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In this paper, we initiate the study of the temporal graph realization problem with respect to the 
fastest path durations among its vertices, while we focus on periodic temporal graphs. Given an 
𝑛 × 𝑛 matrix 𝐷 and a Δ ∈ ℕ, the goal is to construct a Δ-periodic temporal graph with 𝑛 vertices 
such that the duration of a fastest path from 𝑣𝑖 to 𝑣𝑗 is equal to 𝐷𝑖,𝑗 , or to decide that such a 
temporal graph does not exist. The variations of the problem on static graphs have been well 
studied and understood since the 1960s (e.g. [Erdős and Gallai, 1960], [Hakimi and Yau, 1965]). 
As it turns out, the periodic temporal graph realization problem has a very different computational 
complexity behavior than its static (i.e., non-temporal) counterpart.

First, we show that the problem is NP-hard in general, but polynomial-time solvable if the so

called underlying graph is a tree. Building upon those results, we investigate its parameterized 
computational complexity with respect to structural parameters of the underlying static graph 
which measure the ``tree-likeness''. We prove a tight classification between such parameters that 
allow fixed-parameter tractability (FPT) and those which imply W[1]-hardness. We show that our 
problem is W[1]-hard when parameterized by the feedback vertex number (and therefore also any 
smaller parameter such as treewidth, degeneracy, and cliquewidth) of the underlying graph, while 
we show that it is in FPT when parameterized by the feedback edge number (and therefore also any 
larger parameter such as maximum leaf number) of the underlying graph.

1. Introduction

The (static) graph realization problem with respect to a graph property  is to find a graph that satisfies property  , or to decide 
that no such graph exists. The motivation for graph realization problems stems both from ``verification'' and from network design 
applications in engineering. In verification applications, given the outcomes of some experimental measurements (resp. some compu

tations) on a network, the aim is to (re)construct an input network that complies with them. If such a reconstruction is not possible, 
this proves that the measurements are incorrect or implausible (resp. that the algorithm that made the computations is incorrectly 
implemented). One example of a graph realization (or reconstruction) problem is the recognition of probe interval graphs, in the 
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Fig. 1. An example of a Δ-periodic temporal graph (𝐺,𝜆,Δ), where Δ= 10 and the 10-periodic labeling 𝜆 ∶ 𝐸→ {1,2,… ,10} is as follows: 𝜆(𝑣1𝑣2) = 7, 𝜆(𝑣2𝑣3) = 3, 
𝜆(𝑣3𝑣4) = 5, and 𝜆(𝑣4𝑣5) = 1. Here, a fastest temporal path from 𝑣1 to 𝑣2 traverses the first edge 𝑣1𝑣2 at time 7, second edge 𝑣2𝑣3 a time 13, third edge 𝑣3𝑣4 at time 
15 and the last edge 𝑣4𝑣5 at time 21. This results in the total duration of 21 − 7 + 1 = 15 for a fastest temporal path from 𝑣1 to 𝑣5 .

context of the physical mapping of DNA, see [55,54] and [39, Chapter 4]. In network design applications, the goal is to design network 
topologies having a desired property [4,41]. Analyzing the computational complexity of the graph realization problems for various 
natural and fundamental graph properties  requires a deep understanding of these properties. Among the most studied parameters 
for graph realization are constraints on the distances between vertices [8,7,44,16,10,17], on the vertex degrees [38,40,43,6,24], on 
the eccentricities [5,45,9,53], and on connectivity [37,32,15,33,34,40], among others.

In the simplest version of a (static) graph realization problem with respect to vertex distances, we are given a symmetric 𝑛 × 𝑛
matrix 𝐷 and we are looking for an 𝑛-vertex undirected and unweighted graph 𝐺 such that 𝐷𝑖,𝑗 equals the distance between vertices 
𝑣𝑖 and 𝑣𝑗 in 𝐺. This problem can be trivially solved in polynomial time in two steps [44]: First, we build the graph 𝐺 = (𝑉 ,𝐸) such 
that 𝑣𝑖𝑣𝑗 ∈𝐸 if and only if 𝐷𝑖,𝑗 = 1. Second, from this graph 𝐺 we compute the matrix 𝐷𝐺 which captures the shortest distances for 
all pairs of vertices. If 𝐷𝐺 =𝐷 then 𝐺 is the desired graph, otherwise there is no graph having 𝐷 as its distance matrix. Non-trivial 
variations of this problem have been extensively studied, such as for weighted graphs [44,63], as well as for cases where the realizing 
graph has to belong to a specific graph family [44,7]. Other variations of the problem include the cases where every entry of the 
input matrix 𝐷 may contain a range of consecutive permissible values [7,64,67], or even an arbitrary set of acceptable values [8] for 
the distance between the corresponding two vertices.

In this paper we make the first attempt to understand the complexity of the graph realization problem with respect to vertex 
distances in the context of temporal graphs, i.e., of graphs whose topology changes over time.

Definition 1 (Temporal graph   [46]). A temporal graph is a pair (𝐺,𝜆), where 𝐺 = (𝑉 ,𝐸) is an underlying (static) graph and 𝜆 ∶𝐸→ 2ℕ
is a time-labeling function which assigns to every edge of 𝐺 a set of discrete time-labels.

Here, whenever 𝑡 ∈ 𝜆(𝑒), we say that the edge 𝑒 is active or available at time 𝑡. In the context of temporal graphs, where the notion 
of vertex adjacency is time-dependent, the notions of path and distance also need to be redefined. The most natural temporal analog 
of a path is that of a temporal (or time-dependent) path, which is motivated by the fact that, due to causality, entities and information 
in temporal graphs can ``flow'' only along sequences of edges whose time-labels are strictly increasing.

Definition 2 (Fastest temporal path). Let (𝐺,𝜆) be a temporal graph. A temporal path in (𝐺,𝜆) is a sequence (𝑒1, 𝑡1), (𝑒2, 𝑡2),… , (𝑒𝑘, 𝑡𝑘), 
where 𝑃 = (𝑒1,… , 𝑒𝑘) is a path in the underlying static graph 𝐺, 𝑡𝑖 ∈ 𝜆(𝑒𝑖) for every 𝑖 = 1,… , 𝑘, and 𝑡1 < 𝑡2 <… < 𝑡𝑘. The duration of 
this temporal path is 𝑡𝑘 − 𝑡1 + 1. A fastest temporal path from a vertex 𝑢 to a vertex 𝑣 in (𝐺,𝜆) is a temporal path from 𝑢 to 𝑣 with the 
smallest duration. The duration of the fastest temporal path from 𝑢 to 𝑣 is denoted by 𝑑(𝑢, 𝑣).

In this paper, we consider periodic temporal graphs, i.e., temporal graphs in which the temporal availability of each edge of the 
underlying graph is periodic. Many natural and technological systems exhibit a periodic temporal behavior. For example, in railway 
networks, an edge is present at a time step 𝑡 if and only if a train is scheduled to run on the respective rail segment at time 𝑡 [3]. 
Similarly, a satellite, which makes pre-determined periodic movements, can establish a communication link (i.e., a temporal edge) 
with another satellite whenever they are sufficiently close to each other; the existence of these communication links is also periodic. 
In a railway (resp. satellite) network, a fastest temporal path from 𝑢 to 𝑣 represents a fastest railway connection between two stations 
(resp. the quickest communication delay between two moving satellites). Furthermore, periodicity appears also in (the otherwise 
quite complex) social networks which describe the dynamics of people meeting [52,65], as every person individually follows mostly 
a weekly routine.

Expanding the work on periodic temporal graphs that has already been studied (see [13, Class 8] and [3,27,62,61]), our study 
represents the first attempt to understand the complexity of a graph realization problem in the context of temporal graphs. Therefore, 
we focus in this paper on the most fundamental case, where all edges have the same period Δ (while in the more general case, each 
edge 𝑒 in the underlying graph has a period Δ𝑒). As it turns out, the periodic temporal graph realization problem with respect to 
a given 𝑛 × 𝑛 matrix 𝐷 of the fastest duration times has a very different computational complexity behavior than the classic graph 
realization problem with respect to shortest path distances in static graphs.

Formally, let 𝐺 = (𝑉 ,𝐸) and Δ∈ ℕ, and let 𝜆 ∶𝐸→ {1,… ,Δ} be an edge-labeling function that assigns to every edge of 𝐺 exactly 
one of the labels from {1,… ,Δ}. Then we denote by (𝐺,𝜆,Δ) the Δ-periodic temporal graph (𝐺,𝐿), where for every edge 𝑒 ∈ 𝐸 we 
have 𝐿(𝑒) = {𝑖Δ+ 𝑥 ∶ 𝑖 ≥ 0, 𝑥 ∈ 𝜆(𝑒)}. In this case, we call 𝜆 a Δ-periodic labeling of 𝐺; see Fig. 1 for an illustration. When it is clear 
from the context, we drop Δ from the notation and we denote the (Δ-periodic) temporal graph by (𝐺,𝜆). Given a duration matrix 𝐷, 
it is easy to observe that, similarly to the static case, if 𝐷𝑖,𝑗 = 1 then 𝑣𝑖 and 𝑣𝑗 must be connected by an edge. We call the graph 
defined by these edges the underlying graph of 𝐷.

Our contribution. We initiate the study of naturally motivated graph realization problems in the temporal setting. Our target is 
not to model unreliable communication, but instead to verify that particular measurements regarding fastest temporal paths in a 
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periodic temporal graph are plausible (i.e., ``realizable''). To this end, we introduce and investigate the following problem, capturing 
the setting described above:

Simple periodic Temporal Graph Realization (Simple TGR) 
Input: An integer 𝑛 × 𝑛 matrix 𝐷, a positive integer Δ.

Question: Does there exist a graph 𝐺 = (𝑉 ,𝐸) with vertices {𝑣1,… , 𝑣𝑛} and a Δ-periodic labeling 𝜆 ∶𝐸→ {1,2,… ,Δ} such 
that, for every 𝑖, 𝑗, the duration of a fastest temporal path from 𝑣𝑖 to 𝑣𝑗 in the Δ-periodic temporal graph (𝐺,𝜆,Δ)
is 𝐷𝑖,𝑗?

We focus on exact algorithms. We start by showing NP-hardness of the problem (Theorem 1), even if Δ is a small constant. To 
establish a baseline for tractability, we show that Simple TGR is polynomial-time solvable if the underlying graph is a tree (Theorem 3).

Building upon these initial results, we explore the possibilities to generalize our polynomial-time algorithm using the distance

from-triviality parameterization paradigm [29,42]. That is, we investigate the parameterized computational complexity of Simple 
TGR with respect to structural parameters of the underlying graph that measure its ``tree-likeness''.

We obtain the following results. We show that Simple TGR is W[1]-hard when parameterized by the feedback vertex number of 
the underlying graph (Theorem 2). To this end, we first give a reduction from Multicolored Clique parameterized by the number 
of colors [28] to a variant of Simple TGR where the period Δ is infinite, that is, when the labeling is non-periodic. We use a special 
gadget (the ``infinity'' gadget) which allows us to transfer the result to a finite period Δ. The latter construction is independent 
from the particular reduction we use, and can hence be treated as a reduction from the non-periodic to the periodic setting. Note 
that our parameterized hardness result rules out fixed-parameter tractability for several popular graph parameters such as treewidth, 
degeneracy, cliquewidth, distance to chordal graphs, and distance to outerplanar graphs.

We complement this hardness result by showing that Simple TGR is fixed-parameter tractable (FPT) with respect to the feedback 
edge number 𝑘 of the underlying graph (Theorem 4). This result also implies an FPT algorithm for any larger parameter, such as the 
maximum leaf number. A similar phenomenon of getting W[1]-hardness with respect to the feedback vertex number, while getting an 
FPT algorithm with respect to the feedback edge number, has been observed only in a few other temporal graph problems related to 
the connectivity between two vertices [14,35,23].

Our FPT algorithm works as follows on a high level. First, we distinguish 𝑂(𝑘2) vertices which we call ``important vertices''. Then, 
we guess the fastest temporal paths for each pair of these important vertices; as we prove, the number of choices we have for all these 
guesses is upper-bounded by a function of 𝑘. Then we also need to make several further guesses (again using a bounded number of 
choices), which altogether leads us to specify a small (i.e., bounded by a function of 𝑘) number of different configurations for the 
fastest paths between all pairs of vertices. For each of these configurations, we must then make sure that the labels of our solution 
will not allow any other temporal path from a vertex 𝑣𝑖 to a vertex 𝑣𝑗 have a strictly smaller duration than 𝐷𝑖,𝑗 . This naturally leads 
us to build one Integer Linear Program (ILP) for each of these configurations. We manage to formulate all these ILPs by having a 
number of variables that is upper-bounded by a function of 𝑘. Finally, we use Lenstra’s Theorem [51] to solve each of these ILPs in 
FPT time. In the end, our initial instance is a Yes-instance if and only if at least one of these ILPs is feasible.

The above results provide a fairly complete picture of the parameterized computational complexity of Simple TGR with respect 
to structural parameters of the underlying graph which measure ``tree-likeness''. To obtain our results, we prove several properties of 
fastest temporal paths, which may be of independent interest.

Related work. Graph realization problems on static graphs have been studied since the 1960s. We provide an overview of the 
literature in the introduction. To the best of our knowledge, we are the first to consider graph realization problems in the temporal 
setting. Very recently, Erlebach et al. [26] have built upon our results and, among others, studied the case where edges might appear 
more than once in each period. Many other connectivity-related problems have been studied in the temporal setting [58,2,21,60,47, 
19,25,31,69,12,36], most of which are much more complex and computationally harder than their non-temporal counterparts, and 
some of which do not even have a non-temporal counterpart.

There are some problem settings that share similarities with ours, which we discuss now in more detail.

Several problems have been studied where the goal is to assign labels to (sets of) edges of a given static graph in order to achieve 
certain connectivity-related properties [48,56,1,22]. The main difference to our problem setting is that in the mentioned works, the 
input is a graph and the sought labeling is not periodic. Furthermore, the investigated properties are temporal connectivity between 
all vertices [48,56,1], temporal connectivity among a subset of vertices [48], or reducing reachability among the vertices [22]. In all 
these cases, the duration of the temporal paths has not been considered.

Finally, there are many models for dynamic networks in the context of distributed computing [50]. These models have some 
similarity to temporal graphs, in the sense that in both cases the edges appear and disappear over time. However, there are notable 
differences. For example, one important assumption in the distributed setting can be that the edge changes are adversarial or random 
(while obeying some constraints such as connectivity), and therefore they are not necessarily known in advance [50].

Preliminaries and notation. We already introduced the most central notions and concepts. There are some additional definitions 
we need, to present our proofs and results which we give in the following.

An interval in ℕ from 𝑎 to 𝑏 is denoted by [𝑎, 𝑏] = {𝑖 ∈ ℕ ∶ 𝑎 ≤ 𝑖 ≤ 𝑏}; similarly, [𝑎] = [1, 𝑎]. An undirected graph 𝐺 = (𝑉 ,𝐸)
consists of a set 𝑉 of vertices and a set 𝐸 ⊆ 𝑉 × 𝑉 of edges. For a graph 𝐺, we also denote by 𝑉 (𝐺) and 𝐸(𝐺) the vertex and 
edge set of 𝐺, respectively. We denote an edge 𝑒 ∈ 𝐸 between vertices 𝑢, 𝑣 ∈ 𝑉 as a set 𝑒 = {𝑢, 𝑣}. For the sake of simplicity of the 
representation, an edge 𝑒 is sometimes also denoted by 𝑢𝑣. A path 𝑃 in 𝐺 is a subgraph of 𝐺 with vertex set 𝑉 (𝑃 ) = {𝑣1,… , 𝑣𝑘} and 
edge set 𝐸(𝑃 ) = {{𝑣𝑖, 𝑣𝑖+1} ∶ 1 ≤ 𝑖 < 𝑘} (we often represent path 𝑃 by the tuple (𝑣1, 𝑣2,… , 𝑣𝑘)). For two paths 𝑃 = (𝑣1,… , 𝑣𝑖) and 
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𝑄 = (𝑣𝑖,… , 𝑣𝑝), where {𝑣1,… , 𝑣𝑖} ∩ {𝑣𝑖,… , 𝑣𝑝} = {𝑣𝑖}, we denote by 𝑃 ∪𝑄 the path (𝑣1,… , 𝑣𝑖,… , 𝑣𝑝). Furthermore, we denote by 
𝑃 ⧵ {𝑣1, 𝑣𝑖} the path (𝑣2,… , 𝑣𝑖−1) that is obtained from 𝑃 by removing its first and last vertex.

Let 𝑣1, 𝑣2,… , 𝑣𝑛 be the 𝑛 vertices of the graph 𝐺. For simplicity of the presentation (and with a slight abuse of notation) we refer 
during the paper to the entry 𝐷𝑖,𝑗 of the matrix 𝐷 as 𝐷𝑎,𝑏, where 𝑎 = 𝑣𝑖 and 𝑏 = 𝑣𝑗 . That is, we put as indices of the matrix 𝐷 the 
corresponding vertices of 𝐺 whenever it is clear from the context.

Let 𝑃 = (𝑢 = 𝑣1, 𝑣2,… , 𝑣𝑝 = 𝑣) be a path from 𝑢 to 𝑣 in 𝐺. Recall that, in our paper, every edge has exactly one time label in 
every period of Δ consecutive time steps. Therefore, as we are only interested in the fastest duration of temporal paths, many times 
we refer to (𝑃 ,𝜆,Δ) as any of the temporal paths from 𝑢 = 𝑣1 to 𝑣 = 𝑣𝑝 along the edges of 𝑃 , which starts at the edge 𝑣1𝑣2 at time 
𝜆(𝑣1𝑣2) + 𝑐Δ, for some 𝑐 ∈ ℕ, and then sequentially visits the rest of the edges of 𝑃 as early as possible. We denote by 𝑑(𝑃 ,𝜆,Δ), 
or simply by 𝑑(𝑃 ,𝜆) when Δ is clear from the context, the duration of any of the temporal paths (𝑃 ,𝜆,Δ); note that they all have 
the same duration. Whenever we use the term label of an edge 𝑒, we actually mean 𝜆(𝑒) ∈ [Δ]. Note that for a given path (𝑃 ,𝜆,Δ)
that passes through the edge 𝑒, the label used by 𝑃 at that edge is 𝜆(𝑒) + 𝑐Δ, for some 𝑐 ≥ 0. Many times we also refer to a path 
𝑃 = (𝑢 = 𝑣1, 𝑣2,… , 𝑣𝑝 = 𝑣) from 𝑢 to 𝑣 in 𝐺, as a temporal path in (𝐺,𝜆,Δ), where we actually mean that (𝑃 ,𝜆,Δ) is a temporal path 
with 𝑃 as its underlying (static) path.

We remark that a fastest path between two vertices in a temporal graph can be computed in polynomial time [11,68]. Hence, 
given a Δ-periodic temporal graph (𝐺,𝜆,Δ), we can compute in polynomial-time the matrix 𝐷 which consists of durations of fastest 
temporal paths among all pairs of vertices in (𝐺,𝜆,Δ).

We use standard terminology from parameterized complexity theory [20,30,18]. Let Σ denote a finite alphabet. A parameterized 
problem 𝐿⊆ {(𝑥,𝑘) ∈ Σ∗ ×ℕ0} is a subset of all instances (𝑥,𝑘) from Σ∗ ×ℕ0, where 𝑘 denotes the parameter. A parameterized prob

lem 𝐿 is FPT (fixed-parameter tractable) if there is an algorithm that decides every instance (𝑥,𝑘) for 𝐿 in 𝑓 (𝑘) ⋅ |𝑥|𝑂(1) time, where 𝑓
is any computable function only depending on the parameter. If a parameterized problem 𝐿 is W[1]-hard, then it is presumably not 
fixed-parameter tractable.

Organization of the paper. In Section 2 we present our hardness results, first the NP-hardness in Section 2.1 and then the parameter

ized hardness in Section 2.2. In Section 3 we present our algorithmic results. First we give in Section 3.1 a polynomial-time algorithm 
for the case where the underlying graph is a tree. In Section 3.2 we generalize this and present our FPT result, which is the main 
result in the paper. Finally, we conclude in Section 4 and discuss some future work directions.

2. Hardness results for Simple TGR

In this section we present our main computational hardness results. In Section 2.1 we show that Simple TGR is NP-hard even 
for constant Δ. In Section 2.2 we investigate the parameterized computational hardness of Simple TGR with respect to structural 
parameters of the underlying graph. We show that Simple TGR is W[1]-hard when parameterized by the feedback vertex number of 
the underlying graph.

2.1. NP-hardness of Simple TGR

In this section, we prove that in general, it is NP-hard to determine a Δ-periodic temporal graph (𝐺,𝜆) respecting a duration 
matrix 𝐷, even if Δ is a small constant.

Theorem 1. Simple TGR is NP-hard for all Δ≥ 3.

Proof. We present a polynomial-time reduction from the NP-hard problem Monotone NAE 3-SAT [66]. Here we are given a formula 
𝜙 that is a conjunction of so-called NAE (not-all-equal) clauses, where each clause contains exactly 3 (distinct, non-negated) variables. 
A NAE clause evaluates to true if and only if not all of its variables are set to equal values, that is, at least one variable is set to true 
and at least one variable is set to false. We are asked whether 𝜙 admits a satisfying assignment.

Given an instance 𝜙 of Monotone NAE 3-SAT, we construct an instance (𝐷,Δ) of Simple TGR as follows.

We start by describing the vertex set of the underlying graph 𝐺 of 𝐷.

• For each variable 𝑥𝑖 in 𝜙, we create three variable vertices 𝑥𝑖, 𝑥𝑇𝑖 , 𝑥
𝐹
𝑖

.

• For each clause 𝑐 in 𝜙, we create one clause vertex 𝑐.
• We add one additional super vertex 𝑣.

Next, we describe the edge set of 𝐺.

• For each variable 𝑥𝑖 in 𝜙 we add the following five edges: {𝑥𝑖, 𝑥𝑇𝑖 }, {𝑥𝑖, 𝑥𝐹𝑖 }, {𝑥𝑇
𝑖
, 𝑥𝐹
𝑖
}, {𝑥𝑇

𝑖
, 𝑣}, and {𝑥𝐹

𝑖
, 𝑣}.

• For each pair of variables 𝑥𝑖, 𝑥𝑗 in 𝜙 with 𝑖 ≠ 𝑗 we add the following four edges: {𝑥𝑇
𝑖
, 𝑥𝑇
𝑗
}, {𝑥𝑇

𝑖
, 𝑥𝐹
𝑗
}, {𝑥𝐹

𝑖
, 𝑥𝑇
𝑗
}, and {𝑥𝐹

𝑖
, 𝑥𝐹
𝑗
}.

• For each clause 𝑐 in 𝜙 we add one edge for each variable in 𝑐. Let 𝑥𝑖 appear in 𝑐, then we add edge {𝑐, 𝑥𝑇
𝑖
}.

This finishes the construction of 𝐺. For an illustration see Fig. 2.

We set Δ to some constant larger than two, that is, Δ ≥ 3. Next, we specify the durations in the matrix 𝐷 between all vertex pairs. 
We start by setting the value of 𝐷𝑢,𝑣 = 1 where 𝑢 and 𝑣 are two adjacent vertices in 𝐺.
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Fig. 2. Illustration of the temporal graph (𝐺,𝜆) from the NP-hardness reduction, where the NAE 3-SAT formula 𝜙 is of the form 𝜙= NAE(𝑥1, 𝑥2, 𝑥3) ∧NAE(𝑥1, 𝑥2, 𝑥4). 
To improve the readability, we draw edges between vertices 𝑥𝑇

𝑖
and 𝑥𝐹

𝑗
(where 𝑖 ≠ 𝑗) with gray dotted lines. Presented is the labeling of 𝐺 corresponding to the 

assignment 𝑥1 = 𝑥2 = true and 𝑥3, 𝑥4 = false, where all unlabeled edges get the label 2.

• For each variable 𝑥𝑖 in 𝜙 and the super vertex 𝑣 we specify the following durations: 𝐷𝑥𝑖,𝑣 = 2 and 𝐷𝑣,𝑥𝑖 =Δ.

• For each clause 𝑐 in 𝜙 and the super vertex 𝑣 we specify the following durations: 𝐷𝑐,𝑣 = 2 and 𝐷𝑣,𝑐 =Δ− 1.

• Let 𝑥𝑖 be a variable that appears in clause 𝑐, then we specify the following durations: 𝐷𝑐,𝑥𝑖 = 2 and 𝐷𝑥𝑖,𝑐 = Δ, 𝐷𝑐,𝑥𝐹
𝑖
= 2, and 

𝐷
𝑥𝐹
𝑖
,𝑐
=Δ.

• Let 𝑥𝑖 be a variable that does not appear in clause 𝑐, then we specify the following durations: 𝐷𝑥𝑖,𝑐 = 2Δ, 𝐷𝑐,𝑥𝑖 = Δ + 2 and 
𝐷
𝑐,𝑥𝑇
𝑖
=𝐷

𝑐,𝑥𝐹
𝑖
= 2, and 𝐷

𝑥𝑇
𝑖
,𝑐
=𝐷

𝑥𝐹
𝑖
,𝑐
=Δ.

• For each pair of variables 𝑥𝑖 ≠ 𝑥𝑗 in 𝜙 we specify the following durations: 𝐷𝑥𝑖,𝑥𝑗 = 2Δ+ 1 and 𝐷
𝑥𝑖,𝑥

𝑇
𝑗
=𝐷

𝑥𝑖,𝑥
𝐹
𝑗
=Δ+ 1.

• For each pair of clauses 𝑐𝑖 ≠ 𝑐𝑗 in 𝜙 we specify the following durations: 𝐷𝑐𝑖,𝑐𝑗 =Δ+ 1.

This finishes the construction of the instance (𝐷,Δ) of Simple TGR which can clearly be done in polynomial time. In the remainder, 
we show that (𝐷,Δ) is a Yes-instance of Simple TGR if and only if the Monotone NAE 3-SAT formula 𝜙 is satisfiable.

(⇒): Assume the constructed instance (𝐷,Δ) of Simple TGR is a Yes-instance. Then there exists a label 𝜆(𝑒) for each edge 𝑒 ∈𝐸(𝐺)
such that for each vertex pair 𝑢,𝑤 in the temporal graph (𝐺,𝜆,Δ) we have that a fastest temporal path from 𝑢 to 𝑤 is of duration 
𝐷𝑢,𝑤.

We construct a satisfying assignment for 𝜙 as follows. For each variable 𝑥𝑖, if 𝜆({𝑥𝑖, 𝑥𝑇𝑖 }) = 𝜆({𝑥
𝑇
𝑖
, 𝑣}), then we set 𝑥𝑖 to true, 

otherwise we set 𝑥𝑖 to false.

To show that this yields a satisfying assignment, we need to prove some properties of the labeling 𝜆. First, observe that adding an 
integer 𝑡 to all time labels does not change the duration of any temporal paths. Second, observe that if for two vertices 𝑢,𝑤 we have 
that 𝐷𝑢,𝑤 equals the distance between 𝑢 and 𝑤 in 𝐺 (i.e., the duration of a fastest temporal path from 𝑢 to 𝑤 equals the distance of 
the shortest path between 𝑢 and 𝑤), then there is a shortest path 𝑃 from 𝑢 to 𝑤 in 𝐺 such that the labeling 𝜆 assigns consecutive 
time labels to the edges of 𝑃 .

Let 𝜆({𝑥𝑖, 𝑥𝑇𝑖 }) = 𝑡 and 𝜆({𝑥𝑖, 𝑥𝐹𝑖 }) = 𝑡
′, for an arbitrary variable 𝑥𝑖. If both 𝜆({𝑥𝑇

𝑖
, 𝑣}) ≠ 𝑡+1 and 𝜆({𝑥𝐹

𝑖
, 𝑣}) ≠ 𝑡′ +1, then 𝐷𝑥𝑖,𝑣 > 2, 

which is a contradiction. Thus, for every variable 𝑥𝑖 , we have that 𝜆({𝑥𝑇
𝑖
, 𝑣}) = 𝑡 + 1 or 𝜆({𝑥𝐹

𝑖
, 𝑣}) = 𝑡′ + 1 (or both). In particular, 

this means that if 𝜆({𝑥𝑖, 𝑥𝐹𝑖 }) = 𝜆({𝑥
𝐹
𝑖
, 𝑣}), then we set 𝑥𝑖 to false, since in this case 𝜆({𝑥𝑖, 𝑥𝑇𝑖 }) ≠ 𝜆({𝑥

𝑇
𝑖
, 𝑣}).

Now assume for a contradiction that the described assignment is not satisfying. Then there exists a clause 𝑐 that is not satisfied. 
Suppose that 𝑥1, 𝑥2, 𝑥3 are three variables that appear in 𝑐. Recall that 𝐷𝑐,𝑣 = 2 and 𝐷𝑣,𝑐 =Δ− 1. The fact that 𝐷𝑐,𝑣 = 2 implies that 
we must have a temporal path consisting of two edges from 𝑐 to 𝑣, such that the two edges have consecutive labels. By construction of 
𝐺 there are three candidates for such a path, one for each variable of 𝑐. Assume that the temporal path realizing 𝐷𝑐,𝑣 = 2 goes through 
vertex 𝑥𝑇1 . Let us denote with 𝑡 = 𝜆({𝑥𝑇1 , 𝑣}). It follows that 𝜆({𝑥𝑇1 , 𝑐}) = 𝜆({𝑥

𝑇
1 , 𝑣}) − 1 = 𝑡− 1. Furthermore, since 𝐷𝑐,𝑥1 = 2 we also 

have that 𝜆({𝑥𝑇1 , 𝑐}) = 𝜆({𝑥1, 𝑥
𝑇
1 })−1. Therefore 𝜆({𝑥1, 𝑥𝑇1 }) = 𝜆({𝑥

𝑇
1 , 𝑣}) = 𝑡. This implies that 𝑥1 is set to true. Let us observe paths 

from 𝑣 to 𝑐. We know that 𝐷𝑣,𝑐 =Δ−1. The underlying path of a fastest temporal path from 𝑣 to 𝑐, which goes through 𝑥𝑇1 , is the path 
𝑃 = (𝑣,𝑥𝑇1 , 𝑐). Since 𝜆({𝑥𝑇1 , 𝑐}) < 𝜆({𝑥

𝑇
1 , 𝑣}) we get that the duration of the temporal path (𝑃 ,𝜆) is equal to 𝐷𝑃,𝜆 = (Δ+ 𝑡−1)− 𝑡+1 = Δ. 

This implies that (𝑃 ,𝜆) is not a fastest temporal path from 𝑣 to 𝑐 and therefore does not pass through 𝑥𝑇1 . Since there are only two 
other vertices connected to 𝑐, we have only two other edges incident to 𝑐, that can be used on a fastest temporal path from 𝑣 to 
𝑐. Suppose now that the temporal path realizing 𝐷𝑣,𝑐 = Δ − 1 goes through vertex 𝑥𝑇2 . Let us denote with 𝑡′ = 𝜆({𝑥𝑇2 , 𝑣}). Since the 
duration of a fastest temporal path from 𝑣 to 𝑐 is Δ−1, and the edge {𝑥𝑇2 , 𝑐} is the only edge incident to vertex 𝑐 and edge {𝑥𝑇2 , 𝑣}, it 
follows that 𝜆({𝑥𝑇2 , 𝑐}) ≥ 𝜆({𝑥

𝑇
2 , 𝑣}) − 2 = 𝑡′ − 2. Since 𝐷𝑥2,𝑣 = 2 it follows that 𝜆({𝑥2, 𝑥𝑇2 }) = 𝜆({𝑥

𝑇
2 , 𝑣}) − 1 = 𝑡′ − 1. Knowing this and 

the fact that 𝐷𝑥2 ,𝑐 = 2, we get that 𝜆({𝑥𝑇2 , 𝑐}) must be equal to 𝑡′ − 2. Therefore a fastest temporal path from 𝑣 to 𝑐 passes through 
edges {𝑥𝑇2 , 𝑣} and {𝑥𝑇2 , 𝑐}. In the above we have also determined that 𝜆({𝑥2, 𝑥𝑇2 }) ≠ 𝜆({𝑥

𝑇
2 , 𝑣}), which implies that 𝑥2 is set to false. 

Theoretical Computer Science 1056 (2025) 115508 

5 



N. Klobas, G.B. Mertzios, H. Molter et al. 

But now we have that 𝑥1, 𝑥2 both appear in 𝑐, where one of them is true, while the other is false, which implies that the clause 𝑐
is satisfied, a contradiction.

(⇐): Assume that 𝜙 is satisfiable. Then there exists a satisfying assignment for the variables in 𝜙. We construct a labeling 𝜆 as 
follows.

• All edges incident with a clause vertex 𝑐 obtain label one.

• If variable 𝑥𝑖 is set to true, we set 𝜆({𝑥𝐹
𝑖
, 𝑣}) = 3.

• If variable 𝑥𝑖 is set to false, we set 𝜆({𝑥𝑇
𝑖
, 𝑣}) = 3.

• We set the labels of all other edges to two.

For an example of the constructed temporal graph see Fig. 2. We now verify that all durations are realized. For the remainder of the 
proof denote by 𝑑(𝑢, 𝑣) the duration of the fastest path from 𝑢 to 𝑣 in the constructed temporal graph.

• For each variable 𝑥𝑖 in 𝜙 we have to check that 𝑑(𝑥𝑖, 𝑣) = 2 and 𝑑(𝑣,𝑥𝑖) = Δ.

If 𝑥𝑖 is set to true, then there is a temporal path from 𝑥𝑖 to 𝑣 via 𝑥𝐹
𝑖

of duration 2, since 𝜆({𝑥𝑖, 𝑥𝐹𝑖 }) = 2 and 𝜆({𝑥𝐹
𝑖
, 𝑣}) = 3. For 

a temporal path from 𝑣 to 𝑥𝑖 we observe the following. The only possible labels to leave the vertex 𝑣 are 2 and 3, which take 
us from 𝑣 to 𝑥𝑇

𝑗
or 𝑥𝐹

𝑗
of some variable 𝑥𝑗 . The only two edges incident to 𝑥𝑖 have labels 2, therefore the fastest path from 𝑣 to 

𝑥𝑖 cannot finish before the time Δ+ 2. The fastest way to leave 𝑣 and enter to 𝑥𝑖 would then be to leave 𝑣 at edge {𝑥𝐹
𝑖
, 𝑣} with 

label 3, and continue to 𝑥𝑖 at time Δ+ 2, which gives us the desired duration Δ.

If 𝑥𝑖 is set to false, then, by similar arguing, there is a temporal path from 𝑥𝑖 to 𝑣 via 𝑥𝑇
𝑖

of duration 2, and a temporal path 
from 𝑣 to 𝑥𝑖, through 𝑥𝐹

𝑖
of duration Δ.

• For each clause 𝑐 in 𝜙 we have to check that 𝑑(𝑐, 𝑣) = 2 and 𝑑(𝑣, 𝑐) = Δ− 1:

Suppose 𝑥𝑖, 𝑥𝑗 , 𝑥𝑘 appear in 𝑐. Since we have a satisfying assignment at least one of the variables in 𝑐 is set to true and at least 
one to false. Suppose 𝑥𝑖 is the variable that is true in 𝑐, and 𝑥𝑗 is the variable that is false in 𝑐. Then there is a temporal path 
from 𝑐 to 𝑣 through 𝑥𝑇

𝑖
such that 𝜆({𝑥𝑇

𝑖
, 𝑐}) = 1 and 𝜆({𝑥𝑇

𝑖
, 𝑣}) = 2. Furthermore, there is a temporal path from 𝑣 to 𝑐 through 

𝑥𝑇
𝑗

such that 𝜆({𝑥𝑇
𝑗
, 𝑣}) = 3 and 𝜆({𝑥𝑇

𝑗
, 𝑐}) = 1, which results in a temporal path from 𝑣 to 𝑐 of duration Δ− 1.

• Let 𝑥𝑖 be a variable that appears in clause 𝑐. We have to check that 𝑑(𝑐, 𝑥𝑖) = 𝑑(𝑐, 𝑥𝐹𝑖 ) = 2 and 𝑑(𝑥𝑖, 𝑐) = 𝑑(𝑥𝐹𝑖 , 𝑐) = Δ.

There is a temporal path from 𝑐 to 𝑥𝑖 via 𝑥𝑇
𝑖

and also a temporal path from 𝑐 to 𝑥𝐹
𝑖

via 𝑥𝑇
𝑖

such that 𝜆({𝑥𝑇
𝑖
, 𝑐}) = 1 and 𝜆({𝑥𝑖, 𝑥𝑇𝑖 }) =

𝜆({𝑥𝑇
𝑖
, 𝑥𝐹
𝑖
}) = 2, which proves the first equality. There are also the following two temporal paths, first, from 𝑥𝑖 to 𝑐 through 𝑥𝑇

𝑖

and second, from 𝑥𝐹
𝑖

to 𝑐 through 𝑥𝑇
𝑖

. Both of the temporal paths start on the edge with label 2, as 𝜆({𝑥𝑖, 𝑥𝑇𝑖 }) = 𝜆({𝑥
𝑇
𝑖
, 𝑥𝐹
𝑖
}) = 2

and finish on the edge with label 1, as 𝜆({𝑥𝑇
𝑖
, 𝑐}) = 1.

• Let 𝑥𝑖 be a variable that does not appear in clause 𝑐, then we have to check that first, 𝑑(𝑐, 𝑥𝑇
𝑖
) = 𝑑(𝑐, 𝑥𝐹

𝑖
) = 2, second, 𝑑(𝑥𝑇

𝑖
, 𝑐) =

𝑑(𝑥𝐹
𝑖
, 𝑐) = Δ, third, 𝑑(𝑐, 𝑥𝑖) = Δ+ 2, and fourth 𝑑(𝑥𝑖, 𝑐) = 2Δ.

Let 𝑥𝑗 be a variable that appears in 𝑐. Then there is a temporal path from 𝑐 to 𝑥𝑇
𝑖

via 𝑥𝑇
𝑗

and also a temporal path from 𝑐 to 
𝑥𝐹
𝑖

via 𝑥𝑇
𝑗

such that 𝜆({𝑥𝑇
𝑗
, 𝑐}) = 1 and 𝜆({𝑥𝑇

𝑗
, 𝑥𝑇
𝑖
}) = 𝜆({𝑥𝑇

𝑗
, 𝑥𝐹
𝑖
}) = 2, which proves the first equality. Using the same temporal 

path in the opposite direction, i.e., first the edge 𝑥𝑇
𝑗
𝑐 and then one of the edges {𝑥𝑇

𝑗
, 𝑥𝐹
𝑖
} or {𝑥𝑇

𝑗
, 𝑥𝑇
𝑖
} at times 2 and Δ + 1, 

respectively, yields the second equality. For a temporal path from 𝑐 to 𝑥𝑖 we traverse the following three edges {𝑥𝑇
𝑗
, 𝑐}, {𝑥𝑇

𝑗
, 𝑥𝐹
𝑖
}, 

and {𝑥𝐹
𝑖
, 𝑥𝑖}, with labels 1, 2, and 2 respectively (i.e., the path traverses them at time 1,2 and Δ+2, respectively), which proves 

the third equality. Now for the case of a temporal path from 𝑥𝑖 to 𝑐, we use the same three edges, but in the opposite direction, 
namely {𝑥𝐹

𝑖
, 𝑥𝑖}, {𝑥𝑇

𝑗
, 𝑥𝐹
𝑖
}, and {𝑥𝑇

𝑗
, 𝑐}, again at times 2, Δ + 2, and 2Δ + 1, respectively, which proves the last equality. Note 

that all of the above temporal paths are also the shortest possible, and since the labels of the first and last edges (of these paths) 
are unique, it follows that we cannot find faster temporal paths.

• For each pair of variables 𝑥𝑖 ≠ 𝑥𝑗 in 𝜙 we have to check that 𝑑(𝑥𝑖, 𝑥𝑗 ) = 2Δ+ 1 and 𝑑(𝑥𝑖, 𝑥𝑇𝑗 ) = 𝑑(𝑥𝑖, 𝑥
𝐹
𝑗
) = Δ+ 1.

There is a path from 𝑥𝑖 to 𝑥𝑗 that passes first through one of the vertices 𝑥𝑇
𝑖

or 𝑥𝐹
𝑖

, and then through one of the vertices 𝑥𝑇
𝑗

or 
𝑥𝐹
𝑗

. This temporal path is of length 3, where all of the edges have label 2, which proves the first equality. Now, a temporal path 
from 𝑥𝑖 to 𝑥𝑇

𝑗
(resp. 𝑥𝐹

𝑗
), passes through one of the vertices 𝑥𝑇

𝑖
or 𝑥𝐹

𝑖
. This path is of length two, where all of the edges have 

label 2, which proves the second equality. Note that all of the above temporal paths are also the shortest possible, and since the 
labels of the first and last edges (of these paths) are unique, it follows that we cannot find faster temporal paths.

• For each pair of clauses 𝑐𝑖 ≠ 𝑐𝑗 in 𝜙 we have to check that 𝑑(𝑐𝑖, 𝑐𝑗 ) = Δ+ 1.

Let 𝑥𝑘 be a variable that appears in 𝑐𝑖 and 𝑥𝓁 the variable that appears in 𝑐𝑗 . There is a path of length three from 𝑐𝑖 to 𝑐𝑗 that 
passes first through vertex 𝑥𝑇

𝑘
and then through vertex 𝑥𝑇𝓁 . Therefore, the temporal path from 𝑐𝑖 to 𝑐𝑗 uses the edges {𝑥𝑇

𝑘
, 𝑐𝑖}, 

{𝑥𝑇𝓁 , 𝑐𝑗}, and {𝑥𝑇
𝑘
, 𝑥𝑇𝓁 }, with labels 1, 2, and 1 (at times 1, 2, and Δ+ 1), respectively, which proves the desired equality. Note 

also that this is the shortest path between 𝑐𝑖 and 𝑐𝑗 , and that the first and the last edge must have the label 1, therefore, it follows 
that this is a fastest temporal path.

Lastly, observe that the above constructed labeling 𝜆 uses values {1,2,3} ⊆ [Δ], therefore the reduction holds for any Δ ≥ 3. □
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2.2. Parameterized hardness of Simple TGR

In this section, we investigate the parameterized hardness of Simple TGR with respect to structural parameters of the underlying 
graph. We show that the problem is W[1]-hard when parameterized by the feedback vertex number of the underlying graph. The 
feedback vertex number of a graph 𝐺 is the cardinality of a minimum vertex set 𝑋 ⊆ 𝑉 (𝐺) such that 𝐺 −𝑋 is a forest. The set 𝑋 is 
called a feedback vertex set. Note that, in contrast to the result of the previous section (Theorem 1), the reduction we use to obtain 
the following result does not produce instances with a constant Δ.

Theorem 2. Simple TGR is W[1]-hard when parameterized by the feedback vertex number of the underlying graph.

Proof. We present a parameterized reduction from the W[1]-hard problem Multicolored Clique parameterized by the number 
of colors [28]. Here, given a 𝑘-partite graph 𝐻 = (𝑊1 ⊎𝑊2 ⊎… ⊎𝑊𝑘,𝐹 ), we are asked whether 𝐻 contains a clique of size 𝑘. If 
𝑤 ∈𝑊𝑖, then we say that 𝑤 has color 𝑖. W.l.o.g. we assume that |𝑊1| = |𝑊2| =…= |𝑊𝑘| = 𝑛. Furthermore, for all 𝑖 ∈ [𝑘], we assume 
the vertices in 𝑊𝑖 are ordered in some arbitrary but fixed way, that is, 𝑊𝑖 = {𝑤𝑖1,𝑤

𝑖
2,… ,𝑤

𝑖
𝑛
}. Let 𝐹𝑖,𝑗 with 𝑖 < 𝑗 denote the set of all 

edges between vertices from 𝑊𝑖 and 𝑊𝑗 . We assume w.l.o.g. that |𝐹𝑖,𝑗 | = 𝑚 for all 𝑖 < 𝑗 (if not we can add 𝑘max𝑖,𝑗 |𝐹𝑖,𝑗 | vertices to 
each 𝑊𝑖 and use those to add up to max𝑖,𝑗 |𝐹𝑖,𝑗 | additional isolated edges to each 𝐹𝑖,𝑗 ). Furthermore, for all 𝑖 < 𝑗 we assume that the 
edges in 𝐹𝑖,𝑗 are ordered in some arbitrary but fixed way, that is, 𝐹𝑖,𝑗 = {𝑒𝑖,𝑗1 , 𝑒

𝑖,𝑗

2 ,… , 𝑒
𝑖,𝑗
𝑚 }.

We give a reduction to a variant of Simple TGR where the period Δ is infinite (that is, the sought temporal graph is not periodic 
and the labeling function 𝜆 ∶ 𝐸 → ℕ maps to the natural numbers) and we allow 𝐷 to have infinity entries, meaning that the two 
respective vertices are not temporally connected. Note that, given the matrix 𝐷, we can easily compute the underlying graph 𝐺, as 
follows. Two vertices 𝑣, 𝑣′ are adjacent in 𝐺 if and only if 𝐷𝑣,𝑣′ = 1, as having an edge between 𝑣 and 𝑣′ is the only way that there 
exists a temporal path from 𝑣 to 𝑣′ with duration 1. For simplicity of the presentation of the reduction, we describe the underlying 
graph 𝐺 (which directly implies the entries of 𝐷 where 𝐷𝑣,𝑣′ = 1) and then we provide the remaining entries of 𝐷. At the end of the 
proof, we show how to obtain the result for a finite Δ and a matrix 𝐷 of durations of fastest paths, that only has finite entries.

In the following, we give an informal description of the main ideas of the reduction. The construction uses several gadgets, where 
the main ones are an ``edge selection gadget'' and a ``verification gadget''.

Every edge selection gadget is associated with a color combination 𝑖, 𝑗 in the Multicolored Clique instance, and its main purpose 
is to ``select'' an edge connecting a vertex from color 𝑖 with a vertex from color 𝑗. Roughly speaking, the edge selection gadget consists 
of 𝑚 paths, one for every edge in 𝐹𝑖,𝑗 (see Fig. 3 for reference). The distance matrix 𝐷 will enforce that the labels on those paths 
effectively order them temporally, that is, in particular, the labels on one of the paths will be smaller than the labels on all other 
paths. The edge corresponding to this path is selected.

We have a verification gadget for every color 𝑖. They interact with the edge selection gadgets as follows. The verification gadget for 
color 𝑖 is connected to all edge selection gadgets that involve color 𝑖. More specifically, this is connected to every path corresponding 
to an edge at a position in the path that encodes the endpoint of color 𝑖 of that edge (again, see Fig. 3 for reference). Intuitively, the 
distances in the verification gadget are only realizable if the selected edges all have the same endpoint of color 𝑖. Hence, the distances 
of all verification gadgets can be realized if and only if the selected edges form a clique.

Furthermore, we use an alignment gadget which, intuitively, ensures that the labelings of all gadgets use the same range of time 
labels. Finally, we use connector gadgets which create shortcuts between all vertex pairs that are irrelevant for the functionality of 
the other gadgets. This allows us to easily fill in the distance matrix with the corresponding values. We ensure that all our gadgets 
have a constant feedback vertex number, hence the overall feedback vertex number is quadratic in the number of colors of the 
Multicolored Clique instance and we get the parameterized hardness result.

In the following, for every gadget, we first give a formal description of the underlying graph of this gadget (i.e., not the complete 
distance sub-matrix of the gadget). Afterwards, we define the corresponding entries in the distance matrix 𝐷.

Given an instance 𝐻 of Multicolored Clique, we construct an instance 𝐷 of Simple TGR (with infinity entries and no periods) 
as follows.

Edge selection gadget. We first introduce an edge selection gadget 𝐺𝑖,𝑗 for color combination 𝑖, 𝑗 with 𝑖 < 𝑗. We start with describing 
the vertex set of the gadget.

• A set 𝑋𝑖,𝑗 of vertices 𝑥1, 𝑥2,… , 𝑥𝑚.

• Vertex sets 𝑈1,𝑈2,… ,𝑈𝑚 with 4𝑛+ 1 vertices each, that is, 𝑈𝓁 = {𝑢𝓁0 , 𝑢
𝓁
1 , 𝑢

𝓁
2 ,… , 𝑢

𝓁
4𝑛} for all 𝓁 ∈ [𝑚].

• Two special vertices 𝑣⋆
𝑖,𝑗
, 𝑣⋆⋆
𝑖,𝑗

.

The gadget has the following edges.

• For all 𝓁 ∈ [𝑚] we have edge {𝑥𝓁 , 𝑣⋆𝑖,𝑗}, {𝑣⋆
𝑖,𝑗
, 𝑢𝓁0 }, and {𝑢𝓁4𝑛, 𝑣

⋆⋆
𝑖,𝑗

}.

• For all 𝓁 ∈ [𝑚] and 𝓁′ ∈ [4𝑛], we have edge {𝑢𝓁
𝓁′−1, 𝑢

𝓁
𝓁′
}.

Verification gadget. For each color 𝑖, we introduce the following vertices. What we describe in the following will be used as a 
verification gadget for color 𝑖.
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• We have one vertex 𝑦𝑖 and 𝑘+ 1 vertices 𝑣𝑖𝓁 for 0 ≤ 𝓁 ≤ 𝑘.

• For every 𝓁 ∈ [𝑚] and every 𝑗 ∈ [𝑘] ⧵ {𝑖} we have 5𝑛 vertices 𝑎𝑖,𝑗,𝓁1 , 𝑎
𝑖,𝑗,𝓁
2 ,… , 𝑎𝑖,𝑗,𝓁5𝑛 and 5𝑛 vertices 𝑏𝑖,𝑗,𝓁1 , 𝑏

𝑖,𝑗,𝓁
2 ,… , 𝑏𝑖,𝑗,𝓁5𝑛 .

• We have a set 𝑈̂𝑖 of 13𝑛+ 1 vertices 𝑢̂𝑖1, 𝑢̂
𝑖
2,… , 𝑢̂

𝑖
13𝑛+1.

We add the following edges. We add edge {𝑦𝑖, 𝑣𝑖0}. For every 𝓁 ∈ [𝑚], every 𝑗 ∈ [𝑘] ⧵ {𝑖}, and every 𝓁′ ∈ [5𝑛 − 1] we add edge 
{𝑎𝑖,𝑗,𝓁

𝓁′
, 𝑎
𝑖,𝑗,𝓁
𝓁′+1} and we add edge {𝑏𝑖,𝑗,𝓁

𝓁′
, 𝑏
𝑖,𝑗,𝓁
𝓁′+1}.

Let 1 ≤ 𝑗 < 𝑖 (skip if 𝑖 = 1), let 𝑒𝑗,𝑖𝓁 ∈ 𝐹𝑗,𝑖, and let 𝑤𝑖
𝓁′

∈𝑊𝑖 be incident with 𝑒𝑗,𝑖𝓁 . Then we add edge {𝑣𝑖
𝑗−1, 𝑎

𝑖,𝑗,𝓁
1 } and we add edge 

{𝑎𝑖,𝑗,𝓁5𝑛 , 𝑢
𝓁
𝓁′−1} between 𝑎𝑖,𝑗,𝓁5𝑛 and the vertex 𝑢𝓁

𝓁′−1 of the edge selection gadget of color combination 𝑗, 𝑖. Furthermore, we add edge 
{𝑣𝑖
𝑗
, 𝑏
𝑖,𝑗,𝓁
1 } and edge {𝑏𝑖,𝑗,𝓁5𝑛 , 𝑢

𝓁
𝓁′
} between 𝑏𝑖,𝑗,𝓁5𝑛 and the vertex 𝑢𝓁

𝓁′
of the edge selection gadget of color combination 𝑗, 𝑖.

We add edge {𝑣𝑖
𝑖−1, 𝑢̂

𝑖
1} and for all 𝓁′′ ∈ [13𝑛] we add edge {𝑢̂𝑖

𝓁′′
, 𝑢̂𝑖

𝓁′′+1}. Furthermore, we add edge {𝑢̂𝑖13𝑛+1, 𝑣
𝑖
𝑖
}.

Let 𝑖 < 𝑗 ≤ 𝑘 (skip if 𝑖 = 𝑘), let 𝑒𝑖,𝑗𝓁 ∈ 𝐹𝑖,𝑗 , and let 𝑤𝑖
𝓁′

∈ 𝑊𝑖 be incident with 𝑒𝑖,𝑗𝓁 . Then we add edge {𝑣𝑖
𝑗−1, 𝑎

𝑖,𝑗,𝓁
1 } and edge 

{𝑎𝑖,𝑗,𝓁5𝑛 , 𝑢
𝓁
3𝑛+𝓁′−1} between 𝑎𝑖,𝑗,𝓁5𝑛 and the vertex 𝑢𝓁3𝑛+𝓁′−1 of the edge selection gadget of color combination 𝑖, 𝑗. Furthermore, we add 

edge {𝑣𝑖
𝑗
, 𝑏
𝑖,𝑗,𝓁
1 } and edge {𝑏𝑖,𝑗,𝓁5𝑛 , 𝑢

𝓁
3𝑛+𝓁′ } between 𝑏𝑖,𝑗,𝓁5𝑛 and the vertex 𝑢𝓁3𝑛+𝓁′ of the edge selection gadget of color combination 𝑖, 𝑗.

Connector gadget. Next, we describe connector gadgets. Intuitively, these gadgets will be used to connect many vertex pairs by 
fast paths, which will make arguing about possible labelings in Yes-instances much easier. Connector gadgets consist of six vertices 
𝑣̂0, 𝑣̂

′
0, 𝑣̂1, 𝑣̂2, 𝑣̂3, 𝑣̂

′
3. Each connector gadget is associated with two sets 𝐴,𝐵 with 𝐵 ⊆ 𝐴 containing vertices of other gadgets. Let 𝑉 ⋆

denote the set of all vertices from all edge selection gadgets and all verification gadgets. The sets 𝐴 and 𝐵 will only play a role when 
defining the matrix 𝐷 later. Informally speaking, vertices in 𝐴 should reach all vertices in 𝑉 ⋆ quickly through the gadget, except the 
ones in 𝐵. We have the following edges.

• Edges {𝑣̂0, 𝑣̂1},{𝑣̂′0, 𝑣̂1},{𝑣̂1, 𝑣̂2},{𝑣̂2, 𝑣̂3},{𝑣̂2, 𝑣̂
′
3}.

• An edge between 𝑣̂1 and each vertex in 𝑉 ⋆.

• An edge between 𝑣̂2 and each vertex in 𝑉 ⋆.

We add two connector gadgets for each edge selection gadget and two connector gadgets for each verification gadget.

The first connector gadget for the edge selection gadget of color combination 𝑖, 𝑗 with 𝑖 < 𝑗 has the following sets.

• Sets 𝐴 and 𝐵 contain all vertices in 𝑋𝑖,𝑗 and vertex 𝑣⋆⋆
𝑖,𝑗

.

The second connector gadget for the edge selection gadget of color combination 𝑖, 𝑗 with 𝑖 < 𝑗 has the following sets.

• Set 𝐴 contains all vertices from the edge selection gadget 𝐺𝑖,𝑗 except vertices in 𝑋𝑖,𝑗 .
• Set 𝐵 is empty.

The first connector gadget for the verification gadget of color 𝑖 has the following sets.

• Sets 𝐴 and 𝐵 contain all vertices 𝑣𝑖𝓁 with 0 ≤ 𝓁 ≤ 𝑘.

The second connector gadget for the verification gadget of color 𝑖 has the following sets.

• Set 𝐴 contains all vertices of the verification gadget except vertices 𝑣𝑖𝓁 with 0 ≤ 𝓁 ≤ 𝑘.

• Set 𝐵 is empty.

Alignment gadget. Lastly, we introduce an alignment gadget. It consists of one vertex 𝑤⋆ and a set of vertices 𝑊̂ containing one 
vertex for each edge selection gadget, one vertex for each verification gadget, and one vertex for each connector gadget. Vertex 𝑤⋆ is 
connected to each vertex in 𝑊̂ . The vertex 𝑥1 of each edge selection gadget, the vertex 𝑦𝑖 of each verification gadget, and the vertex 
𝑣̂1 of each connector gadget are each connected to one vertex in 𝑊̂ such that all vertices in 𝑊̂ have degree two. Intuitively, this 
gadget is used to relate labels of different gadgets to each other.

Feedback vertex number. This finished the description of the underlying graph 𝐺. For an illustration see Fig. 3. We can observe 
that the vertex set containing

• vertices 𝑣⋆
𝑖,𝑗

and 𝑣⋆⋆
𝑖,𝑗

of each edge selection gadget,

• vertices 𝑣𝑖𝓁 with 0 ≤ 𝓁 ≤ 𝑘 of each verification gadget,

• vertices 𝑣̂1 and 𝑣̂2 of each connector gadget, and

• vertex 𝑤⋆ of the alignment gadget

forms a feedback vertex set in 𝐺 with size 𝑂(𝑘2).
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Duration matrix 𝐷. We proceed with describing the matrix 𝐷 of durations of fastest paths. The durations we define are numbered, 
and during the proofs, we will reference them using those numbers. For a more convenient presentation, we use the notation 𝑑(𝑣, 𝑣′) ∶=
𝐷𝑣,𝑣′ . For all vertices 𝑣, 𝑣′ that are neighbors in 𝐺 we have that 𝑑(𝑣, 𝑣′) = 1 and 𝑑(𝑣′, 𝑣) = 1.

Next, consider a connector gadget consisting of vertices 𝑣̂0, 𝑣̂′0, 𝑣̂1, 𝑣̂2, 𝑣̂3, 𝑣̂
′
3 and with sets 𝐴 and 𝐵. Informally, the connector gadget 

makes sure that all vertices in 𝐴 can reach all other vertices (of edge selection gadgets and verification gadgets) except the ones in 
𝐵. We set the following durations. Recall that 𝑉 ⋆ denotes the set of all vertices from all edge selection gadgets and all verification 
gadgets.

1. We set 𝑑(𝑣̂0, 𝑣̂2) = 𝑑(𝑣̂3, 𝑣̂1) = 𝑑(𝑣̂2, 𝑣̂′0) = 𝑑(𝑣̂1, 𝑣̂
′
3) = 2, and 𝑑(𝑣̂0, 𝑣̂′0) = 𝑑(𝑣̂3, 𝑣̂

′
3) = 𝑑(𝑣̂0, 𝑣̂

′
3) = 𝑑(𝑣̂3, 𝑣̂

′
0) = 3.

2. Let 𝑣 ∈𝐴, then we set 𝑑(𝑣, 𝑣̂′0) = 3 and 𝑑(𝑣, 𝑣̂′3) = 3.

3. Let 𝑣 ∈ 𝑉 ⋆ ⧵𝐵, then we set 𝑑(𝑣̂0, 𝑣) = 3 and 𝑑(𝑣̂3, 𝑣) = 3.

4. Let 𝑣 ∈𝐴 and 𝑣′ ∈ 𝑉 ⋆ ⧵𝐵 such that 𝑣 and 𝑣′ are not neighbors, then we set 𝑑(𝑣, 𝑣′) = 3.

Now consider two connector gadgets, one with vertices 𝑣̂0, 𝑣̂′0, 𝑣̂1, 𝑣̂2, 𝑣̂3, 𝑣̂
′
3 and with sets 𝐴 and 𝐵, and one with vertices 

𝑣̂′0, 𝑣̂
′′
0 , 𝑣̂

′
1, 𝑣̂

′
2, 𝑣̂

′
3, 𝑣̂

′′
3 and with sets 𝐴′ and 𝐵′.

5. If there is a vertex 𝑣 ∈𝐴 with 𝑣 ∉𝐴′, then we set 𝑑(𝑣̂1, 𝑣̂′1) = 3.

6. If there is a vertex 𝑣 ∈𝐴 with 𝑣 ∈𝐴′ ⧵𝐵′, then we set 𝑑(𝑣̂1, 𝑣̂′2) = 3.

7. If there is a vertex 𝑣 ∈ 𝑉 ⋆ ⧵ (𝐴 ⧵𝐵) with 𝑣 ∉𝐴′, then we set 𝑑(𝑣̂2, 𝑣̂′1) = 3.

8. If there is a vertex 𝑣 ∈ 𝑉 ⋆ ⧵ (𝐴 ⧵𝐵) with 𝑣 ∈𝐴′ ⧵𝐵′, then we set 𝑑(𝑣̂2, 𝑣̂′2) = 3.

Next, consider the edge selection gadget for color combination 𝑖, 𝑗 with 𝑖 < 𝑗.

9. Let 1 ≤ 𝓁 < 𝓁′ ≤𝑚. We set 𝑑(𝑥𝓁 , 𝑥𝓁′ ) = 2𝑛 ⋅ (𝑖+ 𝑗) ⋅ ((𝓁′)2 − 𝓁2) + 1.

10. For all 𝓁 ∈ [𝑚] we set 𝑑(𝑥𝓁 , 𝑣⋆⋆𝑖,𝑗 ) = 8𝑛+ 5.

Next, consider the verification gadget for color 𝑖. For all 0 ≤ 𝑗 < 𝑗′ < 𝑖 and all 𝑖 ≤ 𝑗 < 𝑗′ ≤ 𝑘 we set the following.

11. We set 𝑑(𝑣𝑖
𝑗
, 𝑣𝑖
𝑗′
) = (20𝑛+ 6)(𝑗′ − 𝑗) − 1.

For all 0 ≤ 𝑗 < 𝑖 and all 𝑖 ≤ 𝑗′ ≤ 𝑘 we set the following.

12. We set 𝑑(𝑣𝑖
𝑗
, 𝑣𝑖
𝑗′
) = (20𝑛+ 6)(𝑗′ − 𝑗) + 6𝑛− 1.

Finally, we consider the alignment gadget. Let 𝑥1 belong to the edge selection gadget of color combination 𝑖, 𝑗 and let 𝑤 ∈ 𝑊̂
denote the neighbor of 𝑥1 in the alignment gadget. Let 𝑣̂1 and 𝑣̂2 belong to the first connector gadget of the edge selection gadget for 
color combination 𝑖, 𝑗. Let 𝑉 contain all vertices 𝑣̂1 and 𝑣̂2 belonging to the other connector gadgets (different from the first one of 
the edge selection gadget for color combination 𝑖, 𝑗).

13. We set 𝑑(𝑤⋆,𝑥1) = (20𝑛+ 6)(𝑖+ 𝑗).
14. We set 𝑑(𝑤⋆, 𝑣̂1) = 𝑛9, 𝑑(𝑤, 𝑣̂2) = 𝑛9, 𝑑(𝑤, 𝑣̂1) = 𝑛9 − (20𝑛+ 6)(𝑖+ 𝑗) + 1, and 𝑑(𝑤, 𝑣̂2) = 𝑛9 − (20𝑛+ 6)(𝑖+ 𝑗) + 1.

15. For each vertex 𝑣 ∈ (𝑉 ⋆ ∪ 𝑉 ) ⧵ (𝑋𝑖,𝑗 ∪ {𝑣⋆⋆
𝑖,𝑗

}) we set 𝑑(𝑤⋆,𝑣) = 𝑛9 + 2 and 𝑑(𝑤,𝑣) = 𝑛9 − (20𝑛+ 6)(𝑖+ 𝑗) + 3.

Let 𝑦𝑖 belong to the verification gadget of color 𝑖 and let 𝑤′ ∈ 𝑊̂ denote the neighbor of 𝑦𝑖 in the alignment gadget. Let 𝑣̂1 and 
𝑣̂2 belong to the connector gadget of the verification gadget for color 𝑖. Let 𝑉 contain all vertices 𝑣̂1 and 𝑣̂2 belonging to the other 
connector gadgets (different from the one of the verification gadget for color 𝑖). Let 𝑉𝑖 denote the set of all vertices of the verification 
gadget of color 𝑖.

16. We set 𝑑(𝑤⋆,𝑦𝑖) = 𝑛8 − 1, 𝑑(𝑤′, 𝑣𝑖0) = 2, and 𝑑(𝑤⋆,𝑣𝑖0) = 𝑛
8.

17. We set 𝑑(𝑤⋆, 𝑣̂1) = 𝑛9, 𝑑(𝑤⋆, 𝑣̂2) = 𝑛9, 𝑑(𝑤′, 𝑣̂1) = 𝑛9 − 𝑛8, and 𝑑(𝑤′, 𝑣̂2) = 𝑛9 − 𝑛8.

18. For each vertex 𝑣 ∈ (𝑉 ⋆ ∪ 𝑉 ) ⧵ 𝑉𝑖 we set 𝑑(𝑤⋆,𝑣) = 𝑛9 + 1, 𝑑(𝑤,𝑣) = 𝑛9 − 𝑛8 + 2, and 𝑑(𝑦𝑖, 𝑣) = 𝑛9 − 𝑛8 + 2.

Let 𝑣̂0 belong to some connector gadget.

19. We set 𝑑(𝑤⋆, 𝑣̂0) = 𝑛9.

All fastest path durations between non-adjacent vertex pairs that are not specified above are set to infinity.

Correctness. This finishes the construction of Simple periodic Temporal Graph Realization instance 𝐷, which can clearly 
be computed in polynomial time. For an illustration see Fig. 3. As discussed earlier, we have that the vertex cover number of the 
underlying graph of the instance is in 𝑂(𝑘2).
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Fig. 3. Illustration of part of the underlying graph 𝐺 and a possible labeling. Edges incident with vertices 𝑣̂1, 𝑣̂2 of connector gadgets are omitted. Gray vertices form 
a feedback vertex set. The double line connections, between a vertex 𝑣𝑗

𝑖−1 in the verification gadget, and 𝑢31 in the edge selection gadget, and, between a vertex 𝑢32 in 
the edge selection gadget, and 𝑣𝑗

𝑖
in the verification gadget, consist of 5𝑛 vertices 𝑎𝑗,𝑖,31 , 𝑎

𝑗,𝑖,3
2 ,… , 𝑎𝑗,𝑖,35𝑛 and 𝑏𝑗,𝑖,31 , 𝑏

𝑗,𝑖,3
2 ,… , 𝑏𝑗,𝑖,35𝑛 , respectively.

In the remainder, we prove that 𝐷 is a Yes-instance of Simple periodic Temporal Graph Realization if and only if the 𝐻 is 
a Yes-instance of Multicolored Clique.

(⇒): Assume 𝐷 is a Yes-instance of Simple periodic Temporal Graph Realization and let (𝐺,𝜆) be a solution. We have that 
the underlying graph 𝐺 is uniquely defined by 𝐷. We first prove a number of properties of 𝜆 that we need to define a set of vertices 
in 𝐻 which we claim to be a multicolored clique.
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To start, consider the alignment gadget. We can observe that all edges incident with 𝑤⋆ have the same label.

Claim 1. For all 𝑤∈ 𝑊̂ we have that 𝜆({𝑤⋆,𝑤}) = 𝑡 for some 𝑡∈ ℕ.

Proof of Claim. Assume for contradiction that there are 𝑤,𝑤′ ∈ 𝑊̂ such that 𝜆({𝑤⋆,𝑤}) = 𝑡 and 𝜆({𝑤⋆,𝑤′}) = 𝑡′ with 𝑡 ≠ 𝑡′. Let 
w.l.o.g. 𝑡 < 𝑡′. Then 𝑤 can reach 𝑤′, however we have that 𝑑(𝑤,𝑤′) =∞, a contradiction. ⋄

Claim 1 states that, in the temporal labeling 𝜆, all edges {𝑤∗,𝑤} have equal label 𝜆({𝑤∗,𝑤}) = 𝑡 for every 𝑤 ∈ 𝑊̂ . Therefore, by 
adding Δ− 𝑡+ 1 to every edge of the graph, we end up with an equivalent temporal graph, where 𝜆({𝑤∗,𝑤}) = 1 for every 𝑤 ∈ 𝑊̂ . 
Therefore, from now on, we assume w.l.o.g. that all edges incident with vertex 𝑤⋆ of the alignment gadget have label 1.

Next, we analyze the labelings of connector gadgets. We show that all edges incident with vertices of connector gadgets have 
labels of at least 𝑛9 and at most 𝑛9 + 2. More precisely, we show the following.

Claim 2. Let 𝑣̂0, 𝑣̂′0, 𝑣̂1, 𝑣̂2, 𝑣̂3, 𝑣̂
′
3 be the vertices of a connector gadget with sets 𝐴 and 𝐵. Then we have that 𝜆({𝑣̂0, 𝑣̂1}) = 𝑛9, 𝜆({𝑣̂′0, 𝑣̂1}) =

𝑛9 + 2, 𝜆({𝑣̂1, 𝑣̂2}) = 𝑛9 + 1, 𝜆({𝑣̂2, 𝑣̂3}) = 𝑛9, and 𝜆({𝑣̂2, 𝑣̂′3}) = 𝑛
9 + 2. Furthermore, for all 𝑣∈ 𝑉 ⋆ we have 𝑛9 ≤ 𝜆({𝑣̂1, 𝑣}) ≤ 𝑛9 + 2 and 

𝑛9 ≤ 𝜆({𝑣̂2, 𝑣}) ≤ 𝑛9 + 2.

Proof of Claim. Let 𝑤∈ 𝑊̂ denote the vertex of the alignment gadget that is a neighbor of 𝑤⋆ and 𝑣̂0. We have 𝑑(𝑤⋆, 𝑣̂0) = 𝑛9 (see 
duration nr. 19). It follows that 𝜆({𝑤, 𝑣̂0}) = 𝑛9. Since 𝑑(𝑣̂1,𝑤) = ∞ and 𝑑(𝑤, 𝑣̂1) = ∞, we have that 𝜆({𝑣̂0, 𝑣̂1}) = 𝑛9. Note that 𝑣̂1
is the only common neighbor of 𝑣̂0 and 𝑣̂2 and the only common neighbor of 𝑣̂0 and 𝑣̂′0. Since 𝑑(𝑣̂0, 𝑣̂2) = 2 and 𝑑(𝑣̂0, 𝑣̂′0) = 3 (see 
duration nr. 1) we have that 𝜆({𝑣̂1, 𝑣̂2}) = 𝑛9 + 1 and 𝜆({𝑣̂′0, 𝑣̂1}) = 𝑛

9 + 2. Similarly, we have that 𝑣̂2 is the only common neighbor 
of 𝑣̂3 and 𝑣̂1 and the only common neighbor of 𝑣̂3 and 𝑣̂′3. Since 𝑑(𝑣̂3, 𝑣̂1) = 2 and 𝑑(𝑣̂3, 𝑣̂′3) = 3 (see duration nr. 1) we have that 
𝜆({𝑣̂2, 𝑣̂3}) = 𝑛9 and 𝜆({𝑣̂2, 𝑣̂′3}) = 𝑛

9 + 2.

Let 𝑣 ∈ 𝑉 ⋆. Note that 𝑑(𝑣, 𝑣̂0) = ∞ and 𝑑(𝑣, 𝑣̂3) = ∞. It follows that 𝜆({𝑣̂1, 𝑣}) ≥ 𝑛9 and 𝜆({𝑣̂2, 𝑣}) ≥ 𝑛9. Otherwise, there would 
be a temporal path from 𝑣 to 𝑣̂0 via 𝑣̂1 or a temporal path from 𝑣 to 𝑣̂3 via 𝑣̂2, a contradiction. Furthermore, note that 𝑑(𝑣̂′0, 𝑣) = ∞
and 𝑑(𝑣̂′3, 𝑣) =∞. It follows that 𝜆({𝑣̂1, 𝑣}) ≤ 𝑛9 + 2 and 𝜆({𝑣̂2, 𝑣}) ≤ 𝑛9 + 2. Otherwise, there would be a temporal path from 𝑣̂′0 to 𝑣
via 𝑣̂1 or a temporal path from 𝑣̂3 to 𝑣 via 𝑣̂2, a contradiction. ⋄

Now we take a closer look at the edge selection gadgets. We make a number of observations that will allow us to define a set of 
vertices in 𝐻 that we claim to be a multicolored clique.

Claim 3. For all 1≤ 𝑖 < 𝑗 ≤ 𝑘 and 𝓁 ∈ [𝑚] we have that 𝜆({𝑢𝓁4𝑛, 𝑣
⋆⋆
𝑖,𝑗

}) ≤ 𝑛9 + 2, where 𝑢𝓁4𝑛 belongs to the edge selection gadget for 𝑖, 𝑗.

Proof of Claim. Consider the first connector gadget of the edge selection gadget for 𝑖, 𝑗 with vertices 𝑣̂0, 𝑣̂′0, 𝑣̂1, 𝑣̂2, 𝑣̂3, 𝑣̂
′
3 and sets 

𝐴,𝐵. Recall that 𝑣⋆⋆
𝑖,𝑗

∈ 𝐵 and hence we have that 𝑑(𝑣̂0, 𝑣⋆⋆𝑖,𝑗 ) = ∞. Furthermore, we have that 𝑢𝓁4𝑛 ∉ 𝐵 and hence 𝑑(𝑣̂0, 𝑢𝓁4𝑛) = 3 (see 
duration nr. 3). By Claim 2 and the fact that 𝑑(𝑤⋆, 𝑣̂0) = 𝑛9 we have that both edges incident with 𝑣̂0 have label 𝑛9. It follows that 
a fastest temporal path from 𝑣̂0 to 𝑢𝓁4𝑛 arrives at 𝑢𝓁4𝑛 at time 𝑛9 + 2. Now assume for contradiction that 𝜆({𝑢𝓁4𝑛, 𝑣

⋆⋆
𝑖,𝑗

}) > 𝑛9 + 2. Then 
there exists a temporal walk from 𝑣̂0 to 𝑣⋆⋆

𝑖,𝑗
via 𝑢𝓁4𝑛, a contradiction to 𝑑(𝑣̂0, 𝑣⋆⋆𝑖,𝑗 ) =∞. ⋄

Claim 4. For all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 and 𝓁 ∈ [𝑚] we have that 𝜆({𝑥𝓁 , 𝑣⋆𝑖,𝑗}) = (𝑖 + 𝑗) ⋅ (2𝑛𝓁2 + 18𝑛 + 6), where 𝑥𝓁 belongs to the edge selection 
gadget for 𝑖, 𝑗.

Proof of Claim. We first determine the label of {𝑥1, 𝑣⋆𝑖,𝑗}, where 𝑥1 belongs to the edge selection gadget for 𝑖, 𝑗. Note that 𝑥1 is 
connected to the alignment gadget. Let 𝑤 ∈ 𝑊̂ be the vertex of the alignment gadget that is a neighbor of 𝑥1 . Since 𝑑(𝑤⋆,𝑥1) =
(20𝑛+ 6)(𝑖+ 𝑗) (see duration nr. 13) we have that 𝜆({𝑤,𝑥1}) = (20𝑛+ 6)(𝑖+ 𝑗).

First, assume that 𝜆({𝑥1, 𝑣⋆𝑖,𝑗}) < (20𝑛 + 6)(𝑖 + 𝑗). Then there is a temporal path from 𝑣⋆
𝑖,𝑗

to 𝑤 via 𝑥1. However, we have that 
𝑑(𝑥𝑖,𝑗⋆ ,𝑤) = ∞, a contradiction. Next, assume that (20𝑛 + 6)(𝑖 + 𝑗) < 𝜆({𝑥1, 𝑣⋆𝑖,𝑗}) < 𝑛

9 + 2. Then there is a temporal path from 𝑤 to 
𝑣𝑖,𝑗 via 𝑥1 with duration strictly less than 𝑛9 − (20𝑛 + 6)(𝑖 + 𝑗) + 3. However, we have that 𝑑(𝑤,𝑣⋆

𝑖,𝑗
) = 𝑛9 − (20𝑛 + 6)(𝑖 + 𝑗) + 3 (see 

duration nr. 15), a contradiction. Finally, assume that 𝜆({𝑥1 , 𝑣⋆𝑖,𝑗}) ≥ 𝑛
9 + 2. Consider a fastest temporal path from 𝑥1 to 𝑣⋆⋆

𝑖,𝑗
. This 

temporal path cannot visit 𝑤 as its first vertex, since from there it cannot continue. From this assumption and Claim 2 it follows, that 
the first edge of the temporal path has a label with value at least 𝑛9 . However, by Claims 2 and 3 we have that all edges incident 
with 𝑣⋆⋆

𝑖,𝑗
have a label with value at most 𝑛9 + 2. It follows that 𝑑(𝑥1, 𝑣⋆⋆𝑖,𝑗 ) ≤ 3, a contradiction to duration nr. 10.

We can conclude that 𝜆({𝑥1, 𝑣⋆𝑖,𝑗}) = (20𝑛 + 6)(𝑖 + 𝑗). Now let 1 < 𝓁 ≤ 𝑚. We have that 𝑑(𝑥1, 𝑥𝓁) = 2𝑛 ⋅ (𝑖 + 𝑗) ⋅ (𝓁2 − 1) + 1 (see 
duration nr. 9) which implies that 𝜆({𝑥𝓁 , 𝑣⋆𝑖,𝑗}) ≥ (𝑖+ 𝑗) ⋅ (2𝑛𝓁2 +18𝑛+6). Assume that (𝑖+ 𝑗) ⋅ (2𝑛𝓁2 +18𝑛+6) < 𝜆({𝑥𝓁 , 𝑣⋆𝑖,𝑗}) ≤ 𝑛

9 +2. 
Then the temporal path from 𝑥1 to 𝑥𝓁 via 𝑣⋆

𝑖,𝑗
is not a fastest temporal path from 𝑥1 to 𝑥𝓁 . Again, we have that a fastest temporal path 

from 𝑥1 to 𝑥𝓁 cannot visit 𝑤 as its first vertex, since from there it cannot continue. By Claim 2, all other edges incident with 𝑥1 (that 
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is, all different from the one to 𝑣⋆
𝑖,𝑗

and the one to 𝑤) have a label of at least 𝑛9 and at most 𝑛9 + 2. Similarly, by Claim 2 we have 
that all other edges incident with 𝑥𝓁 (that is, all different from the one to 𝑣⋆

𝑖,𝑗
) have a label of at least 𝑛9 and at most 𝑛9 + 2. It follows 

that any temporal path from 𝑥1 to 𝑥𝓁 that visits 𝑣⋆
𝑖,𝑗

as its first vertex has a duration strictly larger than 2𝑛 ⋅ (𝑖+ 𝑗) ⋅ (𝓁2 − 1) + 1. Any 
temporal path from 𝑥1 to 𝑥𝓁 that visits a vertex different from 𝑣⋆

𝑖,𝑗
as its first vertex has duration of at most 3. In both cases, we have 

a contradiction to duration nr. 9. Lastly, assume that 𝜆({𝑥𝓁 , 𝑣⋆𝑖,𝑗}) > 𝑛
9 + 2. Consider a fastest temporal path from 𝑥𝓁 to 𝑣⋆⋆

𝑖,𝑗
. Now this 

temporal path has duration at most 3 since by Claim 2 and the just made assumption all edges incident with 𝑥𝓁 have label at least 
𝑛9 whereas by Claims 2 and 3 all edges incident with 𝑣⋆⋆

𝑖,𝑗
have label at most 𝑛9 + 2, a contradiction to duration nr. 10. ⋄

Claim 5. For all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 there exist a permutation 𝜎𝑖,𝑗 ∶ [𝑚]→ [𝑚] such that for all 𝓁 ∈ [𝑚] we have that 𝜆({𝑢𝓁4𝑛, 𝑣
⋆⋆
𝑖,𝑗

}) = (𝑖+ 𝑗) ⋅ (2𝑛 ⋅
(𝜎𝑖,𝑗 (𝓁))2 + 18𝑛+ 6) + 8𝑛+ 4, where 𝑢𝓁4𝑛 belongs to the edge selection gadget for 𝑖, 𝑗.

Furthermore, a fastest temporal path from 𝑥𝓁 (of the edge selection gadget for 𝑖, 𝑗) to 𝑣⋆⋆
𝑖,𝑗

visits 𝑣⋆
𝑖,𝑗

as its second vertex, and 𝑢𝓁′4𝑛 with 
𝜎𝑖,𝑗 (𝓁′) = 𝓁 (of the edge selection gadget for 𝑖, 𝑗) as its second last vertex.

Proof of Claim. For every 𝓁 ∈ [𝑚] we have that 𝑑(𝑥𝓁 , 𝑣⋆⋆𝑖,𝑗 ) = 8𝑛 + 5 (see duration nr. 10), where 𝑥𝓁 belongs to the edge selection 
gadget for 𝑖, 𝑗. From Claims 2 and 4 follows that all edges incident with 𝑥𝓁 have a label of at least 𝑛9 except the one to 𝑣⋆

𝑖,𝑗
and, if 

𝓁 = 1, the edge connecting 𝑥1 to the alignment gadget. In the latter case, no temporal path from 𝑥1 from 𝑣⋆⋆
𝑖,𝑗

can continue to the 
neighbor of 𝑥1 in the alignment gadget, since it cannot continue from there.

Now consider 𝑣⋆⋆
𝑖,𝑗

. By Claims 2 and 3 we have that all edges incident with 𝑣⋆⋆
𝑖,𝑗

have a label of at most 𝑛9 + 2. It follows that a 
fastest temporal path 𝑃 from 𝑥𝓁 to 𝑣⋆⋆

𝑖,𝑗
has to visit 𝑣⋆

𝑖,𝑗
after 𝑥𝓁 , since otherwise we have 𝑑(𝑥𝓁 , 𝑣⋆⋆𝑖,𝑗 ) ≤ 2, a contradiction to duration 

nr. 10.

Furthermore, we have by Claim 2 that all edges incident with 𝑣⋆⋆
𝑖,𝑗

have a label of at least 𝑛9 except the ones incident to 𝑢2𝑛
𝓁′

for 
𝓁′ ∈ [𝑚]. By Claim 4 we have that 𝜆({𝑥𝓁 , 𝑣⋆𝑖,𝑗}) ≤ 4𝑛6. It follows that a fastest temporal path from 𝑥𝓁 to 𝑣⋆⋆

𝑖,𝑗
has to visit 𝑢𝓁′4𝑛 for some 

𝓁′ ∈ [𝑚] as its second last vertex. Otherwise, we have 𝑑(𝑥𝓁 , 𝑣⋆⋆𝑖,𝑗 ) > 8𝑛+5 (for sufficiently large 𝑛), a contradiction to duration nr. 10.

We can conclude that a fastest temporal path from 𝑥𝓁 to 𝑣⋆⋆
𝑖,𝑗

has to visit 𝑣⋆
𝑖,𝑗

as its second vertex and 𝑢𝓁′4𝑛 for some 𝓁′ ∈ [𝑚]
as its second last vertex. Recall that in a temporal path, the difference between the labels of the first and last edge determine 
its duration (minus one). Hence, we have that 𝜆({𝑢𝓁′4𝑛, 𝑣

⋆⋆
𝑖,𝑗

}) − 𝜆({𝑥𝓁 , 𝑣⋆𝑖,𝑗}) + 1 = 8𝑛 + 5. By Claim 4 we have that 𝜆({𝑥𝓁 , 𝑣⋆𝑖,𝑗}) =
(𝑖+ 𝑗) ⋅ (2𝑛𝓁2 + 18𝑛+ 2). It follows that 𝜆({𝑢𝓁′4𝑛, 𝑣

⋆⋆
𝑖,𝑗

}) = (𝑖+ 𝑗) ⋅ (2𝑛𝓁2 + 18𝑛+ 6) + 8𝑛+ 4. We set 𝜎𝑖,𝑗 (𝓁′) = 𝓁.

Finally, we show that 𝜎𝑖,𝑗 is a permutation on [𝑚]. Assume for contradiction that there are 𝓁,𝓁′ ∈ [𝑚] with 𝓁 ≠ 𝓁′ such that 
𝜎𝑖,𝑗 (𝓁) = 𝜎𝑖,𝑗 (𝓁′). Then we have that 𝜆({𝑢𝓁4𝑛, 𝑣

⋆⋆
𝑖,𝑗

}) = 𝜆({𝑢𝓁′4𝑛, 𝑣
⋆⋆
𝑖,𝑗

}). However, by Claim 4 we have that all edges from 𝑣⋆
𝑖,𝑗

to a vertex 
in 𝑋𝑖,𝑗 have distinct labels. Furthermore, we argued above that every fastest path from a vertex in 𝑋𝑖,𝑗 to 𝑣⋆⋆

𝑖,𝑗
visits 𝑣⋆

𝑖,𝑗
as its 

second vertex and a vertex from the set {𝑢𝓁′′4𝑛 ∶ 𝓁′′ ∈ [𝑚]} as its second last vertex. Since for all 𝑥𝓁′′ with 𝓁′′ ∈ [𝑚] we have that 
𝑑(𝑥𝓁′′ , 𝑣⋆⋆𝑖,𝑗 ) = 8𝑛+ 5 (see duration nr. 10), we must have that all edges from vertices in {𝑢𝓁′′4𝑛 ∶ 𝓁′′ ∈ [𝑚]} to 𝑣⋆⋆

𝑖,𝑗
must have distinct 

labels. Hence, we have a contradiction and can conclude that 𝜎𝑖,𝑗 is indeed a permutation. ⋄

For all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, let 𝜎𝑖,𝑗 be the permutation on [𝑚] as defined in Claim 5. We call 𝜎𝑖,𝑗 the permutation of color combination 𝑖, 𝑗. 
Now we have enough information to define a set of vertices of 𝐻 that form a multicolored clique. To this end, consider the following 
set 𝑋 of edges from 𝐻 .

𝑋 = {𝑒𝑖,𝑗𝓁 ∈ 𝐹𝑖,𝑗 ∶ 𝜎𝑖,𝑗 (𝓁) = 1}

We claim that 
⋃
𝑒∈𝑋 𝑒 forms a multicolored clique in 𝐻 . From now on, denote {𝑒𝑖,𝑗} =𝑋 ∩𝐹𝑖,𝑗 . We show that for all 𝑖 ∈ [𝑘] we have 

that |(⋂1≤𝑗<𝑖 𝑒𝑗,𝑖) ∩ (
⋂
𝑖<𝑗≤𝑘 𝑒𝑖,𝑗 )| = 1, that is, for every color 𝑖, all edges of a color combination involving 𝑖 have the same vertex of 

color 𝑖 as endpoint. This implies that 
⋃
𝑒∈𝑋 𝑒 is a multicolored clique in 𝐻 .

Before we proceed, we show some further properties of 𝜆. First, let us focus on the labels on edges of the edge selection gadgets.

Claim 6. For all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, 𝓁 ∈ [𝑚], and 𝓁′ ∈ [4𝑛] we have that 𝜆({𝑢𝓁
𝓁′−1, 𝑢

𝓁
𝓁′
}) = (𝑖 + 𝑗) ⋅ (2𝑛 ⋅ (𝜎𝑖,𝑗 (𝓁))2 + 18𝑛+ 6) + 2𝓁′ + 2, where 

𝑢𝓁
𝓁′−1 and 𝑢𝓁

𝓁′
belong to the edge selection gadget for 𝑖, 𝑗 and 𝜎𝑖,𝑗 is the permutation of color combination 𝑖, 𝑗.

Proof of Claim. Let 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 and 𝓁 ∈ [𝑚]. By Claim 5 we know that a fastest temporal path from 𝑥𝜎𝑖,𝑗 (𝓁) (of the edge selection 
gadget for 𝑖, 𝑗) to 𝑣⋆⋆

𝑖,𝑗
visits 𝑣⋆

𝑖,𝑗
as its second vertex, and 𝑢𝓁4𝑛 (of the edge selection gadget for 𝑖, 𝑗) as its second last vertex. Furthermore, 

by Claim 4 we have that 𝜆({𝑥𝜎𝑖,𝑗 (𝓁), 𝑣
⋆
𝑖,𝑗
}) = (𝑖 + 𝑗) ⋅ (2𝑛 ⋅ (𝜎𝑖,𝑗 (𝓁))2 + 18𝑛 + 2) and by Claim 5 we have that 𝜆({𝑢𝓁4𝑛, 𝑣

⋆⋆
𝑖,𝑗

}) = (𝑖 +
𝑗) ⋅ (2𝑛 ⋅ (𝜎𝑖,𝑗 (𝓁))2 + 18𝑛 + 2) + 8𝑛 + 4. It follows that there exist a temporal path 𝑃 from 𝑣⋆

𝑖,𝑗
to 𝑢𝓁4𝑛 that starts at 𝑣⋆

𝑖,𝑗
later than 

(𝑖+ 𝑗) ⋅ (2𝑛 ⋅ (𝜎𝑖,𝑗 (𝓁))2 + 18𝑛+ 6) and arrives at 𝑢𝓁4𝑛 earlier than (𝑖+ 𝑗) ⋅ (2𝑛 ⋅ (𝜎𝑖,𝑗 (𝓁))2 + 18𝑛+ 6) + 8𝑛+ 4. Hence, the temporal path 𝑃
has duration at most 8𝑛+ 3.

We investigate the temporal path 𝑃 from its destination 𝑢𝓁4𝑛 back to its start vertex 𝑣⋆
𝑖,𝑗

. Consider the neighbors of 𝑢𝓁4𝑛 that are 
different from 𝑣⋆⋆

𝑖,𝑗
. By Claim 2 we have that all edges from 𝑢𝓁4𝑛 to neighbors of 𝑢𝓁4𝑛 that are vertices of connector gadgets have a label 
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of at least 𝑛9. Hence, 𝑃 does not visit any of those neighbors. Next, consider neighbors of 𝑢𝓁4𝑛 in verification gadgets. Assume 𝑢𝓁4𝑛
has a neighbor in the verification gadget of color 𝑖′ for some 𝑖′ ∈ [𝑘]. Then this neighbor is vertex 𝑏𝑖

′ ,𝑗,𝓁
5𝑛 . Note that if 𝑃 visits 𝑏𝑖

′ ,𝑗,𝓁
5𝑛 , 

then it also visits all of {𝑏𝑖
′ ,𝑗,𝓁
𝓁′

∶ 𝓁′ ∈ [5𝑛]}, since all these vertices have degree two. Now consider the second connector gadget of 
a verification gadget 𝑖′ with sets 𝐴,𝐵, we have that all vertices {𝑏𝑖

′ ,𝑗,𝓁
𝓁′

∶ 𝓁′ ∈ [5𝑛]} are contained in 𝐴 and are not contained in 𝐵. 
Hence, we have that all non-adjacent pairs of vertices in {𝑏𝑖

′ ,𝑗,𝓁
𝓁′

∶ 𝓁′ ∈ [5𝑛]} are on duration 3 apart (see duration nr. 4), and that 
|𝜆({𝑏𝑖′ ,𝑗,𝓁

𝓁′
, 𝑏
𝑖′ ,𝑗,𝓁
𝓁′+1}) − 𝜆({𝑏

𝑖′ ,𝑗,𝓁
𝓁′+1 , 𝑏

𝑖′ ,𝑗,𝓁
𝓁′+2})| ≥ 2 for all 𝓁′ ∈ [5𝑛 − 2]. It follows that 𝑃 would have a duration larger than 8𝑛 + 3. We can 

conclude that 𝑃 does not visit 𝑏𝑖
′ ,𝑗,𝓁
5𝑛 . It follows that 𝑃 visits 𝑢𝓁4𝑛−1. Here, we can make an analogous investigation. Additionally, we 

have to consider the case that 𝑃 visits a neighbor of 𝑢𝓁4𝑛−1 in verification gadget of color 𝑖′ for some 𝑖′ ∈ [𝑘] that is vertex 𝑎𝑖
′ ,𝑗,𝓁
5𝑛 . 

However, we can exclude this by a similar argument as above.

By repeating the above arguments, we can conclude that 𝑃 visits (exactly) all vertices in {𝑢𝓁
𝓁′

∶ 0 ≤ 𝓁′ ≤ 4𝑛} and 𝑣⋆
𝑖,𝑗

. Consider 
the second connector gadget of the edge selection gadget of 𝑖, 𝑗 with set 𝐴 and 𝐵. Note that all vertices visited by 𝑃 are contained 
in 𝐴 ⧵𝐵. It follows that all pairs of non-adjacent vertices visited by 𝑃 are on duration 3 apart (see duration nr. 4). In particular, we 
have 𝑑(𝑢𝓁

𝓁′−1, 𝑢
𝓁
𝓁′+1) = 3 for all 𝓁′ ∈ [4𝑛−1] and 𝑑(𝑣⋆

𝑖,𝑗
, 𝑢𝓁1 ) = 3 (see duration nr. 4). If follows that for every 𝓁′ ∈ [4𝑛−1] we have that 

𝜆({𝑢𝓁
𝓁′
, 𝑢𝓁

𝓁′+1}) − 𝜆({𝑢
𝓁
𝓁′−1, 𝑢

𝓁
𝓁′
}) ≥ 2 and 𝜆({𝑢𝓁1 , 𝑢

𝓁
2 }) − 𝜆({𝑣

⋆
𝑖,𝑗
, 𝑢𝓁1 }) ≥ 2.

By investigating the sets 𝐴,𝐵 of the first connector gadget of the edge selection gadget of 𝑖, 𝑗, we get that 𝑑(𝑥𝜎𝑖,𝑗 (𝓁), 𝑢
𝓁
1 ) = 3 (see 

duration nr. 4) and hence 𝜆({𝑣⋆
𝑖,𝑗
, 𝑢𝓁1 })−𝜆({𝑥𝜎𝑖,𝑗 (𝓁), 𝑣

⋆
𝑖,𝑗
}) ≥ 2. Furthermore, we get that 𝑑(𝑢𝓁4𝑛−1, 𝑣

⋆⋆
𝑖,𝑗

) = 3 (see duration nr. 4) and hence 
𝜆({𝑣⋆⋆

𝑖,𝑗
, 𝑢𝓁4𝑛}) − 𝜆({𝑢

𝓁
4𝑛−1, 𝑢

𝓁
4𝑛}) ≥ 2. Considering that 𝑃 visits 4𝑛 + 2 vertices, we have that all mentioned inequalities of differences 

of labels have to be equalities, otherwise 𝑃 has a duration larger than 8𝑛 + 3 or we have that 𝜆({𝑣⋆
𝑖,𝑗
, 𝑢𝓁1 }) − 𝜆({𝑥𝜎𝑖,𝑗 (𝓁), 𝑣

⋆
𝑖,𝑗
}) < 2 or 

𝜆({𝑣⋆⋆
𝑖,𝑗
, 𝑢𝓁4𝑛})−𝜆({𝑢

𝓁
4𝑛−1, 𝑢

𝓁
4𝑛}) < 2. Since by Claims 4 and 5 the labels 𝜆({𝑥𝜎𝑖,𝑗 (𝓁), 𝑣

⋆
𝑖,𝑗
}) and 𝜆({𝑣⋆⋆

𝑖,𝑗
, 𝑢𝓁4𝑛}) are determined, then also all 

labels of edges traversed by 𝑃 are determined and the claim follows. ⋄

Next, we investigate the labels of the verification gadgets.

Claim 7. For all 𝑖∈ [𝑘] we have that 𝜆({𝑦𝑖, 𝑣𝑖0}) = 𝑛
8.

Proof of Claim. Let 𝑤∈ 𝑊̂ denote the neighbor of 𝑦𝑖 in the alignment gadget. Note that we have 𝑑(𝑤⋆,𝑦𝑖) = 𝑛8 − 1. It follows that 
𝜆({𝑤,𝑦𝑖}) = 𝑛8 − 1 (see duration nr. 16). Furthermore, we have that 𝑑(𝑤,𝑣𝑖0) = 2 (see duration nr. 16) and note that 𝑦𝑖 has degree 2. 
It follows that 𝜆({𝑦𝑖, 𝑣𝑖0}) = 𝑛

8. ⋄

Claim 8. For all 1< 𝑖 ≤ 𝑘 and all 𝓁 ∈ [𝑚] we have that 𝜆({𝑣𝑖0, 𝑎
𝑖,1,𝓁
1 }) ≤ 𝑛8 or 𝜆({𝑣𝑖0, 𝑎

𝑖,1,𝓁
1 }) ≥ 𝑛9 +2. For 𝑖= 1 we have that 𝜆({𝑣𝑖0, 𝑢̂

𝑖
1}) ≤ 𝑛

8

or 𝜆({𝑣𝑖0, 𝑢̂
𝑖
1}) ≥ 𝑛

9 + 2.

Proof of Claim. Let 1< 𝑖 ≤ 𝑘 and 𝓁 ∈ [𝑚]. Assume that 𝑛8 < 𝜆({𝑣𝑖0, 𝑎
𝑖,1,𝓁
1 }) < 𝑛9 + 2. Then, since by Claim 7 we have 𝜆({𝑦𝑖, 𝑣𝑖0}) = 𝑛

8, 
there is a temporal path from 𝑤⋆ to 𝑎𝑖,1,𝓁1 via 𝑣𝑖0 that arrives at 𝑎𝑖,1,𝓁1 strictly earlier than 𝑛9 +2. However, we have 𝑑(𝑤⋆,𝑎𝑖,1,𝓁1 ) = 𝑛9 +2
(see duration nr. 15), a contradiction. The argument for the case where 𝑖 = 1 is analogous. ⋄

Claim 9. For all 1≤ 𝑖 < 𝑘 and all 𝓁 ∈ [𝑚] we have that 𝜆({𝑣𝑖
𝑘
, 𝑏
𝑖,𝑘,𝓁
1 }) ≤ 𝑛9 + 2. For 𝑖= 𝑘 we have that 𝜆({𝑣𝑖

𝑘
, 𝑢̂𝑖13𝑛+1}) ≤ 𝑛

9 + 2.

Proof of Claim. Let 1 ≤ 𝑖 < 𝑘 and 𝓁 ∈ [𝑚]. Consider the first connector gadget of verification gadget for color 𝑖 with vertices 
𝑣̂0, 𝑣̂

′
0, 𝑣̂1, 𝑣̂2, 𝑣̂3, 𝑣̂

′
3 and sets 𝐴,𝐵. Recall that 𝑣𝑖

𝑘
∈ 𝐵 and hence we have that 𝑑(𝑣̂0, 𝑣𝑖𝑘) = ∞. Furthermore, we have that 𝑏𝑖,𝑘,𝓁1 ∉ 𝐵

and hence 𝑑(𝑣̂0, 𝑏
𝑖,𝑘,𝓁
1 ) = 3 (see duration nr. 3). By Claim 2 and the fact that 𝑑(𝑤⋆, 𝑣̂0) = 𝑛9 (see duration nr. 19) we have that both 

edges incident with 𝑣̂0 have label 𝑛9. It follows that a fastest temporal path from 𝑣̂0 to 𝑏𝑖,𝑘,𝓁1 arrives at 𝑏𝑖,𝑘,𝓁1 at time 𝑛9 + 2. Now 
assume for contradiction that 𝜆({𝑣𝑖

𝑘
, 𝑏
𝑖,𝑘,𝓁
1 }) > 𝑛9 + 2. Then there exists a temporal walk from 𝑣̂0 to 𝑣𝑖

𝑘
via 𝑏𝑖,𝑘,𝓁1 , a contradiction to 

𝑑(𝑣̂0, 𝑣𝑖𝑘) =∞. The argument for the case where 𝑖 = 𝑘 is analogous. ⋄

Now we are ready to prove for all 𝑖 ∈ [𝑘] that |(⋂1≤𝑗<𝑖 𝑒𝑗,𝑖)∩ (
⋂
𝑖<𝑗≤𝑘 𝑒𝑖,𝑗 )| = 1. Assume for contradiction that for some color 𝑖 ∈ [𝑘]

we have that |(⋂1≤𝑗<𝑖 𝑒𝑗,𝑖) ∩ (
⋂
𝑖<𝑗≤𝑘 𝑒𝑖,𝑗 )| ≠ 1. Consider the verification gadget for color 𝑖. Recall that 𝑑(𝑣𝑖0, 𝑣

𝑖
𝑘
) = 𝑘(20𝑛+ 6) + 6𝑛− 1

(see duration nr. 12). Let 𝑃 be a fastest temporal path from 𝑣𝑖0 to 𝑣𝑖
𝑘
. We first argue that 𝑃 cannot visit any vertex of a connector 

gadget or the alignment gadget.

Claim 10. Let 𝑖 ∈ [𝑘]. Let 𝑃 be a fastest temporal path from 𝑣𝑖0 to 𝑣𝑖
𝑘
. Then 𝑃 does not visit any vertex of a connector gadget.

Proof of Claim. Assume for contradiction that 𝑃 visits a vertex of a connector gadget. Then by Claim 2 we have that the arrival 
time of 𝑃 is at least 𝑛9. By Claim 2 and Claim 9 we have that the arrival time of 𝑃 is at most 𝑛9 + 2. This means that the second 
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vertex visited by 𝑃 cannot be a vertex from a connector gadget, because by Claim 2 this would imply 𝑑(𝑣𝑖0, 𝑣
𝑖
𝑘
) ≤ 2, a contradiction 

to duration nr. 12. Now we can deduce with Claim 8 that 𝑃 must have a starting time of at most 𝑛8 . It follows that the arrival time 
of 𝑃 must be smaller than 𝑛9, a contradiction to the assumption that 𝑃 visits a vertex of a connector gadget. ⋄

Claim 11. Let 𝑖 ∈ [𝑘]. Let 𝑃 be a fastest temporal path from 𝑣𝑖0 to 𝑣𝑖
𝑘
. Then 𝑃 does not visit any vertex of the alignment gadget.

Proof of Claim. Note that 𝑃 starts outside the alignment gadget. This means that if 𝑃 visits a vertex of the alignment gadget, then 
the first vertex of the alignment gadget visited by 𝑃 is a neighbor of 𝑤⋆. However, these vertices have degree two and the edge to 
𝑤⋆ has label one. It follows that 𝑃 cannot continue from the vertex of the alignment gadget, a contradiction. ⋄

It follows that the second vertex visited by 𝑃 is a vertex 𝑎𝑖,1,𝓁1 for some 𝓁 ∈ [𝑚] or vertex 𝑢̂𝑖1 if 𝑖 = 1. In the former case, 𝑃 has to 
follow the path segment consisting of vertices in {𝑎𝑖,1,𝓁

𝓁′
∶ 𝓁′ ∈ [5𝑛]} until it reaches the edge selection gadget of color combination 

1, 𝑖. From there it can reach vertex 𝑣𝑖1 by traversing some path segment consisting of vertices {𝑏𝑖,1,𝓁
′

𝓁′′
∶ 𝓁′′ ∈ [5𝑛]} for some 𝓁′ ∈ [𝑚]. 

Alternatively, it can reach vertex 𝑣1
𝑖−1 or 𝑣1

𝑖
by traversing some path segment consisting of vertices {𝑎1,𝑖,𝓁

′

𝓁′′
∶ 𝓁′′ ∈ [5𝑛]} for some 

𝓁′ ∈ [𝑚] or {𝑏1,𝑖,𝓁
′

𝓁′′
∶ 𝓁′′ ∈ [5𝑛]} for some 𝓁′ ∈ [𝑚], respectively. In the latter case (𝑖 = 1), the temporal path 𝑃 has to follow the path 

segment consisting of vertices in {𝑢̂𝑖𝓁 ∶ 𝓁 ∈ [13𝑛+ 1]} until it reaches 𝑣𝑖1. More generally, we can make the following observation.

Claim 12. Let 𝑖, 𝑗 ∈ {0,1,… , 𝑘}. Let 𝑃 be a temporal path starting at 𝑣𝑖
𝑗

and visiting at most 13𝑛+ 1 vertices and no vertex of a connector 
gadget or the alignment gadget. Then 𝑃 cannot visit vertices in {𝑣𝑖′

𝑗′
∶ 𝑖′, 𝑗′ ∈ {0,1,… , 𝑘}} ⧵ {𝑣𝑖

𝑗−1, 𝑣
𝑖
𝑗
, 𝑣𝑖
𝑗+1, 𝑣

𝑗

𝑖−1, 𝑣
𝑗

𝑖
, 𝑣
𝑗+1
𝑖−1 , 𝑣

𝑗+1
𝑖

}.

Proof of Claim. Consider the edge selection gadget of color combination 𝑖′, 𝑗′ for some 𝑖′, 𝑗′ ∈ [𝑘] and let 𝑢𝓁
𝓁′

be a vertex of that 
gadget. Disregarding connections via connector gadgets and the alignment gadget, we have that 𝑢𝓁

𝓁′
is (potentially) connected to the 

verification gadget for color 𝑖′ and the verification gadget of color 𝑗′ . More specifically, by construction of 𝐺, we have that 𝑢𝓁
𝓁′

is 
potentially connected to

• vertex 𝑣𝑖′
𝑗′−1 by a path along vertices {𝑎𝑖

′ ,𝑗′ ,𝓁
𝓁′′

∶ 𝓁′′ ∈ [5𝑛]},

• vertex 𝑣𝑖′
𝑗′

by a path along vertices {𝑏𝑖
′ ,𝑗′ ,𝓁
𝓁′′

∶ 𝓁′′ ∈ [5𝑛]},

• vertex 𝑣𝑗
′

𝑖′−1 by a path along vertices {𝑎𝑗
′ ,𝑖′ ,𝓁
𝓁′′

∶ 𝓁′′ ∈ [5𝑛]}, and

• vertex 𝑣𝑗
′

𝑖′
by a path along vertices {𝑏𝑗

′ ,𝑖′ ,𝓁
𝓁′′

∶ 𝓁′′ ∈ [5𝑛]}.

Furthermore, by construction of 𝐺, we have that the duration of a fastest path from 𝑢𝓁
𝓁′

to any 𝑣𝑖′′
𝑗′′

with 𝑖′′, 𝑗′′ ∈ {0,1,… , 𝑘} not 
mentioned above is at least 10𝑛 (disregarding edges incident with connector gadgets or the alignment gadget).

Now consider 𝑣𝑖
𝑗

and assume 𝑖 < 𝑗 (𝑖 > 𝑗). This vertex is (if 𝑗 ≠ 𝑖− 1 and 𝑗 ≠ 𝑘) connected to some vertex 𝑢𝓁
𝓁′

in the edge selection 
gadget for color combination 𝑖, 𝑗 + 1 (𝑗 + 1, 𝑖) via a path along vertices {𝑎𝑖,𝑗,𝓁

𝓁′′
∶ 𝓁′′ ∈ [5𝑛]}. Furthermore, 𝑣𝑖

𝑗
is (if 𝑗 ≠ 0 and 𝑗 ≠ 𝑖) 

connected to some vertex 𝑢𝓁′
𝓁′′′

in the edge selection gadget for color combination 𝑖, 𝑗 (𝑗, 𝑖) via a path along vertices {𝑏𝑖,𝑗,𝓁
′

𝓁′′
∶ 𝓁′′ ∈ [5𝑛]}.

We can conclude that 𝑣𝑖
𝑗

can reach a vertex 𝑢𝓁
𝓁′

of the edge selection gadget for 𝑖, 𝑗 + 1 (or 𝑗 + 1, 𝑖) and a vertex 𝑢𝓁′
𝓁′′′

of the edge 
selection gadget for color combination 𝑖, 𝑗 (or 𝑗, 𝑖), each along paths of length at least 5𝑛. From 𝑢𝓁

𝓁′
and 𝑢𝓁′

𝓁′′′
we have that any other 

vertex of the edge selection gadget for 𝑖, 𝑗+1 (or 𝑗+1, 𝑖) and the edge selection gadget for color combination 𝑖, 𝑗 (or 𝑗, 𝑖), respectively, 
can be reached by a path of length at most 3𝑛. Together with the observation made in the beginning of the proof, we can conclude 
that 𝑣𝑖

𝑗
can potentially reach any vertex in {𝑣𝑖

𝑗−1, 𝑣
𝑖
𝑗
, 𝑣𝑖
𝑗+1, 𝑣

𝑗

𝑖−1, 𝑣
𝑗

𝑖
, 𝑣
𝑗+1
𝑖−1 , 𝑣

𝑗+1
𝑖

} by a path that visits at most 13𝑛+ 1 vertices.

Lastly, consider the case that 𝑗 = 𝑖 − 1 or 𝑗 = 𝑖. Then we have that 𝑣𝑖
𝑖−1 and 𝑣𝑖

𝑖
are connected via a path inside the verification 

gadget for color 𝑖, visiting the 13𝑛+ 1 vertices in {𝑢̂𝑖𝓁 ∶ 𝓁 ∈ [13𝑛+ 1]}. The claim follows. ⋄

Furthermore, we can make the following observation on the duration of the temporal paths characterized in Claim 12.

Claim 13. Let 𝑖, 𝑗 ∈ {0,1,… , 𝑘}. Let 𝑃 be a temporal path from 𝑣𝑖
𝑗

to a vertex in {𝑣𝑖
𝑗−1, 𝑣

𝑖
𝑗
, 𝑣𝑖
𝑗+1, 𝑣

𝑗

𝑖−1, 𝑣
𝑗

𝑖
, 𝑣
𝑗+1
𝑖−1 , 𝑣

𝑗+1
𝑖

} and visiting no vertex 
of a connector gadget or the alignment gadget. Then 𝑃 has duration at least 20𝑛.

Proof of Claim. As argued in the proof of Claim 12, a temporal path 𝑃 from 𝑣𝑖
𝑗

to a vertex in {𝑣𝑖
𝑗−1, 𝑣

𝑖
𝑗
, 𝑣𝑖
𝑗+1, 𝑣

𝑗

𝑖−1, 𝑣
𝑗

𝑖
, 𝑣
𝑗+1
𝑖−1 , 𝑣

𝑗+1
𝑖

} has to 

either traverse two segments of 5𝑛 vertices in {𝑎𝑖
′ ,𝑗′ ,𝓁
𝓁′

∶ 𝓁′ ∈ [5𝑛]} or {𝑏𝑖
′ ,𝑗′ ,𝓁
𝓁′

∶ 𝓁′ ∈ [5𝑛]} for some 𝓁 ∈ [𝑚] and 𝑖′, 𝑗′ ∈ {𝑖−1, 𝑖, 𝑗, 𝑗 +1}
or a segment of the 13𝑛+ 1 vertices in {𝑢̂𝑖𝓁 ∶ 𝓁 ∈ [13𝑛+ 1]}. We analyze the former case first.

Consider the second connector gadget of a verification gadget 𝑖′ with sets 𝐴,𝐵, we have that all vertices {𝑎𝑖
′ ,𝑗′ ,𝓁
𝓁′

∶ 𝓁′ ∈ [5𝑛], 𝑗′ ∈

[𝑘] ⧵ {𝑖′}} ∪ {𝑏𝑖
′ ,𝑗′ ,𝓁
𝓁′

∶ 𝓁′ ∈ [5𝑛], 𝑗′ ∈ [𝑘] ⧵ {𝑖′}} are contained in 𝐴 and are not contained in 𝐵. It follows that all non-adjacent 
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pairs of vertices in {𝑎𝑖
′ ,𝑗′ ,𝓁
𝓁′

∶ 𝓁′ ∈ [5𝑛], 𝑗′ ∈ [𝑘] ⧵ {𝑖′}} ∪ {𝑏𝑖
′ ,𝑗′ ,𝓁
𝓁′

∶ 𝓁′ ∈ [5𝑛], 𝑗′ ∈ [𝑘] ⧵ {𝑖′}} are on duration 3 apart (see duration 
nr. 4). It follows that |𝜆({𝑎𝑖′ ,𝑗′ ,𝓁

𝓁′
, 𝑎
𝑖′ ,𝑗′ ,𝓁
𝓁′+1 }) − 𝜆({𝑎𝑖

′ ,𝑗′ ,𝓁
𝓁′+1 , 𝑎

𝑖′ ,𝑗′ ,𝓁
𝓁′+2 })| ≥ 2 for all 𝓁′ ∈ [5𝑛− 2] and 𝑗′ ∈ [𝑘] ⧵ {𝑖′}. Analogously, we have that 

|𝜆({𝑏𝑖′ ,𝑗′ ,𝓁
𝓁′

, 𝑏
𝑖′ ,𝑗′ ,𝓁
𝓁′+1 }) − 𝜆({𝑏𝑖

′ ,𝑗′ ,𝓁
𝓁′+1 , 𝑏

𝑖′ ,𝑗′ ,𝓁
𝓁′+2 })| ≥ 2 for all 𝓁′ ∈ [5𝑛 − 2] and 𝑗′ ∈ [𝑘] ⧵ {𝑖′}. It follows that two segments of 5𝑛 vertices in 

{𝑎𝑖
′ ,𝑗′ ,𝓁
𝓁′

∶ 𝓁′ ∈ [5𝑛]} or {𝑏𝑖
′ ,𝑗′ ,𝓁
𝓁′

∶ 𝓁′ ∈ [5𝑛]} for some 𝓁 ∈ [𝑚] and 𝑖′, 𝑗′ ∈ {𝑖− 1, 𝑖, 𝑗, 𝑗 + 1} traversed by 𝑃 both have duration 10𝑛 and 
hence 𝑃 has duration at least 20𝑛.

In the latter case, where 𝑃 traverses a segment of the 13𝑛+1 vertices in {𝑢̂𝑖𝓁 ∶ 𝓁 ∈ [13𝑛+1]}, we can make an analogous argument, 
since all vertices in {𝑢̂𝑖𝓁 ∶ 𝓁 ∈ [13𝑛+ 1]} are contained in the set 𝐴 of the second connector gadget of the verification gadget of color 
𝑖 but not in the set 𝐵 of that connector gadget. ⋄

Recall that 𝑃 denotes a fastest temporal path from 𝑣𝑖0 to 𝑣𝑖
𝑘

and that 𝑑(𝑣𝑖0, 𝑣
𝑖
𝑘
) = 𝑘(20𝑛 + 6) + 6𝑛 − 1 (see duration nr. 12). By 

Claims 10 to 12 we have that 𝑃 needs to visit at least one vertex in {𝑣𝑖′
𝑗′
∶ 𝑖′, 𝑗′ ∈ {0,1,… , 𝑘}} ⧵ {𝑣𝑖0, 𝑣

𝑖
𝑘
}. Next, we analyze which 

vertices in this set are visited by 𝑃 .

Claim 14. Let 𝑖 ∈ [𝑘]. Let 𝑃 be a fastest temporal path from 𝑣𝑖0 to 𝑣𝑖
𝑘
. Then 𝑃 visits all vertices in {𝑣𝑗

𝑖
∶ 0 ≤ 𝑗 ≤ 𝑘} and no vertex in 

{𝑣𝑖′
𝑗′
∶ 𝑖′, 𝑗′ ∈ {0,1,… , 𝑘}} ⧵ {𝑣𝑗

𝑖
∶ 0 ≤ 𝑗 ≤ 𝑘}. Furthermore, 𝑃 visits the vertices in order 𝑣𝑖0, 𝑣

𝑖
1, 𝑣

𝑖
2,… , 𝑣

𝑖
𝑘−1, 𝑣

𝑖
𝑘
.

Proof of Claim. Let 𝑋 ⊆ {𝑣𝑖′
𝑗′
∶ 𝑖′, 𝑗′ ∈ {0,1,… , 𝑘}} denote the set of vertices in {𝑣𝑖′

𝑗′
∶ 𝑖′, 𝑗′ ∈ {0,1,… , 𝑘}} that are visited by 𝑃 . By 

Claims 12 and 13 we have that |𝑋| ≤ 𝑘 + 1, since otherwise the duration of 𝑃 would be at least 20𝑛(𝑘 + 1) > 𝑘(20𝑛 + 6) + 6𝑛 − 1, a 
contradiction to duration nr. 12.

To prove the claim, we use the notion of a potential 𝑝𝑖 with respect to 𝑖 of a vertex 𝑣𝑖′
𝑗

. We say that the first potential of vertex 𝑣𝑖′
𝑗

with respect to 𝑖 is 𝑝𝑖(𝑣𝑖′
𝑗
) = 𝑖′ + 𝑗 − 𝑖. The temporal path 𝑃 starts at vertex 𝑣𝑖0 with 𝑝𝑖(𝑣𝑖0) = 0, and ends at vertex 𝑣𝑖

𝑘
with 𝑝𝑖(𝑣𝑖

𝑘
) = 𝑘.

Assume the path 𝑃 is at some vertex 𝑣𝑖′
𝑗

with 𝑝𝑖1(𝑣
𝑖′
𝑗
) = 𝑖′ + 𝑗 − 𝑖. By Claim 12 we have that the next vertex in {𝑣𝑖′

𝑗′
∶ 𝑖′, 𝑗′ ∈

{0,1,… , 𝑘}} visited by 𝑃 is some 𝑣𝑖′′
𝑗′
∈ {𝑣𝑖′

𝑗−1, 𝑣
𝑖′
𝑗
, 𝑣𝑖

′

𝑗+1, 𝑣
𝑗

𝑖′−1, 𝑣
𝑗

𝑖
, 𝑣
𝑗+1
𝑖′−1, 𝑣

𝑗+1
𝑖′

}. We can observe that |𝑝𝑖(𝑣𝑖′
𝑗
)−𝑝𝑖(𝑣𝑖′′

𝑗′
)| ≤ 1, that is, the first 

potential changes at most by one when 𝑃 goes from one vertex in {𝑣𝑖′
𝑗′
∶ 𝑖′, 𝑗′ ∈ {0,1,… , 𝑘}} to the next one. Since |𝑋| ≤ 𝑘+1 we and 

𝑝𝑖(𝑣𝑖
𝑘
)−𝑝𝑖(𝑣𝑖0) = 𝑘 have that the potential has to increase by exactly one every time 𝑃 goes from one vertex in {𝑣𝑖′

𝑗′
∶ 𝑖′, 𝑗′ ∈ {0,1,… , 𝑘}}

to the next one. We can conclude that |𝑋| = 𝑘+ 1. Furthermore, we have that if the path 𝑃 is at some vertex 𝑣𝑖′
𝑗

, the next vertex in 
{𝑣𝑖′
𝑗′
∶ 𝑖′, 𝑗′ ∈ {0,1,… , 𝑘}} visited by 𝑃 is either 𝑣𝑖′

𝑗+1 or 𝑣𝑗+1
𝑖′

.

By Claim 13 we have that the temporal path segments from 𝑣𝑖′
𝑗

to 𝑣𝑖′
𝑗+1 and 𝑣𝑗+1

𝑖′
, respectively, have duration at least 20𝑛. However, 

for the temporal path from 𝑣𝑖′
𝑗

to 𝑣𝑗+1
𝑖′

(with 𝑗 ≠ 𝑖′ − 1) we can obtain a larger lower bound. As argued in the proof of Claim 11, a 

temporal path segment from 𝑣𝑖′
𝑗

to 𝑣𝑗+1
𝑖′

has to either traverse two segments of 5𝑛 vertices in {𝑎𝑖
′ ,𝑗′ ,𝓁
𝓁′

∶ 𝓁′ ∈ [5𝑛]} or {𝑏𝑖
′ ,𝑗′ ,𝓁
𝓁′

∶ 𝓁′ ∈ [5𝑛]}
for some 𝓁 ∈ [𝑚] and 𝑖′, 𝑗′ ∈ {𝑖 − 1, 𝑖, 𝑗, 𝑗 + 1}. More precisely, the temporal path segment has to traverse part of the edge selection 
gadget of color combination 𝑖′, 𝑗 + 1. To this end, it traverses the 5𝑛 vertices in {𝑎𝑖

′ ,𝑗+1,𝓁
𝓁′′

∶ 𝓁′′ ∈ [5𝑛]} for some 𝓁 ∈ [𝑚]. Then it 
traverses some vertices in the edge selection gadget, and then it traverses the 5𝑛 vertices in {𝑏𝑗+1,𝑖

′ ,𝓁′

𝓁′′
∶ 𝓁′′ ∈ [5𝑛]} for some 𝓁′ ∈ [𝑚].

By construction of 𝐺, the first vertex of the edge selection gadget visited by the path segment (after traversing vertices in {𝑎𝑖
′ ,𝑗+1,𝓁
𝓁′

∶
𝓁′′ ∈ [5𝑛]}) is some vertex 𝑢𝓁

𝓁′′
with 𝓁′′ ∈ {0,1,… ,4𝑛}. The last vertex of the edge selection gadget visited by the path segment is 

(before traversing the vertices in {𝑏𝑗+1,𝑖
′ ,𝓁′

𝓁′′′′
∶ 𝓁′′′′ ∈ [5𝑛]}) some vertex 𝑢𝓁′

𝓁′′′
with 𝓁′′′ ∈ {0,1,… ,4𝑛}. By construction of 𝐺, the duration 

of a fastest path between 𝑢𝓁
𝓁′′

and 𝑢𝓁′
𝓁′′′

(in 𝐺) is at least 3𝑛. Investigating the second connector gadget of the edge selection gadget 
for 𝑖′, 𝑗 + 1 we can see that a temporal path from 𝑢𝓁

𝓁′′
and 𝑢𝓁′

𝓁′′′
has duration at least 6𝑛.

It follows that the temporal path segment from 𝑣𝑖′
𝑗

to 𝑣𝑗+1
𝑖′

(with 𝑗 ≠ 𝑖′ − 1) has duration at least 26𝑛. Furthermore, recall that 𝑃
starts at 𝑣𝑖0 and ends at 𝑣𝑖

𝑘
. We have that if 𝑃 contains a path segment from some 𝑣𝑖′

𝑗
to 𝑣𝑗+1

𝑖′
some (with 𝑗 ≠ 𝑖′ − 1), then 𝑃 visits a 

vertex 𝑣𝑖′′
𝑗′

with 𝑖′′ ≠ 𝑖. Hence, it needs to contain at least one additional path segment from some 𝑣𝑖′
𝑗

to some 𝑣𝑗+1
𝑖′

(with 𝑗 ≠ 𝑖 − 1). 
However, then we have that the duration of 𝑃 is at least 20𝑘𝑛+ 12𝑛 > 𝑘(20𝑛+ 6) + 6𝑛− 1, a contradiction to duration nr. 12.

We can conclude that 𝑃 only contains temporal path segments from 𝑣𝑖
𝑗−1 to 𝑣𝑖

𝑗
for 𝑗 ∈ [𝑘] and the claim follows. ⋄

Now we have by Claims 12 and 14 that we can divide 𝑃 into 𝑘 segments, the subpaths from 𝑣𝑖
𝑗−1 to 𝑣𝑖

𝑗
for 𝑗 ∈ [𝑘]. We show that 

all subpaths except the one from 𝑣𝑖
𝑖−1 to 𝑣𝑖

𝑖
have duration 20𝑛+ 5. The subpath from 𝑣𝑖

𝑖−1 to 𝑣𝑖
𝑖

has duration 26𝑛+ 5.

Claim 15. Let 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑘] ⧵ {𝑖}. Let 𝑃 be a temporal path from 𝑣𝑖
𝑗−1 to 𝑣𝑖

𝑗
that does not visit vertices from connector gadgets and 

the alignment gadget. If 𝑃 has duration at most 20𝑛+ 5, then it visits exactly two vertices 𝑢𝓁
𝓁′−1, 𝑢

𝓁
𝓁′

with 𝓁 ∈ [𝑚], and 𝓁′ ∈ [4𝑛] of the edge 
selection gadget for color combination 𝑖, 𝑗 (or 𝑗, 𝑖).
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Proof of Claim. By the construction of 𝐺 (and as also argued in the proofs of Claims 12 and 13), a temporal path 𝑃 with duration 
at most 20𝑛 + 5 that does not visit vertices from connector gadgets and the alignment gadget from 𝑣𝑖

𝑗−1 to 𝑣𝑖
𝑗

has to first traverse a 
segment of 5𝑛 vertices in {𝑎𝑖,𝑗−1,𝓁

𝓁′
∶ 𝓁′ ∈ [5𝑛]} and then a segment of 5𝑛 vertices {𝑏𝑖,𝑗,𝓁

𝓁′
∶ 𝓁′ ∈ [5𝑛]} for some 𝓁 ∈ [𝑚]. By construction 

of 𝐺, the two vertices visited in the edge selection gadget for color combination 𝑖, 𝑗 (or 𝑗, 𝑖) are 𝑢𝓁
𝓁′−1 and 𝑢𝓁

𝓁′
for some 𝓁′ ∈ [4𝑛]. By 

inspecting the connector gadgets in an analogous way as in the proof of Claim 13 we can deduce that all consecutive edges traversed 
by 𝑃 must have labels that differ by at least 2. If follows that if all consecutive edges have labels that differ by exactly two, then 𝑃
has duration 20𝑛+ 5. ⋄

Claim 16. Let 𝑖 ∈ [𝑘]. Let 𝑃 be a temporal path from 𝑣𝑖
𝑖−1 to 𝑣𝑖

𝑖
that does not visit vertices from connector gadgets and the alignment gadget. 

Then 𝑃 has duration at least 26𝑛+ 5.

Proof of Claim. By construction of 𝐺 we have that 𝑣𝑖
𝑖−1 and 𝑣𝑖

𝑖
are connected via a path inside the verification gadget for color 𝑖, 

visiting the 13𝑛+1 vertices in {𝑢̂𝑖𝓁 ∶ 𝓁 ∈ [13𝑛+1]}. Assume 𝑃 follows this path. By inspecting the connector gadgets of the verification 
gadget of color 𝑖, we can see that all consecutive edges traversed by 𝑃 must have labels that differ by at least two. It follows that 𝑃
has duration at least 26𝑛+5. By construction of 𝐺 we have that if 𝑃 does not follow the vertices in {𝑢̂𝑖𝓁 ∶ 𝓁 ∈ [13𝑛+1]} it has to visit 
at least three different edge selection gadgets: The one of color combination 𝑖−1, 𝑖, then one of 𝑖−1, 𝑖+1, and then the one of 𝑖, 𝑖+1. 
If follows that 𝑃 needs to visit at least four segments of length 5𝑛 composed of vertices {𝑎𝑖

′ ,𝑗′ ,𝓁
𝓁′

∶ 𝓁′ ∈ [5𝑛]} or {𝑏𝑖
′ ,𝑗′ ,𝓁
𝓁′

∶ 𝓁′ ∈ [5𝑛]} for 
some 𝓁 ∈ [𝑚] and 𝑖′, 𝑗′ ∈ [𝑘]. By inspecting the connector gadgets of the verification gadgets we know that it takes at least 10𝑛 time 
steps to traverse such a segment. Hence, the duration of 𝑃 is at least 40𝑛. ⋄

Furthermore, we need the following observation which is relevant when we try to connect the above-mentioned segments to a 
temporal path.

Claim 17. Let 𝑖 ∈ [𝑘] and 0≤ 𝑗 ≤ 𝑘. The absolute difference of labels of any two different edges incident with 𝑣𝑖
𝑗

is at least two.

Proof of Claim. This follows by inspecting the connector gadgets of the verification gadget of color 𝑖. ⋄

From Claims 10, 11 and 14 to 17 we get that a fastest temporal path 𝑃 from 𝑣𝑖0 to 𝑣𝑖
𝑘

has the following properties.

1. The path 𝑃 can be segmented into temporal path segments 𝑃𝑗 from 𝑣𝑖
𝑗−1 to 𝑣𝑖

𝑗
for 𝑗 ∈ [𝑘] ⧵ {𝑖} such that 𝑃𝑗 is a temporal path 

from 𝑣𝑖
𝑗−1 to 𝑣𝑖

𝑗
that does not visit vertices from connector gadgets and the alignment gadget and has duration 20𝑛 + 5.

2. The segment of 𝑃 from 𝑣𝑖
𝑖−1 to 𝑣𝑖

𝑖
has duration 26𝑛+ 5.

3. The path 𝑃 dwells at each vertex 𝑣𝑖
𝑗

with 𝑗 ∈ [𝑘 − 1] for exactly two time steps, that is, the absolute difference of the labels on 
the edges incident with 𝑣𝑖

𝑗
that are traversed by 𝑃 is exactly two.

If any of the properties does not hold, then we can observe that 𝑑(𝑣𝑖0 , 𝑣
𝑖
𝑘
) > 𝑘(20𝑛 + 6) + 6𝑛 − 1 would follow, a contradiction to 

duration nr. 12.

Now assume 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑘] ⧵ {𝑖} and consider a fastest temporal path 𝑃𝑗 from 𝑣𝑖
𝑗−1 to 𝑣𝑖

𝑗
that does not visit vertices from 

connector gadgets and the alignment gadget and a fastest temporal path 𝑃𝑗+1 from 𝑣𝑖
𝑗

to 𝑣𝑖
𝑗+1 that does not visit vertices from 

connector gadgets and the alignment gadget. By Claim 15 we know that 𝑃𝑗 visits vertices 𝑢𝓁
𝓁′−1, 𝑢

𝓁
𝓁′

with 𝓁 ∈ [𝑚], and 𝓁′ ∈ [4𝑛] of the 
edge selection gadget for color combination 𝑖, 𝑗. By Claim 6 we have that 𝜆({𝑢𝓁

𝓁′−1, 𝑢
𝓁
𝓁′
}) = (𝑖+ 𝑗) ⋅ (2𝑛 ⋅ (𝜎𝑖,𝑗 (𝓁))2 + 18𝑛+6) + 2𝓁′ + 2, 

where 𝜎𝑖,𝑗 is the permutation of color combination 𝑖, 𝑗 (or 𝑗, 𝑖). Analogously, we have by Claim 15 that 𝑃𝑗+1 visits vertices 𝑢𝓁′′
𝓁′′′−1, 𝑢

𝓁′′

𝓁′′′

with 𝓁′′ ∈ [𝑚], and 𝓁′′′ ∈ [4𝑛] of the edge selection gadget for color combination 𝑖, 𝑗 +1. By Claim 6 we have that 𝜆({𝑢𝓁′′
𝓁′′′−1, 𝑢

𝓁′′

𝓁′′′
}) =

(𝑖+ 𝑗 + 1) ⋅ (2𝑛 ⋅ (𝜎𝑖,𝑗+1(𝓁′′))2 + 18𝑛+6) + 2𝓁′′′ + 2, where 𝜎𝑖,𝑗+1 is the permutation of color combination 𝑖, 𝑗 + 1 (or 𝑗 +1, 𝑖). We have 
that

𝜆({𝑢𝓁′′𝓁′′′−1, 𝑢
𝓁′′

𝓁′′′ }) − 𝜆({𝑢
𝓁
𝓁′−1, 𝑢

𝓁
𝓁′ }) =

(𝑖+ 𝑗 + 1) ⋅ (2𝑛 ⋅ (𝜎𝑖,𝑗+1(𝓁′′))2 + 18𝑛+ 6) + 2𝓁′′′ + 2

− ((𝑖+ 𝑗) ⋅ (2𝑛 ⋅ (𝜎𝑖,𝑗 (𝓁))2 + 18𝑛+ 6) + 2𝓁′ + 2) =

(𝑖+ 𝑗 + 1) ⋅ 2𝑛 ⋅ (𝜎𝑖,𝑗+1(𝓁′′))2 − (𝑖+ 𝑗) ⋅ 2𝑛 ⋅ (𝜎𝑖,𝑗 (𝓁))2 + 2(𝓁′′′ − 𝓁′) + 18𝑛+ 6

By the arguments made before we also have that if 𝑃𝑗 and 𝑃𝑗+1 are both path segments of 𝑃 , then

𝜆({𝑢𝓁′′𝓁′′′−1, 𝑢
𝓁′′

𝓁′′′ }) − 𝜆({𝑢
𝓁
𝓁′−1, 𝑢

𝓁
𝓁′ }) = 20𝑛+ 6.

It follows that
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(𝑖+ 𝑗 + 1) ⋅ 2𝑛 ⋅ (𝜎𝑖,𝑗+1(𝓁′′))2 − (𝑖+ 𝑗) ⋅ 2𝑛 ⋅ (𝜎𝑖,𝑗 (𝓁))2 + 2(𝓁′′′ − 𝓁′) = 2𝑛.

Assume that 𝜎𝑖,𝑗 (𝓁) ≠ 𝜎𝑖,𝑗+1(𝓁′′), then we have that (𝑖 + 𝑗 + 1) ⋅ 2𝑛 ⋅ (𝜎𝑖,𝑗+1(𝓁′′))2 − (𝑖 + 𝑗) ⋅ 2𝑛 ⋅ (𝜎𝑖,𝑗 (𝓁))2 < 6𝑛 or (𝑖 + 𝑗 + 1) ⋅ 2𝑛 ⋅
(𝜎𝑖,𝑗+1(𝓁′′))2 − (𝑖+ 𝑗) ⋅ 2𝑛 ⋅ (𝜎𝑖,𝑗(𝓁))2 > 10𝑛, since |(𝜎𝑖,𝑗 (𝓁′′))2 − (𝜎𝑖,𝑗 (𝓁))2| ≥ 3 and (𝑖+ 𝑗)≥ 3. However, we have that 𝓁′,𝓁′′′ ∈ [4𝑛] and 
hence |2(𝓁′′′ − 𝓁′)| < 8𝑛. We can conclude that 𝜎𝑖,𝑗 (𝓁) = 𝜎𝑖,𝑗+1(𝓁′′). In this case we have that (𝑖 + 𝑗 + 1) ⋅ 2𝑛 ⋅ (𝜎𝑖,𝑗+1(𝓁′′))2 − (𝑖 + 𝑗) ⋅
2𝑛 ⋅ (𝜎𝑖,𝑗 (𝓁))2 = 2𝑛 ⋅ (𝜎𝑖,𝑗 (𝓁′))2. It follows that 2𝑛(𝜎𝑖,𝑗 (𝓁))2 − 2(𝓁′′′ − 𝓁′) = 2𝑛. Again, since |2(𝓁′′′ − 𝓁′)| < 8𝑛, we have that 𝜎𝑖,𝑗 (𝓁) = 1
and in turn this implies that 𝓁′ = 𝓁′′′.

Note that if 𝑖 = 1 or 𝑖 = 𝑘 we can already conclude that |(⋂1≤𝑗<𝑖 𝑒𝑗,𝑖) ∩ (
⋂
𝑖<𝑗≤𝑘 𝑒𝑖,𝑗 )| = 1. By construction of 𝐺 we have that 

for all 𝑗 ∈ [𝑘] ⧵ {𝑖} that 𝑣𝑖
𝑗−1 and 𝑣𝑖

𝑗
are connected to 𝑢𝓁

𝓁′−1 and 𝑢𝓁
𝓁′

of the edge selection gadget of color combination 𝑖, 𝑗 (or 𝑗, 𝑖), 
respectively, via paths using vertices {𝑎𝑖,𝑗,𝓁

𝓁′′
∶ 𝓁′′ ∈ [5𝑛]} and {𝑏𝑖,𝑗,𝓁

𝓁′′
∶ 𝓁′′ ∈ [5𝑛]}, respectively, if the vertex 𝑤𝑖

𝓁′
∈𝑊𝑖 (for 𝑖 = 𝑘, or 

vertex 𝑤𝑖
𝓁′−3𝑛 ∈𝑊𝑖 for 𝑖 = 1) is incident with edge 𝑒𝑖,𝑗𝓁 ∈ 𝐹𝑖,𝑗 . Note that since 𝜎𝑖,𝑗 (𝓁) = 1 we have that 𝑒𝑖,𝑗𝓁 ∈𝑋. Since 𝓁′ is independent 

from 𝓁 and 𝑗, it follows that (
⋂

1≤𝑗<𝑖 𝑒𝑗,𝑖) ∩ (
⋂
𝑖<𝑗≤𝑘 𝑒𝑖,𝑗 ) = {𝑤𝑖

𝓁′
} for 𝑖 = 𝑘 and (

⋂
1≤𝑗<𝑖 𝑒𝑗,𝑖) ∩ (

⋂
𝑖<𝑗≤𝑘 𝑒𝑖,𝑗 ) = {𝑤𝑖

𝓁′−3𝑛} for 𝑖 = 1.

Assume now that 1 ≠ 𝑖 ≠ 𝑘. By Claim 16 we know that the duration of the path segment 𝑃𝑖 from 𝑣𝑖
𝑖−1 to 𝑣𝑖

𝑖
is 26𝑛 + 5. Consider 

the path segment 𝑃⋆ from 𝑣𝑖
𝑖−2 to 𝑣𝑖

𝑖+1. By the arguments above we know that 𝑃⋆ visits vertices 𝑢𝓁
𝓁′−1, 𝑢

𝓁
𝓁′

with 𝜎𝑖−1,𝑖(𝓁) = 1, and 
𝓁′ ∈ [4𝑛] of the edge selection gadget for color combination 𝑖− 1, 𝑖 and afterwards 𝑃⋆ visits vertices 𝑢𝓁′′

𝓁′′′−1, 𝑢
𝓁′′

𝓁′′′
with 𝜎𝑖,𝑖+1(𝓁′′) = 1, 

and 𝓁′′′ ∈ [4𝑛] of the edge selection gadget for color combination 𝑖, 𝑖 + 1. By analogous arguments as above and the fact that the 
duration of 𝑃𝑖 is 26𝑛+ 5 we get that

𝜆({𝑢𝓁′′𝓁′′′−1, 𝑢
𝓁′′

𝓁′′′ }) − 𝜆({𝑢
𝓁
𝓁′−1, 𝑢

𝓁
𝓁′ }) = 46𝑛+ 6.

It follows that

(2𝑖+ 1) ⋅ (20𝑛+ 6) + 2𝓁′′′ + 2 − ((2𝑖− 1) ⋅ (20𝑛+ 6) + 2𝓁′ + 2) = 46𝑛+ 6,

and hence 𝓁′′′ −𝓁′ = 3𝑛. By construction of 𝐺 we have that 𝑣𝑖
𝑖−2 and 𝑣𝑖

𝑖−1 are connected to 𝑢𝓁
𝓁′−1 and 𝑢𝓁

𝓁′
of the edge selection gadget 

of color combination 𝑖 − 1, 𝑖, respectively, via paths using vertices {𝑎𝑖,𝑖−1,𝓁
𝓁′′′′

∶ 𝓁′′′′ ∈ [5𝑛]} and {𝑏𝑖,𝑖−1,𝓁
𝓁′′′′

∶ 𝓁′′′′ ∈ [5𝑛]}, respectively, 
if the vertex 𝑤𝑖

𝓁′
∈𝑊𝑖 is incident with edge 𝑒𝑖−1,𝑖𝓁 ∈ 𝐹𝑖−1,𝑖. Furthermore, we have that 𝑣𝑖

𝑖
and 𝑣𝑖

𝑖+1 are connected to 𝑢𝓁′′3𝑛+𝓁′−1 and 
𝑢𝓁

′′

3𝑛+𝓁′ of the edge selection gadget of color combination 𝑖, 𝑖 + 1, respectively, via paths using vertices {𝑎𝑖,𝑖+1,𝓁
′′

𝓁′′′′
∶ 𝓁′′′′ ∈ [5𝑛]} and 

{𝑏𝑖,𝑖+1,𝓁
′′

𝓁′′′′
∶ 𝓁′′′′ ∈ [5𝑛]}, respectively, if the vertex 𝑤𝑖

𝓁′
∈𝑊𝑖 is incident with edge 𝑒𝑖,𝑖+1

𝓁′′
∈ 𝐹𝑖,𝑖+1.

Note that since 𝜎𝑖−1,𝑖(𝓁) = 𝜎𝑖,𝑖+1(𝓁′′) = 1 we have that 𝑒𝑖−1,𝑖𝓁 ∈ 𝑋 and 𝑒𝑖,𝑖+1
𝓁′′

∈ 𝑋. Since, again, 𝓁′ is independent from 𝓁 and 𝑗, 
it follows that 𝑒𝑖−1,𝑖𝓁 ∩ 𝑒𝑖,𝑖+1

𝓁′′
= {𝑤𝑖

𝓁′
}. By arguments analogous to the ones above we can also deduce that 

⋂
1≤𝑗<𝑖 𝑒𝑗,𝑖 = {𝑤𝑖

𝓁′
} and ⋂

𝑖<𝑗≤𝑘 𝑒𝑖,𝑗 = {𝑤𝑖
𝓁′
}. It follows that (

⋂
1≤𝑗<𝑖 𝑒𝑗,𝑖) ∩ (

⋂
𝑖<𝑗≤𝑘 𝑒𝑖,𝑗 ) = {𝑤𝑖

𝓁′
}.

We can conclude that indeed 
⋃
𝑒∈𝑋 𝑒 forms a multicolored clique in 𝐻 .

(⇐): Assume 𝐻 is a Yes-instance of Multicolored Clique and let 𝑋 be a solution. We construct the following labeling for the 
underlying graph 𝐺, see also Fig. 3 for an illustration.

We start with the labels for edges from the alignment gadget.

• For every 𝑤∈ 𝑊̂ we set 𝜆({𝑤⋆,𝑤}) = 1.

• Let 𝑣̂0 belong to some connector gadget and let 𝑤 ∈ 𝑊̂ be neighbor of 𝑣̂0. Then we set 𝜆({𝑤, 𝑣̂0}) = 𝑛9.

• Let 𝑦𝑖 belong to the verification gadget of color 𝑖 and let 𝑤 ∈ 𝑊̂ be neighbor of 𝑦𝑖. Then we set 𝜆({𝑤,𝑦𝑖}) = 𝑛8 − 1. Furthermore, 
we set 𝜆({𝑦𝑖, 𝑣𝑖0}) = 𝑛

8.

• Let 𝑥1 belong to the edge selection gadget for color combination 𝑖, 𝑗 and let 𝑤 ∈ 𝑊̂ be neighbor of 𝑥1. Then we set 𝜆({𝑤,𝑥1}) =
(𝑖+ 𝑗)(20𝑛+ 6).

Next, consider a connector gadget with vertices 𝑣̂0, 𝑣̂′0, 𝑣̂1, 𝑣̂2, 𝑣̂3, 𝑣̂
′
3 and set 𝐴,𝐵.

• We set 𝜆({𝑣̂0, 𝑣̂1}) = 𝜆({𝑣̂, 𝑣̂3}) = 𝑛9.

• We set 𝜆({𝑣̂′0, 𝑣̂1}) = 𝜆({𝑣̂, 𝑣̂
′
3}) = 𝑛

9 + 2.

• We set 𝜆({𝑣̂1, 𝑣̂2}) = 𝑛9 + 1.

• For all vertices 𝑣 ∈𝐴 ⧵𝐵 we set 𝜆({𝑣̂1, 𝑣}) = 𝑛9 and 𝜆({𝑣̂2, 𝑣}) = 𝑛9 + 2.

• For all vertices 𝑣 ∈𝐵 we set 𝜆({𝑣̂1, 𝑣}) = 𝜆({𝑣̂2, 𝑣}) = 𝑛9.

• For all vertices 𝑣 ∈ 𝑉 ⋆ ⧵ 𝐴 we set 𝜆({𝑣̂1, 𝑣}) = 𝜆({𝑣̂2, 𝑣}) = 𝑛9 + 2. (Recall that 𝑉 ⋆ denotes the set of all vertices from all edge 
selection gadgets and all verification gadgets.)

Recall that the following duration requirements were specified in the construction of the instance. It is straightforward to verify 
that duration requirements we recall in the following are all met, assuming no faster connections are introduced.

• We have set 𝑑(𝑣̂0, 𝑣̂2) = 𝑑(𝑣̂3, 𝑣̂1) = 𝑑(𝑣̂2, 𝑣̂′0) = 𝑑(𝑣̂1, 𝑣̂
′
3) = 2, and 𝑑(𝑣̂0, 𝑣̂′0) = 𝑑(𝑣̂3, 𝑣̂

′
3) = 𝑑(𝑣̂0, 𝑣̂

′
3) = 𝑑(𝑣̂3, 𝑣̂

′
0) = 3.
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• Let 𝑣 ∈𝐴, then we have set 𝑑(𝑣, 𝑣̂′0) = 3 and 𝑑(𝑣, 𝑣̂′3) = 3.

• Let 𝑣 ∈ 𝑉 ⋆ ⧵𝐵, then we have set 𝑑(𝑣̂0, 𝑣) = 3 and 𝑑(𝑣̂3, 𝑣) = 3.

• Let 𝑣 ∈𝐴 and 𝑣′ ∈ 𝑉 ⋆ ⧵𝐵 such that 𝑣 and 𝑣′ are not neighbors, then we have set 𝑑(𝑣, 𝑣′) = 3.

For two connector gadgets, one with vertices 𝑣̂0, 𝑣̂′0, 𝑣̂1, 𝑣̂2, 𝑣̂3, 𝑣̂
′
3 and with sets 𝐴 and 𝐵, and one with vertices 𝑣̂′0, 𝑣̂

′′
0 , 𝑣̂

′
1, 𝑣̂

′
2, 𝑣̂

′
3, 𝑣̂

′′
3 and 

with sets 𝐴′ and 𝐵′, we have set the following durations.

• If there is a vertex 𝑣 ∈𝐴 with 𝑣 ∉𝐴′, then we have set 𝑑(𝑣̂1, 𝑣̂′1) = 3.

• If there is a vertex 𝑣 ∈𝐴 with 𝑣 ∈𝐴′ ⧵𝐵′, then we have set 𝑑(𝑣̂1, 𝑣̂′2) = 3.

• If there is a vertex 𝑣 ∈ 𝑉 ⋆ ⧵ (𝐴 ⧵𝐵) with 𝑣 ∉𝐴′, then we have set 𝑑(𝑣̂2, 𝑣̂′1) = 3.

• If there is a vertex 𝑣 ∈ 𝑉 ⋆ ⧵ (𝐴 ⧵𝐵) with 𝑣 ∈𝐴′ ⧵𝐵′, then we have set 𝑑(𝑣̂2, 𝑣̂′2) = 3.

For the alignment gadget, the following requirements were specified. Let 𝑥1 belong to the edge selection gadget of color combi

nation 𝑖, 𝑗 and let 𝑤 ∈ 𝑊̂ denote the neighbor of 𝑥1 in the alignment gadget. Let 𝑣̂1 and 𝑣̂2 belong to the first connector gadget of 
the edge selection gadget for color combination 𝑖, 𝑗. Let 𝑉 contain all vertices 𝑣̂1 and 𝑣̂2 belonging to the other connector gadgets 
(different from the first one of the edge selection gadget for color combination 𝑖, 𝑗).

• We have set 𝑑(𝑤⋆,𝑥1) = (20𝑛+ 6)(𝑖+ 𝑗).
• We have set 𝑑(𝑤⋆, 𝑣̂1) = 𝑛9, 𝑑(𝑤, 𝑣̂2) = 𝑛9, 𝑑(𝑤, 𝑣̂1) = 𝑛9 − (20𝑛+ 6)(𝑖+ 𝑗) + 1, and 𝑑(𝑤, 𝑣̂2) = 𝑛9 − (20𝑛+ 6)(𝑖+ 𝑗) + 1.

• For each vertex 𝑣 ∈ (𝑉 ⋆ ∪ 𝑉 ) ⧵ (𝑋𝑖,𝑗 ∪ {𝑣⋆⋆
𝑖,𝑗

}) we have set 𝑑(𝑤⋆,𝑣) = 𝑛9 + 2 and 𝑑(𝑤,𝑣) = 𝑛9 − (20𝑛+ 6)(𝑖+ 𝑗) + 3.

Let 𝑦𝑖 belong to the verification gadget of color 𝑖 and let 𝑤′ ∈ 𝑊̂ denote the neighbor of 𝑦𝑖 in the alignment gadget. Let 𝑣̂1 and 
𝑣̂2 belong to the connector gadget of the verification gadget for color 𝑖. Let 𝑉 contain all vertices 𝑣̂1 and 𝑣̂2 belonging to the other 
connector gadgets (different from the one of the verification gadget for color 𝑖). Let 𝑉𝑖 denote the set of all vertices of the verification 
gadget of color 𝑖.

• We have set 𝑑(𝑤⋆,𝑦𝑖) = 𝑛8 − 1, 𝑑(𝑤′, 𝑣𝑖0) = 2, and 𝑑(𝑤⋆,𝑣𝑖0) = 𝑛
8.

• We have set 𝑑(𝑤⋆, 𝑣̂1) = 𝑛9, 𝑑(𝑤⋆, 𝑣̂2) = 𝑛9, 𝑑(𝑤′, 𝑣̂1) = 𝑛9 − 𝑛8, and 𝑑(𝑤′, 𝑣̂2) = 𝑛9 − 𝑛8.

• For each vertex 𝑣 ∈ (𝑉 ⋆ ∪ 𝑉 ) ⧵ 𝑉𝑖 we have set 𝑑(𝑤⋆,𝑣) = 𝑛9 + 1, 𝑑(𝑤,𝑣) = 𝑛9 − 𝑛8 + 2, and 𝑑(𝑦𝑖, 𝑣) = 𝑛9 − 𝑛8 + 2.

Let 𝑣̂0 belong to some connector gadget. We have set 𝑑(𝑤⋆, 𝑣̂0) = 𝑛9.

We will make sure that no faster connections are introduced by only using even numbers as labels and labels that are strictly smaller 
than 𝑛8 − 1. Furthermore, we can already see that no vertex except the ones in 𝑊̂ can reach 𝑤⋆ and no two vertices 𝑤,𝑤′ ∈ 𝑊̂ can 
reach each other, as required.

Next, consider the edge selection gadget for color combination 𝑖, 𝑗 with 𝑖 < 𝑗. To describe the labels, we define a permutation 
𝜎𝑖,𝑗 ∶ [𝑚]→ [𝑚] as follows. Let {𝑤𝑖

𝓁′
} = 𝑋 ∩𝑊𝑖 and {𝑤𝑗

𝓁′′
} = 𝑋 ∩𝑊𝑗 . Then, since 𝑋 is a clique in 𝐻 , we have that {𝑤𝑖

𝓁′
,𝑤
𝑗

𝓁′′
} =

𝑒
𝑖,𝑗

𝓁 ∈ 𝐹𝑖,𝑗 . We set 𝜎𝑖,𝑗 (𝓁) = 1 and 𝜎𝑖,𝑗 (1) = 𝓁. For all 𝓁′′′ ∈ [𝑚] with 1 ≠ 𝓁′′′ ≠ 𝓁 we set 𝜎𝑖,𝑗 (𝓁′′′) = 𝓁′′′.
Let 𝑥1, 𝑥2,… , 𝑥𝑚 belong to the edge selection gadget for color combination 𝑖, 𝑗.

• For all 𝓁′′′ ∈ [𝑚] we set 𝜆({𝑥𝓁′′′ , 𝑣⋆𝑖,𝑗}) = (𝑖+ 𝑗) ⋅ (2𝑛(𝓁′′′)2 + 18𝑛+ 6).

Note that by using these labels, we obey the following duration constraints.

• For all 1 ≤ 𝓁′′′ < 𝓁′′′′ ≤𝑚 we have set 𝑑(𝑥𝓁′′′ , 𝑥𝓁′′′′ ) = 2𝑛 ⋅ (𝑖+ 𝑗) ⋅ ((𝓁′′′′)2 − (𝓁′′′)2) + 1.

Furthermore, we set the following labels.

• For all 𝓁′′′ ∈ [𝑚] we set 𝜆({𝑢𝓁′′′0 , 𝑣⋆
𝑖,𝑗
}) = (𝑖+ 𝑗) ⋅ (2𝑛 ⋅ (𝜎𝑖,𝑗 (𝓁′′′))2 + 18𝑛+ 6) + 2, where 𝑢𝓁′′′0 belongs to the edge selection gadget 

for 𝑖, 𝑗.
• For all 𝓁′′′ ∈ [𝑚] and 𝓁′′′′ ∈ [4𝑛] we set 𝜆({𝑢𝓁′′′

𝓁′′′′−1, 𝑢
𝓁′′′

𝓁′′′′
}) = (𝑖 + 𝑗) ⋅ (2𝑛 ⋅ (𝜎𝑖,𝑗 (𝓁′′′))2 + 18𝑛 + 6) + 2𝓁′′′′ + 2, where 𝑢𝓁′′′

𝓁′′′′−1 and 
𝑢𝓁

′′′

𝓁′′′′
belong to the edge selection gadget for 𝑖, 𝑗.

• For all 𝓁′′′ ∈ [𝑚] we set 𝜆({𝑢𝓁′′′4𝑛 , 𝑣
⋆⋆
𝑖,𝑗

}) = (𝑖 + 𝑗) ⋅ (2𝑛 ⋅ (𝜎𝑖,𝑗 (𝓁′′′))2 + 18𝑛 + 6) + 8𝑛 + 4, where 𝑢𝓁′′′4𝑛 belongs to the edge selection 
gadget for 𝑖, 𝑗.

It is straightforward to verify that with these labels we get for all 𝓁′′′ ∈ [𝑚] that 𝑑(𝑥𝓁′′′ , 𝑣⋆⋆𝑖,𝑗 ) = 8𝑛+ 5, as required. Furthermore, 
we get that for all 𝓁′′′ ∈ [𝑚] that 𝑑(𝑣⋆⋆

𝑖,𝑗
, 𝑥𝓁′′′ ) = ∞. To see this, consider the following. Vertex 𝑣⋆⋆

𝑖,𝑗
is not temporally connected to 

vertices 𝑥𝓁′′′ with 𝓁′′′ ∈ [𝑚] via any of the connector gadgets, since for all connector gadgets where 𝑣⋆⋆
𝑖,𝑗

∈𝐴 we have that all vertices 
𝑥𝓁′′′ with 𝓁′′′ ∈ [𝑚] are either contained in 𝐵 or they are not contained in 𝐴. By the construction of the labels of the connector 
gadgets, it follows that 𝑣⋆⋆

𝑖,𝑗
cannot reach any vertex 𝑥𝓁′′′ with 𝓁′′′ ∈ [𝑚] via the connector gadgets. We can observe that in all other 
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connections in the underlying graph from 𝑣⋆⋆
𝑖,𝑗

to a vertex 𝑥𝓁′′′ with 𝓁′′′ ∈ [𝑚] are paths which have non-increasing labels, hence they 
also do not provide a temporal connection.

Furthermore, we get that for all 1 ≤ 𝓁′′′ ≤ 𝓁′′′′ ≤𝑚 we get that 𝑑(𝑥𝓁′′′ , 𝑥𝓁′′′′ ) = 2𝑛 ⋅ (𝑖+ 𝑗) ⋅ ((𝓁′′′′)2 − (𝓁′′′)2)+1, through a temporal 
path via 𝑣⋆

𝑖,𝑗
. By similar observations as in the previous paragraph, we also have that 𝑑(𝑥𝓁′′′′ , 𝑥𝓁′′′ ) =∞.

Finally, consider the verification gadget for color 𝑖. Let 1 ≤ 𝑗 < 𝑖. Let {𝑤𝑖
𝓁′
} = 𝑋 ∩𝑊𝑖 and {𝑤𝑗

𝓁′′
} = 𝑋 ∩𝑊𝑗 and {𝑤𝑖

𝓁′
,𝑤
𝑗

𝓁′′
} =

𝑒
𝑗,𝑖

𝓁 ∈ 𝐹𝑗,𝑖. Recall that we set 𝜎𝑗,𝑖(𝓁) = 1 and 𝜎𝑗,𝑖(1) = 𝓁. For all 𝓁′′ ∈ [𝑚] with 1 ≠ 𝓁′′ ≠ 𝓁 we set 𝜎𝑗,𝑖(𝓁′′) = 𝓁′′. Recall that we set 
𝜆({𝑢𝓁

𝓁′−1, 𝑢
𝓁
𝓁′
}) = (𝑖 + 𝑗) ⋅ (20𝑛 + 6) + 2𝓁′ + 2, where 𝑢𝓁

𝓁′−1 and 𝑢𝓁
𝓁′

belong to the edge selection gadget for 𝑗, 𝑖. Now we set for all 
𝓁′′ ∈ [5𝑛− 1] and all 𝓁′′′ ∈ [𝑚] the following.

• 𝜆({𝑎𝑖,𝑗,𝓁
′′′

5𝑛 , 𝑢𝓁
′′′

𝓁′′′′
}) = (𝑖+ 𝑗) ⋅ (20𝑛+ 6) + 2𝓁′ for all 𝓁′′′′ such that this edge exists.

• 𝜆({𝑎𝑖,𝑗,𝓁
′′′

1 , 𝑣𝑖
𝑗−1}) = (𝑖+ 𝑗) ⋅ (20𝑛+ 6) + 2𝓁′ − 10𝑛− 2.

• 𝜆({𝑎𝑖,𝑗,𝓁
′′′

𝓁′′
, 𝑎
𝑖,𝑗,𝓁′′′

𝓁′′+1 }) = (𝑖+ 𝑗) ⋅ (20𝑛+ 6) + 2𝓁′ − 10𝑛+ 2𝓁′′.

• 𝜆({𝑏𝑖,𝑗,𝓁
′′′

5𝑛 , 𝑢𝓁
′′′

𝓁′′′′
}) = (𝑖+ 𝑗) ⋅ (20𝑛+ 6) + 2𝓁′ + 4 for all 𝓁′′′′ such that this edge exists.

• 𝜆({𝑏𝑖,𝑗,𝓁
′′′

1 , 𝑣𝑖
𝑗
}) = (𝑖+ 𝑗) ⋅ (20𝑛+ 6) + 2𝓁′ + 10𝑛+ 6.

• 𝜆({𝑏𝑖,𝑗,𝓁
′′′

𝓁′′
, 𝑏
𝑖,𝑗,𝓁′′′

𝓁′′+1 }) = (𝑖+ 𝑗) ⋅ (20𝑛+ 6) + 2𝓁′ + 10𝑛− 2𝓁′′ + 4.

For all 𝓁′′ ∈ [13𝑛] we set the following.

• 𝜆({𝑢̂𝑖
𝓁′′
, 𝑢̂𝑖

𝓁′′+1}) = 2𝑖 ⋅ (20𝑛+ 6) + 2𝓁′ − 10𝑛+ 2𝓁′′ − 2.

• 𝜆({𝑣𝑖
𝑖−1, 𝑢̂

𝑖
1}) = 2𝑖 ⋅ (20𝑛+ 6) + 2𝓁′ − 10𝑛− 2.

• 𝜆({𝑣𝑖
𝑖
, 𝑢̂𝑖13𝑛+1}) = 2𝑖 ⋅ (20𝑛+ 6) + 2𝓁′ + 16𝑛+ 4.

Let 𝑖 < 𝑗 ≤ 𝑘. Let {𝑤𝑖
𝓁′
} =𝑋 ∩𝑊𝑖 and {𝑤𝑗

𝓁′′
} =𝑋 ∩𝑊𝑗 and {𝑤𝑖

𝓁′
,𝑤
𝑗

𝓁′′
} = 𝑒𝑖,𝑗𝓁 ∈ 𝐹𝑖,𝑗 . Recall that we set 𝜎𝑖,𝑗 (𝓁) = 1 and 𝜎𝑖,𝑗 (1) = 𝓁. For 

all 𝓁′′ ∈ [𝑚] with 1 ≠ 𝓁′′ ≠ 𝓁 we set 𝜎𝑖,𝑗 (𝓁′′) = 𝓁′′. Recall that we set 𝜆({𝑢𝓁3𝑛+𝓁′−1, 𝑢
𝓁
3𝑛+𝓁′ }) = (𝑖+ 𝑗) ⋅ (20𝑛+ 6) + 2𝓁′ + 6𝑛+ 2, where 

𝑢𝓁3𝑛+𝓁′−1 and 𝑢𝓁3𝑛+𝓁′ belong to the edge selection gadget for 𝑖, 𝑗. Now we set for all 𝓁′′ ∈ [5𝑛− 1] and all 𝓁′′′ ∈ [𝑚] the following.

• 𝜆({𝑎𝑖,𝑗,𝓁
′′′

5𝑛 , 𝑢𝓁
′′′

𝓁′′′′
}) = (𝑖+ 𝑗) ⋅ (20𝑛+ 6) + 2𝓁′ + 6𝑛 for all 𝓁′′′′ such that this edge exists.

• 𝜆({𝑎𝑖,𝑗,𝓁
′′′

1 , 𝑣𝑖
𝑗−1}) = (𝑖+ 𝑗) ⋅ (20𝑛+ 6) + 2𝓁′ − 4𝑛− 2.

• 𝜆({𝑎𝑖,𝑗,𝓁
′′′

𝓁′′
, 𝑎
𝑖,𝑗,𝓁′′′

𝓁′′+1 }) = (𝑖+ 𝑗) ⋅ (20𝑛+ 6) + 2𝓁′ − 4𝑛+ 2𝓁′′.

• 𝜆({𝑏𝑖,𝑗,𝓁
′′′

5𝑛 , 𝑢𝓁
′′′

𝓁′′′′
}) = (𝑖+ 𝑗) ⋅ (20𝑛+ 6) + 2𝓁′ + 6𝑛+ 4 for all 𝓁′′′′ such that this edge exists.

• 𝜆({𝑏𝑖,𝑗,𝓁
′′′

1 , 𝑣𝑖
𝑗
}) = (𝑖+ 𝑗) ⋅ (20𝑛+ 6) + 2𝓁′ + 16𝑛+ 6.

• 𝜆({𝑏𝑖,𝑗,𝓁
′′′

𝓁′′
, 𝑏
𝑖,𝑗,𝓁′′′

𝓁′′+1 }) = (𝑖+ 𝑗) ⋅ (20𝑛+ 6) + 2𝓁′ + 16𝑛− 2𝓁′′ + 4.

Now we verify that we meet the duration requirements. For all 0 ≤ 𝑗 < 𝑗′ < 𝑖 and all 𝑖 ≤ 𝑗 < 𝑗′ ≤ 𝑘 we have set the following.

• We set 𝑑(𝑣𝑖
𝑗
, 𝑣𝑖
𝑗′
) = (20𝑛+ 6)(𝑗′ − 𝑗) − 1.

To see that this holds, we analyze the fastest paths from vertices 𝑣𝑖
𝑗−1 to vertices 𝑣𝑖

𝑗
for 𝑗 ∈ [𝑘] ⧵ {𝑖}. Let {𝑤𝑖

𝓁′
} = 𝑋 ∩𝑊𝑖 and 

{𝑤𝑗
𝓁′′

} =𝑋 ∩𝑊𝑗 and {𝑤𝑖
𝓁′
,𝑤
𝑗

𝓁′′
} = 𝑒𝑖,𝑗𝓁 ∈ 𝐹𝑖,𝑗 . Then, starting at 𝑣𝑖

𝑗−1, we follow the vertices in {𝑎𝑖,𝑗,𝓁
𝓁′′

∶ 𝓁′′ ∈ [5𝑛]} to arrive at 𝑢𝓁
𝓁′−1. 

From there we move to 𝑢𝓁
𝓁′

and from there we continue along the vertices in {𝑏𝑖,𝑗,𝓁
𝓁′′

∶ 𝓁′′ ∈ [5𝑛]} to arrive at 𝑣𝑖
𝑗
. By construction, this 

describes a fastest temporal path from 𝑣𝑖
𝑗−1 to 𝑣𝑗 with duration 20𝑛 + 5. To get from 𝑣𝑖

𝑗
to 𝑣𝑖

𝑗′
for 0 ≤ 𝑗 < 𝑗′ < 𝑖 we move from 𝑣𝑖

𝑗

to 𝑣𝑖
𝑗+1 in the above described fashion and from there to 𝑣𝑖

𝑗+1 and so on until we arrive at 𝑣𝑖
𝑗′

. By construction this yields a fastest 
temporal path from 𝑣𝑖

𝑗
to 𝑣𝑖

𝑗′
with duration (20𝑛+ 6)(𝑗′ − 𝑗) − 1, as required. The case where 𝑖 ≤ 𝑗 < 𝑗′ ≤ 𝑘 is analogous.

For all 0 ≤ 𝑗 < 𝑖 and all 𝑖 ≤ 𝑗′ ≤ 𝑘 we have set the following.

• We set 𝑑(𝑣𝑖
𝑗
, 𝑣𝑖
𝑗′
) = (20𝑛+ 6)(𝑗′ − 𝑗) + 6𝑛− 1.

Here we move from 𝑣𝑖
𝑗

to 𝑣𝑖
𝑖−1 in the above-described fashion. Then we move from 𝑣𝑖

𝑖−1 to 𝑣𝑖
𝑖
along vertices {𝑢̂𝑖

𝓁′′
∶ 𝓁′′ ∈ [13+1]} and 

then we move from 𝑣𝑖
𝑖

to 𝑣𝑖
𝑗′

again in the above described fashion. By construction this yields a fastest temporal path from 𝑣𝑖
𝑗

to 𝑣𝑖
𝑗′

with duration (20𝑛+ 6)(𝑗′ − 𝑗) + 6𝑛− 1, as required.

By similar observations as in the analysis for the edge selection gadgets, we also get that for all 1 ≤ 𝑗 < 𝑗′ ≤ 𝑘 that 𝑑(𝑣𝑖
𝑗′
, 𝑣𝑖
𝑗
) =∞.

This finishes the proof.
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Fig. 4. Illustration of the infinity gadget. Gray vertices need to be added to the feedback vertex set. 

Infinity gadget. Finally, we show how to get rid of the infinity entries in 𝐷 and how to allow a finite Δ. To this end, we introduce 
the infinity gadget. We add four vertices 𝑧1, 𝑧2, 𝑧3, 𝑧4 to the graph and we set Δ = 𝑛11. Let 𝑉 denote the set of all remaining vertices. 
We set the following durations.

• For all 𝑣 ∈ 𝑉 we set 𝑑(𝑧1, 𝑣) = 2, 𝑑(𝑧2, 𝑣) = 𝑑(𝑣, 𝑧2) = 1, 𝑑(𝑧3, 𝑣) = 𝑑(𝑣, 𝑧3) = 1, and 𝑑(𝑧4, 𝑣) = 2. Furthermore, we set 𝑑(𝑣, 𝑧1) = 𝑛11
and 𝑑(𝑣, 𝑧4) = 𝑛10 − 1.

• We set 𝑑(𝑧1, 𝑧2) = 𝑑(𝑧2, 𝑧1) = 1, 𝑑(𝑧2, 𝑧3) = 𝑑(𝑧3, 𝑧2) = 1, and 𝑑(𝑧3, 𝑧4) = 𝑑(𝑧4, 𝑧3) = 1.

• We set 𝑑(𝑧1, 𝑧3) = 3, 𝑑(𝑧3, 𝑧1) = 𝑛11 − 1, 𝑑(𝑧2, 𝑧4) = 𝑛10 − 2, and 𝑑(𝑧4, 𝑧2) = 𝑛11 − 𝑛10 + 4.

• We set 𝑑(𝑧1, 𝑧4) = 𝑛10 and 𝑑(𝑧4, 𝑧1) = 2𝑛11 − 𝑛10 + 2.

• For every pair of vertices 𝑣, 𝑣′ ∈ 𝑉 where previously the duration of a fastest path from 𝑣 to 𝑣′ was specified to be infinite, we 
set 𝑑(𝑣, 𝑣′) = 𝑛10.

Now we analyze which implications we get for the labels on the newly introduced edges. Assume 𝜆({𝑧1, 𝑧2}) = 𝑡, then we get the 
following. For all 𝑣 ∈ 𝑉 we have that 𝑑(𝑧1, 𝑣) = 2 and hence we get that 𝜆({𝑧2, 𝑣}) = 𝑡 + 1. Since 𝑑(𝑧1, 𝑧4) = 𝑛10, we have that 
𝜆(𝑧3, 𝑧4) = 𝑡 + 𝑛10 − 1. From this follows that for all 𝑣 ∈ 𝑉 , since 𝑑(𝑧4, 𝑣) = 2, that 𝜆({𝑧3, 𝑣}) = 𝑡 + 𝑛10. Finally, since 𝑑(𝑧1, 𝑧3) = 3, 
we have that 𝜆({𝑧2, 𝑧3}) = 𝑡+ 2. For an illustration see Fig. 4. It is easy to check that all duration requirements between vertex pairs 
in {𝑧1, 𝑧2, 𝑧3, 𝑧4} are met and that all duration requirements between each vertex 𝑣 ∈ 𝑉 and each vertex in {𝑧1, 𝑧2, 𝑧3, 𝑧4} are met. 
Furthermore, it is easy to check that the gadget increases the feedback vertex set by two (𝑧2 and 𝑧3 need to be added).

Lastly, consider two vertices 𝑣, 𝑣′ ∈ 𝑉 . Note that before the addition of the infinity gadget, by construction of 𝐺 we have that 
𝑑(𝑣, 𝑣′) ≤ 𝑛9 + 2 or 𝑑(𝑣, 𝑣′) = ∞. Furthermore, if 𝐷 is a Yes-instance, we have shown in the correctness proof of the reduction that 
the difference between the smallest label and the largest label is at most 𝑛9 + 1. This implies that for a vertex pair 𝑣, 𝑣′ ∈ 𝑉 with 
𝑑(𝑣, 𝑣′) = ∞ we have in the periodic case with Δ = 𝑛11, that 𝑑(𝑣, 𝑣′) ≥ 𝑛11 − 𝑛9 > 𝑛10. This means, after adding the vertices and 
edges of the infinity gadget, we indeed have that 𝑑(𝑣, 𝑣′) = 𝑛10. For all vertex pairs 𝑣, 𝑣′ where in the original construction we have 
𝑑(𝑣, 𝑣′) ≠∞, we can also see that adding the infinity gadget and setting Δ = 𝑛11 does not change the duration of a fastest path from 
𝑣 to 𝑣′, since all newly added temporal paths have duration at least 𝑛10. We can conclude that the originally constructed instance 𝐷
is a Yes-instance if and only if it remains a Yes-instance after adding the infinity gadget and setting Δ = 𝑛11. □

3. Algorithms for Simple TGR

In this section, we provide several algorithms for Simple TGR. By Theorem 1 we have that Simple TGR is NP-hard in general, 
hence we start by identifying restricted cases where we can solve the problem in polynomial time. We first show in Section 3.1 that 
if the underlying graph 𝐺 of an instance (𝐷,Δ) of Simple TGR is a tree, then we can determine desired Δ-periodic labeling 𝜆 of 𝐺 in 
polynomial time. In Section 3.2 we generalize this result. We show that Simple TGR is fixed-parameter tractable when parameterized 
by the feedback edge number of the underlying graph. Note that our parameterized hardness result (Theorem 2) implies that we 
presumably cannot replace the feedback edge number with the smaller parameter feedback vertex number, or any other parameter 
that is smaller than the feedback vertex number, such as e.g. the treewidth.

3.1. Polynomial-time algorithm for trees

We now provide a polynomial-time algorithm for Simple TGR when the underlying graph is a tree. Let 𝐷 be the input matrix and 
let the underlying graph 𝐺 of 𝐷 be a tree on 𝑛 vertices {𝑣1, 𝑣2,… , 𝑣𝑛}. Let 𝑣𝑖, 𝑣𝑗 be two arbitrary vertices in 𝐺, then we know that 
there exists a unique (static) path 𝑃𝑖,𝑗 from 𝑣𝑖 to 𝑣𝑗 . We will heavily exploit this in our algorithm.
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Fig. 5. An example of a temporal graph (with Δ ≥ 9), where a fastest temporal path 𝑃𝑢,𝑣 (in blue) from 𝑢 to 𝑣 is of duration 7, while a fastest temporal path 𝑃𝑢,𝑤 (in 
red) from 𝑢 to a vertex 𝑤, that is on a path 𝑃𝑢,𝑣 , is of duration 1 and is not a subpath of 𝑃𝑢,𝑣 . (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

Theorem 3. Simple TGR can be solved in polynomial time on trees.

Proof. Let 𝐷 be an input matrix for problem Simple TGR of dimension 𝑛× 𝑛. Let us fix the vertices of the corresponding graph 𝐺 of 
𝐷 as 𝑣1, 𝑣2,… , 𝑣𝑛, where vertex 𝑣𝑖 corresponds to the row and column 𝑖 of matrix 𝐷. This can be done in polynomial time as we need 
to loop through the matrix 𝐷 once and connect vertices 𝑣𝑖, 𝑣𝑗 for which 𝐷𝑖,𝑗 = 1. At the same time, we also check if 𝐷𝑖,𝑖 = 0, for all 
𝑖 ∈ [𝑛]. When 𝐺 is constructed we run a DFS algorithm on it and check that it has no cycles. If at any step we encounter a problem, 
our algorithm stops and returns a negative answer.

Having computed 𝐺, our algorithm proceeds as follows. We pick an arbitrary edge 𝑓 and give it label one, that is, 𝜆(𝑓 ) = 1. Now 
we push all edges incident with 𝑓 into a (initially empty) queue. Now we repeat the following as long as the queue is not empty:

• Pop edge 𝑒 = {𝑢, 𝑣} from the queue. Since 𝑒 was pushed into the queue, there is an edge 𝑒′ incident with 𝑒 that already obtained 
a label. Let w.l.o.g. 𝑒′ = {𝑣,𝑤}. Then we set 𝜆(𝑒) = (𝜆(𝑒′) −𝐷𝑢,𝑤 + 1) mod Δ.

• Push all edges incident with 𝑒 that have not received a label yet into the queue.

When the queue is empty, all edges have received a label. Iterate over all vertex pairs 𝑢, 𝑣 and check whether a fastest path from 𝑢 to 
𝑣 in (𝐺,𝜆) has duration 𝐷𝑢,𝑣. If this check succeeds for all vertex pairs, output the labeling 𝜆, otherwise abort.

It is easy to see that the described algorithm runs in polynomial time. In the remainder, we prove that it is correct.

(⇒): Since the algorithm checks at the end whether all durations specified in 𝐷 are realized by the corresponding fastest paths, 
we clearly face a yes-instance whenever the algorithm outputs a labeling.

(⇐): Assume we face a yes-instance, then there exists a labeling 𝜆⋆ that realizes all durations specified in 𝐷. Let 𝑒⋆ denote the 
edge initially picked by the algorithm. For all edges 𝑒 let 𝜆(𝑒) = (𝜆⋆(𝑒) − 𝜆⋆(𝑒⋆) + 1) mod Δ. Clearly, the labeling 𝜆 also realizes all 
durations specified in 𝐷 since 𝜆 is obtained by adding the constant (1 − 𝜆⋆(𝑒⋆)) modulo Δ to all labels of 𝜆⋆ which does not change 
the duration of any temporal path, that is all durations in (𝐺,𝜆⋆) are the same as their counterparts in (𝐺,𝜆). We claim that our 
algorithm computes and outputs 𝜆.

We prove that our algorithm computes 𝜆 by induction on the distance of the labeled edges to 𝑒⋆ , where the distance of two edges 
𝑒, 𝑒′ is defined as the length of a shortest path that uses 𝑒 as its first edge and 𝑒′ as its last edge.

Initially, our algorithm labels 𝑒⋆ with one, which equals 𝜆(𝑒⋆). Now let 𝑒 be an edge popped off the queue by the algorithm in 
some iteration, that is on the distance 𝑖 from 𝑒⋆. Let 𝑒′ be the edge incident with 𝑒 that is on the distance 𝑖− 1 from 𝑒⋆. Since 𝐺 is a 
tree 𝑒′ has already been considered by the algorithm and thus already has a label. By induction, we have that the algorithm labeled 
𝑒′ with 𝜆(𝑒′). Assume that 𝑒 = {𝑢, 𝑣} and 𝑒′ = {𝑣,𝑤}. Since 𝐺 is a tree there is only one path from 𝑢 to 𝑤 in 𝐺 and it uses edges 𝑒
and 𝑒′. It follows that 𝜆(𝑒′) − 𝜆(𝑒) + 1 =𝐷𝑢,𝑤 if 𝜆(𝑒′) > 𝜆(𝑒), and 𝜆(𝑒′) − 𝜆(𝑒) + Δ + 1 =𝐷𝑢,𝑤 otherwise. Our algorithm labels 𝑒 with 
(𝜆(𝑒′) −𝐷𝑢,𝑤 + 1) mod Δ. It is straightforward to verify that the label of 𝑒 computed by the algorithm equals 𝜆(𝑒). It follows that the 
algorithm computes 𝜆. □

3.2. FPT-algorithm for feedback edge number

Recall from Section 3.1 that the main reason, for which Simple TGR is straightforward to solve on trees, is twofold:

• between any pair of vertices 𝑣𝑖 and 𝑣𝑗 in the tree 𝑇 , there is a unique path 𝑃 in 𝑇 from 𝑣𝑖 to 𝑣𝑗 , and

• in any periodic temporal graph (𝑇 ,𝜆,Δ) and any fastest temporal path 𝑃 = ((𝑒1, 𝑡1),… , (𝑒𝑖, 𝑡𝑖),… , (𝑒𝑗 , 𝑡𝑗 ),… , (𝑒𝓁−1, 𝑡𝓁−1)) from 
𝑣1 to 𝑣𝓁 we have that the sub-path 𝑃 ′ = ((𝑒𝑖, 𝑡𝑖),… , (𝑒𝑗−1, 𝑡𝑗−1)) is also a fastest temporal path from 𝑣𝑖 to 𝑣𝑗 .

However, these two nice properties do not hold when the underlying graph is not a tree. For example, in Fig. 5, a fastest temporal 
path from 𝑢 to 𝑣 is 𝑃𝑢,𝑣 (depicted in blue) goes through 𝑤, however, the sub-path of 𝑃𝑢,𝑣 that stops at 𝑤 is not a fastest temporal path 
from 𝑢 to 𝑤. A fastest temporal path from 𝑢 to 𝑤 consists only of the single edge 𝑢𝑤 (with label 9 and duration 1, depicted in red).

Nevertheless, we prove in this section that we can still solve Simple TGR efficiently if the underlying graph is similar to a tree; 
more specifically we show the following result, which turns out to be non-trivial.

Theorem 4. Simple TGR is in FPT when parameterized by the feedback edge number of the underlying graph.

From Theorem 2 and Theorem 4 we immediately get the following, which is the main result of the paper.

Theoretical Computer Science 1056 (2025) 115508 

21 



N. Klobas, G.B. Mertzios, H. Molter et al. 

Corollary 1. Simple TGR is:

• in FPT when parameterized by the feedback edge number or any larger parameter, such as the maximum leaf number.

• W[1]-hard when parameterized by the feedback vertex number or any smaller parameter, such as: treewidth, degeneracy, cliquewidth, 
distance to chordal graphs, and distance to outerplanar graphs.

Before presenting the structure of our algorithm for Theorem 4, observe that, in a static graph, the number of paths between two 
vertices can be upper-bounded by a function 𝑓 (𝑘) of the feedback edge number 𝑘 of the graph [14]. This is true as any such path 
can traverse 0,1,2,…𝑘 feedback edges in different order. Therefore, for any fixed pair of vertices 𝑢 and 𝑣, we can ``guess'' the edges 
of a fastest temporal path from 𝑢 to 𝑣 (by guess we mean enumerate and test all possibilities). However, for an FPT algorithm with 
respect to 𝑘, we cannot afford to guess the edges of a fastest temporal path for each of the 𝑂(𝑛2) pairs of vertices. To overcome this 
difficulty, our algorithm follows this high-level strategy:

• We identify a small number 𝑓 (𝑘) of ``important vertices''.

• For each pair 𝑢, 𝑣 of important vertices, we guess the edges of a fastest temporal path from 𝑢 to 𝑣 (and from 𝑣 to 𝑢).
• From these guesses we can still not deduce the edges of the fastest temporal paths between many pairs of non-important vertices. 

However, as we prove, it suffices to guess only a small number of specific auxiliary structures (to be defined later).

• From these guesses we deduce fixed relationships between the labels of most of the edges of the graph.

• For all the edges, for which we have not deduced a label yet, we introduce a variable. With all these variables, we build an Integer 
Linear Program (ILP). Among the constraints in this ILP we have that, for each of the 𝑂(𝑛2) pairs of vertices 𝑢, 𝑣 in the graph, 
the duration of one specific temporal path from 𝑢 to 𝑣 (according to our guesses) is equal to the desired duration 𝐷𝑢,𝑣, while the 
duration of each of the other temporal path from 𝑢 to 𝑣 is at least 𝐷𝑢,𝑣.

• Each specific configuration of fastest temporal paths among all pairs of vertices corresponds to a specific ILP instance. By ex

haustively trying all possible fastest temporal paths configurations it follows that our instance of Simple TGR has a solution if 
and only if at least one of these ILPs has a feasible solution. As each ILP can be solved in FPT time with respect to 𝑘 by Lenstra’s 
Theorem [51] (the number of variables is upper bounded by a function of 𝑘), we obtain our FPT algorithm for Simple TGR with 
respect to 𝑘.

For the remainder of this section, we fix the following notation. Let 𝐷 be the input matrix of Simple TGR, i.e., the matrix of 
the durations of the fastest temporal paths between all pairs of 𝑛 vertices, and let 𝐺 be its underlying graph, on 𝑛 vertices and 𝑚
edges. With 𝐹 we denote a minimum feedback edge set of 𝐺, and with 𝑘 the feedback edge number of 𝐺. We are now ready to 
present our FPT algorithm. For easier readability, we split the description and analysis of the algorithm into five subsections. We start 
with a preprocessing procedure for graph 𝐺, where we define a set of interesting vertices which then allows us to guess the desired 
structures. Next, we introduce some extra properties of our problem, that we then use to create ILP instances and their constraints. 
At the end, we present how to solve all instances and produce the desired labeling 𝜆 of 𝐺, if possible.

3.2.1. Preprocessing of the input

From the underlying graph 𝐺 of 𝐷 we extract a (connected) graph 𝐺′ by iteratively removing vertices of degree one from 𝐺, and 
denote with

𝑍 = 𝑉 (𝐺) ⧵ 𝑉 (𝐺′).

Then we determine a minimum feedback edge set 𝐹 of 𝐺′. Note that 𝐹 is also a minimum feedback edge set of 𝐺. Lastly, we determine 
sets 𝑈 , of vertices of interest, and 𝑈∗ of the neighbors of vertices of interest, in the following way. Let 𝑇 be a spanning tree of 𝐺′, with 
𝐹 being the corresponding feedback edge set of 𝐺′. Let 𝑉1 ⊆ 𝑉 (𝐺′) be the set of leaves in the spanning tree 𝑇 , 𝑉2 ⊆ 𝑉 (𝐺′) be the set 
of vertices of degree two in 𝑇 , that are incident to at least one edge in 𝐹 , and let 𝑉3 ⊆ 𝑉 (𝐺′) be the set of vertices of degree at least 
3 in 𝑇 . Then |𝑉1|+ |𝑉2| ≤ 2𝑘, since every leaf in 𝑇 and every vertex in 𝑉2 is incident to at least one edge in 𝐹 , and |𝑉3| ≤ |𝑉1| by the 
properties of trees. We denote with

𝑈 = 𝑉1 ∪ 𝑉2 ∪ 𝑉3
the set of vertices of interest. It follows that |𝑈 | ≤ 4𝑘. We set 𝑈∗ to be the set of vertices in 𝑉 (𝐺′) ⧵𝑈 that are neighbors of vertices 
in 𝑈 , i.e.,

𝑈∗ = {𝑣 ∈ 𝑉 (𝐺′) ⧵𝑈 ∶ 𝑢 ∈𝑈,𝑣 ∈𝑁(𝑢)}.

Again, using the tree structure, we get that for any 𝑢 ∈ 𝑈 its neighborhood is of size |𝑁(𝑢)| ∈𝑂(𝑘), since every neighbor of 𝑢 is the 
first vertex of a (unique) path to another vertex in 𝑈 . It follows that |𝑈∗| ∈𝑂(𝑘2).

From the construction of 𝑍 (i.e., by exhaustively removing vertices of degree one from 𝐺), it follows that 𝐺[𝑍] (the graph induced 
in 𝐺 by 𝑍) is a forest, i.e., consists of disjoint trees. Each of these trees has a unique neighbor 𝑣 in 𝐺′. Denote by 𝑇𝑣 the tree obtained 
by considering such a vertex 𝑣 and all the trees from 𝐺[𝑍] that are incident to 𝑣 in 𝐺. We then refer to 𝑣 as the clip vertex of the 
tree 𝑇𝑣. In the case where 𝑣 is a vertex of interest we define also the set 𝑍∗

𝑣
of representative vertices of 𝑇𝑣, as follows. We first create 

an empty set 𝐶𝑤 for every vertex 𝑤 that is a neighbor of 𝑣 in 𝐺′. We then iterate through every vertex 𝑟 that is in the first layer 
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Fig. 6. An example of a graph with its important vertices: 𝑈 (in blue), 𝑈 ∗ (in green) and 𝑍∗ (in orange). Corresponding feedback edges are marked with a thick red 
line, while dashed edges represent the edges (and vertices) ``removed'' from 𝐺′ at the initial step.

of the tree 𝑇𝑣 (i.e., vertex that is a child of the root 𝑣 in the tree 𝑇𝑣), check the matrix 𝐷 and find a vertex 𝑤 ∈𝑁𝐺′ (𝑣) that is on 
the smallest duration from 𝑟. In other words, for an 𝑟 ∈𝑁𝑇𝑣 (𝑣) we find 𝑤 ∈𝑁𝐺′ (𝑣) such that 𝐷𝑟,𝑤 ≤𝐷𝑟,𝑤′ for all 𝑤′ ∈𝑁𝐺′ (𝑣). We 
add vertex 𝑟 to 𝐶𝑤. In the case where there exists also another vertex 𝑤′ ∈𝑁𝐺′ (𝑣) for which 𝐷𝑟,𝑤′ =𝐷𝑟,𝑤, we add 𝑟 also to the set 
𝐶𝑤′ . In fact, in this case 𝐶𝑤′ = 𝐶𝑤. At the end we create |𝑁𝐺′ (𝑣)| ∈𝑂(𝑘) sets 𝐶𝑤, whose union contains all children of 𝑣 in 𝑇𝑣. For 
every two sets 𝐶𝑤 and 𝐶𝑤′ , where 𝑤,𝑤′ ∈𝑁𝐺′ (𝑣), we have that either 𝐶𝑤 = 𝐶𝑤′ , or 𝐶𝑤 ∩ 𝐶𝑤′ = ∅. We interpret each of these sets 
{𝐶𝑤 ∶𝑤 ∈𝑁𝐺′ (𝑣)} as an equivalence class of the neighbors of 𝑣 in the tree 𝑇𝑣. Now, from each equivalence class 𝐶𝑤 we choose an 
arbitrary vertex 𝑟𝑤 ∈ 𝐶𝑤 and put it into the set 𝑍∗

𝑣
. We repeat the above procedure for all trees 𝑇𝑣 with the clip vertex 𝑣 from 𝑈 , and 

define 𝑍∗ as

𝑍∗ =
⋃
𝑣∈𝑈
𝑍∗
𝑣
. (1)

By the above construction, we have that 𝑍∗
𝑣

contains one different vertex 𝑟𝑤 of the tree 𝑇𝑣 for (at most) every neighbor 𝑤 of 𝑣 in 𝐺′

(where 𝑣 is the clip vertex of the tree 𝑇𝑣). Therefore, since |𝑁𝐺′ (𝑣)| = 𝑂(𝑘), it follows that |𝑍∗
𝑣
| = 𝑂(𝑘). Thus, since |𝑈 | = 𝑂(𝑘), we 

have by equality (1) that |𝑍∗| =𝑂(𝑘2).
Finally, the set of important vertices is defined as the set 𝑈 ∪ 𝑈∗ ∪𝑍∗. For an illustration see Fig. 6. Note that determining sets 

𝑈,𝑈∗ and 𝑍∗ takes linear time.

Recall that a labeling 𝜆 of 𝐺 satisfies 𝐷 if the duration of a fastest temporal path from each vertex 𝑣𝑖 to each other vertex 𝑣𝑗 equals 
𝐷𝑣𝑖,𝑣𝑗

. In order to find a labeling that satisfies this property we split our analysis in nine cases. We consider the fastest temporal paths 
where the starting vertex is in one of the sets 𝑈,𝑉 (𝐺′)⧵𝑈,𝑍 , and similarly the destination vertex is in one of the sets 𝑈,𝑉 (𝐺′)⧵𝑈,𝑍 . 
In each of these cases, we guess the underlying path 𝑃 that at least one fastest temporal path from the vertex 𝑣𝑖 to 𝑣𝑗 follows, which 
results in one equality constraint for the labels on the path 𝑃 . For all other temporal paths from 𝑣𝑖 to 𝑣𝑗 we know that they cannot 
be faster, so we introduce inequality constraints for them. This results in producing 𝑓 (𝑘) ⋅ |𝐷|𝑂(1) constraints, where |𝐷| = 𝑛2. Note 
that we have to do this while keeping the total number of variables upper-bounded by some function in 𝑘.

For an easier understanding and analysis of the algorithm, we give the following definition.

Definition 3. Let 𝑈 ⊆ 𝑉 (𝐺′) be a set of vertices of interest and let 𝑢, 𝑣 ∈𝑈 . A path 𝑃 = (𝑢 = 𝑣1, 𝑣2,… , 𝑣𝑝 = 𝑣) with at least two edges 
in graph 𝐺′, where all inner vertices are not in 𝑈 , i.e., 𝑣𝑖 ∉ 𝑈 for all 𝑖 ∈ {2,3,… , 𝑝 − 1}, is called a segment from 𝑢 to 𝑣, which we 
denote as 𝑆𝑢,𝑣.

Note from Definition 3 that 𝑆𝑢,𝑣 ≠ 𝑆𝑣,𝑢 since we consider paths to be directed. It is also worth emphasizing that 𝑆𝑣,𝑢 is essentially 
the reverse path of 𝑆𝑢,𝑣. Furthermore, it’s important to observe that a temporal path in 𝐺′ between two vertices of interest is either a 
segment or consists of a sequence of segments. Moreover, any inner vertex 𝑣𝑖 in the segment 𝑆𝑢,𝑣 (𝑣𝑖 ∈ 𝑆𝑢,𝑣 ⧵{𝑢, 𝑣}) is part of precisely 
two segments: 𝑆𝑢,𝑣 and 𝑆𝑣,𝑢. Given that we have at most 4𝑘 interesting vertices in 𝐺′, we can deduce the following crucial result.

Corollary 2. There are 𝑂(𝑘2) segments in 𝐺′.

3.2.2. Guessing necessary structures

Once the sets 𝑈,𝑈∗ and 𝑍∗ are determined, we are ready to start guessing the necessary structures. Note that whenever we say 
that we guess a fastest temporal path between two vertices, we mean that we guess an underlying path of a representative fastest 
temporal path between those two vertices. To describe the guesses, we introduce the following notation. Let 𝑢, 𝑣, 𝑥 be three vertices 
in 𝐺′. We write 𝑢⇝ 𝑥→ 𝑣 to denote a temporal path from 𝑢 to 𝑣 that passes through 𝑥, and then goes directly to 𝑣 (via one edge or 
a unique path in 𝐺′). In other words, if a fastest path between two vertices is not uniquely determined we denote it by ⇝, while if it 
is unique we denote it by →. We guess the following paths.

G-1. The fastest temporal paths between all pairs of vertices of 𝑈 . For a pair 𝑢, 𝑣 of vertices in 𝑈 , there are 𝑘𝑂(𝑘) possible paths in 
𝐺′ between them. Therefore, we try all 𝑘𝑂(𝑘) possible paths, where at least one of them will be a fastest temporal path from 𝑢
to 𝑣, respecting the values from 𝐷. Repeating this procedure for all pairs of vertices 𝑢, 𝑣 ∈𝑈 we get 𝑘𝑂(𝑘3) different variations 
of the fastest temporal paths between all pairs of vertices in 𝑈 .

G-2. The fastest temporal paths between all pairs of vertices in 𝑍∗ , which by similar arguing as for vertices in 𝑈 , gives us 𝑘𝑂(𝑘5)
guesses, as |𝑍∗| =𝑂(𝑘2).

G-3. The fastest temporal paths between all pairs of vertices in 𝑈∗ . This gives us 𝑘𝑂(𝑘5) guesses.
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Fig. 7. In the above graph vertices 𝑣1, 𝑣11,𝑤 are in 𝑈 , while 𝑣2, 𝑣10 are in 𝑈 ∗ . Numbers above all 𝑣𝑖 represent the values of the fastest temporal paths from 𝑤 to 
each of them (i.e., the entries in the 𝑤-th row of matrix 𝐷). From the basic guesses we know a fastest temporal path 𝑃 from 𝑤 to 𝑣2 (depicted in blue) and a fastest 
temporal path 𝑄 from 𝑤 to 𝑣10 . From the values of durations from 𝑤 to each 𝑣𝑖 we cannot determine the fastest paths from 𝑤 to all 𝑣𝑖 . More precisely, we know that 
𝑤 reaches 𝑣2, 𝑣3, 𝑣4 , 𝑣5 (resp. 𝑣10, 𝑣9, 𝑣9, 𝑣7) by first using the path 𝑃 (resp. 𝑄) and then proceeding through the vertices, but we do not know how 𝑤 reaches 𝑣6 the 
fastest. Therefore we have to introduce some more guesses.

Fig. 8. Illustration of the guesses G-7, G-8, G-9, and G-10. 

G-4. The fastest temporal paths from vertices of 𝑈 to vertices in 𝑈∗, and vice versa, the fastest temporal paths from vertices in 𝑈∗

to vertices in 𝑈 . This gives us 𝑘𝑂(𝑘4) guesses.

G-5. The fastest temporal paths from vertices of 𝑈 to vertices in 𝑍∗, and vice versa. This gives us 𝑘𝑂(𝑘4) guesses.

G-6. The fastest temporal paths from vertices of 𝑈∗ to vertices in 𝑍∗, and vice versa. This gives us 𝑘𝑂(𝑘5) guesses.

With the information provided by the described guesses we are still not able to determine all fastest paths. For example consider 
the case depicted in Fig. 7. Therefore, we introduce additional guesses that provide us with sufficient information to determine all 
fastest paths. We guess the following structures.

G-7. Inner segment guess I. Let 𝑆𝑢,𝑣 = (𝑢 = 𝑣1, 𝑣2,… , 𝑣𝑝 = 𝑣) and 𝑆𝑤,𝑧 = (𝑤 = 𝑧1, 𝑧2,… , 𝑧𝑟 = 𝑧) be two segments in 𝐺′. We want 
to guess a fastest temporal path 𝑣2 → 𝑢⇝ 𝑤→ 𝑧2. We repeat this procedure for all pairs of segments. Since there are 𝑂(𝑘2)
segments in 𝐺′, there are 𝑘𝑂(𝑘5) possible paths of this form.

Recall that 𝑆𝑢,𝑣 ≠ 𝑆𝑣,𝑢 for every 𝑢, 𝑣 ∈ 𝑈 . Furthermore note that we did not assume that {𝑢, 𝑣} ∩ {𝑤,𝑧} = ∅. Therefore, by re

peatedly making the above guesses, we also guess the following fastest temporal paths: 𝑣2 → 𝑢⇝ 𝑧→ 𝑧𝑟−1, 𝑣2 → 𝑢⇝ 𝑣→ 𝑣𝑝−1, 
𝑣𝑝−1 → 𝑣⇝𝑤→ 𝑧2, 𝑣𝑝−1 → 𝑣⇝ 𝑧→ 𝑧𝑟−1, and 𝑣𝑝−1 → 𝑣⇝ 𝑢→ 𝑣2. For an example see Fig. 8a.

G-8. Inner segment guess II. Let 𝑆𝑢,𝑣 = (𝑢 = 𝑣1, 𝑣2,… , 𝑣𝑝 = 𝑣) be a segment in 𝐺′, and let 𝑤 ∈ 𝑈 ∪ 𝑍∗. We want to guess the 
following fastest temporal paths 𝑤⇝ 𝑢→ 𝑣2, 𝑤⇝ 𝑣→ 𝑣𝑝−1 →⋯→ 𝑣2, and 𝑣2 → 𝑢⇝𝑤, 𝑣2 → 𝑣3 →⋯𝑣⇝𝑤.
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For fixed 𝑆𝑢,𝑣 and 𝑤 ∈ 𝑈 ∪𝑍∗ we have 𝑘𝑂(𝑘) different possible such paths, therefore we make 𝑘𝑂(𝑘5) guesses for these paths. 
For an example see Fig. 8b.

G-9. Split vertex guess I. Let 𝑆𝑢,𝑣 = (𝑢 = 𝑣1, 𝑣2,… , 𝑣𝑝 = 𝑣) be a segment in 𝐺′, and let us fix a vertex 𝑣𝑖 ∈ 𝑆𝑢,𝑣 ⧵ {𝑢, 𝑣}. In the 
case when 𝑆𝑢,𝑣 is of length 4, the fixed vertex 𝑣𝑖 is the middle vertex, else we fix an arbitrary vertex 𝑣𝑖 ∈ 𝑆𝑢,𝑣 ⧵ {𝑢, 𝑣}. Let 
𝑆𝑤,𝑧 = (𝑤 = 𝑧1, 𝑧2,… , 𝑧𝑟 = 𝑧) be another segment in 𝐺′. We want to determine the fastest paths from 𝑣𝑖 to all inner vertices of 
𝑆𝑤,𝑧. We do this by inspecting the values in matrix 𝐷 from 𝑣𝑖 to inner vertices of 𝑆𝑤,𝑧. We split the analysis into two cases.

(a) There is a single vertex 𝑧𝑗 ∈ 𝑆𝑤,𝑧 for which the duration from 𝑣𝑖 is the biggest. More specifically, 𝑧𝑗 ∈ 𝑆𝑤,𝑧 ⧵ {𝑤,𝑧}
is the vertex with the biggest value 𝐷𝑣𝑖,𝑧𝑗 . We call this vertex a split vertex of 𝑣𝑖 in the segment 𝑆𝑤𝑧. Then it holds that 
𝐷𝑣𝑖,𝑧2

< 𝐷𝑣𝑖,𝑧3
<⋯ < 𝐷𝑣𝑖,𝑧𝑗 and 𝐷𝑣𝑖,𝑧𝑟−1 < 𝐷𝑣𝑖,𝑧𝑟−2 <⋯ < 𝐷𝑣𝑖,𝑧𝑗 . From this it follows that the fastest temporal paths from 

𝑣𝑖 to 𝑧2, 𝑧3,… , 𝑧𝑗−1 go through 𝑤, and the fastest temporal paths from 𝑣𝑖 to 𝑧𝑟−1, 𝑧𝑟−2,… , 𝑧𝑗+1 go through 𝑧. We now want 
to guess which vertex 𝑤 or 𝑧 is on a fastest temporal path from 𝑣𝑖 to 𝑧𝑗 . Similarly, all fastest temporal paths starting at 
𝑣𝑖 have to go either through 𝑢 or through 𝑣, which also gives us two extra guesses for a fastest temporal path from 𝑣𝑖 to 
𝑧𝑗 . Therefore, all together we have 4 possibilities on how a fastest temporal path from 𝑣𝑖 to 𝑧𝑗 starts and ends. Besides 
that, we want to guess also how the fastest temporal paths from 𝑣𝑖 to 𝑧𝑗−1, 𝑧𝑗+1 start and end. Note that one of these is the 
subpath of a fastest temporal path from 𝑣𝑖 to 𝑧𝑗 , and the ending part is uniquely determined for both of them, i.e., to reach 
𝑧𝑗−1 a fastest temporal path travels through 𝑤, and to reach 𝑧𝑗+1 a fastest temporal path travels through 𝑧. Therefore we 
have to determine only how the path starts, namely if it travels through 𝑢 or 𝑣. This introduces two extra guesses. For a 
fixed 𝑆𝑢,𝑣, 𝑣𝑖 and 𝑆𝑤,𝑧 we find the vertex 𝑧𝑗 in polynomial time, or determine that 𝑧𝑗 does not exist. We then make four 
guesses where we determine how a fastest temporal path from 𝑣𝑖 to 𝑧𝑗 passes through vertices 𝑢, 𝑣 and 𝑤,𝑧 and for each of 
them two extra guesses to determine a fastest temporal path from 𝑣𝑖 to 𝑧𝑗−1 and from 𝑣𝑖 to 𝑧𝑗+1. We repeat this procedure 
for all pairs of segments, which results in producing 𝑘𝑂(𝑘5) new guesses. Note, 𝑣𝑖 ∈ 𝑆𝑢,𝑣 is fixed when calculating the split 
vertex for all other segments 𝑆𝑤,𝑧.

(b) There are two vertices 𝑧𝑗 , 𝑧𝑗+1 ∈ 𝑆𝑤,𝑧 for which the duration from 𝑣𝑖 is the biggest. More specifically, 𝑧𝑗 , 𝑧𝑗+1 ∈ 𝑆𝑤,𝑧⧵{𝑤,𝑧}
are the vertices with the biggest value 𝐷𝑣𝑖,𝑧𝑗 =𝐷𝑣𝑖,𝑧𝑗+1 . Then it holds that 𝐷𝑣𝑖,𝑧2 <𝐷𝑣𝑖,𝑧3 <⋯ <𝐷𝑣𝑖,𝑧𝑗 =𝐷𝑣𝑖,𝑧𝑗+1 >𝐷𝑣𝑖,𝑧𝑗+2 >
⋯ > 𝐷𝑣𝑖,𝑧𝑟−1 . From this it follows that the fastest temporal paths from 𝑣𝑖 to 𝑧2, 𝑧3,… , 𝑧𝑗 go through 𝑤, and the fastest 
temporal paths from 𝑣𝑖 to 𝑧𝑟−1, 𝑧𝑟−2,… , 𝑧𝑗+1 go through 𝑧. In this case, we only need to guess the following two fastest 
temporal paths 𝑣𝑖⇝𝑤→ 𝑧2 and 𝑣𝑖⇝ 𝑧→ 𝑧𝑟−1. Each of these paths we then uniquely extend along the segment 𝑆𝑤,𝑧 up to 
the vertex 𝑧𝑗 , resp. 𝑧𝑗+1, which give us fastest temporal paths from 𝑣𝑖 to 𝑧𝑗 and from 𝑣𝑖 to 𝑧𝑗+1. In this case, we introduce 
only two more guesses. We repeat this procedure for all pairs of segments, which results in creating 𝑘𝑂(𝑘5) new guesses.

For an example see Fig. 8c.

G-10. Split vertex guess II. Let 𝑤 ∈𝑈 ∪𝑍∗, and let 𝑆𝑢,𝑣 = (𝑢 = 𝑣1, 𝑣2,… , 𝑣𝑝 = 𝑣) be a segment in 𝐺′. We want to guess a split vertex 
of 𝑤 in 𝑆𝑢,𝑣, and a fastest temporal path that reaches it. We again have two cases, first one where 𝑣𝑖 is a unique vertex in 𝑆𝑢,𝑣
that is furthest away from 𝑤, and the second one where 𝑣𝑖, 𝑣𝑖+1 are two incident vertices in 𝑆𝑢,𝑣, that are furthest away from 
𝑤. All together we make two guesses for each pair 𝑤,𝑆𝑢,𝑣 . We repeat this for all vertices in 𝑈 ∪𝑍∗, and all segments, which 
produces 𝑘𝑂(𝑘5) new guesses. For an example see Fig. 8d.

There are two more guesses G-11 and G-12 that we make during the creation of the ILP instances, we explain these guesses in 
detail in Section 3.2.4. We will prove that, for all guesses G-1 to G-12, there are in total at most 𝑓 (𝑘) possible choices, and for each 
one of them we create an ILP with at most 𝑓 (𝑘) variables and at most 𝑓 (𝑘) ⋅ |𝐷|𝑂(1) constraints. Each of these ILPs can be solved in 
FPT time by Lenstra’s Theorem [51].

3.2.3. Properties of Simple TGR

In this section, we study the properties of our problem, which then help us creating constraints for our ILP instances. Recall that 
with 𝐺 we denote our underlying graph of 𝐷. We want to determine labeling 𝜆 of each edge of 𝐺. We start with an empty labeling 
of edges and try to specify each one of them. Note, that this does not necessarily mean that we assign numbers to the labels, but we 
might specify labels as variables or functions of other labels. We say that the label of an edge 𝑒′ is determined with respect to the label 
of the edge 𝑒, if we have determined 𝜆(𝑒′) as a function of 𝜆(𝑒).

We first start with defining certain notions, that will be of use when solving the problem.

Definition 4 (Travel delays). Let (𝐺,𝜆) be a temporal graph satisfying the conditions of Simple TGR. Let 𝑒1 = 𝑢𝑣 and 𝑒2 = 𝑣𝑧 be two 
incident edges in 𝐺 with 𝑒1 ∩ 𝑒2 = {𝑣}. We define the travel delay from 𝑢 to 𝑧 at vertex 𝑣, denoted with 𝜏𝑢𝑧

𝑣
, as the difference of the 

labels of 𝑒2 and 𝑒1, where we subtract the value of the label of 𝑒1 from the label of 𝑒2, modulo Δ, if the labels are different, or we set 
it to Δ if the labels are equal. More specifically:

• if 𝜆(𝑒1) ≠ 𝜆(𝑒2) we have

𝜏𝑢𝑧
𝑣

≡ 𝜆(𝑒2) − 𝜆(𝑒1) (mod Δ), (2)

• if 𝜆(𝑒1) = 𝜆(𝑒2) we have

𝜏𝑢𝑧
𝑣

=Δ.
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Intuitively, the value of 𝜏𝑢𝑧
𝑣

represents how long a temporal path waits at vertex 𝑣 when first taking edge 𝑒1 = 𝑢𝑣 and then edge 
𝑒2 = 𝑣𝑧.

From the above definition and the definition of the duration of the temporal path 𝑃 we get the following two observations.

Observation 1. Let 𝑃 = (𝑣0, 𝑣1,… , 𝑣𝑝) be the underlying path of the temporal path (𝑃 ,𝜆) from 𝑣0 to 𝑣𝑝. Then 𝑑(𝑃 ,𝜆) =
∑𝑝−1
𝑖=1 𝜏

𝑣𝑖−1𝑣𝑖
𝑣𝑖

+ 1.

Proof. For the simplicity of the proof denote 𝑡𝑖 = 𝜆(𝑣𝑖−1𝑣𝑖), and suppose that 𝑡𝑖 ≤ 𝑡𝑖+1, for all 𝑖 ∈ {1,2,3,… , 𝑝}. Then

𝑝−1 ∑
𝑖=1 
𝜏
𝑣𝑖−1𝑣𝑖
𝑣𝑖

+ 1 =
𝑝−1 ∑
𝑖=1 

(𝑡𝑖+1 − 𝑡𝑖) + 1

= (𝑡2 − 𝑡1) + (𝑡3 − 𝑡2) +⋯+ (𝑡𝑝 − 𝑡𝑝−1) + 1

= 𝑡𝑝−1 − 𝑡1 + 1

= 𝑑(𝑃 ,𝜆)

Now in the case when 𝑡𝑖 > 𝑡𝑖+1 we get that 𝜏𝑣𝑖−1𝑣𝑖+1𝑣𝑖
=Δ+ 𝑡𝑖+1 − 𝑡𝑖. At the end this still results in the correct duration as the last time 

we traverse the path 𝑃 is not exactly 𝑡𝑝 but 𝛼𝜆+ 𝑡𝑝, for some integer 𝛼. □

We also get the following two observations.

Observation 2. Let (𝐺,𝜆) be a temporal graph satisfying the conditions of the Simple TGR problem. For any two incident edges 𝑒1 = 𝑢𝑣 and 
𝑒2 = 𝑣𝑧 on vertices 𝑢, 𝑣, 𝑧 ∈ 𝑉 , with 𝑒1 ∩ 𝑒2 = {𝑣}, we have 𝜏𝑧𝑢

𝑣
=Δ− 𝜏𝑢𝑧

𝑣
(mod Δ).

Proof. Let 𝑒1 = 𝑢𝑣 and 𝑒2 = 𝑣𝑧 be two edges in 𝐺 for which 𝑒1 ∩ 𝑒2 = {𝑣}. If 𝜆(𝑒2) = 𝜆(𝑒1) then the statement follows immediately 
by Definition 4, as in this case 𝜏𝑧𝑢

𝑣
= 𝜏𝑢𝑧

𝑣
= Δ. If 𝜆(𝑒2) ≠ 𝜆(𝑒1), then it follows by Definition 4 that 𝜏𝑢𝑧

𝑣
≡ 𝜆(𝑒2) − 𝜆(𝑒1) (mod Δ) and 

𝜏𝑧𝑢
𝑣

≡ 𝜆(𝑒1) − 𝜆(𝑒2) (mod Δ). Summing now both equations we get 𝜏𝑢𝑧
𝑣

+ 𝜏𝑧𝑢
𝑣

≡ 𝜆(𝑒2) − 𝜆(𝑒1) + 𝜆(𝑒1) − 𝜆(𝑒2) (mod Δ), and therefore 
𝜏𝑢𝑧
𝑣

+ 𝜏𝑧𝑢
𝑣

≡ 0 (mod Δ), which is equivalent as saying 𝜏𝑢𝑧
𝑣

≡ −𝜏𝑧𝑢
𝑣

(mod Δ) or 𝜏𝑧𝑢
𝑣

=Δ− 𝜏𝑢𝑧
𝑣

(mod Δ). □

Observation 3. Let 𝑃 be the underlying path of a fastest temporal path from 𝑢 to 𝑣, where 𝑒1, 𝑒𝑝 ∈ 𝑃 are its first and last edge, respectively. 
Then, knowing the label 𝜆(𝑒1) of the first edge and the duration 𝑑(𝑃 ,𝜆) of the temporal path (𝑃 ,𝜆), we can uniquely determine the label 𝜆(𝑒𝑝)
of the last edge of 𝑃 . Symmetrically, knowing 𝜆(𝑒𝑝) and 𝑑(𝑃 ,𝜆), we can uniquely determine 𝜆(𝑒1).

The correctness of the above statement follows directly from Definition 2. This is because the duration of (𝑃 ,𝜆) is calculated 
as the difference of labels of last and first edge plus 1, where the label of last edge is considered with some delta periods, i.e., 
𝑑(𝑃 ,𝜆) = 𝑝𝑖Δ + 𝜆(𝑒𝑝) − 𝜆(𝑒1) + 1, for some 𝑝𝑖 ≥ 0. Therefore 𝑑(𝑃 ,𝜆) (mod Δ) ≡ (𝜆(𝑒𝑝) − 𝜆(𝑒1) + 1) (mod Δ). Note that if 𝜆(𝑒1) and 
𝜆(𝑒𝑝) are both unknown, then we can determine one with respect to the other.

In the following we prove that knowing the structure (the underlying path) of a fastest temporal path 𝑃 from a vertex of interest 
𝑢 to a vertex of interest 𝑣, results in determining the labeling of each edge in a fastest temporal path from 𝑢 to 𝑣 (with the exception 
of some constant number of edges), with respect to the label of the first edge. More precisely, if path 𝑃 from 𝑢 to 𝑣 is a segment, then 
we can determine labels of all edges as a function of the label of the first edge. If 𝑃 consists of 𝓁 segments, then we can determine 
the labels of all but 𝓁 − 1 edges as a function of the label of the first edge. For the exact formulation and proofs see Lemmas 1 and 2.

Lemma 1. Let 𝑢, 𝑣 ∈𝑈 be two arbitrary vertices of interest and suppose that 𝑃 = (𝑢 = 𝑣1, 𝑣2,… , 𝑣𝑝 = 𝑣), where 𝑝 ≥ 2, is a path in 𝐺′, which 
is also the underlying path of a fastest temporal path from 𝑢 to 𝑣. Moreover, suppose also that 𝑃 is a segment. We can determine the labeling 
𝜆 of every edge in 𝑃 with respect to the label 𝜆(𝑢𝑣2) of the first edge.

Proof. We claim that 𝑢 reaches all of the vertices in 𝑃 the fastest, when traveling along 𝑃 (i.e., by using a subpath of 𝑃 ). To prove this 
suppose for the contradiction that there is a vertex 𝑣𝑖 ∈ 𝑃 ⧵{𝑢, 𝑣}, that is reached from 𝑣 on a path different than 𝑃𝑖 = (𝑢, 𝑣2, 𝑣3,… , 𝑣𝑖)
faster than through 𝑃𝑖 . Since the only vertices of interest of 𝑃 are 𝑢 and 𝑣, it follows that all other vertices on 𝑃 are of degree 2. Then 
the only way to reach 𝑣𝑖 from 𝑢, that differs from 𝑃 , would be to go from 𝑢 to 𝑣 using a different path 𝑃2, and then go from 𝑣 to 
𝑣𝑝−1, 𝑣𝑝−2,… , 𝑣𝑖. But since 𝑃 is a fastest temporal path from 𝑢 to 𝑣, we get that 𝑑(𝑃2) ≥ 𝑑(𝑃 ) and 𝑑(𝑃2∪(𝑣, 𝑣𝑝−1,… , 𝑣𝑖)) > 𝑑(𝑃 ) > 𝑑(𝑃𝑖).

Now, to determine the labeling 𝜆 of the path 𝑃 we use the property that a fastest temporal path from 𝑢 to any 𝑣𝑖 ∈ 𝑃 is a subpath 
of 𝑃 . We set the label of the first edge of 𝑃 to be a constant 𝑐 ∈ [Δ] and use Observation 3 to label all remaining edges, where the 
duration from 𝑢 to 𝑣𝑖 equals to 𝐷𝑢,𝑣𝑖 . This gives us a unique labeling 𝜆 of 𝑃 where the label of each edge of 𝑃 is a function of 𝑐. □

Lemma 2. Let 𝑢, 𝑣 ∈𝑈 be two arbitrary vertices of interest and suppose that 𝑃 = (𝑢 = 𝑣1, 𝑣2,… , 𝑣𝑝 = 𝑣), where 𝑝 ≥ 2, is a path in 𝐺′, which 
is also the underlying path of a fastest temporal path from 𝑢 to 𝑣. Let 𝓁𝑢,𝑣 ≥ 1 be the number of vertices of interest in 𝑃 different to 𝑢, 𝑣, 
namely 𝓁𝑢,𝑣 = |(𝑃 ⧵ {𝑢, 𝑣}) ∩𝑈 |. We can determine the labeling 𝜆 of all but 𝓁𝑢,𝑣 edges of 𝑃 , with respect to the label 𝜆(𝑢𝑣2) of the first edge, 
such that the labeling 𝜆 respects the values from 𝐷.
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Fig. 9. An example of the situation in Lemma 2, where we assume that a fastest temporal path from 𝑢 to 𝑣 is 𝑃𝑢,𝑣 = (𝑢 = 𝑣1, 𝑣2,…𝑣𝑝), and a fastest temporal path from 
𝑢 to 𝑣𝑖 is 𝑃 = (𝑢, 𝑢2, 𝑢3,… , 𝑣𝑖). We denote with 𝑄= (𝑢 = 𝑣1, 𝑣2,… , 𝑣𝑖) and with 𝑅 = (𝑣𝑖, 𝑣𝑖+1,… , 𝑣𝑝 = 𝑣).

For the proof of the above lemma, we first prove a weaker statement, for which we need to introduce some extra definitions and 
fix some notations. In the following we only consider wasteless temporal paths. We call a temporal path 𝑃 = ((𝑒1, 𝑡1),… , (𝑒𝑘, 𝑡𝑘)) a 
wasteless temporal path, if for every 𝑖 = 1,2,… , 𝑘− 1, we have that 𝑡𝑖+1 is the first time after 𝑡𝑖 that the edge 𝑒𝑖+1 appears.

Let 𝑢, 𝑣 ∈ 𝑉 , and let 𝑡 ∈ ℕ. Given that a temporal path starts within the period [𝑡, 𝑡 + Δ − 1], we denote with 𝐴𝑡(𝑢, 𝑣) the arrival 
of the fastest path in (𝐺,𝜆) from 𝑢 to 𝑣, and with 𝐴𝑡(𝑢, 𝑣,𝑃 ), the arrival along path 𝑃 in (𝐺,𝜆) from 𝑢 to 𝑣. Whenever 𝑡 = 1, we may 
omit the index 𝑡, i.e., we may write 𝐴(𝑢, 𝑣,𝑃 ) =𝐴1(𝑢, 𝑣,𝑃 ) and 𝐴(𝑢, 𝑣) =𝐴1(𝑢, 𝑣).

Suppose now that we know the underlying path 𝑃𝑢,𝑣 = (𝑢 = 𝑣1, 𝑣2,… , 𝑣𝑝 = 𝑣) of a fastest temporal path between vertices of interest 
𝑢 and 𝑣 in 𝐺′. Let 𝑣𝑖 ∈ 𝑈 with 𝑢 ≠ 𝑣𝑖 ≠ 𝑣 be a vertex of interest on the path 𝑃𝑢,𝑣 . Suppose that 𝑣𝑖 is reached the fastest from 𝑢 by 
a path 𝑃 = (𝑢 = 𝑢1, 𝑢2,… , 𝑢𝑗−1, 𝑣𝑖). We split the path 𝑃𝑢,𝑣 into a path 𝑄 = (𝑢 = 𝑣1, 𝑣2,… , 𝑣𝑖) and 𝑅 = (𝑣𝑖, 𝑣𝑖+1,… , 𝑣𝑝 = 𝑣) (for details 
see Fig. 9).

From the above, we get the following assumptions:

1. 𝑑(𝑢, 𝑣𝑖) = 𝑑(𝑢, 𝑣𝑖, 𝑃 ) ≤ 𝑑(𝑢, 𝑣𝑖,𝑄), and

2. 𝑑(𝑢, 𝑣𝑝) = 𝑑(𝑢, 𝑣𝑝,𝑄 ∪𝑅) ≤ 𝑑(𝑢, 𝑣𝑝,𝑃 ∪𝑅).

In the remainder, we denote with 𝛿0 the difference 𝑑(𝑢, 𝑣𝑖,𝑄) − 𝑑(𝑢, 𝑣𝑖) ≥ 0. Let 𝑡𝑣2 ∈ [Δ] be the label of the edge 𝑢𝑣2, and denote by 
𝑡𝑢2

the appearance of the edge 𝑢𝑢2 within the period [𝑡𝑣2 , 𝑡𝑣2 + Δ− 1]. Note that 1 ≤ 𝑡𝑣2 ≤Δ and that

𝑡𝑣2
≤ 𝑡𝑢2

≤ 𝑡𝑣2
+ Δ− 1 ≤ 2Δ− 1. (3)

From Assumption 1 we get

𝛿0 = 𝑑(𝑢, 𝑣𝑖,𝑄) − 𝑑(𝑢, 𝑣𝑖) =𝐴𝑡𝑣2 (𝑢, 𝑣𝑖,𝑄) −𝐴𝑡𝑣2 (𝑢, 𝑣𝑖, 𝑃 ) +
(
𝑡𝑢2

− 𝑡𝑣2
)

and thus

𝐴𝑡𝑣2
(𝑢, 𝑣𝑖, 𝑃 ) −𝐴𝑡𝑣2 (𝑢, 𝑣𝑖,𝑄) = 𝑡𝑢2 − (𝑡𝑣2 + 𝛿0). (4)

We use all of the above discussion, to prove the following lemma.

Lemma 3. If 𝑡𝑢2 ≠ 𝑡𝑣2 , then 𝛿0 ≤Δ− 2 and 𝑡𝑢2 ≥ 𝑡𝑣2 + 𝛿0 + 1.

Proof. First assume that 𝛿0 ≥ Δ − 1. Then, it follows by Eq. (4) that 𝐴𝑡𝑣2 (𝑢, 𝑣𝑖, 𝑃 ) − 𝐴𝑡𝑣2 (𝑢, 𝑣𝑖,𝑄) ≤ 𝑡𝑢2 − 𝑡𝑣2 − Δ + 1 ≤ 0, and thus 
𝐴𝑡𝑣2

(𝑢, 𝑣𝑖, 𝑃 ) ≤𝐴𝑡𝑣2 (𝑢, 𝑣𝑖,𝑄). Therefore, since we can traverse path 𝑃 from 𝑢 to 𝑣𝑖 by departing at time 𝑡𝑢2 ≥ 𝑡𝑣2 +1 and by arriving no 
later than traversing path 𝑅, we have that 𝑑(𝑢, 𝑣𝑝,𝑃 ∪𝑅) < 𝑑(𝑢, 𝑣𝑝,𝑄∪𝑅), which is a contradiction to the second initial assumption. 
Therefore 𝛿0 ≤Δ− 2.

Now assume that 𝑡𝑣2 + 1 ≤ 𝑡𝑢2 ≤ 𝑡𝑣2 + 𝛿0. Then, it follows by Eq. (4) that 𝐴𝑡𝑣2 (𝑢, 𝑣𝑖, 𝑃 ) ≤ 𝐴𝑡𝑣2 (𝑢, 𝑣𝑖,𝑄) which is, similarly to the 
previous case, a contradiction. Therefore 𝑡𝑢2 ≥ 𝑡𝑣2 + 𝛿0 + 1. □

The next corollary follows immediately from Lemma 3.

Corollary 3. If 𝑡𝑢2 ≠ 𝑡𝑣2 , then 1≤𝐴𝑡𝑣2 (𝑢, 𝑣𝑖, 𝑃 ) −𝐴𝑡𝑣2 (𝑢, 𝑣𝑖,𝑄) ≤Δ− 1 − 𝛿0.

We are now ready to prove the following result.

Lemma 4. 𝑑(𝑢, 𝑣𝑖−1, 𝑃 ∪ {𝑣𝑖𝑣𝑖−1}) > 𝑑(𝑢, 𝑣𝑖−1,𝑄 ⧵ {𝑣𝑖𝑣𝑖−1}).

Proof. Let 𝑒 ∈ [Δ] be the label of the edge 𝑣𝑖−1𝑣𝑖, and let 𝑓 ∈ [𝑒+1, 𝑒+Δ] be the time of the first appearance of the edge 𝑣𝑖𝑣𝑖+1 after 
time 𝑒. Let 𝐴𝑡𝑣2 (𝑢, 𝑣𝑖,𝑄) = 𝑥Δ+ 𝑒. Then 𝐴𝑡𝑣2 (𝑢, 𝑣𝑖+1,𝑄 ∪ {𝑣𝑖𝑣𝑖+1}) = 𝑥Δ+ 𝑓 . Furthermore let 𝑔 be such that 𝐴𝑡𝑣2 (𝑢, 𝑣𝑖, 𝑃 ) = 𝑥Δ+ 𝑔.
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Case 1: 𝑡𝑢2 ≠ 𝑡𝑣2 . Then Corollary 3 implies that 𝑒+1 ≤ 𝑔 ≤ 𝑒+ (Δ−1− 𝛿0). Assume that 𝑔 < 𝑓 . Then, we can traverse path 𝑃 from 
𝑢 to 𝑣𝑖 by departing at time 𝑡𝑢2 ≥ 𝑡𝑣2 + 1 and by arriving at most at time 𝑥Δ+ 𝑓 − 1, and thus 𝑑(𝑢, 𝑣𝑝,𝑃 ∪𝑅) < 𝑑(𝑢, 𝑣𝑝,𝑄 ∪𝑅), which 
is a contradiction to the second initial assumption. Therefore 𝑔 ≥ 𝑓 . That is,

𝑒+ 1 ≤ 𝑓 ≤ 𝑔 ≤ 𝑒+ (Δ− 1 − 𝛿0).

Consider the path 𝑃 ∗ = 𝑃 ∪ {𝑣𝑖𝑣𝑖−1}. Assume that we start traversing 𝑃 ∗ at time 𝑡𝑢2 . Then we arrive at 𝑣𝑖 at time 𝑥Δ+ 𝑔, and we 
continue by traversing edge 𝑣𝑖𝑣𝑖−1 at time (𝑥+ 1)Δ + 𝑒. That is, 𝑑(𝑢, 𝑣𝑖−1, 𝑃 ∗) = (𝑥+ 1)Δ + 𝑒− 𝑡𝑢2 + 1.

Now consider the path 𝑄∗ =𝑄 ⧵ {𝑣𝑖𝑣𝑖−1}. Let ℎ ∈ [1,Δ] be such that 𝐴𝑡𝑣2 (𝑢, 𝑣𝑖−1,𝑄
∗) = 𝑥Δ+ 𝑒− ℎ. That is, if we start traversing 

𝑄∗ at time 𝑡𝑣2 , we arrive at 𝑣𝑖−1 at time 𝑥Δ+ 𝑒− ℎ, i.e., 𝑑(𝑢, 𝑣𝑖−1,𝑄∗) = 𝑥Δ+ 𝑒− ℎ− 𝑡𝑣2 + 1. Summarizing, we have:

𝑑(𝑢, 𝑣𝑖−1, 𝑃 ∗) − 𝑑(𝑢, 𝑣𝑖−1,𝑄∗) = Δ+ ℎ− (𝑡𝑢2 − 𝑡𝑣2 )

≥Δ+ 1 − (Δ − 1) > 0,

where the last inequality follows by (3). This proves the statement of the lemma.

Case 2: 𝑡𝑢2 = 𝑡𝑣2 . Then, it follows by Equation (4) that 𝐴𝑡𝑣2 (𝑢, 𝑣𝑖, 𝑃 ) =𝐴𝑡𝑣2 (𝑢, 𝑣𝑖,𝑄) − 𝛿0 ≤𝐴𝑡𝑣2 (𝑢, 𝑣𝑖,𝑄). Therefore 𝑔 ≤ 𝑒. Similarly 
to Case 1 above, consider the paths 𝑃 ∗ = 𝑃 ∪ {𝑣𝑖𝑣𝑖−1} and 𝑄∗ =𝑄 ⧵ {𝑣𝑖𝑣𝑖−1}. Assume that we start traversing 𝑃 ∗ at time 𝑡𝑢2 = 𝑡𝑣2 . 
Then we arrive at 𝑣𝑖 at time 𝑥Δ+ 𝑔, and we continue by traversing edge 𝑣𝑖𝑣𝑖−1, either at time (𝑥+ 1)Δ+ 𝑒 (in the case where 𝑔 = 𝑒) 
or at time 𝑥Δ+ 𝑒 (in the case where 𝑔 ≠ 𝑒). That is, 𝑑(𝑢, 𝑣𝑖−1, 𝑃 ∗) ≥ 𝑥Δ+ 𝑒− 𝑡𝑣2 + 1.

Similarly to Case 1, let ℎ ∈ [1,Δ] be such that 𝐴𝑡𝑣2 (𝑢, 𝑣𝑖−1,𝑄
∗) = 𝑥Δ+ 𝑒−ℎ. That is, if we start traversing 𝑄∗ at time 𝑡𝑣2 , we arrive 

at 𝑣𝑖−1 at time 𝑥Δ+ 𝑒− ℎ, i.e., 𝑑(𝑢, 𝑣𝑖−1,𝑄∗) = 𝑥Δ+ 𝑒− ℎ− 𝑡𝑣1 + 1. Summarizing, we have:

𝑑(𝑢, 𝑣𝑖−1, 𝑃 ∗) − 𝑑(𝑢, 𝑣𝑖−1,𝑄∗) ≥ ℎ ≥ 1,

which proves the statement of the lemma. □

From the above it follows that if 𝑃 is a fastest path from 𝑢 to 𝑣, then all vertices of 𝑃 , with the exception of vertices of interest 
𝑣𝑖 ∈ 𝑃 ⧵ {𝑢, 𝑣}, are reached using the same path 𝑃 . We use this fact in the following proof.

Proof of Lemma 2. For every vertex of interest 𝑣𝑖 ∈ 𝑈 ∩ (𝑃 ⧵ {𝑢, 𝑣}) we have two options. First, when a fastest temporal path 𝑃 ′

from 𝑢 to 𝑣𝑖 is a subpath of 𝑃 . In this case, we determine the labeling of 𝑃 ′ using Lemma 1. Second, when a fastest temporal path 𝑃 ′

from 𝑢 to 𝑣𝑖 is not a subpath of 𝑃 . In this case, we know exactly how to label all of the edges of 𝑃 , with the exception of edges from 
𝑣𝑖−1𝑣𝑖, that are incident to 𝑣𝑖 in 𝑃 . □

Lemma 5. Let 𝑆𝑢,𝑣 = (𝑢 = 𝑣1, 𝑣2,… , 𝑣𝑝 = 𝑣) be a segment in 𝐺. If 𝑆𝑢,𝑣 is of length at least 5 (𝑝 > 5) then it is impossible for an inner edge 
𝑓 = 𝑣𝑖𝑣𝑖+1 from 𝑆𝑢,𝑣 ⧵ {𝑢, 𝑣} (where 𝑓 is an edge that is not incident to a vertex from 𝑈 ) to not be a part of any fastest temporal path, of 
length at least 2 between vertices in 𝑆𝑢,𝑣. In other words, there must exist a pair 𝑣𝑗, 𝑣𝑗′ ∈ 𝑆𝑢,𝑣 s.t., a fastest temporal path from 𝑣𝑗 to 𝑣𝑗′
passes through 𝑓 . If 𝑆𝑢,𝑣 is of length 4 then all fastest temporal paths of length 2 avoid the inner edge 𝑓 if and only if 𝑓 has the same label 
as both of the edges incident to it, while the label of the last remaining edge is determined with respect to 𝜆(𝑓 ).

Proof. For an easier understanding and better readability, we present the proof for 𝑆𝑢,𝑣 of length 5. The case where 𝑆𝑢,𝑣 is longer 
easily follows from the presented results.

Let 𝑆𝑢,𝑣 = (𝑢 = 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6 = 𝑣). We distinguish two cases, first when 𝑓 = 𝑣2𝑣3 (note that the case with 𝑓 = 𝑣4𝑣5 is sym

metrical), and second when 𝑓 = 𝑣3𝑣4. Throughout the proof we denote with 𝑡𝑖 the label of edge 𝑣𝑖𝑣𝑖+1. Suppose for the sake of 
contradiction, that none of the fastest temporal paths between vertices of 𝑆𝑢,𝑣 traverses the edge 𝑓 .

Case 1: 𝑓 = 𝑣2𝑣3. Let us observe the case of the fastest temporal paths between 𝑣1 and 𝑣3. Denote with 𝑄 = (𝑣1, 𝑣2, 𝑣3) and with 
𝑃 ′ = (𝑣3, 𝑣4, 𝑣5, 𝑣6). From our proposition, it follows that

• a fastest temporal path 𝑃+ from 𝑣1 to 𝑣3 is of the following form 𝑃+ = 𝑣1 ⇝ 𝑣6 → 𝑣5 → 𝑣4 → 𝑣3, and

• a fastest temporal path 𝑃− from 𝑣3 to 𝑣1 is of the following form 𝑃− = 𝑣3 → 𝑣4 → 𝑣5 → 𝑣6 ⇝ 𝑣1.

It follows that 𝑑(𝑣1, 𝑣3, 𝑃+) ≤ 𝑑(𝑣1, 𝑣3,𝑄), and 𝑑(𝑣3, 𝑣1, 𝑃−) ≤ 𝑑(𝑣3, 𝑣1,𝑄). Note that 𝑑(𝑣1, 𝑣3, 𝑃+) ≥ 1 + 𝑑(𝑣6, 𝑣3, 𝑃 ′), and by the 
definition 𝑑(𝑣6, 𝑣3, 𝑃 ′) = 1 + (𝑡4 − 𝑡5)Δ + (𝑡3 − 𝑡4)Δ, where (𝑡𝑖 − 𝑡𝑗 )Δ denotes the difference of the labels 𝑡𝑖, 𝑡𝑗 of two consecutive edges 
modulo Δ and we define (0)Δ = Δ. Similarly holds for 𝑑(𝑣3, 𝑣1, 𝑃−). Summing up both of the above equations we get

𝑑(𝑣1, 𝑣3, 𝑃+) + 𝑑(𝑣3, 𝑣1, 𝑃−) ≤ 𝑑(𝑣1, 𝑣3,𝑄) + 𝑑(𝑣3, 𝑣1,𝑄)

1 + 𝑑(𝑣6, 𝑣3, 𝑃 ′) + 1 + 𝑑(𝑣3, 𝑣6, 𝑃 ′) ≤ 𝑑(𝑣1, 𝑣3,𝑄) + 𝑑(𝑣3, 𝑣1,𝑄)

3 + (𝑡4 − 𝑡5)Δ + (𝑡3 − 𝑡4)Δ + 1 + (𝑡4 − 𝑡3)Δ + (𝑡5 − 𝑡4)Δ ≤ 1 + (𝑡2 − 𝑡1)Δ + 1 + (𝑡1 − 𝑡2)Δ
(𝑡4 − 𝑡5)Δ + (𝑡5 − 𝑡4)Δ + (𝑡4 − 𝑡3)Δ + (𝑡3 − 𝑡4)Δ + 2 ≤ (𝑡2 − 𝑡1)Δ + (𝑡1 − 𝑡2)Δ.

(5)
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Note that if 𝑡𝑖 ≠ 𝑡𝑗 we get that the sum (𝑡𝑖 − 𝑡𝑗 )Δ + (𝑡𝑗 − 𝑡𝑖)Δ equals exactly Δ, and if 𝑡𝑖 = 𝑡𝑗 the sum equals 2Δ. This follows from the 
definition of travel delays at vertices (see Observation 2). Therefore we get from Eq. (5), that the right part is at most 2Δ, while the 
left part is at least 2Δ + 1, for any relation of labels 𝑡1, 𝑡2,… , 𝑡5, which is a contradiction.

Case 2: 𝑓 = 𝑣3𝑣4. Here we consider the fastest paths between vertices 𝑣2 and 𝑣4. By similar arguments as above we get

(𝑡5 − 𝑡1)Δ + (𝑡4 − 𝑡5)Δ + (𝑡5 − 𝑡4)Δ + (𝑡1 − 𝑡5)Δ + 2 ≤ (𝑡3 − 𝑡2)Δ + (𝑡2 − 𝑡3)Δ,

which is impossible.

In the case when 𝑆𝑢,𝑣 is longer, we would get an even bigger number on the left-hand side of Eq. (5), so we conclude that in all 
of the above cases, it cannot happen that all fastest paths of length 2, between vertices in 𝑆𝑢,𝑣 , avoid edge 𝑓 .

Let us observe now the case when 𝑆𝑢,𝑣 = (𝑢 = 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5 = 𝑣) is of length 4. Let 𝑓 = 𝑣2𝑣3 (the case with 𝑓 = 𝑣3𝑣4 is symmetri

cal). Suppose that the fastest temporal paths between 𝑣1 and 𝑣3 do not use the edge 𝑓 . We denote with 𝑅+ the fastest path from 𝑣1 to 
𝑣3, which is of the form 𝑢⇝ 𝑣→ 𝑣4 → 𝑣3, and similarly with 𝑅− the fastest path from 𝑣3 to 𝑣1, which is of the form 𝑣3 → 𝑣4 → 𝑣⇝ 𝑢. 
We denote with 𝑅′ = (𝑣3, 𝑣4, 𝑣5) and with 𝑆 = (𝑣1, 𝑣2, 𝑣3). Again we get the following.

𝑑(𝑣1, 𝑣3,𝑅+) + 𝑑(𝑣3, 𝑣1,𝑅−) ≤ 𝑑(𝑣1, 𝑣3, 𝑆) + 𝑑(𝑣3, 𝑣1, 𝑆)

1 + 𝑑(𝑣5, 𝑣3,𝑅′) + 1 + 𝑑(𝑣3, 𝑣5,𝑅′) ≤ 𝑑(𝑣1, 𝑣3, 𝑆) + 𝑑(𝑣3, 𝑣1, 𝑆)

(𝑡3 − 𝑡4)Δ + (𝑡4 − 𝑡3)Δ + 2 ≤ (𝑡2 − 𝑡1)Δ + (𝑡1 − 𝑡2)Δ.

The only case when the equation has a valid solution is when 𝑡1 = 𝑡2 and 𝑡3 ≠ 𝑡4, as in this case the left hand side evaluates to Δ+ 2, 
while the right side evaluates to 2Δ. Repeating the analysis for the fastest paths between 𝑣2 and 𝑣4, we conclude that the only valid 
solution is when 𝑡2 = 𝑡3 and 𝑡1 ≠ 𝑡4. Altogether, we get that 𝑓 is not a part of any fastest path of length 2 in 𝑆𝑢,𝑣 if and only if the 
label of edge 𝑓 is the same as the labels on the edges incident to it, while the last remaining edge has a different label. Note now that 
a fastest temporal path from 𝑣2 to 𝑣4 must first use the edge 𝑢𝑣2 and finish with the edge 𝑣4𝑣5, and it has to be of duration 𝐷𝑣2 ,𝑣4 . 
Using Lemma 1 we determine the label of the edge 𝑣4𝑣5 with respect to 𝜆(𝑓 ). □

We now present some properties involving the vertices from 𝑍 , that form the trees in 𝐺[𝑍].

Lemma 6. Let 𝑣 ∈ 𝑉 (𝐺′) be the clip vertex of the tree 𝑇𝑣 in 𝐺[𝑍 ∪ {𝑣}], and let 𝑧 ∈𝑁𝑇𝑣 (𝑣) be an arbitrary child of 𝑣 in 𝑇𝑣. Among all 
neighbors of 𝑣 in 𝐺′, let 𝑤 be the one that is on the smallest duration away from 𝑧 with respect to the values of 𝐷. In other words, 𝑤∈𝑁𝐺′ (𝑣)
such that 𝐷𝑧,𝑤 ≤𝐷𝑧,𝑤′ for all 𝑤′ ∈𝑁𝐺′ (𝑣). Then, the path 𝑃 ∗ = (𝑧, 𝑣,𝑤) represents the unique fastest temporal path from 𝑧 to 𝑤. Moreover, 
we can determine all labels of the tree 𝑇𝑣 with respect to the label 𝜆(𝑣𝑤).

Proof. Suppose for contradiction that there exists a path 𝑃 ∗∗ ≠ 𝑃 ∗ from 𝑧 to 𝑤 such that 𝑑(𝑃 ∗∗, 𝜆) ≤ 𝑑(𝑃 ∗, 𝜆). By the structure of 𝐺, it 
follows that 𝑃 ∗∗ passes through the clip vertex 𝑣 of 𝑇𝑣 (as this is the only neighbor of 𝑧 in 𝐺′), continues through a vertex 𝑤′ ∈𝑁𝐺′ (𝑣)⧵
{𝑤}, and through some other vertices 𝑢1, 𝑢2,… , 𝑢𝑗 in 𝐺 (𝑗 ≥ 0) before finishing in 𝑤. Therefore, 𝑃 ∗∗ = (𝑧, 𝑣,𝑤′, 𝑢1, 𝑢2,… , 𝑢𝑗 ,𝑤). Now, 
since 𝐷𝑧,𝑤 ≤𝐷𝑧,𝑤′ by assumption, the first part of 𝑃 ∗∗ from 𝑧 to 𝑤′ takes at least 𝐷𝑧,𝑤′ time, and thus it takes at least 𝐷𝑧,𝑤 time. Since 
𝑤 ≠𝑤′, we need at least one more time step (one more edge) to traverse from 𝑤′ to reach 𝑤. Therefore, 𝑑(𝑃 ∗∗, 𝜆) ≥𝐷𝑧,𝑤 + 1 which 
implies that 𝑃 ∗∗ is not a fastest temporal path from 𝑧 to 𝑤. Therefore, the only fastest temporal path from 𝑧 to 𝑤 is 𝑃 ∗ = (𝑧, 𝑣,𝑤).

For the second part, knowing that the duration of 𝑃 ∗ is 𝐷𝑧,𝑤, we can determine the label of the edge 𝑧𝑣 with respect to the label 
𝜆(𝑣𝑤) (see Observation 3). Furthermore, using the algorithm for trees (see Theorem 3), we can now determine all the labels on the 
edges of 𝑇𝑣 with respect to the same label 𝜆(𝑣𝑤). □

Lemma 7. Let 𝑥 ∈ 𝑉 (𝐺′) be the clip vertex of the tree 𝑇𝑥 in 𝐺[𝑍 ∪ {𝑥}], where 𝑥 ∉𝑈 . Let 𝑣1 and 𝑣2 be the two neighbors of 𝑥 in 𝐺′. Then 
the labels of the tree 𝑇𝑥 can be determined with respect to 𝜆(𝑣1𝑥) and 𝜆(𝑥𝑣2).

Proof. First observe that since 𝑥 is not a vertex of interest it must be a part of some segment 𝑆𝑢,𝑤 , where 𝑢, 𝑣 ∈ 𝑈 and 𝑥 ≠ 𝑢 ≠ 𝑣. 
Therefore, 𝑥 is of degree 2 in 𝐺′. Let 𝑧 ∈ 𝑉 (𝑇𝑥) be a child of 𝑥 in 𝑇𝑥, i.e., a vertex in the first layer of the tree 𝑇𝑥. We observe the 
values 𝐷𝑧,𝑣1 ,𝐷𝑧,𝑣2 and distinguish the following cases.

First, 𝐷𝑧,𝑣1 =𝐷𝑧,𝑣2 Then, using Lemma 6 we conclude that the fastest temporal paths from 𝑧 to 𝑣1 and from 𝑧 to 𝑣2 are of length 
two. We know that these two paths consist of the edge 𝑧𝑥 and 𝑥𝑣1, 𝑥𝑣2, respectively. This allows us to determine the label of the edge 
𝑧𝑥 (and consequently all other edges of 𝑇𝑥) with respect to 𝜆(𝑥𝑣1) and 𝜆(𝑥𝑣2).

Second, 𝐷𝑧,𝑣1 ≠𝐷𝑧,𝑣2 . Let us denote with 𝑡1 = 𝜆(𝑥𝑣1), 𝑡2 = 𝜆(𝑥𝑣2) and 𝑡3 = 𝜆(𝑧𝑥). W.l.o.g. suppose that min{𝑡1, 𝑡2, 𝑡3} = 𝑡3, and that 
𝐷𝑧,𝑣1

> 𝐷𝑧,𝑣2
(the other case is analogous). It follows that 𝑡1 > 𝑡2. We want to now prove that the inequality 𝐷𝑣1 ,𝑧 < 𝐷𝑣2 ,𝑧 holds. 

Suppose for the contradiction that the inequality is false. Then 𝐷𝑣2 ,𝑧 < 𝐷𝑣1 ,𝑧 ≤ (Δ + 𝑡3 − 𝑡1). This implies that a fastest temporal 
path from 𝑣2 to 𝑧 cannot use the path (𝑣1, 𝑥, 𝑧), and is therefore of form (𝑣2, 𝑥, 𝑧). By definition, the duration of this path is 𝐷𝑣2 ,𝑧 =
Δ+ 𝑡3 − 𝑡2 + 1. But since 𝑡1 > 𝑡2 it follows that (Δ + 𝑡3 − 𝑡2) + 1 > (Δ + 𝑡3 − 𝑡1) + 1. We also know that 𝐷𝑣1 ,𝑧 ≤ (Δ + 𝑡3 − 𝑡1) + 1. This 
implies that 𝐷𝑣2 ,𝑧 > 𝐷𝑣1 ,𝑧, a contradiction.

Knowing 𝐷𝑧,𝑣1 >𝐷𝑧,𝑣2 we can determine the label of edge 𝑧𝑥 (and consequently all other edges of 𝑇𝑥) with respect to 𝜆(𝑥𝑣2), and 
similarly knowing 𝐷𝑣1 ,𝑧 < 𝐷𝑣2 ,𝑧 we determine the label of edge 𝑧𝑥 (and all other edges of 𝑇𝑥) with respect to 𝜆(𝑥𝑣1). □
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Fig. 10. An example of the situation in Lemma 8. We have two paths 𝑄 (in blue) and 𝑃 (in red) from 𝑢 to 𝑦. We assume that a fastest temporal path from 𝑧1 to 𝑦 is 
𝑃1 = {𝑧1𝑢} ∪ 𝑃 , and a fastest temporal path from 𝑧2 to 𝑦 is 𝑄2 = {𝑧2𝑢} ∪𝑄. We denote with 𝑄1 = {𝑧1𝑢} ∪𝑄 another temporal path from 𝑧1 to 𝑦, with 𝑃2 = {𝑧2𝑢} ∪ 𝑃
another temporal path from 𝑧2 to 𝑦. The labels on the edges 𝑧1𝑢, 𝑧2𝑢 are 𝑡1, 𝑡2 , respectively. Similarly, the labels of the last edges of paths 𝑃 and 𝑄 are 𝑡𝑝, 𝑡𝑞 , respectively.

Remember, in the case where the clip vertex 𝑢 of the tree 𝑇𝑢 in 𝐺[𝑍 ∪ {𝑢}] is a vertex of interest, we split the vertices in the 
first layer of 𝑇𝑢 into at most |𝑁𝐺′ (𝑢)| equivalence classes (as explained in Section 3.2.1). Let us now show the following important 
property of these equivalence classes.

Lemma 8. Let 𝑢 ∈ 𝑉 (𝐺′) be the clip vertex of the tree 𝑇𝑢 in 𝐺[𝑍 ∪ {𝑢}], where 𝑢 ∈ 𝑈 , and let 𝑧1, 𝑧2 ∈ 𝑉 (𝑇𝑢) be in the same equivalence 
class of the tree 𝑇𝑢. Then, for every vertex 𝑦 ≠ 𝑢 in 𝑉 (𝐺′), the set of the fastest paths from 𝑧1 to 𝑦 (resp. from 𝑦 to 𝑧1) on the edges in 𝐺′

coincides with the set of the fastest paths from 𝑧2 to 𝑦 (resp. from 𝑦 to 𝑧2) on the edges in 𝐺′.

Proof. Let 𝑦 ≠ 𝑢 be a vertex in 𝑉 (𝐺′). Denote with 𝑃1 the underlying path of a fastest temporal path from 𝑧1 to 𝑦, which consists of 
the edge 𝑧1𝑢 and the path 𝑃 from 𝑢 to 𝑦. Similarly, let 𝑄2 be the underlying path of a fastest temporal path from 𝑧2 to 𝑦, consisting 
of the edge 𝑧2𝑢 together with the path 𝑄 from 𝑢 to 𝑦. Define 𝑃2 as the second path from 𝑧2 to 𝑦 that first uses the edge 𝑧2𝑢 and then 
the path 𝑃 . Similarly, 𝑄1 represents the second path from 𝑧1 to 𝑦 that first uses the edge 𝑧1𝑢 and then the path 𝑄. Our objective is 
to demonstrate that either 𝑃 =𝑄 or that 𝑑(𝑃1, 𝜆) = 𝑑(𝑄1, 𝜆) and 𝑑(𝑃2, 𝜆) = 𝑑(𝑄2, 𝜆). This implies that 𝑧1 and 𝑧2 use temporal paths 
that coincide on the vertices of 𝑉 (𝐺) ⧵ 𝑉 (𝑇𝑢) to reach 𝑦. For an illustration see Fig. 10.

Let us set the label of the edge 𝑧1𝑢 to 𝑡1, the label of 𝑧2𝑢 to 𝑡2, the label of the last edge of the path 𝑃 as 𝑡𝑝 and the label of the last 
edge of the path 𝑄 as 𝑡𝑞 . By the definition, since 𝑃1 represents a fastest temporal path form 𝑧1 to 𝑦 we get that 𝐷𝑧1 ,𝑦 = 𝑡𝑝 − 𝑡1 + 𝑐𝑝Δ, 
where 𝑐𝑝 ∈ ℕ. Similarly, for the path 𝑄2 it holds that 𝐷𝑧2 ,𝑦 = 𝑡𝑞 − 𝑡2 + 𝑐𝑞Δ with 𝑐𝑞 ∈ ℕ. Note that the difference between the first 
label of 𝑃 (resp. 𝑄) with 𝑡1 and 𝑡2 is smaller than Δ, or the difference (with at least one 𝑡1, 𝑡2) is Δ if and only if the first label of 𝑃
and the first label of 𝑄 are the same.

We want to first show that 𝑐𝑝 = 𝑐𝑞 . Let us assume, for the sake of contradiction, that this is not the case, and suppose that 𝑐𝑝 > 𝑐𝑞
(the case with 𝑐𝑞 > 𝑐𝑝 is analogous). Then 𝑐𝑝 ≤ 𝑐𝑞 + 1. Now, since 𝑧1 and 𝑧2 are in the same equivalence class and by the definition 
of the duration of a temporal path we get that 𝑑(𝑃2, 𝜆) = 𝑡𝑝 − 𝑡2 + 𝑐𝑝Δ ≤ 𝑡𝑝 − 𝑡2 + (𝑐𝑞 − 1)Δ. Because 𝑄2 is the fastest path from 𝑧2
to 𝑦 we have also that 𝑑(𝑃2, 𝜆) ≥𝐷𝑧2,𝑦, which gives us 𝑡𝑝 − 𝑡2 + (𝑐𝑞 − 1)Δ ≥ 𝑡𝑞 − 𝑡2 + 𝑐𝑞Δ. This is equivalent to 𝑡𝑝 ≥ 𝑡𝑞 +Δ, but since 
𝑡𝑝, 𝑡𝑞 ∈ [Δ] this cannot happen. Therefore, we conclude that 𝑐𝑝 = 𝑐𝑞 .

Now, we want to show also, that 𝑡𝑝 = 𝑡𝑞 . Let us assume, for the sake of contradiction, that this is not the case, and suppose that 
𝑡𝑝 > 𝑡𝑞 (the case with 𝑡𝑞 > 𝑡𝑝 is analogous). Then the duration of the path 𝑄1 is 𝑑(𝑄1, 𝜆) = 𝑡𝑞 − 𝑡1 + 𝑐𝑞Δ since 𝑐𝑞 = 𝑐𝑝. Above we proved 
that 𝑐𝑝 = 𝑐𝑞 . We also know that 𝑑(𝑄1, 𝜆) ≥ 𝑑(𝑃1, 𝜆) as 𝑃1 is the fastest path from 𝑧1 to 𝑦. All of this results in 𝑡𝑞 − 𝑡1 + 𝑐𝑝Δ ≥ 𝑡𝑝− 𝑡1 + 𝑐𝑝Δ
implying 𝑡𝑞 ≥ 𝑡𝑝, a contradiction. Therefore, 𝑡𝑝 = 𝑡𝑞 .

We proved that 𝑃 and 𝑄 are the same or, if they are different, then 𝑃1 and 𝑄1 are of the same duration and are both fastest paths 
from 𝑧1 to 𝑦 (the same holds for 𝑧2).

The proof of the statement for the fastest temporal paths in the other direction, namely starting at 𝑦 and reaching 𝑧1 and 𝑧2, is 
done analogously. □

Observation 4. Let 𝑣 ∈ 𝑉 (𝐺′) be the clip vertex of the tree 𝑇𝑣 in 𝐺[𝑍 ∪ {𝑣}], 𝑧 ∈𝑁𝑇𝑣 (𝑣) be a child of 𝑣 in 𝑇𝑣, and let 𝑧′ be a descendant 
of 𝑧 in 𝑇𝑣. Let 𝑥 ∈ 𝑉 (𝐺) ⧵ 𝑉 (𝑇𝑣) be an arbitrary vertex. Denote by 𝑃𝑧 the underlying path of a fastest temporal path from 𝑧 to 𝑥 (resp. from 
𝑥 to 𝑧), and denote by 𝑄 the (unique) path between 𝑧 and 𝑧′ in 𝑇𝑣. Then, the symmetric difference between 𝑃𝑧 and 𝑄 is the underlying path 
of a fastest path from 𝑧′ to 𝑥 (resp. from 𝑥 to 𝑧′).

The correctness of the above observation is a consequence of Lemma 8 and of the fact that 𝑃𝑧 and 𝑃𝑧′ leave the tree 𝑇𝑣 using the 
same edge 𝑧𝑣.

3.2.4. Adding constraints and variables to the ILP

We start by analyzing the case where we want to determine the labels on fastest temporal paths between vertices of interest. We 
proceed in the following way. Let 𝑢, 𝑣 ∈ 𝑈 be two vertices of interest and let 𝑃𝑢,𝑣 be a fastest temporal path from 𝑢 to 𝑣. If 𝑃𝑢,𝑣 is 
a segment we determine all the labels of edges of 𝑃𝑢,𝑣 , with respect to the label of the first edge (see Lemma 1). In the case when 
𝑃𝑢,𝑣 is a sequence of 𝓁 segments, we determine all but 𝓁 − 1 labels of edges of 𝑃𝑢,𝑣, with respect to the label of the first edge (see 
Lemma 2). We call these 𝓁 − 1 edges, partially determined edges. After repeating this step for all pairs of vertices in 𝑈 , the edges of 
fastest temporal paths from 𝑢 to 𝑣, where 𝑢, 𝑣 ∈ 𝑈 , are determined with respect to the label of the first edge of each path, or are 
partially determined. If a fastest temporal path between two vertices 𝑢, 𝑣 ∈𝑈 is just an edge 𝑒, then we treat it as being determined, 
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since it gets assigned a label 𝜆(𝑒) with respect to itself. All other edges in 𝐺′ are called the not yet determined edges. Note that the not 
yet determined edges are exactly the ones that are not a part of any fastest temporal path between any two vertices in 𝑈 .

Now we want to relate the not-yet-determined segments with the determined ones. Let 𝑆𝑢,𝑣 and 𝑆𝑤,𝑧 be two segments. At the 
beginning, we have guessed the fastest path from 𝑣𝑖 to all vertices in 𝑆𝑤,𝑧 (see guess G-9). We did this by determining which vertices 
𝑧𝑗 , 𝑧𝑗+1 in 𝑆𝑤,𝑧 are furthest away from 𝑣𝑖 (remember we can have the case when 𝑧𝑗 = 𝑧𝑗+1), and then we guessed how the path from 
𝑣𝑖 leaves the segment 𝑆𝑢,𝑣 (i.e., either through the vertex 𝑢 or 𝑣), and then how it reaches 𝑧𝑗 (in the case when 𝑧𝑗 ≠ 𝑧𝑗+1 there is a 
unique way, when 𝑧𝑗 = 𝑧𝑗+1 we determined which of the vertices 𝑤 or 𝑧 is on the fastest path). W.l.o.g. assume that we have guessed 
that the fastest path from 𝑣𝑖 to 𝑧𝑗 passes through 𝑤 and 𝑧𝑗−1. Then a fastest temporal path from 𝑣𝑖 to 𝑧𝑗+1 passes through 𝑧. And 
all fastest temporal paths from 𝑣𝑖 to any 𝑧𝑗′ ∈ 𝑆𝑤,𝑧 use all of the edges in 𝑆𝑤,𝑧 with the exception of the edge 𝑧𝑗𝑧𝑗+1. Using this 
information and Observation 3, we can determine the labels on all edges, with respect to the first or last label from the segment 𝑆𝑢,𝑣 , 
with the exception of the edge 𝑧𝑗𝑧𝑗+1. Therefore, all edges of 𝑆𝑤,𝑧 but 𝑧𝑗𝑧𝑗+1 become determined. Since we repeat that procedure 
for all pairs of segments, we get that for a fixed segment 𝑆𝑤,𝑧 we end up with a not yet determined edge 𝑧𝑗𝑧𝑗+1 if and only if this 
is a not yet determined edge in relation to every other segment 𝑆𝑢,𝑣 and its fixed vertex 𝑣𝑖. We repeat this procedure for all pairs of 
segments. Each specific calculation takes linear time. Since there are 𝑂(𝑘2) segments, the whole calculation takes 𝑂(𝑘4) time.

From the above procedure (where we were determining labels of edges of segments with each other) we conclude that all of the 
edges 𝑒𝑖 = 𝑣𝑖𝑣𝑖+1 of a segment 𝑆𝑢,𝑣 = (𝑢 = 𝑣1, 𝑣2,… , 𝑣𝑝 = 𝑣) are in one of the following relations. First, where all of the edges are 
determined with respect to each other. Second, where there are some edges 𝑒1, 𝑒2,… 𝑒𝑖−1, whose label is determined with respect to 
the label 𝜆(𝑒1), there is an edge 𝑓 = 𝑒𝑖 = 𝑣𝑖𝑣𝑖+1 which is not yet determined, and then there follow the edges 𝑒𝑖+1, 𝑒𝑖+2,… , 𝑒𝑝−1, whose 
labels are determined with respect to 𝜆(𝑒𝑝−1). Third, where the first 𝑒1,… , 𝑒𝑖−1 edges are determined with respect to the 𝜆(𝑒1) and all 
of the remaining edges 𝑒𝑖, 𝑒𝑖+1… , 𝑒𝑝−1 are determined with respect to the 𝜆(𝑒𝑝−1). We want to now determine all of the edges in such 
segment 𝑆𝑢,𝑣 with respect to just one edge (either the first or the last one). In the second case, we use the fact that at least one of the 
temporal paths between 𝑣𝑖−1 and 𝑣𝑖+1 has to pass through 𝑓 , to determine 𝜆(𝑓 ) with respect to 𝜆(𝑒𝑖−1) (and consequently 𝜆(𝑒1)), and 
similarly, one of the temporal paths between 𝑣𝑖 and 𝑣𝑖+2 has to pass through 𝑓 , which determines 𝜆(𝑓 ) with respect to 𝜆(𝑒𝑖+1) (and 
consequently 𝜆(𝑒𝑝−1)). In the third case, knowing the temporal paths between 𝑣𝑖−1 to 𝑣𝑖+1 results in determining the label of 𝜆(𝑒𝑖−1)
with 𝜆(𝑒𝑖), which consequently relates labels of all of the edges of the segment against each other. To determine the desired paths we 
proceed as follows.

G-11. Let 𝑆𝑢,𝑣 = (𝑢 = 𝑣1, 𝑣2,… , 𝑣𝑝 = 𝑣) be a segment of length at least 4. If there is a not yet determined edge 𝑣𝑖𝑣𝑖+1 = 𝑓 in 𝑆𝑢,𝑣 then 
we guess which of the fastest temporal paths: from 𝑣𝑖−1 to 𝑣𝑖+1, from 𝑣𝑖+1 to 𝑣𝑖−1, from 𝑣𝑖 to 𝑣𝑖+2, from 𝑣𝑖+2 to 𝑣𝑖 pass through 
the edge 𝑓 . If there are two incident edges 𝑒 = 𝑣𝑖−1𝑣𝑖 and 𝑓 = 𝑣𝑖𝑣𝑖+1 in 𝑆𝑢,𝑣, that are determined with respect to 𝜆(𝑣1𝑣2) and 
𝜆(𝑣𝑝−1𝑣𝑝), respectively then we guess which of the fastest temporal paths: from 𝑣𝑖−1 to 𝑣𝑖+1, from 𝑣𝑖+1 to 𝑣𝑖−1 pass through the 
edges 𝑒, 𝑓 .

We create 𝑂(1) guesses for every such segment 𝑆𝑢,𝑣, and 𝑂(𝑘2) new guesses in total, as there are at most 𝑂(𝑘2) segments.

Note that the condition for segment length of at least four comes from Lemma 5. We now conclude the following.

Corollary 4. Let 𝑆𝑢,𝑣 be an arbitrary segment in 𝐺′. If 𝑆𝑢,𝑣 is of length 3 or 2 then it has at most 3 or 2 not yet determined edges, respectively. 
If 𝑆𝑢,𝑣 is of length at least 4 then the labels of all its edges are determined with respect to the first edge.

At this point 𝐺′ is a graph, where each edge 𝑒 has a value for its label 𝜆(𝑒) that depends on (i.e., is a function of) some other label 
𝜆(𝑓 ) of edge 𝑓 , or it depends on no other label. We now describe how we create variables and start building our ILP instances. For 
every edge 𝑒 in 𝐺′ that is incident to a vertex of interest, we create a variable 𝑥𝑒 that can have values from {1,2,… ,Δ}. Besides that, 
we create one variable for each edge that is still not yet determined on a segment. Since each vertex of interest is incident to at most 
𝑘 edges in 𝐺′, and each segment has at most one extra not yet determined edge, we create 𝑂(𝑘2) variables. At the end, we create our 
final guess.

G-12. We guess the permutation of all 𝑂(𝑘2) variables. So, for any two variables 𝑥𝑒 and 𝑥𝑓 , we know if 𝑥𝑒 < 𝑥𝑓 or 𝑥𝑒 = 𝑥𝑓 , or 𝑥𝑒 > 𝑥𝑓 . 
This results in 𝑂(𝑘2!) = 𝑘𝑂(𝑘2) guesses and consequently each of the ILP instances we created up to now is further split into 
𝑘𝑂(𝑘

2) new ones.

We have now finished creating all ILP instances. From Section 3.2.2 we know the structure of all guessed paths, to which we have 
just added also the knowledge of permutation of all variables. We proceed with adding constraints to each of our ILP instances. First, 
we add all constraints for the labels of edges that we have determined up to now. We then continue to iterate through all pairs of 
vertices and start adding equality (resp. inequality) constraints for the fastest (resp. not necessarily fastest) temporal paths between 
them.

We now describe how we add constraints to a path. Whenever we say that a duration of a path gives an equality or inequality 
constraint, we mean the following. Let 𝑃 = (𝑢 = 𝑣1, 𝑣2,… , 𝑣𝑝 = 𝑣) be the underlying path of a fastest temporal path from 𝑢 to 𝑣, and 
let 𝑄 = (𝑢 = 𝑧1, 𝑧2,… , 𝑧𝑟 = 𝑣) be the underlying path of another temporal path from 𝑢 to 𝑣. Then we know that 𝑑(𝑃 ,𝜆) =𝐷𝑢,𝑣 and 
𝑑(𝑄,𝜆) ≥𝐷𝑢,𝑣. Using Observation 1 we create an equality constraint for 𝑃 of the form
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𝐷𝑢,𝑣 =
𝑝−1 ∑
𝑖=2 

(𝜆(𝑣𝑖𝑣𝑖+1) − 𝜆(𝑣𝑖−1𝑣𝑖))Δ + 1, (6)

and an inequality constraint for 𝑄

𝐷𝑢,𝑣 ≤

𝑟−1 ∑
𝑖=2 

(𝜆(𝑧𝑖𝑧𝑖+1) − 𝜆(𝑧𝑖−1𝑧𝑖))Δ + 1. (7)

In both cases we implicitly assume that if the difference of (𝜆(𝑧𝑖𝑧𝑖+1)−𝜆(𝑧𝑖−1𝑧𝑖)) is negative, for some 𝑖, we add the value Δ to it (i.e., 
we consider the difference modulo Δ), therefore we have the sign Δ around the brackets. Note that we can determine if the difference 
between two consecutive labels is positive or negative. In the case when two consecutive labels are determined with respect to the 
same label 𝜆(𝑒) the difference between them is easy to determine. If consecutive labels are not determined with respect to the same 
label, both labels are considered undetermined and are assigned a variable for which we know in what kind of relation they are (see 
guess G-12). Therefore, we know when Δ has to be added, which implies that Eqs. (6) and (7) are calculated correctly for all paths.

We iterate through all pairs of vertices 𝑥, 𝑦 and make sure that a fastest temporal path from 𝑥 to 𝑦 produces the equality constrain 
Eq. (6), and all other temporal paths from 𝑥 to 𝑦 produce the inequality constraint Eq. (7). For each pair, we argue how we determine 
these paths.

Fastest paths between 𝑢, 𝑣 ∈𝑈 . Let 𝑢, 𝑣 ∈𝑈 , i.e., both 𝑢, 𝑣 are vertices of interest. For the path from 𝑢 to 𝑣 (resp. from 𝑣 to 𝑢) in 𝐺′, 
which we guessed that it coincides with the fastest in G-1, we introduce an equality constraint. We then iterate over all other paths 
from 𝑢 to 𝑣 (resp. from 𝑣 to 𝑢) in 𝐺′, and for each one we introduce an inequality constraint. There are 𝑘𝑂(𝑘) possible paths from 𝑢
to 𝑣 in 𝐺′. Therefore we add 𝑘𝑂(𝑘) inequality constraints for the pair 𝑢, 𝑣.

Fastest paths from 𝑢∈𝑈 to 𝑥 ∈ 𝑉 (𝐺′) ⧵𝑈 . From the guesses G-8 and G-10 we know the fastest temporal paths from 𝑢 to all vertices 
in a segment 𝑆𝑤,𝑣. In this case, we create an equality constraint for the fastest path and we iterate through all other paths, for which 
we introduce the inequality constraints. There are 𝑘𝑂(𝑘) possible paths of the form 𝑢⇝ 𝑤 (resp. 𝑢⇝ 𝑣), and a unique way how to 
extend these paths from 𝑤 (resp. 𝑣) to reach 𝑥 in 𝑆𝑤,𝑣. Therefore we add 𝑘𝑂(𝑘) inequality constraints for the pair 𝑢, 𝑥.

Fastest paths from 𝑥∈ 𝑉 (𝐺′) ⧵𝑈 to 𝑢 ∈𝑈 . Let 𝑥 be a vertex in the segment 𝑆𝑤,𝑧 = (𝑤 = 𝑧1, 𝑧2,… , 𝑧𝑟 = 𝑧), and let 𝑢 ∈ 𝑈 . If 𝑆𝑤,𝑧
is of length 3 or less, then we already know a fastest temporal path from every vertex in the segment to 𝑢 (since 𝑆𝑤,𝑧 has at most 2
inner vertices, we determined the fastest temporal paths from them to 𝑢 in guess G-4).

Assume that 𝑆𝑤,𝑧 is of length at least 4. From Corollary 4 we know that the labels of all the edges in 𝑆𝑤,𝑧 are determined with 
respect to the label of the first edge. Moreover, this gives us the knowledge of the exact differences among two consecutive edge 
labels, which is enough to uniquely determine travel delays at all of the inner vertices 𝑧𝑖 ∈ 𝑆𝑤,𝑧 (see Definition 4).

From the matrix 𝐷 we can easily determine the two vertices 𝑧𝑖, 𝑧𝑖+1 ∈ 𝑆𝑤,𝑧 ⧵ {𝑤,𝑧} for which a fastest temporal path from 𝑧𝑖 to 𝑢
has the biggest duration. Let us denote with 𝑃+ a fastest temporal path of the form 𝑧2 → 𝑧⇝ 𝑢, and with 𝑃− a fastest temporal path 
of the form 𝑧𝑟−1 →𝑤⇝ 𝑢 (we know these paths from guess G-8). It follows that all vertices 𝑧𝑗 in 𝑆𝑤,𝑧 ⧵ {𝑧𝑖, 𝑧𝑖+1} that are closer to 𝑤
than 𝑧𝑖, 𝑧𝑖+1 reach 𝑢 the fastest using the path (𝑧𝑗 → 𝑧𝑗−1 →⋯→ 𝑧2) ∪𝑃+ and all the vertices 𝑧𝑗 in 𝑆𝑤,𝑧 ⧵ {𝑧𝑖, 𝑧𝑖+1} that are closer to 
𝑧 than 𝑧𝑖, 𝑧𝑖+1 reach 𝑢 the fastest using the path (𝑧𝑗 → 𝑧𝑗+1 →⋯→ 𝑧𝑟−1) ∪ 𝑃−. Since the first part of the above path is unique, and 
we know that the second part is the fastest, it follows that these paths indeed represent the fastest temporal paths to 𝑢. What remains 
to determine is the fastest temporal paths from 𝑧𝑖, 𝑧𝑖+1 to 𝑢. We distinguish the following two options.

(i) 𝑧𝑖 ≠ 𝑧𝑖+1. Then a fastest temporal path from 𝑧𝑖 to 𝑢 is (𝑧𝑖 → 𝑧𝑖−1 →⋯→ 𝑧2) ∪ 𝑃+, and a fastest temporal path from 𝑧𝑖+1 to 𝑢 is 
(𝑧𝑖+1 → 𝑧𝑖+2 →⋯→ 𝑧𝑟−1) ∪ 𝑃−.

(ii) 𝑧𝑖 = 𝑧𝑖+1, i.e., let 𝑧𝑖 be the unique vertex, that is furthest away from 𝑢 in 𝑆𝑤,𝑧. In this case, we have to determine if a fastest 
temporal path from 𝑧𝑖 to 𝑢, travels first through vertex 𝑧𝑖−1 (and then through 𝑤), or it travels first through 𝑧𝑖+1 (and then 
through 𝑧). Since we know the values 𝐷𝑧𝑖−1 ,𝑢,𝐷𝑧𝑖+1 ,𝑢, and we know the value of the waiting time 𝜏𝑣𝑖,𝑣𝑖−2𝑣𝑖−1

at vertex 𝑣𝑖−1 when 
traveling from 𝑣𝑖 to 𝑣𝑖−2, we can uniquely determine the desired path. We set 𝑐 =𝐷𝑧𝑖−1 ,𝑢 + 𝜏

𝑣𝑖,𝑣𝑖−2
𝑣𝑖−1

and compare 𝑐 to the value 
𝐷𝑧𝑖,𝑢

. If 𝑐 < 𝐷𝑧𝑖,𝑢 we conclude that our ILP has no solution and we stop with calculations, if 𝑐 = 𝐷𝑧𝑖,𝑢 then a fastest temporal 
path from 𝑧𝑖 to 𝑢 is of the form (𝑧𝑖 → 𝑧𝑖−1 →⋯→ 𝑧2) ∪ 𝑃+, if 𝑐 > 𝐷𝑧𝑖,𝑢 then a fastest temporal path from 𝑧𝑖 to 𝑢 is of the form 
(𝑧𝑖→ 𝑧𝑖+1 →⋯→ 𝑧𝑟−1) ∪ 𝑃−.

Once a fastest temporal path from 𝑐 to 𝑢 is determined, we introduce an equality constraint for it. For each of the other 𝑘𝑂(𝑘) paths 
from 𝑥 to 𝑢 (which correspond to all paths of the form 𝑤⇝ 𝑢 and 𝑧⇝ 𝑢, together with the unique subpath on 𝑆𝑤,𝑧), we introduce an 
inequality constraint. Therefore we add 𝑘𝑂(𝑘) inequality constraints for the pair 𝑥, 𝑢.

Fastest paths between 𝑥, 𝑦∈ 𝑉 (𝐺′) ⧵𝑈 . Let 𝑥, 𝑦 ∈ 𝑉 (𝐺′) ⧵𝑈 . There are two options.

(i) Vertices 𝑥, 𝑦 are in the same segment 𝑆𝑢,𝑣 = (𝑢, 𝑣1, 𝑣2,… , 𝑣𝑝, 𝑣). If the length of 𝑆𝑢,𝑣 is less than 4 then we know what is the fastest 
path between vertices, as 𝑥, 𝑦 ∈𝑈∗. Suppose now that 𝑆𝑢,𝑣 is of length at least 4 and assume that 𝑥 is closer to 𝑢 in 𝑆𝑢,𝑣 than 𝑦. 
Then we have two options; either the path from 𝑥 to 𝑦 travels only through the edges of 𝑆𝑢,𝑣, denote such path as 𝑃𝑥,𝑦, or it is of 
the form 𝑥→ 𝑣1 → 𝑢⇝ 𝑣→ 𝑣𝑝→ 𝑦, denote is as 𝑃 ∗

𝑥,𝑦
. Note that we can determine 𝑃 ∗

𝑥,𝑦
as it is a concatenation of a unique path 

from 𝑥 to 𝑣2, together with the fastest path from 𝑣2 to 𝑣𝑝, that travels through 𝑢 and 𝑣 (we know this path from G-7), and the 
unique path from 𝑣𝑝 to 𝑦. Because of Corollary 4 we can determine 𝑐 = 𝑑(𝑃𝑥,𝑦, 𝜆). If 𝑐 > 𝐷𝑥,𝑦 we set the fastest path to be 𝑃 ∗

𝑥,𝑦
, if 

𝑐 =𝐷𝑥,𝑦 then the fastest path is 𝑃𝑥,𝑦, and if 𝑐 < 𝐷𝑥,𝑦 we conclude that our ILP has no solution and we stop with calculations.
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(ii) Vertices 𝑥 and 𝑦 are in different segments. Let 𝑥 be a vertex in the segment 𝑆𝑢,𝑣 = (𝑢 = 𝑣1, 𝑣2,… , 𝑣𝑝 = 𝑣) and let 𝑦 be a vertex in the 
segment 𝑆𝑤,𝑧 = (𝑤 = 𝑧1, 𝑧2, 𝑧3,… , 𝑧𝑟 = 𝑧). By checking the durations of the fastest paths from 𝑥 to every vertex in 𝑆𝑤,𝑧 ⧵ {𝑤,𝑧}
we can determine the vertex 𝑧𝑖 ∈ 𝑆𝑤,𝑧, for which the duration from 𝑥 is the biggest. Note that if there are two such vertices 𝑧𝑖
and 𝑧𝑖+1, we know exactly how all fastest temporal paths enter 𝑆𝑤,𝑧 (we use similar arguing as in case (i) from above, where we 
were determining the fastest path from 𝑥 ∈ 𝑉 (𝐺′) to 𝑢 ∈ 𝑈 ). This implies that the fastest temporal paths from 𝑥 to all vertices 
𝑧2, 𝑧3,… , 𝑧𝑖−1 (resp. 𝑧𝑖+1, 𝑧𝑖+2,… , 𝑧𝑟−1) pass through 𝑤 (resp. 𝑧). Now we determine the vertex 𝑣𝑗 ∈ 𝑆𝑢,𝑣 ⧵ {𝑢, 𝑣}, for which the 
value of the durations of the fastest paths from it to the vertex 𝑦 is the biggest. Again, if there are two such vertices 𝑣𝑗 and 𝑣𝑗+1
we know exactly how the fastest temporal paths, starting in these two vertices, leave the segment 𝑆𝑢,𝑣 . We use similar arguing as 
in case (i) from above, when we were determining the fastest path from 𝑥 ∈ 𝑉 (𝐺′) to 𝑢 ∈𝑈 . Knowing the vertex 𝑣𝑗 implies that 
the fastest temporal paths from the vertices 𝑣2 , 𝑣2,… , 𝑣𝑗−1 (resp. 𝑣𝑗+1, 𝑣𝑗+2,… , 𝑣𝑝−1) to the vertex 𝑦 passes through 𝑢 (resp. 𝑣). 
Since we know the following fastest temporal paths (see guess G-7) 𝑧2 →𝑤⇝ 𝑢→ 𝑣2, 𝑧2 →𝑤⇝ 𝑣→ 𝑣𝑝−1, 𝑧𝑟−1 → 𝑧⇝ 𝑣→ 𝑣𝑝−1
and 𝑧𝑟−1 → 𝑧⇝ 𝑣→ 𝑣𝑝−1, we can uniquely determine all fastest temporal paths from 𝑥 ≠ 𝑣𝑗 to any 𝑦 ∈ 𝑆𝑢,𝑣 ⧵ {𝑧𝑖}.

In case when 𝑥 = 𝑣𝑗 and 𝑦 = 𝑧𝑖 and the segments are of length at least 4, we can uniquely determine the fastest path from 𝑣𝑗
to 𝑧𝑖, using similar arguing as in case (ii) from above, when we were determining the fastest path from 𝑥 ∈ 𝑉 (𝐺′) to 𝑢 ∈ 𝑈 . 
If at least one of the segments is of length 3 or less, we can again uniquely determine the fastest path from 𝑣𝑗 to 𝑧𝑖, using the 
same approach, and the knowledge of fastest paths to (or from) all vertices of the segment of length 3 (as we guessed them in 
guess G-7).

Once the fastest path is determined we introduce the equality constraint for it and iterate through all other paths, for which we 
introduce inequality constraints. To enumerate all these non-fastest temporal paths, we just consider all possible paths 𝑢⇝𝑤, where 
𝑢 and 𝑤 are the vertices of interest that are the endpoints of segments to which 𝑥 and 𝑦 belong; once the correct segment is reached, 
there is a unique path to the desired vertex 𝑥 (resp. 𝑦). Therefore we introduce 𝑘𝑂(𝑘) inequality constraints for each pair of vertices 
𝑥, 𝑦.

Fastest paths for vertices in 𝑍 . All of the above is enough to determine the labeling 𝜆 of 𝐺′. We have to extend the labeling to 
consider also the vertices of 𝑍 = 𝑉 (𝐺) ⧵ 𝑉 (𝐺′) that we initially removed from 𝐺.

Recall that 𝐺[𝑍] consists of disjoint trees and that each of these trees has a unique neighbor (clip vertex) 𝑣 in 𝐺′. We then define 
the tree 𝑇𝑣 in 𝐺[𝑍 ∪ {𝑣}] as the collection of trees from 𝐺[𝑍] with a clip vertex 𝑣, together with the root 𝑣. Determining the fastest 
temporal paths between any two vertices in the same tree is a straightforward process (see Theorem 3), therefore we exclude this 
case from our upcoming analysis. From Observation 4 it follows that knowing temporal paths between any 𝑦 ∈ 𝑉 (𝐺′) and all vertices 
in the first layer of the tree 𝑇𝑣 (i.e., children of the root 𝑣), it is enough to determine the fastest temporal paths between 𝑦 and all 
other vertices in 𝑇𝑣. Therefore, in the upcoming analysis, we focus only on the vertices in the first layer of each tree 𝑇𝑣. During the 
process of determining the fastest paths from and to the vertices in 𝑍 , we use the fact that we have already identified the fastest 
paths among all vertices in 𝐺′.

We split our analysis into two cases. First, when the clip vertex 𝑣 of tree 𝑇𝑣 is not a vertex of interest, and second when the clip 
vertex is also a vertex of interest in 𝐺′. In the first case, we use the fact that 𝑣 has only two edges 𝑒, 𝑓 incident to it in 𝐺′, and that we 
can determine all the labels of the tree edges with respect to 𝜆(𝑒), 𝜆(𝑓 ) (see Lemma 7). This results to be enough for us to determine 
the fastest temporal paths among any vertex 𝑟 in the first layer of the tree 𝑇𝑣 and an arbitrary vertex in 𝑉 (𝐺) ⧵ 𝑉 (𝑇𝑣). In the second 
case, we cannot determine the labeling of the tree with respect to the labels of all edges incident to the clip vertex. Therefore, we 
split the vertices in the first layer of 𝑇𝑣 into equivalence classes, and use the fact that the fastest temporal paths between two vertices 
in the same equivalence class coincide on the edges outside of 𝑇𝑣.

Fastest paths from 𝑟∈𝑍 to 𝑦∈𝑈 ∪𝑈∗. Let 𝑥 ∈ 𝑉 (𝐺′) be the clip vertex of the tree 𝑇𝑥 in 𝐺[𝑍 ∪ {𝑥}] with 𝑟 ∈ 𝑉 (𝑇𝑥) be a vertex 
in the first layer of 𝑇𝑥. We distinguish the following two cases.

(i) The clip vertex 𝑥 = 𝑢 ∈ 𝑈 is a vertex of interest. In this case, we can w.l.o.g. assume that 𝑟 is a representative vertex in its 
equivalence class among the first layer vertices of 𝑇𝑢 . From the guesses G-5 and G-6 we know a fastest temporal path from 𝑟 to 
𝑦.

(ii) The clip vertex 𝑥 ∈ 𝑈 is not a vertex of interest. Then 𝑥 = 𝑣𝑗 is a part of some segment 𝑆𝑢,𝑣 = {𝑢 = 𝑣1, 𝑣2,… , 𝑣𝑝 = 𝑣), where 
𝑗 ≠ 1 ≠ 𝑝. Using Lemma 7 we can determine all the edge labels of 𝑇𝑥 with respect to the label 𝜆(𝑣𝑗−1𝑣𝑗 ) and with respect to the 
label 𝜆(𝑣𝑗𝑣𝑗+1). Using the calculations of fastest temporal paths among vertices in 𝐺′ and the performed guesses we know the 
exact structure (i.e., the sequence of vertices and edges) of the following paths:

• path 𝑃 ∗
𝑥𝑦

which is a fastest temporal path from the vertex 𝑥 to the vertex 𝑦,
• path 𝑃 𝑢

𝑥𝑦
which is a fastest temporal path from the vertex 𝑥 to the vertex 𝑦, that passes through the vertex 𝑢,

• path 𝑃 𝑣
𝑥𝑦

which is a fastest temporal path from the vertex 𝑥 to the vertex 𝑦, that passes through the vertex 𝑣.
Note that 𝑃 ∗

𝑥𝑦
is either equal to the path 𝑃 𝑢

𝑥𝑦
or to the path 𝑃 𝑣

𝑥𝑦
. More precisely, from the guesses performed we know the structure 

of the fastest path from 𝑣2 through 𝑢, which then continues to any other vertex of interest, and any other neighbor of the vertex 
of interest (see guesses G-7 and G-8). This path can then be easily (uniquely) extended to start from 𝑥 = 𝑣𝑖, as there is a unique 
(temporal) path starting at 𝑥 and finishing in 𝑢 or 𝑣.
Suppose now that 𝑃 ∗

𝑥𝑦
= 𝑃 𝑢

𝑥𝑦
. Since the labels of 𝑇𝑥 are determined with respect to 𝜆(𝑣𝑖−1𝑥) we can calculate the value 𝑐 =

𝐷𝑥,𝑦 + |𝜆(𝑣𝑖−1𝑥) − 𝜆(𝑟𝑥)|. We then compare 𝑐 to 𝐷𝑟,𝑦 and get one of the following three options. First 𝑐 = 𝐷𝑟,𝑦, in this case, a 
fastest temporal path from 𝑟 to 𝑦 uses first the edge 𝑟𝑥 and then continues to 𝑦 using the edges and vertices of 𝑃 ∗

𝑥𝑦
. Second 

𝑐 > 𝐷𝑟,𝑦, in this case, a fastest temporal path from 𝑟 to 𝑦 uses first the edge 𝑟𝑥 and then continues to 𝑦 using the vertices and 
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edges of 𝑃 𝑣
𝑥𝑦

. Third 𝑐 < 𝐷𝑟,𝑦, in this case, we stop the calculation and return false, as it cannot happen that a temporal path has 
a smaller duration than the corresponding value in the matrix 𝐷.

In both cases, we introduce an equality constraint for the determined fastest temporal path and inequality constraints for all the other 
𝑘𝑂(𝑘) paths.

Fastest paths from 𝑟∈𝑍 to 𝑦∈ 𝑉 (𝐺) ⧵ (𝑈 ∪𝑈∗). The proof in this case is similar to the one above. We still split the analysis into 
two parts, one where the clip vertex 𝑥 of a tree 𝑇𝑥 that includes 𝑟 is in 𝑈 and one where it is not in 𝑈 . The difference is that in some 
cases we need to also extend the ending part of the path (which can be done uniquely, using the same arguments as in the above 
analysis).

Once we determine a fastest temporal path from 𝑟 to 𝑦 we introduce an equality constraint for it, and for all other 𝑘𝑂(𝑘) paths we 
introduce inequality constraints.

The procedure produces one equality constraint (for the fastest path) and 𝑘𝑂(𝑘) inequality constraints.

Fastest paths from 𝑦∈ 𝑉 (𝐺) to 𝑟 ∈𝑍 . The process of determining fastest temporal paths from any vertex in the graph 𝐺 to a vertex 
𝑟 that is a vertex in the first layer of a tree 𝑇𝑥 ∈ 𝐺[𝑍 ∪ {𝑥}], where 𝑥 ∈ 𝑉 (𝐺′), is similar to the one above, but performed in the 
opposite direction.

3.2.5. Solving ILP instances

All of the above finishes our construction of ILP instances. We have created 𝑓 (𝑘) instances (where 𝑓 is a double exponential 
function), each with 𝑂(𝑘2) variables and 𝑂(𝑛2)𝑔(𝑘) constraints (again, 𝑔 is a double exponential function). We now solve each ILP 
instance 𝐼 , using results from Lenstra [51], in the FPT time, with respect to 𝑘. If none of the ILP instances gives a positive solution, 
then there exists no labeling 𝜆 of 𝐺 that would realize the matrix 𝐷 (i.e., for any pair of vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺) the duration of a 
fastest temporal path from 𝑢 to 𝑣 has to be 𝐷𝑢,𝑣). If there is at least one 𝐼 that has a valid solution, we use this solution and produce 
our labeling 𝜆, for which (𝐺,𝜆) realizes the matrix 𝐷. We have proven in the previous subsections that this is true since each ILP 
instance corresponds to a specific configuration of fastest temporal paths in the graph (i.e., considering all ILP instances is equivalent 
to exhaustively searching through all possible temporal paths between vertices). Besides that, in each ILP instance we add also the 
constraints for durations of all temporal paths between each pair of vertices. This results in setting the duration of a fastest path 
from a vertex 𝑢 ∈ 𝑉 (𝐺) to a vertex 𝑣 ∈ 𝑉 (𝐺) as 𝐷𝑢,𝑣, and the duration of all other temporal paths from 𝑢 to 𝑣, to be greater or 
equal to 𝐷𝑢,𝑣, for all pairs of vertices 𝑢, 𝑣. Therefore, if there is an instance with a positive solution, then this instance gives rise to 
the desired labeling, as it satisfies all of the constraints. For the other direction, we can observe that if there is a labeling 𝜆 meeting 
all duration requirements specified by 𝐷, then this labeling produces a specific configuration of fastest temporal paths. Since we 
consider all configurations, one of the produced ILP instances will correspond to the configuration implicitly defined by 𝜆, and hence 
our algorithm finds a solution.

To create the labeling 𝜆 from a solution 𝑋, of a positive ILP instance, we use the following procedure. First we label each edge 𝑒, 
that corresponds to the variable 𝑥𝑒 by assigning the value 𝜆(𝑒) = 𝑥𝑒. We then continue to set the labels of all other edges. We know 
that the labels of all of the remaining edges depend on the label of (at least one) of the edges that were determined in previous step. 
Therefore, we easily calculate the desired labels for all remaining edges.

4. Conclusion

We have introduced a natural and canonical temporal version of the graph realization problem with respect to distance re

quirements, called Simple periodic Temporal Graph Realization. We have shown that the problem is NP-hard in general and 
polynomial-time solvable if the underlying graph is a tree. Building upon those results, we have investigated its parameterized compu

tational complexity with respect to structural parameters of the underlying graph that measure ``tree-likeness''. For those parameters, 
we essentially gave a tight classification between parameters that allow for tractability (in the FPT sense) and parameters that pre

sumably do not. We showed that our problem is W[1]-hard when parameterized by the feedback vertex number of the underlying 
graph, and that it is in FPT when parameterized by the feedback edge number of the underlying graph. Note that most other common 
parameters that measure tree-likeness (such as the treewidth) are smaller than the vertex cover number.

We believe that our work spawns several interesting future research directions and builds a base upon which further temporal 
graph realization problems can be investigated.

Further parameterizations. There are several structural parameters that can be considered to obtain tractability which are either 
larger than or incomparable to the feedback vertex number.

• The vertex cover number measures the distance to an independent set, on which we trivially only have no-instances of our problem. 
We believe this is a promising parameter to obtain tractability.

• The tree-depth measures ``star-likeness'' of a graph and is incomparable to both the feedback vertex number and the feedback 
edge number. We leave the parameterized complexity of our problem with respect to this parameter open.

• Parameters that measure ``path-likeness'' such as the pathwidth or the vertex deletion distance to disjoint paths are also natural 
candidates to investigate.

Furthermore, we can consider combining a structural parameter with Δ. Our NP-hardness reduction (Theorem 1) produces instances 
with constant Δ, so as a single parameter Δ cannot yield fixed-parameter tractability. However, in our parameterized hardness 
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reduction (Theorem 2) the value for Δ in the produced instance is large. This implies that our result does not rule out e.g. fixed

parameter tractability for the combination of the treewidth and Δ as a parameter. We believe that investigating such parameter 
combinations is a promising future research direction.

Further problem variants. There are many natural variants of our problem that are well-motivated and warrant consideration. In 
the following, we give three specific examples. We believe that one of the most natural generalizations of our problem is to allow more 
than one label per edge in every Δ-period. This problem variant has been studied for the first time very recently by Erlebach et al. [26]. 
A well-motivated variant (especially from the network design perspective) of our problem is to consider the entries of the duration 
matrix 𝐷 as upper bounds on the duration of fastest paths rather than exact durations. This problem variant has very recently been 
studied by Mertzios et al. [59]. Furthermore, it would be interesting to also study non-strict temporal paths, as opposed to the strict 
temporal paths that are considered in the present paper. These three problem variants are the most immediate extensions/variations 
of the problem studied in this paper. More generally, temporal graph realization problems (not necessarily periodic) can be naturally 
defined also with respect to other temporal graph objects (instead of fastest temporal paths and their durations) such as having 
sufficiently small separators [69], or sufficiently large temporal matching [57] etc.
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