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Introduction and Motivation
A holy grail of theoretical computer science, with numerous
fundamental implications to more applied areas of comput-
ing such as operations research and artificial intelligence, is
the question of whether NP is equal to P. Much of modern
technology is based on the so-called Cobham-Edmonds’ the-
sis (named after Alan Cobham and Jack Edmonds) which
states that algorithmic problems can be feasibly computed
on a computational device only if they can be computed in
polynomial time. In a nutshell: P means “feasible” while
NP-hard means “infeasible” to compute.

Moving from theory to practice, and looking at problems
more realistically, the size of the exponent in a polynomial-
time algorithm matters a lot. In the era of big data,
when n is, say, the number of users of Facebook or Twitter,
an Θ(n3)- or even Θ(n2)-time algorithm might be too slow.
In such applications where the input size n is very large,
any practically efficient algorithm that solves a problem to
optimality can only afford a linear or almost linear-time com-
plexity. While the distinction between computationally in-
feasible and feasible problems has classically been “NP-hard
vs. polynomial-time solvable”, in the big data era it becomes
“polynomial-time vs. (quasi-)linear-time solvable”.

Parameterized algorithmics for polynomial problems.
When a fast algorithm (polynomial) is not fast enough

(i. e., not linear) and when plausible relative lower bounds
speak against further speedups for important algorithmic
problems, what can one do?1 For NP-hard (tradition-
ally “computationally infeasible”) problems, there are sev-
eral established coping strategies, including heuristics (fin-
gers crossed that a worst case does not appear), approxima-
tion (polynomial-time algorithms that provide approximate
instead of optimal solutions), and parameterized algorith-
mics (be fast if the input instance carries a small parameter
value); see Roughgarden [36] for an overview. With the ad-
vent of big data it has become apparent that we do not only
face “speed issues” for NP-hard problems, but also for prob-
lems solvable in polynomial time. For instance, the classic

1While all our examples will relate to graph algorithms, our
general message certainly is not limited to these.

Cocke-Younger-Kasami algorithm for parsing context-free
languages is not used in practice due to its cubic running
time, thus resorting to constrained context-free languages
and corresponding linear-time parsing algorithms such as
LL- and LR-parsing. Indeed, with the recent advent of fine-
grained complexity analysis [10,38] we have clear indications
that some of our beloved polynomial-time algorithms cannot
be further improved without implying unlikely consequences
in computational complexity theory. Prominent examples
in this direction include all-pairs shortest paths [39], Fréchet
distance [9], and longest common subsequence in strings [11].

Two recent trends in theoretical computer science to-
wards addressing this challenge are again approximation al-
gorithms and parameterized algorithms. For instance, Duan
and Pettie [16] developed a linear-time algorithm for com-
puting near-maximum weight matchings. Iwata et al. [26]
developed an O(k(m logn + n log2 n))-time2 exact3 param-
eterized algorithm for computing maximum-weight match-
ings, where k is the treewidth of the given graph. Notably,
while no quasi-linear-time algorithm is known to compute
maximum-weight matchings in the general case, the men-
tioned algorithms achieve such a running time in relaxed
settings (approximate solutions or input graphs with small
parameter values). In what follows, we want to review and
discuss possibilities of a parameterized view on bypassing
established complexity barriers for polynomial-time solv-
able problems. More specifically, we focus on the power
of (linear-time) parameterized preprocessing in combination
with a rigorous mathematical analysis, which may guide al-
gorithm design. To this end, we present, illustrate, and dis-
cuss three basic concepts of parameterized preprocessing in
the context of polynomial-time solvable problems.

Three directions of parameterized preprocessing.
Roughly speaking, our focus is on decreasing the algo-

rithmic complexity by processing the input without giv-
ing up the possibility to find an optimal solution for the

2Here and subsequently in this work, n denotes the num-
ber |V | of vertices and m denotes the number |E| of edges
in the input graph G = (V,E), respectively.
3By an exact algorithm we understand one that solves an
optimization problem to optimality.



problem for any input instance. That is, we exclude ap-
proximation algorithms or considerations in the direction of
approximation-preserving preprocessing. We identify and
delineate three fundamental approaches for parameterized
preprocessing which helped to gain significant (practical)
improvements in algorithmic performance over previously
existing approaches. The basic common aspects of these
three preprocessing variants are, on the one hand, their fo-
cus on high efficiency of preprocessing (typically linear time)
and, on the other hand, their use of appropriate problem-
specific parameters (that is, some numbers measuring spe-
cific, algorithmically crucial, features of the input) to obtain
an overall efficient algorithm with mathematically provable
performance guarantees. With the vision of systematizing
and unifying existing ideas and approaches, we use in the
remainder of our article illustrative examples from graph
algorithmics to delve deeper into the following three fun-
damental directions of parameterized preprocessing. In the
following, we abstain from a discussion of the “art of prob-
lem parameterization”—while some parameterizations are
more or less obvious, others (including above-guarantee pa-
rameterization or distance-from-triviality parameterization)
leave quite some room for creative explorations [34, Chap-
ter 5] [35].

• Parameterized size reduction. This approach originally
stems from parameterized algorithmics for NP-hard
problems and is known as kernelization. The point
here is to efficiently preprocess the input by trying
to identify and remove unnecessary or nonmeaningful
parts, thus hopefully shrinking the input size consid-
erably. To this end, one replaces the input instance by
an “equivalent” one whose size can be upper-bounded
by a hopefully small function of the chosen parameter
only. In this way, one may obtain a rigorous way of
provably effective preprocessing. Moreover, this is a
pretty universal approach in the sense that the result-
ing reduced instance, also known as “(problem) ker-
nel”, can be typically attacked with any known solving
strategy (such as exact, approximation, or heuristic al-
gorithms). We exemplify this preprocessing approach
in the context of computing a maximum-cardinality
matching in undirected graphs, using the parameter
feedback edge number of the graph.

• Parameterized structure simplification. This approach
is perhaps the most natural alternative to kerneliza-
tion: instead of shrinking the size of the input, sim-
plify its structure. That is, we replace the original in-
put with an equivalent one having a simpler structure,
which we can then algorithmically exploit. Here “sim-
pler” typically means that, apart from some few bad
substructures, the rest of the input has nice proper-
ties that allow for an efficient algorithm to be applied.
The fewer these bad substructures in this simplified
(but equivalent) instance, the more efficient this algo-
rithm will be. The chosen parameter comes naturally
into play: we demand the number of bad substructures
in the simplified instance (which is the only cause of
inefficiency) to be upper-bounded by a function of the
parameter only. We exemplify the structure simplifi-
cation approach in the context of computing longest
paths in interval graphs, using a very natural parame-
ter.

• Parameterized data structure design. This approach is
sort of closest to classic approaches of preprocessing

and has been extensively used for “query-based” prob-
lems. The scenario is that we have an input on which
many queries are expected to be asked later on. The
approach here is to first design and implement an aux-
iliary data structure by preprocessing the given fixed
input, and then to have an algorithm that quickly an-
swers each query by operating exclusively on this aux-
iliary data structure. Here, the parameter comes into
play in a more subtle way by measuring favorable prop-
erties of the data structure. We exemplify this prepro-
cessing strategy in the context of computing shortest
paths in edge-weighted, undirected graphs, using the
parameter treewidth which measures how close an in-
put graph is to being a tree.

In what follows, we discuss the above-described three di-
rections in more detail.

Parameterized size reduction (kernelization)
It is fair to say that the method of kernelization is the practi-
cally most relevant method developed in parameterized algo-
rithmics for NP-hard problems [17]. Here, we want to advo-
cate kernelization in the context of polynomial-time solvable
problems, an issue that has been rarely touched so far but
opens a number of theoretically and practically promising
research and application avenues.

Recall that a kernelization algorithm is a preprocessing
algorithm that applies a set of data reduction rules to reduce
a large problem instance to an equivalent smaller instance—
a so-called kernel. We call an instance resulting from the
application of a data reduction rule a reduced instance. The
kernel can be seen as the final reduced instance, in which no
data reduction rule can be applied any more. On this kernel,
one can use any known exact, approximation, or heuristic
algorithm to solve the problem. Recently, data reduction
rules received a lot of attention in practice as well [21,24].

Data reduction rules are evaluated in terms of correct-
ness, efficiency, and effectiveness. A data reduction rule
is correct if any optimal solution of the reduced instance
can be extended to an optimal solution of the original in-
put instance. Correctness is a necessary requirement for all
data reduction rules used in kernelization. It is efficient if
it can be applied much “faster” than the algorithm solving
the problem instance, while it is effective if the size of the
kernel is “smaller” than the original instance size. While cor-
rectness and efficiency are analyzed for each data reduction
rule separately, the effectiveness is analyzed in the context
of (typically) exhaustively applying all data reduction rules.

Our key illustrating example here is Maximum-
Cardinality Matching: given an undirected graph G =
(V,E), the task is to find a maximum matching, that is, a
maximum-cardinality edge subset M ⊆ E such that no two
edges in M share an endpoint. The (theoretically) fastest al-
gorithm for this problem runs in O(

√
nm) time (see Blum [6]

and the discussion therein).
The kernelization algorithm for Maximum-Cardinality

Matching we consider consists of two simple data reduction
rules already considered by Karp and Sipser in the early
1980’s [27]. The first rule removes degree-one vertices from
the input graph (see also Fig. 1):

Data Reduction Rule 1. Let v be a degree-one vertex
with neighbor u. Then select the edge {u, v} for the maxi-
mum matching and delete u and v.

First, let us convince ourselves that the data reduction
rule is correct. A maximum matching for the initial graph G



  

Figure 1: Left: Input graph. Middle/Right: The graph after
applying Data Reduction Rule 1 once/twice. Bold dashed
edges are remembered as contained in the matching. Dotted
and dashed edges are removed.
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Figure 2: Left: Input graph where the edge {u,w} may or
may not exist. Right: The graph after applying Data Re-
duction Rule 2 (folding v). Bold edges indicate one possible
matching in each side.

can have at most one more edge than a maximum matching
for the reduced graph G′. Given a maximum matching M ′

for G′, we can construct a matching M := M ′∪{u, v} for G.
Thus, M is a maximum matching.

Second, as to efficiency, it is straightforward to implement
the rule so that it can be exhaustively applied in linear time.

As mentioned above, the effectiveness shall be analyzed
in combination with the second data reduction rule that
removes degree-two vertices from the input graph. To this
end, folding a degree-two vertex v means to delete v and its
two neighbors and introduce a new vertex adjacent to all
vertices at distance two from v (see Fig. 2).

Data Reduction Rule 2. Let v be a degree-two vertex.
Then fold v.

The idea is as follows: in a maximum matching we can
always match v with either u or w. Which of these two
cases applies is not easy to decide in advance. However,
if we have a matching where at least one of u and w is not
matched, then the choice is trivial: match v with (one of) the
non-matched neighbors. In any case, since Data Reduction
Rule 2 deletes both vertices u and w, it ensures that at most
one of the edges incident to u and w can be in a matching of
the resulting graph. Exhaustively applying Data Reduction
Rule 2 in linear time is actually non-trivial but doable [2].

Now we analyze the effectiveness of the two data reduc-
tion rules, that is, the size of the final reduced instance after
applying them exhaustively. To this end, we make use of
the kernelization concept from the toolbox of parameterized
algorithmics and, to keep things simple, we only consider a
very basic and typically large parameter: In the worst case,
the graph does not have any degree-one or degree-two ver-
tices and the reduction rules are not applicable. If, however,
the graph is very tree-like in the beginning, namely, there
are only a small number of edges to be removed such that
the graph becomes a tree, then in the intermediate reduced
instances there will be many degree-one and/or degree-two
vertices and, thus, the number of vertices in the resulting
kernel will be small. Next, we formalize the statement [33];
herein, the feedback edge number τ denotes the minimum
number of edges one has to remove from a connected graph
to obtain a tree. Exhaustively applying Data Reduction
Rules 1 and 2 on graph G produces a reduced graph G′ such
that:

1. The graph G′ contains 2 · τ vertices, where τ is the
feedback edge number of G, and
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Figure 3: Speed-up factors obtained by using Data Reduc-
tion Rules 1 and 2 in a preprocessing phase before Kece-
cioglu and Pecqueur’s [28] algorithm on graphs from the
SNAP [30] data set collection. A speed-up factor below one
is a slowdown. The colors indicate the kernel size, that is,
the percentage of vertices and edges of the orginal graph not
removed by the data reduction rules.

2. given a maximum-cardinality matching M ′ for G′, one
can compute in linear time a maximum-cardinality
matching M for G.

The rough argument for the upper bound O(τ) on the
number of vertices of the resulting graph G′ is as follows:
The minimum vertex degree in G′ is three. As none of the
two reduction rules introduces new cycles, G′ has still feed-
back edge number at most τ . Thus, removing τ edges results
in a tree TG′ (or a forest) in which at most 2τ vertices of
degree one and two exist. Since TG′ is a tree, it follows by a
simple counting argument that it has at most 2τ vertices of
degree at least three. Hence, G′ contains at most 4τ vertices.

Besides this theoretical measure for the effectiveness of
Data Reduction Rules 1 and 2, there is also strong exper-
imental evidence [29]: The probably still fastest practical
algorithm, due to Kececioglu and Pecqueur [28], was tested
on real-world graphs from the SNAP [30] large network data
set collection with 104 to 108 edges, once with and once
without exhaustively applying the two data reduction rules
before running their algorithm. The effect of the preprocess-
ing ranged from a slow down by a factor 3 to up to 60 times
faster. On average the speed-up factor was 4.7 (see Fig. 3
for some details).

These experimental results reflect the above theoretical
prediction as follows: For “bad” instances (all of these have
high parameter value) the data reduction rules do not re-
duce the input size by much; however, since these rules are
relatively easy, it does not take much time to apply them. In
contrast, for “good” instances (with small parameter value)
where most of the graph is reduced by the rules, the over-
all algorithmic speed-up is pronounced. As the subsequent
algorithm that we apply to the kernel has usually a non-
linear running time, the exhaustive application of the data
reduction rules in linear time basically comes for free in
terms of the overall algorithmic complexity, for both “good”
and “bad” instances. Notably, for our above example, Ke-
cecioglu and Pecqueur [28] state a worst-case running time
of O(nm·α(n,m)) for their algorithm, where α is the inverse
of Ackermann’s function. This is worse than the theoreti-
cally best bound of O(

√
nm) [6], but in practice Kececioglu

and Pecqueur’s algorithm is still state of the art. Altogether,
we conclude that even moderately shrinking the input has a
significant impact on the running time.

To summarize, the above simple kernelization algorithm
can significantly improve even a sophisticated matching im-
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Figure 4: Interval and proper interval graphs.

plementation on real-world graphs with many low-degree
vertices. Of course, reduction rules are used for many further
problems, including linear programs or SAT solvers [5, 23].
Data reduction rules that can be exhaustively applied in
time linear in the input size of the original instance are par-
ticularly attractive: even if there is no effect on the input
instance, then there is no large penalty in the overall running
time of solving the problem at hand.

Overall, kernelization is a very universal and flexible ap-
proach interesting for theory and practice: the parameter-
ized framework allows us to get theoretical guarantees that
yield good predictions on the efficiency and effectiveness of
data reduction rules in practice.

Parameterized structure simplification
To gain fast algorithms, a key approach is to exploit some
specific structural property of the input. However, in prac-
tice, the input often does not directly have such a special
property that we can use, which makes this approach often
not applicable in real-life scenarios. Indeed, detecting such
useful properties can be an algorithmic challenge on its own.
The idea we put forward here is similar to the kernelization
approach in that we also rely on exhaustively applying the
rules that modify the input instance. The difference is that,
using a problem-specific parameterization, we simplify the
structure of the input instead of shrinking its size; thus we
call these rules data simplification rules. Once this prepro-
cessing phase is done, we can then use another algorithm
which is efficient on inputs having the desired special prop-
erty. In this algorithmic scheme, the preprocessing approach
helps to constrain the search space (using a function of the
parameter) for a subsequent algorithm, thus leading to over-
all faster algorithms in the case of small parameter values.

Our key illustrating example for the structure simplifi-
cation approach is Longest Path on Interval Graphs:
given an undirected interval graph G, the task is to find a
longest path, that is, a path in G whose length is as large
as possible; if every vertex of G additionally has a posi-
tive weight assigned to it, then the task becomes to com-
pute a path having the largest total weight on its vertices.
Since this is a fundamental NP-hard problem on general
graphs, which directly generalizes the famous Hamiltonian
Path problem, researchers have tried to identify “islands of
tractability”, that is, appropriate graph families F such that,
for every graph G ∈ F with n vertices, a longest path in G
can be computed in time that is polynomial in n. One of the
well-known graph families F for which this is possible is the
class of interval graphs, where a longest path can be com-
puted by a dynamic programming algorithm with running
time O(n4) [25]. Although this running time is polynomial,
the degree of the polynomial is too high for being practical

Figure 5: An interval graph G whose vertex cover number is
four (see the four thick intervals).

when the number n of vertices becomes large; however, to
date this remains the fastest known algorithm for the prob-
lem. We will see that some acceleration can be achieved if
the interval graph is “close” to the special case of being a
proper interval graph.

A graph G = (V,E) is an interval graph if one can as-
sign to every vertex v ∈ V exactly one closed interval Iv
on the real line R such that u is adjacent to v if and only if
Iu∩Iv 6= ∅ (see Fig. 4a). If such a collection of intervals exists
such that none of them is properly included in another one,
then G is called a proper interval graph (see Fig. 4b). Inter-
val graphs have received a lot of algorithmic attention due
to their applicability in DNA physical mapping, genetics,
molecular biology and scheduling problems [19] [20, Chap-
ter 8.4].

By closely analyzing the above O(n4)-time dynamic pro-
gramming algorithm [25], it turns out that a very slight re-
finement of it runs in O(`3n) time whenever in the input
interval graph G has at least n − ` vertices that are inde-
pendent, i. e., pairwise non-adjacent; that is, if the inter-
vals associated with these n − ` vertices are pairwise non-
intersecting [18]. In such a case, we say that the parameter
vertex cover number of the graph is upper-bounded by `
(see Fig. 5): the vertex cover number of a graph G = (V,E)
is the size of the smallest vertex subset S ⊆ V such that
every edge is incident with at least one vertex of S. We
can conclude the following.

Fact 1. For an interval graph G with vertex cover num-
ber `, a longest path in G can be computed in O(`3n) time.

Moreover, the same refined algorithm correctly computes
a longest path of G, even if G has positive weights on its
vertices. It is worth noting here that, since we always have
that ` ≤ n, the running time O(`3n) becomes O(n4) in the
worst case, and thus it is asymptotically tight with respect
to the currently best-known algorithm for general interval
graphs.

The main idea for our illustrating example of structure
simplification lies in the fact that, after appropriately pre-
processing the input interval graph G (which has a poten-
tially very large vertex cover number, e. g., Θ(n)), we com-
pute a new graph G′ with small vertex cover number; then
we can apply the O(`3n)-time algorithm to G′ to compute
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Figure 6: A (non-proper) interval graph G with only one long
interval Iv0 which properly contains some other intervals.
All other intervals (without Iv0) induce three connected
proper interval graphs G1, G2, G3, each having a Hamilto-
nian path. To compute a longest path we just need to detect
the two largest graphs among G1, G2, G3 (here G1 and G3);
then “glue” their Hamiltonian paths together using the long
interval Iv0 as a “connector”. In this case the longest path
is (v1, v2, v3, v4, v0, v7, v8, v9) and contains eight vertices.

a longest path in both G and G′, as we describe below.
That is, the desired “special property” after the preprocess-
ing phase is “having small vertex cover number”.

The prepocessing uses the fact that a longest path in a
proper interval graph can be trivially computed in linear
time. Indeed, due to the monotone arrangement of the in-
tervals, every connected proper interval graph has a Hamil-
tonian path, i. e., a path that traverses each vertex exactly
once [4]. Such a Hamiltonian path can be found by travers-
ing all intervals from left to right, and thus a longest path
of a proper interval graph can be computed by just finding
its largest connected component.

Fact 2. For a proper interval graph G with n vertices, a
longest path in G can be computed in O(n) time.

Consequently, although interval and proper interval graphs
are superficially similar, they appear to behave very differ-
ently when trying to compute a longest path in them.

What makes it substantially more difficult to compute a
longest path in an interval graph? The intuition for this is il-
lustrated by a simple example in Fig. 6.In this figure the only
source of complication comes from the fact that there is one
long interval Iv0 and we need to decide which of the smaller
sub-graphs G1, G2, G3 (each of them being proper interval)
will connect their Hamiltonian paths using Iv0 as a “connec-
tor” interval. The situation becomes even more complicated
when we have more“long” intervals and more proper interval
sub-graphs, all of which can be interconnected in many dif-
ferent ways. The fastest known way to deal with such cases
is to recursively check the appropriate points where these
connector intervals (i. e., the long ones) connect the parts of
the various proper interval sub-graphs in order to combine
them appropriately to build a longest path.

The above discussion naturally leads to the appropriate
parameter that measures the “backdoor” [40] or “distance
to triviality” [22] for the problem Longest Path on In-
terval Graphs: the size k of a minimum proper interval
(vertex) deletion set, i. e., the minimum number k of vertices
that we have to delete from an interval graph G to obtain a
proper interval graph [18]. As it turns out, given an interval
graph G, a proper interval deletion set S of size at most 4k
can be computed in linear time by appropriately traversing
the intervals from left to right [18].

Based on this distance-to-triviality parameter, Gi-
annopoulou et al. [18] provided a polynomial fixed-
parameter algorithm for interval graphs that computes a
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Figure 7: The weighted interval graph resulting from apply-
ing the first data simplification rule on the graph of Fig. 6.
The new weighted intervals v1−4, v5−6, and v7−9 replaced
the sets of intervals {v1, v2, v3, v4}, {v5, v6}, and {v7, v8, v9}
and took weights 4, 2, and 3, respectively.

longest path in O(k9n) time, implying linear time for con-
stant values of k. In summary, the main idea of this algo-
rithm is as follows:

1. Exhaustively apply two data simplification rules in to-
tal O(kn) time to obtain an interval graph G′ (with
appropriate vertex weights) that has vertex cover size
` = O(k3).

2. Apply to G′ the algorithm behind Fact 1 with running
time O(`3n) = O(k9n) to compute a longest path of
G′, and thus at the same time also a longest path of G.

The details of the two data simplification rules of this pre-
processing phase are quite delicate; therefore, we focus here
on highlighting the main ideas behind them. The first sim-
plification rule deals with specific sequences of intervals of G
that have the “all-or-none” property; that is, a longest path
contains either all intervals of the sequence or none of them;
note that this property generalizes the idea behind Fact 2.
In each of these sequences, the intervals form a proper in-
terval sub-graph. Once we have identified these sequences,
we replace each one of them with one single interval having
an integer weight equal to the number of intervals of the
sequence. The important structural property of these new
weighted intervals is that they are mutually non-intersecting
(i. e., they are independent), and thus they cannot be con-
nected to each other directly in any path (see Fig. 7 for
a visualization). That is, in contrast to the kernelization
approach, here by exhaustively applying this first simplifi-
cation rule we do not upper-bound the number of these new
intervals (in fact, there can be O(n) many), but we simplify
their structure instead. Moreover, as these new intervals are
mutually non-intersecting, all other intervals form a vertex
cover of the graph, see Fig. 5.

The second data simplification rule proceeds as follows.
The (at most) 4k intervals of the proper interval deletion
set (which we have already computed in linear time) divide
the real line R into at most 4k + 1 disjoint parts. For each
of the O(k2) pairs of these disjoint parts of R, we consider
the intervals of the graph that have their left endpoint in
the one part and their right endpoint in the other one. As it
turns out, we can just replace all of these (potentially O(n)
many) intervals with few new intervals (in fact, O(k) many),
each of them having an appropriate positive weight. Thus,
we have in total O(k3) new weighted intervals after exhaus-
tively applying the second simplification rule. This in turn
implies that the vertex cover of the resulting (weighted) in-
terval graph is ` = O(k3). Thus we can now apply the re-
fined dynamic-programming algorithm, obtaining overall an
algorithm that computes a longest path of the input interval
graph in O(`3n) = O(k9n) time in total.

In summary, structure simplification is a natural “sister
approach” to kernelization in the sense of focusing on cre-



ating nice structure instead of merely shrinking size in the
reduced instance. Both however, make decisive use of appro-
priate problem-specific parameters (with hopefully instance-
specific small values) in order to perform a rigorous math-
ematical analysis providing theoretical (worst-case) guaran-
tees. As to structure simplification, we also point to the
concept of treewidth reduction used in the context of NP-
hard problems [32]; treewidth will also be a key concept in
the main illustrating example for the third direction of pa-
rameterized preprocessing which comes next.

Parameterized data structure design
A classic approach to faster algorithms is to first build up
appropriate clever data structures, and then to design algo-
rithms that exploit these data structures to solve the tar-
get problem. Correspondingly, fundamental data structures
such as heaps are discussed in every basic textbook on al-
gorithms and usually have very well understood guarantees.
Our goal here is to exhibit a strategy based on classic pre-
processing (i. e., by first building up a helpful data structure)
in conjunction with a parameterized analysis of the compu-
tational complexity.

Our key illustrating example here is the computation of
shortest paths, known to be solvable in O(n logn+m) time
using Dijkstra’s classic algorithm. This running time is fast,
however, sometimes not fast enough when used in modern
applications such as real-time route planning, where n is
huge (e. g., all cities in the US). We describe an approach
that efficiently computes shortest-path queries using tree-
decompositions—a data structure originating from algorith-
mic graph theory that is frequently used in parameterized
algorithmics to cope with NP-hard problems. The approach
to be described will not provide good worst-case guaran-
tees in general; however, a parameterized analysis using
treewidth [1, 12], combined with the fact that many infras-
tructure networks have small treewidth [31], shows its bene-
fits. Indeed, the described ideas are used in practice on quite
large data sets, for example in Microsoft’s Bing Maps [3,14].

In our setting, the input graph G is a static, edge-weighted
graph representing, e. g., a road network. The task is to
quickly report the distance—the length of a shortest path—
between different pairs of vertices. To this end, we will
compile G, that is, we build in a preprocessing step a data
structure on which the subsequent algorithm can quickly an-
swer distance queries between any pair of vertices of G. We
remark that the approach allows for queries reporting the
shortest path and fast weight updates without compiling G
repeatedly [3, 14].

We first present three simple facts that are exploited in
the approach. Afterwards, we give a high-level description of
the concepts of tree-decomposition and treewidth. Finally,
we explain how the overall approach works.

First, assume that the input graph is a tree. Then, com-
puting the distance between s and t boils down to finding
the lowest common ancestor of s and t. Consequently, the
following holds:

Fact 3. In a tree of height h, the distance between s and t
can be computed in O(h) time.

Second, simply computing the distance between all possi-
ble pairs of vertices in the graph and storing the results in
a table of size n2 yields the following:

Fact 4. Using a size-O(n2) table, one can answer every
distance query in constant time.

s

t

W V ′

2

1

3

1

2

4

7

2
2

1

2

2
1  

s

t

2

4

7

1

3

1

2

4

7

4

3

2

Figure 8: Left: Input graph G. Right: The graph G
shrunk on its separator W . For computing the distance
between s and t, it suffices to know the pairwise distances
between the vertices in the separator W in the induced sub-
graph G[W ∪ V ′]. The graph can be shrunk on the separa-
tor W by deleting V ′ and providing all edges within W with
proper weights as shown on the right.

The table size of n2, however, is prohibitively large for
real-world applications. This leads us to our next and last
fact. Assume that there is a vertex subset V ′ in the graph
such that:

• V ′ is connected to the rest of the graph via a small
separator4 W and

• V ′ contains neither s nor t (see left side in Fig. 8).

We can simplify the graph as shown in Fig. 8 (right side).
Our goal is to delete V ′ from G. Since a shortest path might
pass through V ′, however, we need to keep the information
about all possible paths through V ′. To encode this infor-
mation, we use that every sub-path of a shortest path is also
a shortest path and combine this with Fact 4: Compute all
pairwise distances for vertices in the separator W within the
induced graph G[W ∪ V ′] and store the obtained distances
using weighted edges with both endpoints in W , see Fig. 8
(left side). After that, one can remove V ′ without changing
any distance between the vertices s, t ∈ V \ V ′.

Fact 5. Let W ⊆ V \ V ′ separate V ′ ⊆ V from V \ V ′
with s, t ∈ V \V ′. Then remove V ′ and add edges represent-
ing shortest paths within G[W ∪ V ′] as displayed in Fig. 8.

We now combine Facts 3 to 5 into an algorithmic strategy.
Note that the usefulness of a separator (in Fact 5) depends
on s and t. Moreover, our data structure shall support very
fast distance queries for all pairs s, t ∈ V . But which separa-
tors should be used in the preprocessing (before s and t are
known)? Considering all separators is clearly too expensive
because there can be exponentially many of those. Instead,
we need a relatively small set of not-too-large separators. A
tree-decomposition provides such a set (given that the input
graph has small treewidth).

A tree-decomposition of a graph G = (V,E) is a tree T
“containing”G. More precisely, each bag5 b of T contains a
vertex subset Vb ⊆ V of G and, in particular, the following
conditions are fulfilled (see Fig. 9 for an example):

(a) Every vertex of G appears in at least one bag of T .

(b) For any two bags b, b′ that are adjacent in T , the inter-
section of their vertex sets Vb ∩ Vb′ is a separator in G.

4That is, removing the vertex set W from the graph discon-
nects V ′ from the rest of the graph.
5The nodes of tree T are usually called bags.
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Figure 9: Left: Input graph G. Right: A tree-decomposition
of G. The bags are represented by ellipses; each bag contains
the vertices lying inside its corresponding ellipse. The edges
of G are not part of the tree-decomposition and are thus
only dotted in the right side. For the sake of simplicity, we
omit the weights on the edges.
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Figure 10: A tree-decomposition of a graph G (black vertices
and black, dotted and solid edges). The thick red (weighted)
edges encode a shortest path between the vertices within the
sub-graph of G (dotted edges).

The treewidth of a graph G is k if there exists a tree-decom-
position T such that each of the (at most O(n)) bags in T
contains at most k vertices (thus the separators are small).

Now the algorithm for answering s-t-distance queries
by using a (properly preprocessed) tree-decomposition
and Facts 3 to 5 works as follows:

1. Find two bags containing s and t, respectively.

2. Find the shortest path P between these two bags in
the tree T (see gray bags in Fig. 10).

3. Take the graph G′ induced by the vertices in the bags
of P . Based on Facts 4 and 5, add to G′ the weighted
edges encoding all paths in G that go via bags not in P
(see thick red edges in Fig. 10).

4. Compute and return an s-t-distance in G′ using Dijk-
stra’s algorithm.

An extension of the preprocessing allows to return not only
the distance but also a shortest path between s and t.
The above algorithm requires a tree-decomposition, which
can be computed once in the preprocessing. Computing
an optimal tree-decomposition is NP-hard. However, there
are practically useful heuristics computing tree-decompo-
sitions [13, 37]. Moreover, any tree-decomposition can be
transformed efficiently into another tree-decomposition with
depth O(logn) and roughly three times larger bags [7]. This
ensures that the path Q found in Step 2 is of length O(logn).

For the computation of G′ in Step 3, one needs the pre-
computed distances in the separators. More precisely, for
each pair of adjacent bags b, b′ one needs to compute for all
vertex pairs in Vb ∩ Vb′ the pairwise distances in both sub-
graphs that got disconnected by the separator. For each
pair of bags, these pairwise distances will be stored in tables
to allow constant-time access. Overall, these computations
can be done using dynamic programming in O(k3n) time [1],
where k is the treewidth of the graph.

Next, we analyze the running time of the above algo-
rithm. Since the depth of T is O(logn), it follows that
the path P contains O(logn) bags and can, by Fact 3, be
found in O(logn) time. By definition of treewidth, G′ con-
tains O(k logn) vertices and O(k2 logn) edges. Thus, using
Dijkstra’s algorithm in G′ requires O(k logn log(k logn) +
k2 logn) time to obtain the distance between s and t.
For moderately small k, this is a sub-linear running
time. In infrastructure networks the treewidth is typically
O( 3
√
n) [31]. Hence, in such networks the query time is usu-

ally O(n2/3 logn).
Overall, the parameterized analysis yields a very good

theoretical explanation and predictor for the practically ob-
served efficiency. To the best of our knowledge, there are
only few examples of similar data-structure-driven prepro-
cessing algorithms combined with a parameterized analysis.
One of these is given by a study with Gomory-Hu Trees to
compute minimum cuts [8].

Notably, the presented preprocessing approach only works
in conjunction with the algorithm answering the shortest
path queries with the tree-decomposition. This is similar
to structure simplification but in stark contrast to kernel-
ization, which can be used as a preprocessing step before
exact, approximate, or heuristic algorithms. We mention
in passing, however, that the above discussed shortest path
setting seems to be resistant to kernelization as any vertex
in the graph can be the start or the end vertex of a query.

Summary and Outlook
Parameterization enjoyed great success in refining the com-
putational complexity analysis of NP-hard problems, leading
to an extremely rich area with a wealth of results and tech-
niques. In this article we wanted to steer the view also to
the area of polynomial-time solvable problems. More specif-
ically, we focused on parameterized preprocessing, high-
lighting the potential of parameterized algorithm design for
speeding up “slow” polynomial-time algorithms. The over-
all message we offer here is that looking through param-
eterized glasses, one may find promising avenues towards
(provably) accelerating algorithms for fundamental compu-
tational problems.

Our studies are closely linked to the somewhat more gen-
eral framework of studying fixed-parameter tractability for
polynomial-time solvable problems [18] and the fine-grained
complexity analysis framework [38]. The latter offers, based
on assumptions such as, e. g., the Exponential Time Hy-
pothesis, fresh ideas for proving the worst-case optimality of
several known polynomial-time algorithms. Notably, param-
eterization again may break these fine-grained barriers by
adding new dimensions of analysis, that is, problem-specific
parameters that help to further refine the analysis and to
design parameterized and multivariate algorithms.

Already in their path-breaking textbook on parameter-
ized complexity in 1999, Downey and Fellows [15, Chap-
ter 1.2] complained about the lack of predictive power of
classic computational complexity analysis (and, correspond-
ingly, algorithm design). Their parameterized complexity
ideas enabled new views on the (worst-case) computational
complexity landscape of mostly NP-hard problems. Taking
up their ideas and trying to make them work in the world of
polynomial-time problems is promising; indeed, in the era of
big data, polynomial time frequently is just not enough to
represent efficiency. Parameterized (quasi-)linear-time pre-
processing, as we discussed, might contribute to remedying
this situation.
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