. It follows that qz < qw. Moreover, z is adjacent to all vertices x in G,

whose trapezoid Tx has an endpoint on L1 between pv and pz, including pv. Indeed,

otherwise, Tx �R Tz, and thus, Tx �R Tu, since l(Tz) �R l(Tu). This is however

a contradiction, since x ∈ N(u), as we have proved above. Similarly, if qw < qz < qu,

then pz < pv and z is adjacent to all vertices x in G, whose trapezoid Tx has an endpoint

on L2 between qw and qz, including qw.

We construct now from R a new trapezoid representation R′ of G as follows. First,

for all vertices z ∈ N1(u) ∪ N12(u) with l(Tz) �R l(Tu), for which pv < pz < pu (and

thus qz < qw), we move the endpoint pz of l(Tz) directly before pv on L1. In the sequel,

for all vertices z′ ∈ N1(u) ∪N12(u) with l(Tz′) �R l(Tu), for which qw < qz′ < qu (and

thus pz < pv), we move the endpoint qz′ of l(Tz′) directly before qw on L2. During the

movement of all these lines l(Tz) (resp. l(Tz′)), we keep the same relative positions of

their endpoints pz on L1 (resp. qz′ on L2) as in R, and thus we introduce no new line

intersection among the lines of the trapezoids of G. Since all these vertices z (resp. z′)
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are adjacent to all vertices x of G, whose trapezoid Tx has an endpoint on L1 (resp. L2)

between pv and pz, including pv (resp. between qw and qz, including qw), these movements

do not remove any adjacency from, and do not add any new adjacency to G.

Finally, we move both endpoints pu and qu of l(Tu) directly before pv and qw on L1

and L2, respectively. Since u is adjacent to all vertices x, for which Tx has an endpoint

between pv and pu on L1, or between qw and qu on L2 inR, the resulting representationR′

is a trapezoid representation ofG, in which the first condition of Definition 5.8 is satisfied.

Since we moved all lines l(Tz) and l(Tz′) to the left of Tv and Tw, R′ has no additional

line intersections than R. Moreover, note that for any line intersection of two lines a

and b in R′, the relative position of the endpoints of a and b on L1 and L2 remains

the same as in R. In the case where pv > pu (resp. qw > qu) we replace in the above

construction pv by pu (resp. qw by qu), while in the case where N0(u) ∪N2(u) = ∅, we

define R′ = R. An example of the construction of R′ is given in Figure 5.3. In this

example, v ∈ N0(u), w ∈ N2(u), z1, z′ ∈ N1(u) and z2 ∈ N12(u).

If R′ is not a standard trapezoid representation with respect to u, then we move r(Tu) to

the right (similarly to the above), obtaining thus a trapezoid representation R′′ of G, in

which the second condition of Definition 5.8 is satisfied. Since during the construction

of R′′ from R′ only the line r(Tu), and other lines that lie completely to the right of r(Tu),

are moved to the right, the first condition of Definition 5.8 is satisfied for R′′ as well.

Thus, R′′ is a standard representation of G with respect to u. Similarly to R′, R′′ has

no additional line intersections than R. Moreover, for any line intersection of two lines a

and b in R′′, the relative position of the endpoints of a and b on L1 and L2 remains the

same as in R.

Since R′′ is standard with respect to u, the left line l(Tu) of Tu in R′′ intersects ex-

actly with those trapezoids Tz, for which z ∈ N1(u) ∪N12(u). On the other hand,

the right line r(Tu) of Tu in R′′ intersects exactly with those trapezoids Tz, for

which z ∈ N2(u) ∪N12(u). Thus, if we replace in R′′ the trapezoid Tu by the two trivial

trapezoids (lines) l(Tu) and r(Tu), we obtain a trapezoid representation R#(u) of the

graph G#(u) defined in Definition 5.7.

Consider now a vertex v ∈ {u2, u3, . . . , uk}. Due to the assumption, δ∗v 6= ∅ in G, before

the vertex splitting of u, and thus, N2(v) ∪N12(v) 6= ∅ and N1(v) ∪N12(v) 6= ∅ in G

by Lemmas 5.5 and 5.6. We will prove that δ∗v 6= ∅ in the trapezoid graph G#(u)

as well, after the vertex splitting of u. Due to Lemma 5.5, it suffices to show
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that N2(v) ∪N12(v) 6= ∅ in G#(u). Let Vi be the master component of v in G that

corresponds to δv, before the vertex splitting of u. We may assume w.l.o.g. that

R′′(Vi)�R′′ Tv, by possibly performing a vertical axis flipping of R′′. By Corollary 5.1,

N1(v) ∪N12(v) = N1(v,R′′) ∪N12(v,R′′) and N2(v) ∪N12(v) = N2(v,R′′) ∪N12(v,R′′),

i.e. these are the sets of neighbors of v in G, whose trapezoids intersect with the trape-

zoids of D1(v,R′′) and D2(v,R′′) in R′′, respectively. Since N1(v,R′′) ∪N12(v,R′′) 6= ∅
and N2(v,R′′) ∪N12(v,R′′) 6= ∅ in G, and since R#(u) is obtained from R′′ by re-

placing the trapezoid Tu with the lines l(Tu) and r(Tu), it follows easily that

N1(v,R#(u)) ∪N12(v,R#(u)) 6= ∅ and N2(v,R#(u)) ∪N12(v,R#(u)) 6= ∅ as well. Let

Vk be the master component of v in G#(u) that corresponds to δv, after the vertex

splitting of u. If Vk lies to the left (resp. right) of Tv in R#(u), then N2(v) ∪ N12(v)

in G#(u) equals to N2(v,R#(u))∪N12(v,R#(u)) (resp. to N1(v,R#(u))∪N12(v,R#(u)),

by performing a vertical axis flipping of R#(u)). Therefore, N2(v) ∪ N12(v) 6= ∅, and

thus, δ∗v 6= ∅ in G#(u), after the vertex splitting of u.

Applying iteratively the above construction for u = ui, i = 2, 3, . . . , k, i.e. by splitting

sequentially all vertices of U exactly once, we obtain after k vertex splittings, and af-

ter removing from the resulting graph the vertices of U = V (G) \ U , a trapezoid rep-

resentation R#(U) of the graph G#(U) returned by Algorithm Split-U . Since every

trapezoid Tu, u ∈ U , has been replaced by two trivial trapezoids, i.e. lines, in R#(U), it

follows that G#(U) is a permutation graph with 2k vertices, and R#(U) is a permutation

representation of G#(U).

Finally, suppose that R is an acyclic trapezoid representation of G. According to Defini-

tion 5.2, let P be the permutation graph with 2n vertices corresponding to the left and

right lines of the trapezoids in R, RP be the permutation representation of P induced

by R, and {u1
i , u

2
i } be the vertices of P that correspond to the same vertex ui of G,

i = 1, 2, . . . , n. Since R is an acyclic trapezoid representation of G, it follows by Defi-

nition 5.2 that RP is an acyclic permutation representation with respect to {u1
i , u

2
i }ni=1.

That is, the simple directed graph FRP
obtained (according to Definition 5.1) by merging

u1
i and u2

i in P into a single vertex ui, for every i = 1, 2, . . . , n, has no directed cycle.

Since, during the construction of R#(U), the trapezoid representation obtained after ev-

ery vertex splitting has no additional line intersections than the previous one, it follows

that R#(U) has no additional line intersections than R. Moreover, for any line intersec-

tion of two lines a and b in R#(U), the relative position of the endpoints of a and b on
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L1 and L2 remains the same as in R. Thus, the simple directed graph FR#(U) obtained

(according to Definition 5.1) by merging u1
i and u2

i in G#(U) into a single vertex ui,

for every i = 1, 2, . . . , k, is a subdigraph of FRP
. Therefore, since FRP

has no directed

cycle, FR#(U) has no directed cycle as well, i.e. G#(U) is an acyclic permutation graph

with respect to {u1
i , u

2
i }ki=1. This completes the theorem.

5.2 The recognition of bounded tolerance graphs

In this section we provide a reduction from the monotone-Not-All-Equal-3-SAT

(monotone-NAE-3-SAT) problem to the problem of recognizing whether a given graph

is a bounded tolerance graph. A boolean formula φ is called monotone if no variable

in φ is negated. Given a (monotone) boolean formula φ in conjunctive normal form

with three literals in each clause (3-CNF), φ is NAE-satisfiable if there is a truth as-

signment of φ, such that every clause contains at least one true literal and at least one

false one. The NAE-3-SAT problem, i.e. the problem of deciding whether an arbitrary

given 3-CNF formula φ is NAE-satisfiable is known to be NP-complete [104]. We can

assume w.l.o.g. that each clause has three distinct literals. Furthermore, it is easy to

prove that the problem remains NP-complete, even if the given formula φ is restricted

to be monotone. Namely, to reduce NAE-3-SAT to monotone-NAE-3-SAT, replace each

variable x by two variables x0 and x1 (depending on whether x appears negated or not),

add variables x2, x3, x4, and add the clauses (x0 ∨x1 ∨x2), (x0 ∨x1 ∨x3), (x0 ∨x1 ∨x4),

and (x2 ∨ x3 ∨ x4).

Given a monotone 3-CNF formula φ, we construct in polynomial time a trapezoid

graph Hφ, such that Hφ is a bounded tolerance graph if and only if φ is NAE-satisfiable.

To this end, we construct first a permutation graph Pφ and a trapezoid graph Gφ.

5.2.1 The permutation graph Pφ

Consider a monotone 3-CNF formula φ = α1 ∧ α2 ∧ . . . ∧ αk with k clauses and n

boolean variables x1, x2, . . . , xn, such that αi = (xri,1 ∨ xri,2 ∨ xri,3) for i = 1, 2, . . . , k,

where 1 ≤ ri,1 < ri,2 < ri,3 ≤ n. We construct the permutation graph Pφ, along with a

permutation representation RP of Pφ, as follows. Let L1 and L2 be two parallel lines and

let θ(`) denote the angle of the line ` with L2 in RP . For every clause αi, i = 1, 2, . . . , k,
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we correspond to each of the literals, i.e. variables, xri,1 , xri,2 , and xri,3 , a pair of in-

tersecting lines with endpoints on L1 and L2. Namely, we correspond to the variable

xri,1 the pair {ai, ci}, to xri,2 the pair {ei, bi} and to xri,3 the pair {di, fi}, respec-

tively, such that θ(ai) > θ(ci), θ(ei) > θ(bi), θ(di) > θ(fi), and such that the lines ai, ci

lie completely to the left of ei, bi in RP , and ei, bi lie completely to the left of di, fi

in RP , as it is illustrated in Figure 5.4. Denote the lines that correspond to the vari-

able xri,j , j = 1, 2, 3, by `1i,j and `2i,j , respectively, such that θ(`1i,j) > θ(`2i,j). That is,

(`1i,1, `
2
i,1) = (ai, ci), (`1i,2, `

2
i,2) = (ei, bi), and (`1i,3, `

2
i,3) = (di, fi). Note that no line of a

pair {`1i,j , `2i,j} intersects with a line of another pair {`1i′,j′ , `2i′,j′}.

L1

L2

`1i,1 = ai `2i,1 = ci `1i,2 = ei `2i,2 = bi `1i,3 = di `2i,3 = fi

xri,1 xri,2 xri,3

θ(ai)

Figure 5.4: The six lines of the permutation graph Pφ, which correspond to the clause
αi = (xri,1 ∨ xri,2 ∨ xri,3) of the boolean formula φ.

Denote by Sp, p = 1, 2, . . . , n, the set of pairs {`1i,j , `2i,j} that correspond to the vari-

able xp, i.e. ri,j = p. We order the pairs {`1i,j , `2i,j} such that any pair of Sp1 lies com-

pletely to the left of any pair of Sp2 , whenever p1 < p2, while the pairs that belong to the

same set Sp are ordered arbitrarily. For two consecutive pairs {`1i,j , `2i,j} and {`1i′,j′ , `2i′,j′}
in Sp, where {`1i,j , `2i,j} lies to the left of {`1i′,j′ , `2i′,j′}, we add a pair {ui′,j′i,j , v

i′,j′

i,j } of parallel

lines that intersect both `1i,j and `1i′,j′ , but no other line. Note that θ(`1i,j) > θ(ui
′,j′

i,j ) and

θ(`1i′,j′) > θ(ui
′,j′

i,j ), while θ(ui
′,j′

i,j ) = θ(vi
′,j′

i,j ). This completes the construction. Denote

the resulting permutation graph by Pφ, and the corresponding permutation representa-

tion of Pφ by RP . Observe that Pφ has n connected components, which are called blocks,

one for each variable x1, x2, . . . , xn.

An example of the construction of Pφ and RP from φ with k = 3 clauses and n = 4

variables is illustrated in Figure 5.5. In this figure, the lines ui
′,j′

i,j and vi
′,j′

i,j are drawn in

bold.

The formula φ has 3k literals, and thus the permutation graph Pφ has 6k lines `1i,j , `
2
i,j

in RP , one pair for each literal. Furthermore, two lines ui
′,j′

i,j , v
i′,j′

i,j correspond to each

pair of consecutive pairs {`1i,j , `2i,j} and {`1i′,j′ , `2i′,j′} in RP , except for the case where

these pairs of lines belong to different variables, i.e. when ri,j 6= ri′,j′ . Therefore, since φ
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has n variables, there are 2(3k − n) = 6k − 2n lines ui
′,j′

i,j , v
i′,j′

i,j in RP . Thus, RP has in

total 12k − 2n lines, i.e. Pφ has 12k − 2n vertices. In the example of Figure 5.5, k = 3,

n = 4, and thus, Pφ has 28 vertices.

a1 d1 d3a3 a2 d2e3 b3c1 f1c2 b2 f2 f3c3 e2

x1 x2 x3 x4

b1e1

RP :

Figure 5.5: The permutation representation RP of the permutation graph Pφ for
φ = α1 ∧ α2 ∧ α3 = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4).

Let m = 6k − n, where 2m is the number of vertices in Pφ. We group the lines

of RP , i.e. the vertices of Pφ, into pairs {u1
i , u

2
i }mi=1, as follows. For every clause αi,

i = 1, 2, . . . , k, we group the lines ai, bi, ci, di, ei, fi into the three pairs {ai, bi}, {ci, di},
and {ei, fi}. The remaining lines are grouped naturally according to the construction;

namely, every two lines {ui′,j′i,j , v
i′,j′

i,j } constitute a pair.

Lemma 5.7. If the permutation graph Pφ is acyclic with respect to {u1
i , u

2
i }mi=1 then the

formula φ is NAE-satisfiable.

Proof. Suppose that Pφ is acyclic with respect to {u1
i , u

2
i }mi=1, and let R0 be an acyclic

permutation representation of Pφ with respect to {u1
i , u

2
i }mi=1. Then, in particular, R0

is acyclic with respect to {ai, bi}, {ci, di}, {ei, fi}, for every i = 1, 2, . . . , k. We will

construct a truth assignment of the variables x1, x2, . . . , xn that NAE-satisfies φ, as

follows. For every i = 1, 2, . . . , k, we define xri,1 = 1 if and only if θ(ci) < θ(ai) in R0,

xri,2 = 1 if and only if θ(bi) < θ(ei) in R0, and xri,3 = 1 if and only if θ(f i) < θ(di) in R0.

Note that this assignment is consistent; that is, all variables xri,j that correspond to

the same xk are assigned the same value. Indeed, the existence of the lines ui
′,j′

i,j , v
i′,j′

i,j

(cf. the bold lines in Figure 5.6(a)) forces all pairs of crossing lines {`1i,j , `2i,j} in the same

block to correspond to either 0 or 1 in the assignment.

Now, we show that in each clause αi, i = 1, 2, . . . , k, there exists at least one true

and at least one false variable. For an arbitrary index i = 1, 2, . . . , k, let Pi be the

subgraph induced by the vertices ai, bi, ci, di, ei, fi in Pφ, and Ri be the permutation

representation of Pi, which is induced by R0. According to Definition 5.1, we construct



Chapter 5. The recognition of tolerance and bounded tolerance graphs 102

the simple directed graph FRi by merging into a single vertex each of the pairs {ai, bi},
{ci, di} and {ei, fi} of vertices of Pi. The arc directions of FRi are implied by the

corresponding directions in ΦRi (or equivalently, in ΦR0). Then, since R0 is acyclic

with respect to {ai, bi} ∪ {ci, di} ∪ {ei, fi}, so is Ri. Thus, it follows by Definition 5.1

that FRi has no directed cycle. Therefore, the edges ciai, biei, and fidi of Pφ take

such directions in ΦR0 that it does not hold simultaneously 〈ciai〉, 〈biei〉, 〈fidi〉 ∈ ΦR0 ,

or 〈aici〉, 〈eibi〉, 〈difi〉 ∈ ΦR0 . That is, it does not hold simultaneously θ(ci) < θ(ai),

θ(bi) < θ(ei), and θ(f i) < θ(di), or θ(ai) < θ(ci), θ(ei) < θ(bi), and θ(di) < θ(f i) in R0,

respectively. Then, by the definition of the above truth assignment, it follows that it

does not hold simultaneously xri,1 = xri,2 = xri,3 = 1, or xri,1 = xri,2 = xri,3 = 0, and

therefore, the clause αi = (xri,1 ∨ xri,2 ∨ xri,3) is NAE-satisfied. Finally, since this holds

for every i = 1, 2, . . . , k, φ is NAE-satisfiable.

For the formula φ of Figure 5.5, an example of an acyclic permutation representation R0

of Pφ with respect to {u1
i , u

2
i }mi=1, along with the corresponding transitive orientation ΦR0

of Pφ, is illustrated in Figure 5.6. This transitive orientation corresponds to the NAE-

satisfying truth assignment (x1, x2, x3, x4) = (1, 1, 0, 0) of φ. Similarly to Figure 5.5,

the lines ui
′,j′

i,j and vi
′,j′

i,j are drawn in bold in Figure 5.6(a). Furthermore, for better

visibility, the vertices that correspond to these lines are grouped in shadowed ellipses in

Figure 5.6(b), while the arcs incident to them are drawn dashed.

5.2.2 The trapezoid graphs Gφ and Hφ

Let {u1
i , u

2
i }mi=1 be the pairs of vertices in the constructed permutation graph Pφ and RP

be its permutation representation. We construct now from Pφ the trapezoid graph Gφ

with m vertices {u1, u2, . . . , um}, as follows. We replace in the permutation representa-

tion RP for every i = 1, 2, . . . ,m the lines u1
i and u2

i by the trapezoid Tui , which has

u1
i and u2

i as its left and right lines, respectively. Let RG be the resulting trapezoid

representation of Gφ.

Finally, we construct from Gφ the trapezoid graph Hφ with 7m vertices, by adding

to every trapezoid Tui , i = 1, 2, . . . ,m, six parallelograms Tui,1 , Tui,2 , . . . , Tui,6 in the

trapezoid representation RG, as follows. Let ε be the smallest distance in RG between

two different endpoints on L1, or on L2. The right (resp. left) line of Tu1,1 lies to the

right (resp. left) of u1
1, and it is parallel to it at distance ε

2 . The right (resp. left) line
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a1 d1 d3a3 a2 d2e3 b3c1 f1c2 b2 f2 f3c3 e2b1e1

x1 = 1 x2 = 1 x3 = 0 x4 = 0

R0 :

(a)

d1 e1 f1c1

a1

b1

x2 = 1
x1 = 1

x3 = 0

x2 = 1
x3 = 0 x2 = 1x1 = 1

α1 α2 α3

x4 = 0

x4 = 0

a2

b2

c2

d2 e2 f2 c3

d3 e3 f3

a3

b3
ΦR0 :

(b)

Figure 5.6: The NAE-satisfying truth assignment (x1, x2, x3, x4) = (1, 1, 0, 0) of the
formula φ of Figure 5.5: (a) an acyclic permutation representation R0 of Pφ and

(b) the corresponding transitive orientation ΦR0 of Pφ.

of Tu1,2 lies to the left of u1
1, and it is parallel to it at distance ε

4 (resp. 3ε
4 ). Moreover,

the right (resp. left) line of Tu1,3 lies to the left of u1
1, and it is parallel to it at distance 3ε

8

(resp. 7ε
8 ). Similarly, the left (resp. right) line of Tu1,4 lies to the left (resp. right) of u2

1,

and it is parallel to it at distance ε
2 . The left (resp. right) line of Tu1,5 lies to the right

of u2
1, and it is parallel to it at distance ε

4 (resp. 3ε
4 ). Finally, the right (resp. left)

line of Tu1,6 lies to the right of u2
1, and it is parallel to it at distance 3ε

8 (resp. 7ε
8 ), as

illustrated in Figure 5.7.

After adding the parallelograms Tu1,1 , Tu1,2 , . . . , Tu1,6 to a trapezoid Tu1 , we update the

smallest distance ε between two different endpoints on L1, or on L2 in the resulting

representation, and we continue the construction iteratively for all i = 2, . . . ,m. Denote

by Hφ the resulting trapezoid graph with 7m vertices, and by RH the corresponding

trapezoid representation. Note that in RH , between the endpoints of the parallelograms

Tui,1 , Tui,2 , and Tui,3 (resp. Tui,4 , Tui,5 , and Tui,6) on L1 and L2, there are no other

endpoints of Hφ, except those of u1
i (resp. u2

i ), for every i = 1, 2, . . . ,m. Furthermore,

note that RH is standard with respect to ui, for every i = 1, 2, . . . ,m. The following
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L1

L2

u2
iu1

i

Tui

Tui,2 Tui,1Tui,3 Tui,4 Tui,5 Tui,6

Figure 5.7: The addition of the six parallelograms Tui,1 , Tui,2 , . . . , Tui,6 to the trape-
zoid Tui

, i = 1, 2, . . . ,m, in the construction of the trapezoid graph Hφ from Gφ.

auxiliary lemma is crucial in the proof of Theorem 5.2.

Lemma 5.8. In the trapezoid graph Hφ, δ∗ui
6= ∅ for every i = 1, 2, . . . ,m.

Proof. Let i ∈ {1, 2, . . . ,m}. Recall that, by Definition 5.4, D1(ui, RH) (resp.

D2(ui, RH)) denotes the set of trapezoids ofHφ that lie completely to the left (resp. to the

right) of Tui in RH . In particular, Tui,2 , Tui,3 ∈ D1(ui, RH) and Tui,5 , Tui,6 ∈ D2(ui, RH).

By the construction of RH , it is easy to see that Tui,2 ∪ Tui,3 (resp. Tui,5 ∪ Tui,6) is the

rightmost (resp. leftmost) connected component of D1(ui, RH) (resp. D2(ui, RH)). Thus,

N(Vk) ⊆ N({ui,2, ui,3}) (resp. N(V`) ⊆ N({ui,5, ui,6})), for every connected component

Vk (resp. V`) of D1(ui, RH) (resp. D2(ui, RH)). Let Vp be the master component of ui,

such that Dui = Vp. Then, either Vp = {ui,2, ui,3}, or Vp = {ui,5, ui,6}. In the case where

Vp = {ui,2, ui,3}, we have ui,4 ∈ N({ui,5, ui,6}) * N(Vp), and thus {ui,5, ui,6} ∈ δ∗ui
.

In the case where Vp = {ui,5, ui,6}, we have ui,1 ∈ N({ui,2, ui,3}) * N(Vp), and thus,

{ui,2, ui,3} ∈ δ∗ui
. This proves the lemma.

Theorem 5.2. The formula φ is NAE-satisfiable if and only if the trapezoid graph Hφ

is a bounded tolerance graph.

Proof. Since a graph is a bounded tolerance graph if and only if it is a parallelogram

graph [18, 83], it suffices to prove that φ is NAE-satisfiable if and only if the trapezoid

graph Hφ is a parallelogram graph.

(⇐) Suppose that Hφ is a parallelogram graph, and let U = {u1, u2, . . . , um}. Then, Hφ

is an acyclic trapezoid graph by Lemma 5.1. Consider the permutation graph H#
φ (U)

with 2m vertices, which is obtained by Algorithm Split-U on Hφ. Starting with the

trapezoid representation RH of Hφ, we obtain by the construction of Theorem 5.1 a
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permutation representation R#
H(U) of H#

φ (U). Note that, since RH is a standard trape-

zoid representation of Hφ with respect to every ui, i = 1, 2, . . . ,m, the line u1
i (resp. u2

i )

of Tui is not moved during the construction of R#
H(U) from RH , for every i = 1, 2, . . . ,m.

Therefore, H#
φ (U) = Pφ. On the other hand, since by Lemma 5.8 δ∗ui

6= ∅ for every ver-

tex ui ∈ U , and since Hφ is an acyclic trapezoid graph, Theorem 5.1 implies that

H#
φ (U) = Pφ is an acyclic permutation graph with respect to {u1

i , u
2
i }mi=1. Thus, φ is

NAE-satisfiable by Lemma 5.7.

(⇒) Conversely, suppose that φ has a NAE-satisfying truth assignment τ . We will

construct first a permutation representation R0 of Pφ, and then two trapezoid represen-

tations R′0 and R′′0 of Gφ and Hφ, respectively, as follows. Similarly to the representa-

tion RP , the representation R0 has n blocks, i.e. connected components, one for each

variable x1, x2, . . . , xn. R0 is obtained from RP by performing a horizontal axis flipping

of every block, which corresponds to a variable xp = 0 in the truth assignment τ . Every

other block, which corresponds to a variable xp = 1 in the assignment τ , remains the

same in R0, as in RP . Thus, θ(`1i,j) > θ(`2i,j) if xri,j = 1 in τ , and θ(`1i,j) < θ(`2i,j) if

xri,j = 0 in τ , for every pair {`1i,j , `2i,j} of lines in R0 (which correspond to the literal xri,j
of the clause αi in φ). An example of the construction of this representation R0 of Pφ

for the truth assignment τ = (1, 1, 0, 0) is illustrated in Figure 5.6(a).

Since τ is a NAE-satisfying truth assignment of φ, at least one literal is true and at least

one is false in τ in every clause αi, i = 1, 2, . . . , k. Thus, there are six possible truth

assignments for every clause, namely (1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 1), (0, 1, 0), and

(1, 0, 0). For the first three ones, we can assign appropriate angles to the lines ai, bi, ci,

di, ei, and fi in the representation R0, such that the relative positions of all endpoints

in L1 and L2 remain unchanged, and such that ai is parallel to bi, ci is parallel to di,

and ei is parallel to fi, as illustrated in Figure 5.8. The last three truth assignments

of αi are the complement of the first three ones. Thus, by performing a horizontal axis

flipping of the blocks in Figure 5.8, to which the lines ai, bi, ci, di, ei, and fi belong, it

is easy to see that for these assignments, we can also assign appropriate angles to these

lines in the representation R0, such that the relative positions of all endpoints in L1 and

L2 remain unchanged, and such that ai is parallel to bi, ci is parallel to di, and ei is

parallel to fi.

Recall that for every two consecutive pairs {`1i,j , `2i,j} and {`1i′,j′ , `2i′,j′} of lines in RP

(resp. R0), which belong to the same block, i.e. where ri,j = ri′,j′ , there are two parallel
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L1

L2

ai ci ei bi fi di

xri,1 = 1 xri,2 = 1 xri,3 = 0

(a)

L1

L2

eibi fidi

xri,2 = 0 xri,3 = 1

ai ci

xri,1 = 1

(b)

L1

L2

ei bi fidi

xri,3 = 1

aici

xri,1 = 0 xri,2 = 1

(c)

Figure 5.8: The relative positions of the lines ai, bi, ci, di, ei, and fi for the truth
assignments (a) (1, 1, 0), (b) (1, 0, 1), and (c) (0, 1, 1) of the clause αi.

lines ui
′,j′

i,j , v
i′,j′

i,j that intersect both `1i,j and `1i′,j′ . Thus, after assigning the appropriate

angles to the lines {`1i,j , `2i,j}, i = 1, 2, . . . , k, j = 1, 2, 3, we can clearly assign the appro-

priate angles to the lines ui
′,j′

i,j , v
i′,j′

i,j , such that the relative positions of all endpoints in L1

and L2 remain unchanged, and such that ui
′,j′

i,j remains parallel to vi
′,j′

i,j . Summarizing,

the lines u1
i and u2

i are parallel in R0, for every i = 1, 2, . . . ,m.

We construct now the trapezoid representation R′0 of Gφ from the permutation represen-

tation R0, by replacing for every i = 1, 2, . . . ,m the lines u1
i and u2

i by the trapezoid Tui ,

which has u1
i and u2

i as its left and right lines, respectively. Since R0 is obtained by

performing horizontal axis flipping of some blocks of RP , and then changing the angles

of the lines, while respecting the relative positions of the endpoints, R′0 is indeed an-

other trapezoid representation of Gφ than RG. Since u1
i is now parallel to u2

i for every

i = 1, 2, . . . ,m, it follows clearly that R′0 is a parallelogram representation, and thus, Gφ

is a parallelogram graph.

Finally, we construct the trapezoid representation R′′0 of Hφ from R′0, similarly to the

construction of RH from RG. Namely, we add for every trapezoid Tui , i = 1, 2, . . . ,m,

six parallelograms Tui,1 , Tui,2 , . . . , Tui,6 , resulting in a trapezoid graph with 7m vertices.

Since in R′′0 the parallelograms Tui,1 , Tui,2 , and Tui,3 (resp. Tui,4 , Tui,5 , and Tui,6) are

sufficiently close to the left line u1
i (resp. right line u2

i ) of Tui , i = 1, 2, . . . ,m, and since

between the endpoints of the parallelograms Tui,1 , Tui,2 , and Tui,3 (resp. Tui,4 , Tui,5 ,

and Tui,6) on L1 and L2, there are no other endpoints, it follows that R′′0 is indeed

another trapezoid representation of Hφ than RH . Finally, since R′0 is a parallelogram
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representation, and since Tui,1 , Tui,2 , . . . , Tui,6 , i = 1, 2, . . . ,m, are all parallelograms, R′′0
is also a parallelogram representation, and thus, Hφ is a parallelogram graph.

Therefore, since monotone-NAE-3-SAT is NP-complete, the problem of recognizing

bounded tolerance graphs is NP-hard. Moreover, since the recognition of bounded tol-

erance graphs lies in NP [66], we can summarize our results as follows.

Theorem 5.3. Given a graph G, it is NP-complete to decide whether it is a bounded

tolerance graph.

5.3 The recognition of tolerance graphs

In this section we show that the reduction from the monotone-NAE-3-SAT problem to

the problem of recognizing bounded tolerance graphs presented in Section 5.2, can be

extended to the problem of recognizing general tolerance graphs. Consider now a mono-

tone 3-CNF formula φ and the trapezoid graph Hφ constructed from φ in Section 5.2.2.

Lemma 5.9. In the trapezoid graph Hφ, there are no two vertices u and v, such that

uv /∈ E(Hφ) and N(v) ⊆ N(u) in Hφ.

Proof. The proof is done by investigating all cases for a pair of non-adjacent vertices

u, v. First, observe that, by the construction of Hφ from Gφ, we have N [ui,2] = N [ui,3],

N [ui,1] = N [ui,2] ∪ {ui}, N [ui,5] = N [ui,6], and N [ui,4] = N [ui,5] ∪ {ui}.

Consider first two vertices ui and uk in Hφ, for some i, k = 1, 2, . . . ,m and i 6= k.

Then, by the construction of Hφ from Gφ, and since ui and uk are non-adjacent,

ui,1 ∈ N(ui) \N(uk) and uk,1 ∈ N(uk) \N(ui). Consider next the vertices ui and uk,j ,

for some i, k = 1, 2, . . . ,m and j = 1, 2, . . . , 6. If i = k, then j ∈ {2, 3, 5, 6}, since

ui,1, ui,4 ∈ N(ui). In the case where j ∈ {2, 3}, we have ui,4 ∈ N(ui) \ N(uk,j) and

uk,5−j ∈ N(uk,j)\N(ui), while in the case where j ∈ {5, 6}, we have ui,1 ∈ N(ui)\N(uk,j)

and uk,11−j ∈ N(uk,j) \ N(ui). Suppose that i 6= k. Then, it follows by the con-

struction of Hφ from Gφ that ui,1 ∈ N(ui) \ N(uk,j). Furthermore, if j ∈ {1, 2, 3}
(resp. j ∈ {4, 5, 6}), then uk,j′ ∈ N(uk,j) \ N(ui) for any index j′ ∈ {1, 2, 3} \ {j}
(resp. j′ ∈ {4, 5, 6} \ {j}).
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Consider finally the vertices ui,` and uk,j , for some i, k = 1, 2, . . . ,m and `, j = 1, 2, . . . , 6.

If i = k, then w.l.o.g. ` ∈ {1, 2, 3} and j ∈ {4, 5, 6}, since ui,` and uk,j are non-

adjacent. In this case, ui,`′ ∈ N(ui,`) \N(uk,j) and uk,j′ ∈ N(uk,j) \N(ui,`), for all in-

dices `′ ∈ {1, 2, 3} \ {`} and j′ ∈ {4, 5, 6} \ {j}. Suppose that i 6= k. If j ∈ {1, 2, 3}
(resp. j ∈ {4, 5, 6}), let j′ be any index of {1, 2, 3} \ {j} (resp. {4, 5, 6} \ {j}). Similarly,

if ` ∈ {1, 2, 3} (resp. ` ∈ {4, 5, 6}), let `′ be any index of {1, 2, 3}\{`} (resp. {4, 5, 6}\{`}).
Then, it follows by the construction of Hφ from Gφ that ui,`′ ∈ N(ui,`) \ N(uk,j) and

uk,j′ ∈ N(uk,j) \N(ui,`).

Therefore, for all possible choices of non-adjacent vertices u, v in the trapezoid graph Hφ,

we have N(u) \N(v) 6= ∅ and N(v) \N(u) 6= ∅, which proves the lemma.

Lemma 5.10. If Hφ is a tolerance graph then it is a bounded tolerance graph.

Proof. Suppose that Hφ is a tolerance graph, and consider a parallelepiped represen-

tation R of Hφ. Due to Theorem 4.2, we may assume w.l.o.g. that R is canonical,

cf. Section 4.2.1. If R has no unbounded vertices, then we are done. Otherwise, there

exists at least one inevitable unbounded vertex v in R, which has a hovering vertex u by

Lemma 4.2, where uv /∈ E(Hφ). Then, N(v) ⊆ N(u) in Hφ by Lemma 4.3, which con-

tradicts Lemma 5.9. Thus, there exists no unbounded vertex in R, i.e. Hφ is a bounded

tolerance graph.

We can state now the following theorem, which is implied by Theorem 5.2 and

Lemma 5.10.

Theorem 5.4. The formula φ is NAE-satisfiable if and only if Hφ is a tolerance graph.

Proof. Suppose that φ is NAE-satisfiable. Then, by Theorem 5.2, Hφ is a bounded

tolerance graph, and thus, Hφ is a tolerance graph. Suppose conversely that Hφ is a

tolerance graph. Then, by Lemma 5.10, Hφ is a bounded tolerance graph. Thus, φ is

NAE-satisfiable by Theorem 5.2.

Therefore, since monotone-NAE-3-SAT is NP-complete, the problem of recognizing tol-

erance graphs is NP-hard. Moreover, since the recognition of tolerance graphs lies in

NP [66], and since Hφ is a trapezoid graph, we obtain the following theorem.
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Theorem 5.5. Given a graph G, it is NP-complete to decide whether it is a tolerance

graph. The problem remains NP-complete even if the given graph G is known to be a

trapezoid graph.





Chapter 6

Preemptive scheduling of

equal-length jobs

One of the most natural applications of both interval and tolerance graphs is that of

scheduling and resource allocation, cf. Sections 1.2 and 1.3. In this chapter, we inves-

tigate a scheduling problem from the algorithmic point of view. Namely, we consider

the scheduling of n jobs J1, J2, . . . , Jn on a single machine. At an arbitrary moment the

machine can serve at most one job Ji, while all jobs need the same processing time p (or

equivalently, they all have equal length p); however, a positive weight wi is assigned to

job Ji. Furthermore, every job Ji has a release time ri, after which Ji is available to be

processed. In our model, we consider preemptive scheduling, that is, the execution of a

job Ji may be interrupted for the execution of another job Jj , while the execution of Ji

will be resumed later on. A schedule S of the jobs is called feasible, if every job Ji starts

not earlier than its release time ri. In a particular feasible schedule we denote by Ci the

completion time of job Ji, i.e. the time point at which the execution of Ji finishes. The

objective is to find a feasible preemptive schedule of the given n jobs that minimizes the

weighted sum
∑n

i=1wiCi of the completion times.

Preemptive scheduling has attracted many research efforts. Several problems, which

are NP-hard in the general case, admit polynomial algorithms under the assumption

of equal-length jobs. In particular, the problem of minimizing the sum of completion

times on identical parallel machines is known to be polynomially solvable for equal-length

jobs [12,68], while it is unary NP-hard for arbitrary processing times [12]. The problem of

maximizing the weighted throughput, or equivalently of minimizing the weighted number

111



Chapter 6. Preemptive scheduling of equal-length jobs 112

of late jobs on a single machine, is NP-hard [53] and pseudo-polynomially solvable [84]

in the general case. On the contrary, its restriction to equal-length jobs is solvable in

polynomial time in the preemptive, as well as in the non-preemptive case [10, 13]. For

the problem of minimizing the total tardiness there is also a polynomial algorithm for

equal-length jobs [112]. Furthermore, minimizing the sum of completion times [8] or the

number of late jobs [9, 84] on a single machine can be done in polynomial time also for

arbitrary processing times. More detailed complexity results on machine scheduling can

be found in [22,23].

In the non-preemptive case, the problems of minimizing the number of late jobs on a

single machine [52] and minimizing the sum of the completion times on identical parallel

machines [106] are polynomial for equal-length jobs, while the corresponding problems in

the general case are both NP-hard, also on a single machine [85]. Moreover, polynomial

time algorithms have been presented in [44] for the case of equal-length jobs on uniform

parallel machines.

The complexity status of the problem we focus on in this chapter has been stated

as an open question in the general case, where there are arbitrarily many different

weights wi [11, 12, 14, 23]. On the contrary, the complexity status of most of the closely

related problems is already known. In particular, the non-preemptive version of this

problem is known to be polynomially solvable on a fixed number of identical parallel

machines [11]. On the other hand, the preemptive version of this problem is known to

be NP-hard if the processing times are arbitrary on a single machine [82], or even for

equal processing times on identical parallel machines [87].

In this chapter we present the first polynomial algorithm for the case where there is a

constant number k of different weight values, i.e. wi ∈ {αj}kj=1 [P6]. The running time

of the presented algorithm is O((nk +1)kn8), while its space complexity is O((nk +1)kn6).

These results provide evidence that the problem under consideration could admit a

polynomial solution even in the case of arbitrarily many different weights.

Several real-life applications of this problem can be found, even in the case of a constant

number of different weights. In the context of service management, vehicles may arrive

to a garage in predefined appointments for regular check. This process is preemptive,

since the check of one vehicle can be interrupted by the check of another one, while the

service time of each vehicle is the same in a regular check. In addition, special purpose

vehicles, such as ambulances, have higher priority, i.e. weight, than others. Similar
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situations may occur in the design of operating systems, where, for instance, system

processes are of higher priority than user processes.

The rest of this chapter is organized as follows. In Section 6.1 we provide some properties

of an optimal schedule, in order to determine the possible start and completion times

of the jobs. By using these results, we construct a polynomial dynamic programming

algorithm in Section 6.2.

6.1 Properties of an optimal schedule

In this section we provide some properties of an optimal preemptive schedule S, in order

to determine the set of all possible start and completion times of the n jobs in S. For

every job Ji let ri be its release time and Ci be its completion time in S. As a first step,

we prove the following lemma, which will be used several times in the remaining part of

this chapter.

Lemma 6.1. For every job Ji that is at least partially executed in an optimal schedule S
in the time interval [rk, Ck), where i 6= k, it holds Ci < Ck.

Proof. The proof will be done by contradiction. Suppose that job Ji is partially executed

in at least one time interval I ⊂ [rk, Ck) and that Ci > Ck, as it is illustrated in

Figure 6.1. Since Jk is completed at time Ck in S, there is a sufficient small positive

ε ≤ |I|, such that Jk is executed during the interval [Ck − ε, Ck). We can exchange

now a part of length ε of the interval I with the interval [Ck − ε, Ck). In this modified

schedule S ′, the completion time of Jk becomes at most Ck − ε, while the completion

times of all other jobs remain the same. This is a contradiction to the assumption that

S is optimal. It follows that Ci < Ck.

rk

Jk JkJi Ji

Ck Ci

I

ε ε

Figure 6.1: The impossible case Ci > Ck, where job Ji is partially executed in [rk, Ck).
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The following lemma restricts the possible values of the makespan Cmax of any optimal

schedule, i.e. the completion time of the last completed job.

Lemma 6.2. The makespan Cmax in an optimal schedule S equals

Cmax = ri + `p

for some i, ` ∈ {1, 2, . . . , n}.

Proof. Let t be the end of the last idle period in S, i.e. the machine is working contin-

uously between t and Cmax. Let also that job Ji is executed directly after t, for some

i ∈ {1, 2, . . . , n}. Then, t equals the release time ri of Ji, since otherwise Ji could be

scheduled to complete earlier, resulting thus to a better schedule, which is a contradic-

tion. Furthermore, every job Jk that is at least partially executed after t, has release

time rk ≥ t, since otherwise Jk could be scheduled to complete earlier, which is again a

contradiction. Thus, since the machine is working continuously between t and Cmax, it

holds that Cmax = ri + `p, where ` ∈ {1, 2, . . . , n} is the number of jobs executed in the

interval [t, Cmax).

Now, the next lemma determines the possible start and completion times of the jobs

J1, J2, . . . , Jn in S.

Lemma 6.3. The start and completion times of the jobs in an optimal schedule S take

values from the set

T = {ri + `p | 1 ≤ i ≤ n, 0 ≤ ` ≤ n} (6.1)

Proof. Consider an arbitrary job Jk and let J = {Ji | Ci ≤ Ck} be the set of all jobs that

are completed not later than Jk in S. Consider now a job Jm /∈ J . Then, Lemma 6.1

implies that no part of Jm is executed at all in any time interval [ri, Ci), where Ji ∈ J ,

since otherwise it would be Cm < Ci ≤ Ck, i.e. Jm ∈ J , which is a contradiction.

It follows that the completion time Ck of job Jk remains the same if we remove from

schedule S all jobs Jm /∈ J .

Thus, it holds due to Lemma 6.2 that Ck = ri + `p, for some Ji ∈ J and

` ∈ {1, 2, . . . , |J |}. Since |J | ≤ n, it follows that for the completion time of an arbi-

trary job Jk it holds Ck ∈ T . Furthermore, due to the optimality of S, an arbitrary job
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Ji starts either at its release time ri, or at the completion time Ck of another job Jk.

Thus, all start points of the jobs belong to T as well.

6.2 The dynamic programming algorithm

In this section we propose a polynomial dynamic programming algorithm that computes

the value of an optimal preemptive schedule on a single machine, where the weights of

the jobs take k possible values {αi | 1 ≤ i ≤ k}, with α1 > . . . > αk > 0. We partition

the jobs into k sets J i = {J i1, J i2, . . . , J ini
}, i ∈ {1, . . . , k}, such that job J i` has weight αi

for every ` ∈ {1, . . . , ni}. Assume without loss of generality that for every i, the jobs J i`
are sorted with respect to ` in non-decreasing order according to their release times ri`,

i.e.

ri1 ≤ ri2 ≤ . . . ≤ rini
(6.2)

6.2.1 Definitions and boundary conditions

We now introduce the sets and variables needed for the dynamic programming algorithm,

which is presented in Section 6.2.3. These sets and variables will be linked together in

Section 6.2.2. Intuitively, the dynamic programming algorithm considers an interval

[y, z) and a set Q of jobs that can be scheduled completely in this interval. Then,

the decomposition scheme followed by the algorithm relies on a particular time point

s ∈ (y, z) that allows us to split the problem into two subproblems, namely into the

intervals [y, s) and [s, z). Roughly speaking, this time point s is the start point in an

optimal schedule of the lightest job of Q (or of a suitable subset of Q, in some cases)

with the greatest release time.

Let

t = (tk, tk−1, . . . , t1) (6.3)

be a vector t ∈ Nk
0, where for its coordinates it holds 0 ≤ ti ≤ ni for every i ∈ {1, . . . , k}.

Let P(t) = {i | ti > 0, 1 ≤ i ≤ k} be the set of indices that correspond to strictly

positive coordinates of t. For every vector t 6= 0 = (0, . . . , 0) and every i ∈ P(t) define
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the vectors

t′i = (tk, . . . , ti+1, ti − 1, ti−1, . . . , t1) (6.4)

t′′i = (0, . . . , 0, ti, ti−1, . . . , t1) (6.5)

and let

tmax = maxP(t) (6.6)

be the maximum index i, for which ti > 0. Furthermore, let

R = {ri` | 1 ≤ i ≤ k, 1 ≤ ` ≤ ni} (6.7)

be the set of all release times of the jobs and

R(t) = {ri` | i ∈ P(t), 1 ≤ ` ≤ ti} (6.8)

Denote now by

Q(t, x, y, z) (6.9)

where t 6= 0 and x ≤ y < z, the set of all jobs among
⋃
i∈P(t)

⋃ti
`=1 J

i
` that have release

times

ri` ∈

 [x, z), if i = tmax and ` = ti

[y, z), otherwise
(6.10)

We define for t = 0

Q(0, x, y, z) = ∅ (6.11)

for all values x ≤ y < z. Moreover, we define for every vector t and every triple {x, y, z},
such that x ≤ y and y ≥ z

Q(t, x, y, z) = ∅ (6.12)

Definition 6.1. The set Q(t, x, y, z) 6= ∅ of jobs is called feasible, if there exists a

feasible schedule of these jobs in the interval [y, z).

For the case of a feasible set Q(t, x, y, z) 6= ∅, denote now by

F (t, x, y, z) (6.13)
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the value of an optimal schedule of all jobs of the set Q(t, x, y, z) in the interval [y, z).

Due to Lemma 6.3, we allow the variables y, z in (6.9) and (6.13) to take values only

from the set T . Also, due to (6.10), since every job is released not earlier than x, it

suffices to consider that x ∈ R. For an arbitrary y ∈ T , let

r(y) = min{r ∈ R | r ≥ y} (6.14)

be the smallest release time that equals at least y. For simplicity reasons, we define

r(y) = maxT in the case where there exists no release time r ∈ R with r ≥ y, where

maxT is the greatest value of the set T , cf. (6.1). In the case where Q(t, x, y, z) 6= ∅ is

not feasible, we define F (t, x, y, z) = ∞. In the case where Q(t, x, y, z) = ∅, we define

F (t, x, y, z) = 0.

The following lemma uses the release times of the jobs of a set Q(t, x, y, z) 6= ∅ in order

to decide whether it is feasible, i.e. whether there exists a feasible schedule of these jobs

in the interval [y, z).

Lemma 6.4 (feasibility test). Let r̃1 ≤ r̃2 ≤ . . . ≤ r̃q be the release times of the jobs of

Q(t, x, y, z) 6= ∅ and let

C1 = max{r̃1, y}+ p

C` = max{r̃`, C`−1}+ p
(6.15)

for every ` ∈ {2, 3, . . . , q}. Then, Q(t, x, y, z) is feasible if and only if Cq ≤ z.

Proof. The proof is straightforward. The set Q(t, x, y, z) of jobs is feasible if and only if

there exists a schedule of these jobs with makespan Cmax not greater than z. Without

loss of generality, in a schedule that minimizes Cmax, every job is scheduled without

preemption at the earliest possible point. In particular, the job with the earliest release

time r̃1 starts at max{r̃1, y}. Suppose that the ` − 1 first jobs complete at point C`−1,

for some ` ∈ {2, 3, . . . , q}. If the `th job has release time r̃` > C`−1, then this job

starts obviously at r̃`. In the opposite case r̃` ≤ C`−1, it starts at C`−1. Since every

job has processing time p, we obtain (6.15) for the completion times of the scheduled

jobs and thus the minimum makespan is Cq. It follows that Q(t, x, y, z) is feasible,

i.e. F (t, x, y, z) 6=∞, if and only if Cq ≤ z.
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6.2.2 The recursive computation

Consider a vector t 6= 0 and a set Q(t, x, y, z) 6= ∅ of jobs. Then, y < z by the definition

of Q(t, x, y, z). Furthermore, for every index i ∈ P(t) \ {tmax}, if riti /∈ [y, z), it follows

that

F (t, x, y, z) = F (t′i, x, y, z) (6.16)

Indeed, in this case J iti /∈ Q(t, x, y, z) by (6.10), and thus we can ignore job J iti , i.e. we

can replace ti by ti − 1. Then, all jobs of Q(t, x, y, z) have release times according

to (6.10) and they are scheduled in the interval [y, z). Therefore, (6.16) follows.

On the other hand, for i = tmax, if riti /∈ [x, z), then

F (t, x, y, z) = F (t′i, r(y), r(y), z) (6.17)

Indeed, in this case again J iti /∈ Q(t, x, y, z) by (6.10), and thus we can ignore job J iti ,

i.e. we can replace again ti by ti−1. Then, all jobs of Q(t, x, y, z) are released not earlier

than y, i.e. not earlier than r(y), and thus they are all scheduled in the interval [r(y), z).

Therefore, (6.17) follows. Note here that in the extreme case where r(y) ≥ z, no job of

Q(t, x, y, z) \ {J iti} is released in [y, z), and thus Q(t, x, y, z) = ∅ by (6.10), which is a

contradiction to the assumption that Q(t, x, y, z) 6= ∅.

Suppose in the following without loss of generality that J iti ∈ Q(t, x, y, z) for ev-

ery i ∈ P(t).

Let Ci` denote the completion time of job J i` , where i ∈ {1, . . . , k} and ` ∈ {1, . . . , ni}.
Consider now the vector of the completion times (C1

1 , C
1
2 , . . . , C

k
nk

) and the feasible set

Q(t, x, y, z) 6= ∅. Let C(t, x, y, z) be the restriction of the vector (C1
1 , C

1
2 , . . . , C

k
nk

) on

those values j and `, for which J j` ∈ Q(t, x, y, z). Denote now by S(t, x, y, z) the optimal

schedule of the jobs ofQ(t, x, y, z) that lexicographically minimizes the vector C(t, x, y, z)
among all other optimal schedules. In the sequel, we denote S(t, x, y, z) by S, whenever

the values t, x, y, z are clear from the context.

Next, we compute in Theorems 6.1 and 6.2 the values F (t, x, y, z). To this end, we

provide first Lemma 6.5 and Corollary 6.1. These results will enable us to partition in

the proof of Theorems 6.1 and 6.2 the setQ(t, x, y, z) into two subsets of jobs according to

their release times, such that the jobs of the first set are completely scheduled in the first

part [y, s) of the interval [y, z), while the jobs of the second set are completely scheduled
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in the second part [s, z) of [y, z), for an appropriately chosen time point s ∈ (y, z). Denote

by si and ei the start and completion time of job J iti in S = S(t, x, y, z), respectively.

Also, for i = tmax, denote for simplicity J iti and riti by Jtmax and rtmax , respectively.

Lemma 6.5. Suppose that Q(t, x, y, z) 6= ∅ is feasible and that J iti ∈ Q(t, x, y, z) for

some i ∈ P(t). For every other job J j` ∈ Q(t, x, y, z) \ {J iti} with j ≤ i, if J j` is

completed in S at a point Cj` > si, then its release time is rj` > si.

Proof. The proof will be done by contradiction. Consider a job J j` ∈ Q(t, x, y, z) \ {J iti}
with j ≤ i and suppose that J j` is completed in S at a point Cj` > si. We distinguish

the cases Cj` > Citi and Cj` < Citi , respectively.

Suppose that Cj` > Citi and that J j` is executed in [Citi , z) for a time period of total

length L ≤ p, as it is illustrated in Figure 6.2(a). If rj` ≤ si, then we can exchange

the execution of J j` in the interval [Citi , z) with the last part of total length L of the

execution of J iti in the interval [si, Citi). In the resulting schedule S ′, the completion

times Cj` and Citi exchange values, while the completion times of all other jobs remain

the same. Since j ≤ i, it holds αj ≥ αi and therefore the schedule S ′ is not worse

than S. Thus, since S is optimal, S ′ is also optimal. However, S ′ is lexicographically

smaller than S, which is a contradiction to the assumption on S. It follows that job J j`

is released not earlier than si, i.e. rj` > si.

L L

si

J i
ti

Ci
ti Cj

`

Jj
` Jj

`
J i

ti
J i

ti

rj
` z

(a)

ε ε

si

J i
ti

J i
ti

Jj
`
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ti

Cj
`rj

` z

(b)

Figure 6.2: The impossible case rj` ≤ si, where j ≤ i and Cj` > si.
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Suppose now that Cj` < Citi , as it is illustrated in Figure 6.2(b). Then, there exists

a sufficiently small time period ε > 0, such that during the time intervals [si, si + ε)

and [Cj` − ε, C
j
` ) the jobs J iti and J j` are executed, respectively. If rj` ≤ si, we can now

exchange the execution of the jobs J iti and J j` in these intervals, obtaining a completion

time of J j` at most Cj` − ε, while the completion times of all other jobs remain the

same. Since all weights are positive, the resulting schedule is better than S, which is

a contradiction to its optimality. This implies again that job J j` is released not earlier

than si, i.e. rj` > si.

Corollary 6.1. Suppose that Q(t, x, y, z) 6= ∅ is feasible and that J iti ∈ Q(t, x, y, z) for

some i ∈ P(t). Then, every other job J i` ∈ Q(t, x, y, z) \ {J iti} is completed in S at a

point Ci` ≤ si.

Proof. Consider such a job J i` , with ` < ti and suppose that J i` is completed at a point

Ci` > si. Then, Lemma 6.5 implies that ri` > si. On the other hand, it holds due to

(6.2) that ri` ≤ riti ≤ si, which is a contradiction.

Theorem 6.1. Let Q(t, x, y, z) 6= ∅ be feasible and J iti ∈ Q(t, x, y, z) for every i ∈ P(t).

Suppose that rtmax > y. Then,

F (t, x, y, z) = F1 = min
s∈(y,z)∩T
s/∈R(t′tmax

)

{
F (t′tmax

, r(y), r(y), s) + F (t, x, s, z)
}

(6.18)

Proof. First, recall that si and ei denote the start and completion times of the

job J iti ∈ Q(t, x, y, z) in S = S(t, x, y, z), for every i ∈ P(t). Due to the assumption

that rtmax > y, it follows that also stmax > y.

For every job J j` ∈ Q(t, x, y, z) it holds j ≤ tmax, due to (6.6). Thus, Lemma 6.5 implies

that all jobs J j` ∈ Q(t, x, y, z) \ {Jtmax} with release times rj` ≤ stmax are scheduled

completely in the interval [y, stmax), while all jobs J j` ∈ Q(t, x, y, z) \ {Jtmax} with re-

lease times rj` > stmax are scheduled in S completely in the interval [stmax , z). Note

that the extreme case rj` = stmax is impossible for any job J j` ∈ Q(t, x, y, z) \ {Jtmax},
since otherwise job J j` must be scheduled in the empty interval [stmax , stmax), which is a

contradiction. That is, stmax /∈ R(t′tmax
).

Since Jtmax is scheduled in the second part [stmax , z) of S, it follows that every job J j` ,

which is scheduled in the first part [y, stmax) of S, has release time rj` ≥ y, i.e. rj` ≥ r(y).
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Thus, the value of this first part of S equals F (t′tmax
, r(y), r(y), stmax). Note here

that in the extreme case where r(y) ≥ stmax , no job of Q(t, x, y, z) \ {Jtmax} is re-

leased in [y, stmax), and thus no job is scheduled in the first part of S, i.e. the

value of this part equals zero. However, in this case, where r(y) ≥ stmax , it holds

Q(t′tmax
, r(y), r(y), stmax) = ∅ by (6.12), and thus F (t′tmax

, r(y), r(y), stmax) = 0. Thus,

in any case, the value of the first part of S equals F (t′tmax
, r(y), r(y), stmax).

On the other hand, in the second part [stmax , z) of S, exactly Jtmax and the jobs

J j` ∈ Q(t, x, y, z) \ {Jtmax} with release times rj` > stmax are scheduled. Thus, since

stmax /∈ R(t′tmax
), we can state equivalently that in the second part [stmax , z) of S, ex-

actly Jtmax and the jobs J j` ∈ Q(t, x, y, z) \ {Jtmax} with release times rj` ≥ stmax are

scheduled. Therefore, since Jtmax is released not earlier than x, the value of the second

part of S equals F (t, x, stmax , z). It follows that

F (t, x, y, z) = F (t′tmax
, r(y), r(y), stmax) + F (t, x, stmax , z) (6.19)

Conversely, if the value of (6.19) is finite, then it corresponds to a feasible schedule of

the jobs of Q(t, x, y, z) in the interval [y, z). Thus, since S is assumed to be optimal,

the value F (t, x, y, z) is the minimum of the expression in (6.19) over all possible values

s = stmax ∈ (y, z) ∩ T , such that stmax /∈ R(t′tmax
).

Theorem 6.2. Let Q(t, x, y, z) 6= ∅ be feasible and J iti ∈ Q(t, x, y, z) for every i ∈ P(t).

Suppose that rtmax ≤ y and let e = y + p · |Q(t, x, y, z)|. If Q(t, r(e), r(e), z) 6= ∅, then

F (t, x, y, z) = min
s∈(y,z)∩T

i∈P(t)\{tmax}
s≥r(y), s/∈R(t′i)

{
F1, F (t′i, x, y, s) + F (t′′i , r(y), s, z)

}
(6.20)

Otherwise, if Q(t, r(e), r(e), z) = ∅, then

F (t, x, y, z) = min
s∈(y,z)∩T

i∈P(t)\{tmax}
s≥r(y), s/∈R(t′i)


F1,

F (t′i, x, y, s) + F (t′′i , r(y), s, z),

F (t′tmax
, r(y), r(y), e) + e · αtmax

 (6.21)

where F1 is the value computed in (6.18).



Chapter 6. Preemptive scheduling of equal-length jobs 122

Proof. Similarly to the proof of Theorem 6.1, let job J iti ∈ Q(t, x, y, z) start at point si

and complete at point ei in S = S(t, x, y, z), for every i ∈ P(t). In the case where

stmax > y, Theorem 6.1 implies that F (t, x, y, z) = F1, where F1 is the value computed

in (6.18). Suppose in the sequel of the proof that stmax = y. We distinguish in the

following two cases.

Case 1. Suppose that there exists an index i ∈ P(t), such that si ≥ etmax , and let i

be the greatest among them. Then, i < tmax and y < si < z. That is, for every

index j ∈ P(t) with j > i, job J jtj starts at a point sj ∈ [stmax , etmax) in S, as it is

illustrated in Figure 6.3(a). Then, Lemma 6.1 implies that this job completes also in

this interval, i.e. ej ∈ [stmax , etmax). Furthermore, Corollary 6.1 implies that for every

such index j ∈ P(t) (where j > i), all jobs J j` ∈ Q(t, x, y, z) \ {J jtj} are completed at a

point Cj` ≤ sj . Then, since sj < si, we obtain that Cj` < si. It follows that for every job

J j` that is completed at a point Cj` > si, it holds j ≤ i. Thus, Lemma 6.5 implies that

all jobs J j` ∈ Q(t, x, y, z) \ {J iti} with release times rj` ≤ si are scheduled completely in

the interval [y, si), while all jobs J j` ∈ Q(t, x, y, z) \ {J iti} with release times rj` > si are

scheduled in S completely in the interval [si, z). Note that the extreme case rj` = si is

impossible for any job J j` ∈ Q(t, x, y, z)\{J iti}, since otherwise job J j` must be scheduled

in the empty interval [si, si), which is a contradiction. That is, si /∈ R(t′i). Furthermore,

since the release time of J iti is assumed to be riti ≥ y, i.e. riti ≥ r(y), and since si ≥ riti ,

it follows that si ≥ r(y).

y = stmax etmax
sj ej si

Jtmax Jtmax
Jj

tj
Jj

tj
J i

ti

zx

(a)

y = stmax etmax

Jtmax Jtmax
Jtmax

. . . . . .

(b)

Figure 6.3: The case stmax = y.

Note that Jtmax is scheduled in the first part [y, si) of S, since we assumed that y = stmax ,

while J iti is scheduled in the second part [si, z) of S. Thus, since Jtmax is released not

earlier than x, the value of the first part [y, si) of S equals F (t′i, x, y, si).
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In the second part [si, z) of S, exactly J iti and the jobs J j` ∈ Q(t, x, y, z)\{J iti} with j ≤ i
and release times rj` > si are scheduled. Thus, since si /∈ R(t′i), we can state equivalently

that in the second part [si, z) of S, exactly J iti and the jobs J j` ∈ Q(t, x, y, z) \ {J iti}
with j ≤ i and release times rj` ≥ si are scheduled. Since the release time of J iti is assumed

to be riti ≥ y, i.e. riti ≥ r(y), the value of the second part of S equals F (t′′i , r(y), si, z).

Note here that, since r(y) ≤ si < z, the value F (t′′i , r(y), si, z) is well defined. It follows

that

F (t, x, y, z) = F (t′i, x, y, si) + F (t′′i , r(y), si, z) (6.22)

Conversely, if the value of (6.22) is finite, then it corresponds to a feasible schedule of

the jobs of Q(t, x, y, z) in the interval [y, z). Thus, since S is assumed to be optimal,

the value F (t, x, y, z) equals (in Case 1) to the minimum of the expression in (6.22) over

all possible values of i ∈ P(t) \ {tmax} and s = si ∈ (y, z) ∩ T , such that s /∈ R(t′i) and

s ≥ r(y).

Case 2. Suppose that si < etmax for every i ∈ P(t). Then, Corollary 6.1 implies that for

every i ∈ P(t), all jobs J i` ∈ Q(t, x, y, z) with ` < ti are completed at most at point si

in S. Thus, in this case all jobs of Q(t, x, y, z) are scheduled completely in the interval

[y, etmax), as it is illustrated in Figure 6.3(b). Since the processing time of every job

equals p, the total processing time of all jobs equals p · |Q(t, x, y, z)|. On the other hand,

there is no idle period between y and etmax , since otherwise Jtmax would be scheduled

to complete earlier, resulting thus to a better schedule, which is a contradiction to the

optimality of S. Therefore,

etmax = y + p · |Q(t, x, y, z)| (6.23)

Note that, since Q(t, x, y, z) is assumed to be feasible, there exists a feasible schedule of

the jobs of Q(t, x, y, z) in the interval [y, z), and thus, z ≥ etmax = y + p · |Q(t, x, y, z)|.
Furthermore, since all jobs of Q(t, x, y, z) are scheduled completely in the inter-

val [y, etmax), it follows in particular that all jobs of Q(t, x, y, z) are released strictly

before etmax , and thus Q(t, r(etmax), r(etmax), z) = ∅. Note here that, in the extreme case

where r(etmax) ≥ z, again Q(t, r(etmax), r(etmax), z) = ∅ by (6.12).

Now, Lemma 6.1 implies that no part of Jtmax is executed in any time interval [ri`, C
i
`),

where J i` ∈ Q(t, x, y, z) \ {Jtmax}, since otherwise Jtmax would complete before J i` , which

is a contradiction. Thus, the completion times of all these jobs remain the same if we
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remove Jtmax from the schedule S. Recall that all jobs J i` ∈ Q(t, x, y, z) \ {Jtmax} have

release times ri` ≥ y, i.e. ri` ≥ r(y). Thus, since the weight of Jtmax is αtmax and its

completion time is etmax , it follows in this case that

F (t, x, y, z) = F (t′tmax
, r(y), r(y), etmax) + etmax · αtmax (6.24)

Note here that in the extreme case where r(y) ≥ etmax , no job of Q(t, x, y, z) \ {Jtmax}
is released in [y, etmax), and thus no job except Jtmax is scheduled in S,

i.e. F (t, x, y, z) = etmax · αtmax . In this case, where r(y) ≥ etmax , it holds

Q(t′tmax
, r(y), r(y), etmax) = ∅ by (6.12), and thus F (t′tmax

, r(y), r(y), etmax) = 0. Thus,

in any case, the value of F (t, x, y, z) is given by (6.24).

Conversely, suppose that Q(t, r(etmax), r(etmax), z) = ∅ and that the value of F (t, x, y, z)

in (6.24) is finite, or equivalently, the value F (t′tmax
, r(y), r(y), etmax) is finite, where

etmax is given by (6.23). Then, since Q(t, r(etmax), r(etmax), z) = ∅, all jobs

J i` ∈ Q(t, x, y, z) \ {Jtmax} have release times ri`, such that r(y) ≤ ri` < etmax .

If F (t′tmax
, r(y), r(y), etmax) = 0, then Q(t′tmax

, r(y), r(y), etmax) = ∅. Therefore, since

also Q(t, r(etmax), r(etmax), z) = ∅, it follows that Q(t, x, y, z) = {Jtmax}, and thus

F (t, x, y, z) = etmax · αtmax corresponds to a feasible schedule of Q(t, x, y, z) in [y, z).

In the opposite case, where F (t′tmax
, r(y), r(y), etmax) 6= 0, this value corresponds to a fea-

sible schedule S0 of the jobs of the set Q(t, x, y, z)\{Jtmax} in the interval [y, etmax). Since

the processing time of each job is p, the total processing time of these jobs in [y, etmax)

is p · (|Q(t, x, y, z)| − 1). Thus, due to (6.23), the machine has idle periods in the in-

terval [y, etmax) of total length p (in the schedule S0). Therefore, since rtmax ≤ y by

the assumption, we can schedule the job Jtmax in these idle periods, obtaining a feasible

schedule of all jobs of Q(t, x, y, z) in the interval [y, etmax) with value F (t, x, y, z), as it

is expressed in (6.24). That is, if Q(t, r(etmax), r(etmax), z) = ∅, and if the value of (6.24)

is finite, then this value corresponds to a feasible schedule of the jobs of Q(t, x, y, z) in

the interval [y, z). Thus, since S is assumed to be optimal, the value F (t, x, y, z) equals

(in Case 2) to the expression in (6.24) for etmax = y + p · |Q(t, x, y, z)|.

Summarizing now Cases 1 and 2, and since S is optimal, it follows that the optimal value

F (t, x, y, z) is the minimum among the value F1 (computed in (6.18)) and the values

of the expressions in (6.22) and (6.24), over all possible values s = si ∈ (y, z) ∩ T and

i ∈ P(t) \ {tmax}, such that s /∈ R(t′i) and s ≥ r(y). This completes the theorem.
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6.2.3 The algorithm

Since the start and completion times of the jobs in an optimal schedule belong to T by

Lemma 6.3, the value of such a schedule equals

F (t∗,minT,minT,maxT ) (6.25)

where

t∗ = (n1, n2, . . . , nk) (6.26)

and minT , maxT denote the smallest and the greatest value of the set T , respectively,

cf. (6.1). Note that minT coincides with the smallest release time. The dynamic pro-

gramming Algorithm 6.1 follows now by Lemma 6.4 and Theorems 6.1 and 6.2. The

correctness and the complexity of this algorithm is proved in the main Theorem 6.3.

Theorem 6.3. An optimal schedule can be computed in O((nk + 1)kn8) time

and O((nk + 1)kn6) space, while the computation of the value of an optimal schedule

needs O((nk + 1)kn5) space.

Proof. We present Algorithm 6.1 that computes the value of an optimal schedule of

the given n jobs. A slight modification of this algorithm returns an optimal schedule,

instead of its value only. As a preprocessing step, in the first two lines, Algorithm 6.1

partitions the n jobs into the sets J i = {J i1, J i2, . . . , J ini
}, i ∈ {1, . . . , k}, such that job J i`

has weight αi for every ` ∈ {1, . . . , ni}, and that, for every i, the jobs J i` ∈ J i are sorted

with respect to ` according to (6.2).

In lines 3-6, Algorithm 6.1 initializes F (0, x, y, z) = 0 for all possible values of x, y, z, such

that x ≤ y < z, as well as F (t, x, y, z) = 0 for all possible values of t, x, y, z, such that

x ≤ y and y ≥ z, cf. (6.11) and (6.12). It iterates further for every t between 0 and t∗

in lexicographical order and for every possible x, y, z, such that x ≤ y < z. For every

such tuple (t, x, y, z), the algorithm computes the value F (t, x, y, z) as follows. At first,

it computes the set Q(t, x, y, z) in line 10. If this set is empty, it defines F (t, x, y, z) = 0.

Otherwise, it checks in line 12 its feasibility, using Lemma 6.4 and, if it is not feasible, it

defines F (t, x, y, z) =∞. In the case of feasibility of the set Q(t, x, y, z), the algorithm

checks in lines 15-21 the release times of the jobs J iti for all i ∈ P(t). If at least one of

these jobs does not belong to Q(t, x, y, z), it computes F (t, x, y, z) recursively in lines 18

and 21, due to (6.17) and (6.16), respectively. Finally, if all jobs J iti , i ∈ P(t) belong to
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Algorithm 6.1 Computation of the value of an optimal schedule with n jobs
Input: Jobs J1, J2, . . . , Jn with equal processing time p, release times ri and positive

weights wi ∈ {αj}kj=1, i ∈ {1, 2, . . . , n}
Output: The minimum value

∑n
i=1wiCi of a feasible preemptive schedule S

of J1, J2, . . . , Jn

1: Partition the jobs into the sets J i = {J i1, J i2, . . . , J ini
}, i ∈ {1, . . . , k}, such that job J i`

has weight αi for every ` ∈ {1, . . . , ni}
2: For every i, sort the jobs J i` ∈ J i with respect to ` according to (6.2)

3: for each x ∈ R and y, z ∈ T , with x ≤ y < z do
4: F (0, x, y, z)← 0 {initialization}
5: for each t between 0 and t∗, x ∈ R and y, z ∈ T , with x ≤ y and y ≥ z do
6: F (t, x, y, z)← 0 {initialization}
7: for every t between 0 and t∗ in lexicographical order do
8: for every x ∈ R and z ∈ T with x < z do
9: for y = z downto x (with y ∈ T and y 6= z) do

10: if Q(t, x, y, z) = ∅ then
11: F (t, x, y, z)← 0
12: else if Q(t, x, y, z) is not feasible then
13: F (t, x, y, z)←∞
14: else

15: for every i ∈ P(t) do
16: if i = tmax then
17: if riti /∈ [x, z) then
18: F (t, x, y, z)← F (t′i, r(y), r(y), z)
19: else {i 6= tmax}
20: if riti /∈ [y, z) then
21: F (t, x, y, z)← F (t′i, x, y, z)

22: if F (t, x, y, z) has not been computed in lines 18 or 21 then
23: Compute F (t, x, y, z) by Theorems 6.1 and 6.2

24: return F (t∗,minT,minT,maxT )

Q(t, x, y, z), i.e. if the value F (t, x, y, z) has not been computed in the lines 18 or 21,

the algorithm computes F (t, x, y, z) in line 23 by Theorems 6.1 and 6.2.

Note here that, for every i ∈ P(t), the vectors t′i and t′′i are lexicographically smaller

than t. Thus, the values F (t′i, ·, ·, ·) and F (t′′i , ·, ·, ·), which are used in lines 18 and 21,

as well as in equations (6.18), (6.20), and (6.21), have been already computed at a

previous iteration of the algorithm. Furthermore, since we iterate for y in line 9 from

the value z downwards to the value x, the values F (t, x, s, z), for every s with y < s < z,

cf. equation (6.18), have been also computed at a previous iteration of the algorithm.

Thus, all recursive values that are used by Theorems 6.1 and 6.2, cf. equations (6.18),
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(6.20), and (6.21), have been already computed at a previous iteration of the algorithm.

This completes the correctness of Algorithm 6.1.

The running time of the algorithm can be computed as follows. First, the pre-

processing step of the first two lines can be done clearly in O(n log n) time. For

each vector t = (tk, tk−1, . . . , t1), the set P(t) = {i | ti > 0, 1 ≤ i ≤ k} and the value

tmax = maxP(t) can be computed in linear O(n) time, since k ≤ n. Thus, the compu-

tation of the set Q(t, x, y, z) in line 10 can be done in linear time as well. Indeed, since

y < z, we can check in linear time whether t = 0, cf. (6.11), while we can check also

in linear time in (6.10) the release times of the jobs
⋃
i∈P(t)

⋃ti
`=1 J

i
` . The feasibility of

Q(t, x, y, z) in line 12 can be checked in O(n log n) time using Lemma 6.4, by sorting

first increasingly the release times r̃1, r̃2, . . . , r̃q of the jobs in Q(t, x, y, z) and then, by

computing in linear time the value Cq. The execution of lines 15-21 can be simply done

in linear time, by checking the release times of the jobs J iti , for all i ∈ P(t).

For the computation of F (t, x, y, z) by Theorems 6.1 and 6.2, the algorithm uses for

at most every s ∈ T and every i ∈ P(t) \ {tmax} the values of one or two smaller

instances that have been already computed at a previous iteration. This takes O(n3)

time, since T has at most n2 elements and P(t) has at most n elements. Furthermore, the

sets R(t′tmax
) and R(t′i) in the statements of these theorems can be computed in linear

O(n) time by (6.8). Moreover, the set Q(t, r(e), r(e), z) in the statement of Theorem 6.2

can be computed in linear O(n) time. Indeed, we can check in linear time whether t = 0

or whether r(e) ≥ z, cf. (6.11) and (6.12), while we can check also in linear time in (6.10)

the release times of the jobs
⋃
i∈P(t)

⋃ti
`=1 J

i
` . Thus, the algorithm needs O(n3) time for

the execution of the lines 10-23.

There are in total
∏k
i=1 (ni + 1) possible values of the vector t, where it holds∑k

i=1(ni + 1) = n+ k. The product
∏k
i=1(ni + 1) is maximized, when (ni + 1) = n+k

k

for every i = 1, . . . , k. Thus, there are in total at most O((nk + 1)k) vectors t and

O((nk + 1)kn5) possible tuples (t, x, y, z), since x ∈ R can take at most O(n) possible

values and y, z ∈ T can take at most O(n2) possible values each. Since the lines 10-23

are executed for all these tuples, the algorithm needs for the lines 7-23 O((nk + 1)kn8)

time. Furthermore, the initialization of the values F (0, x, y, z) for all possible x, y, z in

lines 3-4 takes O(n5) time. Finally, the initialization of the values F (t, x, y, z) in lines 5-6

takes O((nk + 1)kn5) time, since it is executed for at most all possible tuples (t, x, y, z).

Summarizing, the running time of Algorithm 6.1 is O((nk + 1)kn8).
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The space complexity of Algorithm 6.1 can be computed as follows. For the computation

of the optimal value, the algorithm stores for every tuple (t, x, y, z) the value F (t, x, y, z)

in an array of size O((nk + 1)kn5). The storage of the release and completion times in

Lemmas 6.4 and Theorem 6.1 can be done in an array of linear size O(n). In order

to build the optimal schedule, instead of its value, we need to store at every entry of

these arrays the corresponding schedule. For each one of them we store the start and

completion times of the jobs in an array of size O(n). Then, the optimal schedule can

be easily computed by sorting these start and completion times in non-decreasing order,

storing the interrupted jobs in a stack. This implies space complexity O((nk +1)kn6).



Chapter 7

Concluding remarks

In this thesis we mainly investigated some classes of perfect graphs that have been widely

studied due to their interesting structure, as well as due to their numerous applications.

In particular, we investigated the classes of interval, proper interval graphs, tolerance,

and bounded tolerance graphs. Furthermore, we investigated a scheduling problem from

the algorithmic point of view, which is related to the concept of interval and tolerance

graphs.

In Chapters 2 and 3 we dealt with interval and proper interval graphs, and especially

with representations and path problems on these graph classes. Interval and proper

interval graphs find many applications in genetics, molecular biology, scheduling, VLSI

circuit design, information storage retrieval, as well as in archaeology, psychology, and

social sciences in general. Moreover, several problems that are NP-hard on general

graphs, admit polynomial time algorithms on interval graphs. These algorithms exploit

the special structure of them. Two such problems are the Hamiltonian path problem

and the path cover problem, which are well known to be solvable in linear time by a

greedy approach. One of the most natural optimization versions of the Hamiltonian

path problem is the longest path problem. However, in contrast to the Hamiltonian

path problem, there are only few known polynomial algorithms for the longest path

problem, and these restrict to trees and some other small graph classes. In particular,

the complexity status of the longest path problem on interval graphs was as an open

question. In Chapter 2 we presented the first polynomial algorithm for this problem on

interval graphs [P1]. This algorithm is based on a dynamic programming approach and

its running time is O(n4), when applied to an interval graph with n vertices.

129
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Two other graph classes, which have a similar structure to that of interval graphs,

are the classes of convex and biconvex graphs. The complexity status of the longest

path problem on these classes is open; the only known result is that the longest path

problem on interval graphs can be reduced in polynomial time to the one for convex

graphs [113, 114]. However, since convex and biconvex graphs have a similar structure

with interval graphs, the complexity of the longest path problem on interval graphs and

convex graphs is expected to be essentially the same [113, 114]. Therefore, it would be

interesting to see whether the techniques presented in Chapter 2 can be applied to derive

polynomial algorithms for the longest path problem on convex and on biconvex graphs.

In Chapter 3 we introduced a new matrix characterization of the classes of interval

and of proper interval graphs, called the Normal Interval Representation (NIR) and

the Stair Normal Interval Representation (SNIR) matrix, respectively [P2]. Namely,

every (proper) interval graph G can be represented by a (S)NIR matrix HG, which is

a special form of its adjacency matrix, according to a specific ordering of the vertices

of G. In contrast to the O(n2) space that is needed in worst case to represent an

arbitrary graph G with n vertices by its adjacency matrix, the whole information of

the (S)NIR matrix HG can be captured in O(n) space. Furthermore, given an interval

representation of a (proper) interval graph G with sorted intervals, the whole information

of the corresponding (S)NIR matrix HG can be computed in O(n) time.

Apart of being important on its own, we use this succinct representation (SNIR) of

proper interval graphs to derive an optimal O(n) algorithm for another optimization

variant of the Hamiltonian path problem, which also generalizes the path cover problem,

namely the k-fixed-endpoint path cover problem on proper interval graphs [P5]. The

k-fixed-endpoint path cover problem is, given a graph G and k arbitrary vertices of G,

to cover all vertices of G with the smallest possible number of simple paths, such that

the given k vertices are only allowed to be endpoints of these paths. An interesting open

question would be whether the k-fixed-endpoint path cover problem is polynomially

solvable on the class of interval graphs.

In Chapters 4 and 5 we dealt with tolerance and bounded tolerance graphs, and especially

with representations and the recognition problems of these classes. Tolerance graphs find

many applications in bioinformatics, constrained-based temporal reasoning, resource

allocation, and scheduling problems, among others. They have been introduced by

Golumbic and Monma in 1982, mainly motivated by the need to to solve scheduling
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problems in which resources that would be normally used exclusively, like rooms or

vehicles, can tolerate some sharing among users. Since then, tolerance graphs have

been widely studied, as they generalize in a natural way both interval and permutation

graphs.

In Chapter 4 we presented the first non-trivial intersection model for tolerance graphs,

given by three-dimensional parallelepipeds [P3], which extends the widely known in-

tersection model of parallelograms in the plane that characterizes bounded tolerance

graphs [18,83]. This new intersection model can be computed inO(n) time for a tolerance

graph with n vertices, when a tolerance representation of it is given. Furthermore, this

new model proved to be useful for the design of efficient algorithms on tolerance graphs.

Namely, we illustrated its usefulness by presenting in Chapter 4 optimal O(n log n) time

algorithms for the minimum coloring and the maximum clique problems, as well as an

improved O(n2) time algorithm for the maximum weight independent set problem on a

tolerance graph G with n vertices [P3].

In spite of the extensive study of tolerance graphs, the recognition problems of both

tolerance and bounded tolerance graphs have been the main open problems since their

introduction. Therefore, all existing algorithms on these classes of graphs assumed that

a (bounded) tolerance representation of the input (bounded) tolerance graph is given.

Since very few subclasses of perfect graphs are known to be NP-hard to recognize, it

was believed that the recognition of tolerance graphs was polynomial. On the other

hand, bounded tolerance graphs –which are equivalent to parallelogram graphs– form

a natural subclass of trapezoid graphs and share a very similar structure with them.

Thus, it was plausible that bounded tolerance graphs could be recognized in polynomial

time, since trapezoid graphs can be recognized in polynomial time as well.

In Chapter 5 we proved that the recognition of both tolerance and bounded tolerance

graphs is surprisingly NP-complete, by providing a reduction from the monotone-Not-

All-Equal-3-SAT (monotone-NAE-3-SAT) problem [P4]. For our reduction we extend

the notion of an acyclic orientation of permutation and trapezoid graphs. Our main tool

is a new algorithm that transforms a given trapezoid graph into a permutation graph by

splitting some specific vertices, while preserving this new acyclic orientation property.

One of the main advantages of this algorithm is that the constructed permutation graph

does not depend on any particular trapezoid representation of the input trapezoid graph.

The recognition of unit and of proper tolerance graphs, as well as of any other subclass



Chapter 7. Concluding remarks 132

of tolerance graphs, except bounded tolerance and bipartite tolerance graphs, remain

interesting open problems [62]. It would be interesting to see whether the approach

based on splitting vertices presented in Chapter 5 can be applied to derive a polynomial

recognition algorithm or an NP-completeness reduction for the recognition problem of

any of these subclasses of tolerance graphs.

Finally, we investigated in Chapter 6 a preemptive scheduling model, in which several

jobs J1, J2, . . . , Jn have to be scheduled on a single machine. In the model under con-

sideration, every job Ji has a release time ri and a positive weight wi. A schedule of

the given jobs is feasible if the execution of every job Ji starts not earlier than its re-

lease time ri. Furthermore, all jobs have equal length, i.e. equal processing time. The

objective is to find a feasible preemptive schedule of the given n jobs that minimizes

the weighted sum
∑n

i=1wiCi of the completion times. The complexity status of this

problem has been stated as an open question. In Chapter 6, we provided for this prob-

lem a polynomial algorithm, assuming that the number of different weights of the jobs

is constant [P6]. It would be interesting to see whether the general problem, i.e. when

there are arbitrarily many different weights of the jobs, admits a polynomial algorithm.

In particular, it would be interesting to investigate whether the techniques presented in

Chapter 6 can be extended to the general case.
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[21] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph classes: a survey. Society for

Industrial and Applied Mathematics (SIAM), 1999.

[22] P. Brucker. Scheduling algorithms. Springer Verlag, Heidelberg, 5 edition, 2007.



References 137

[23] P. Brucker and S. Knust. Complexity results for scheduling problems.

http://www.mathematik.uni-osnabrueck.de/research/OR/class/.

[24] R. W. Bulterman, F. W. van der Sommen, G. Zwaan, T. Verhoeff, A. J. M. van

Gasteren, and W. H. J. Feijen. On computing a longest path in a tree. Information

Processing Letters, 81(2):93–96, 2002.

[25] P. Buneman. A characterisation of rigid circuit graphs. Discrete Mathematics,

9:205–212, 1974.

[26] A. H. Busch. A characterization of triangle-free tolerance graphs. Discrete Applied

Mathematics, 154(3):471–477, 2006.

[27] A. H. Busch and G. Isaak. Recognizing bipartite tolerance graphs in linear time.

In Proceedings of the 33rd International Workshop on Graph-Theoretic Concepts in

Computer Science (WG), pages 12–20, 2007.

[28] A. V. Carrano. Establishing the order to human chromosome-specific DNA frag-

ments. Biotechnology and the Human Genome, pages 37–50, 1988.

[29] M. S. Chang, S. L. Peng, and J. L. Liaw. Deferred-query - an efficient approach

for problems on interval and circular-arc graphs (extended abstract). In Proceedings

of the third Workshop on Algorithms and Data Structures (WADS), pages 222–233,

1993.

[30] F. Cheah and D. G. Corneil. On the structure of trapezoid graphs. Discrete Applied

Mathematics, 66(2):109–133, 1996.

[31] F. Cheah and D. G. Corneil, 2009. Personal communication.
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