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Abstract
The network-based study of financial systems has received considerable attention in recent years but has
seldom explicitly incorporated the dynamic aspects of such systems. We consider this problem setting from
the temporal point of view and introduce the Interval Debt Model (IDM) and some scheduling problems
based on it, namely: Bankruptcy Minimization/Maximization, in which the aim is to produce a
payment schedule with at most/at least a given number of bankruptcies; Perfect Scheduling, the
special case of the minimization variant where the aim is to produce a schedule with no bankruptcies
(that is, a perfect schedule); and Bailout Minimization, in which a financial authority must allocate
a smallest possible bailout package to enable a perfect schedule. We show that each of these problems
is NP-complete, in many cases even on very restricted input instances. On the positive side, we provide
for Perfect Scheduling a polynomial-time algorithm on (rooted) out-trees although in contrast we
prove NP-completeness on directed acyclic graphs, as well as on instances with a constant number of
nodes (and hence also constant treewidth). When we allow non-integer payments, we show by a linear
programming argument that the problem Bailout Minimization can be solved in polynomial time.

Keywords: temporal graph, financial network, payment scheduling, computational complexity

1 Introduction
A natural problem in the study of financial networks is that of whether and where a failure will occur if
no preventative action is taken. We focus specifically on the flexibility that financial entities are afforded as
regards the precise timing of their outgoings and for this purpose introduce the Interval Debt Model (IDM)
in which a set of financial entities is interconnected by debts due within specific time intervals. In the IDM, a
payment schedule specifies timings of payments to serve the debts. We examine the computational hardness
of determining the existence of a schedule of payments with “good” properties, e.g., no or few bankruptcies,
or minimizing the scale of remedial action. In particular, we establish how hardness depends on variations
in the exact formalism of the model (to allow some small number of bankruptcies or insist on none at all)
and on restrictions on the structure or lifetime of the input instance. A unique and novel feature of the IDM
is its capacity to capture the temporal aspects of real-world financial systems; previous work has seldom
explicitly dealt with this intrinsic facet of real-world debt.

Financial Networks
Graph theory provides models for many problems of practical interest for analyzing (or administering)
financial systems. For example, Eisenberg and Noe’s work [1] abstracts a financial system to be a weighted
digraph (in which each node is additionally labeled according to the corresponding entity’s assets). The
authors of that work are focused on the existence and computation of a clearing vector, which is essentially
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a set of payments among nodes of the graph which can be executed synchronously without violating some
validity constraints. Their model provides the basis for much subsequent work in the network-based analysis
of financial systems: it has been adapted to incorporate default costs [2], Credit Default Swaps [3] (CDSs)
(that is, derivatives through which banks can bet on the default of another bank in the system) and the
sequential behavior of bank defaulting in real-world financial networks [4].

An axiomatic aspect of Eisenberg and Noe’s model is the so-called principle of proportionality : that a
defaulting bank pays off each of its creditors proportionally to the amount it is owed. Some recent work
has considered alternative payment schemes, which allow, for example, paying some debts in full and others
not at all (so-called non-proportional payments). For example, Bertschinger, Hoefer and Schmand [5] study
financial networks in a setting where each node is a rational agent which aims to maximize flow through
itself by allocating its income to its debts. The focus of that work is on game-theoretic questions, such as
the price of anarchy, or the existence, properties, and computability of equilibria. Papp and Wattenhoffer
[6] also study a non-proportional setting, additionally incorporating CDSs.

Complementing the decentralized, game-theoretic approach is the question of the (centralized) com-
putability of a globally “good” outcome through bailout allocation [7] (also called cash injection [8]), or
timing default announcements [4], among other operations. In such works, the prototypical objective is to
minimize the number of bankruptcies; related measures include total market value [7], or systemic liquidity
[8]. Egressy and Wattenhoffer [7] focus solely on computational complexity of leveraging bailouts to optimize
a range of objectives, in a setting which incorporates proportional payments and default costs. Kanellopou-
los, Kyropoulou and Zhou [8, 9] apply both a game-theoretic and a classical complexity perspective to
two mechanisms: debt forgiveness (deletion of edges in the financial network) and cash injection (bailouts).
Notably, in this work the central authority may remove debts in a way which may be detrimental to certain
individuals, but beneficial to the total systemic liquidity.

Previous research on financial networks has also drawn from ecology [10], statistical physics [11] and
Boolean networks [12].

A central motivation of financial network analysis is to inform central banks’ and regulators’ policies.
The concepts of solvency and liquidity are core to this task: a bank is said to be solvent if it has enough
assets (including, e.g., debts owed to it) to meet all its obligations; and it is said to be liquid if it has enough
liquid assets (that is, cash) to meet its obligations on time. An illiquid but solvent bank may exist even in
modern interbank markets [13]. In such cases, a central bank may act as a lender of last resort and extend
loans to such banks to prevent them defaulting on debts [13, 14]. The optimal allocation of bailouts to a
system in order to minimize damage has also been studied as an extension of Eisenberg and Noe’s model
[15]. Here, bailouts refer to funds provided by a third party (such as a government) to entities to help them
avoid bankruptcy.

Temporal Graphs
Temporal graphs are graphs whose underlying connectivity structure changes over time. Such graphs allow
us to model real-world networks which have inherent dynamic properties, such as transportation networks
[16], contact networks in an epidemic [17, 18] and communication networks; for an overview see [19, 20].
Most commonly, following the formulation introduced by Kempe, Kleinberg and Kumar [21], a temporal
graph has a fixed set of vertices together with edges that appear and disappear at integer times up to an
(integer) lifetime. Often, a natural extension of a problem on static graphs to the temporal setting yields a
computationally harder problem; for example, finding node-disjoint paths in a temporal graph remains NP-
complete even when the underlying graph is itself a path [22], and finding a temporal vertex cover remains
NP-complete even on star temporal graphs [23].

Contributions
In this paper we present a novel framework, the Interval Debt Model (IDM), for considering problems of
bailout allocation and payment scheduling in financial networks by using temporal graphs to account for the
isochronal aspect of debts between financial entities (previous work has almost exclusively focused on static
financial networks). In particular, the IDM offers the flexibility that entities can pay debts earlier or later,
within some agreed interval. We introduce several natural problems and problem variants in this model and
show that the tractability of such problems depends greatly on the network topology and on the restrictions
on payments (i.e., the admission or exclusion of partial and fractional payments on debts).

Our work explores the natural question of whether and how payments can be scheduled to avert large-
scale failures in financial networks. Broadly, we establish that computing a zero-failure schedule (a perfect
schedule) is NP-complete even when the network topology is highly restricted, unless we admit fractional
payments, in which case determining the existence of a perfect schedule is tractable in general. Interestingly,
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if we allow a small number k of bankruptcies to occur then every problem variant is computationally hard
even on inputs with O(1) nodes. This can be thought of analogously to Max 2SAT being strictly harder
than 2SAT (unless P=NP) despite being a “relaxation”: in Max 2SAT we allow up to k clauses to not be
satisfied. Furthermore, in the setting where we insist not only on payments being for integer amounts but
more strongly that any payment is for the full amount of the corresponding debt, finding a perfect schedule
is NP-complete even if there are only four nodes.

We begin by introducing, first by example and then formally, the Interval Debt Model in Section 2.
In Section 3 we present our results: in Section 3.1–3.3 we establish some sufficent criteria for NP-hardness
for each of the problems we consider; and in Section 3.4 we present two polynomial-time algorithms. Our
conclusions and directions for further research are given in Section 4.

2 The Interval Debt Model
In this section, we introduce (first by example and then formally) the Interval Debt Model, a framework in
which temporal graphs are used to represent the collection of debts in a financial system.

2.1 An illustrative example
As an example, consider a tiny financial network consisting of the 3 banks u, v and w with e30, e20 and
e10, respectively, in initial external assets and where there are the following inter-bank financial obligations:

• bank u owes bank v e20 which it must pay by time 3 and e15 which it must pay at time 4 or time 5
(note that all payments must be made at integer times)

• bank v must pay bank w a debt of e25 at time 2 exactly
• bank w must pay e25 to bank v between times 4 and 6 (that is, at time 4, 5 or 6).

A graphical representation of this system is shown in Fig. 1 (the descriptive notation used should be obvious
and is retained throughout the paper).

u
30

v
20

w
10

20@[1, 3]

15@[4, 5]

25@2

25@[4, 6]

Fig. 1 A simple instance of the Interval Debt Model (IDM). Numbers in square boxes represent the initial external assets of the
node (for example, e30 for node u), directed edges represent debts, and the label on an edge represents the terms of the associated
debt (for example, u must pay v e20 between time 1 and time 3).

Several points can be made about this system: node u is insolvent as its e30 in initial external assets are
insufficient to pay all its debts; node v may be illiquid for it may default on part of its debt to w, e.g., if u
pays all of its first debt at time 3, or may remain liquid, e.g., if it receives at least e5 from u by time 2; and
node w is solvent and certain to remain liquid in any case. The choices made by the various banks, in the
form of a (payment) schedule, clearly affect the status of the overall financial system. Note that solvency is
determined solely by whether sufficient funds exist whereas liquidity depends upon when debts are paid and
owed.

One may ask several questions about our toy financial system such as: Are partial payments allowed
(e.g., u paying e18 of the e20 debt at time 1, and the rest later)? If so, are non-integer payments allowed?
Can money received be immediately forwarded (e.g., u paying v e20 at time 2 and v paying w e25 at time
2)? Does v necessarily have to pay its debt to w at time 2 if it has the liquid assets to do so? We now expand
upon these questions and specify in detail the setting we consider in the remainder of the paper. Note that
throughout the paper we use the euro e as our monetary unit of resource even though, as we will see, we
have a variant of the Interval Debt Model within which payments can be made for any rational fraction of
a euro. We often prefix monetary payments with the symbol e to make our proofs more readable.

2.2 Formal setting
Formally, an Interval Debt Model (IDM ) instance is a 3-tuple (G,D,A0) as follows.

• G = (V,E) is a finite digraph with the set of n nodes (or, alternatively, banks) V = {vi : i = 1, 2, . . . , n}
and the set of m directed labelled edges E ⊆ V × V × N, with the edge (u, v, id) ∈ E denoting that
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there is an edge, or debt, whose label is id, from the debtor u to the creditor v. We can have multi-edges
but the labels of the edges from some node u to some node v must be distinct and form a contiguous
integer sequence 0, 1, 2, . . .. We refer to the subset of edges directed out of or in to some specific node v
by Eout(v) and Ein(v), respectively. We also refer to the undirected graph obtained from G by ignoring
the orientations on directed edges as the footprint of G.

• D : E → {(a, t1, t2) : a, t1, t2 ∈ N \ {0}, t1 ≤ t2} is the debt function which associates terms to every debt
(ordinarily, we abbreviate D((u, v, id)) as D(u, v, id)). Here, if e is a debt with terms D(e) = (a, t1, t2)
then a is the monetary amount (or monetary debt) to be paid and t1 (resp. t2) is the first (resp. last)
time at which (any portion of) this amount can be paid. For any debt e ∈ E, we also write D(e) =
(Da(e), Dt1(e), Dt2(e)). For simplicity of notation, we sometimes denote the terms D(e) = (a, t1, t2) by
a@[t1, t2] or by a@t1 when t1 = t2 (as we did in Fig. 1); also, for simplicity, we sometimes just refer to
a@[t1, t2] as the debt.

• A0 = (c0v1
, c0v2

, ...c0vn
) ∈ Nn is a tuple with c0vi

denoting the initial external assets (i.e. starting cash) of
bank vi.

We refer to the greatest time-stamp T that appears in any debt for a given instance as the lifetime
and assume that all network activity ceases after time T . The instance shown in Fig. 1, which has lifetime
T = 6, is formally given by: V = {u, v, w}, E = {(u, v, 0), (u, v, 1), (v, w, 0), (w, v, 0)}, D(u, v, 0) = (20, 1, 3),
D(u, v, 1) = (15, 4, 5), D(v, w, 0) = (25, 2, 2), D(w, v, 0) = (25, 4, 6) and A0 = (c0u, c

0
v, c

0
w), where c0u = 30,

c0v = 20 and c0w = 10. Similarly, the instance shown in Fig. 2 has lifetime T = 2 and is given by V = {u, v, w},
E = {(u, v, 0), (v, w, 0)}, D(u, v, 0) = (1, 1, 2), D(v, w, 0) = (1, 1, 1) and A0 = (c0u, c

0
v, c

0
w), where c0u = 1,

c0v = 0 and c0w = 0.

u
1

v
0

w
0

1@[1, 2] 1@1

Fig. 2 An IDM instance for which every schedule is described by four payment values p1
(u,v,0)

, p1
(v,w,0)

, p2
(u,v,0)

and p2
(v,w,0)

.

The size of the instance (G,D,A0) is defined as n+m+ log(T ) + b, where b is the maximum number of
bits needed to encode any of the (integer) numeric values appearing as the monetary amounts in the debts.
Note that in what follows, we usually do not mention the label id of a debt (u, v, id) but just refer to the
debt as (u, v) when this causes no confusion.

2.3 Schedules
Given an IDM instance (G,D,A0), a (payment) schedule σ describes the times at which the banks transfer
assets to one another via payments. Formally, a schedule σ is a set of |E|T payment values pte ≥ 0, one
for each edge-time pair (e, t) (note that no payments are made at time 0). Equivalently, a schedule can be
expressed as an |E| × T matrix S with the payment values pte the entries of the matrix. The value pte is
the monetary amount of the debt e paid at time t. Our intention is that at any time 1 ≤ t ≤ T , every
payment value pte > 0 of a schedule σ is paid by the debtor of e to the creditor of e, not necessarily for the
full monetary amount Da(e) but for the amount pte. A schedule for the instance of Fig. 2 consists of the
four payments values p1(u,v,0), p

1
(v,w,0), p

2
(u,v,0) and p2(v,w,0). Note that, using the above representation of a

schedule σ, we might have a large number of zero payments. Therefore, for simplicity of presentation, in the
remainder of the paper we specify schedules by only detailing the non-zero payments. An example schedule
for the IDM instance in Fig. 2 is then p1(u,v,0) = 1, p1(v,w,0) = 1.

We now introduce some auxiliary variables which are not strictly necessary but help us to concisely
express constraints on and properties of schedules. For nodes u, v ∈ V and time 0 ≤ t ≤ T , the following
values are with respect to some specific schedule.

• Denote by Itv the total monetary amount of incoming payments of node v at time t.
• Denote by Ot

v the total monetary amount of outgoing payments (expenses) of node v at time t.
• We write ptu,v to denote the total amount of all payments made from debtor u to creditor v at time t in

reference to all debts from u to v; that is, ptu,v =
∑

i p
t
(u,v,i).

• The vector A0 = (c0v1
, c0v2

, . . . , c0vn
) specifies the initial external assets (cash) of each node at time 0. For

t > 0, we denote by ctv node v’s cash assets at time t; that is, ctv = ct−1
v + Itv −Ot

v.

For clarity, we refer to the starting cash of banks as “initial external assets” and to liquid assets in general
as cash assets. By cash assets ‘at time t’ (resp. ‘prior to time t’) we mean after all (resp. before any) of the
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payments associated with time t have been executed. Cash assets at time 0 are then precisely the initial
external assets at time 0 (possibly supplemented by some bailout, as we shall see later).

We have been a little vague so far as regards the form of the payment values in any schedule and have not
specified whether these values are integral, rational or do not necessarily equal the full monetary amount of
the debt. As we detail below, we have variants of the model covering different circumstances (with perhaps
the standard version being when payment values are integral but do not necessarily equal the full monetary
amount of the debt).

Recall the example schedule from Fig. 2, which we can represent as p1u,v = 1, p1v,w = 1. As we shall
soon see, the payments in this schedule can be legitimately discharged in order to satisfy the terms of all
debts but in general this need not be the case. However, there might be schedules that are not valid, as well
as valid schedules in which banks default on debts (that is, go bankrupt). We deal with the key notions of
validity and bankruptcy now.
Definition 1. A schedule is valid if it satisfies the following properties (for any debt e, terms D(e) =
(a, t1, t2) and node v):

• all payment values are non-negative; that is, pte ≥ 0, for 1 ≤ t ≤ T
• all cash asset values (as derived from payment values and initial external assets) are non-negative; that

is, ctv ≥ 0, for 0 ≤ t ≤ T
• no debts are overpaid; that is,

∑T
t=1 p

t
e ≤ a

• no debts are paid too early; that is,
∑t1−1

t=1 pte = 0.

Given some IDM instance, some schedule and some debt e with terms D(e) = (a, t1, t2), the debt e is said
to be payable at any time in the interval [t1, t2 − 1]. At time t2, e is said to be due. At time t2 ≤ t ≤ T , if
the full amount a has not yet been paid (including payments made at time t2) then e is said to be overdue
at time t. A debt is active whenever it is payable, due or overdue. However, a bank is said to be withholding
if, at some time 1 ≤ t ≤ T , it has an overdue debt and sufficient cash assets to pay (part of, where fractional
or partial payments are permitted; see below) the debt. If any bank is withholding (at any time) in the
schedule then the schedule is not valid.

So, for example and with reference to the IDM instance in Fig. 2, if, according to some schedule, bank u
pays 1 to bank v at time 1 but v makes no payment to w at time 1 then v is withholding and the schedule
is not valid.
Definition 2. With reference to some schedule, a bank is said to be bankrupt (at time t) if it is the debtor
of an overdue debt (at time t). We say that a schedule has k bankruptcies if k distinct banks are bankrupt
at some time in the schedule (the times at which these banks are bankrupt might vary). A bank may recover
from bankruptcy if it subsequently receives sufficient income to pay off all its overdue debts.
Definition 3. A bank v is said to be insolvent if all its assets (that is, the sum of all debts due to v and of
v’s initial external assets) are insufficient to cover all its obligations (that is, the sum of all debts v owes).
Formally, v is insolvent if

c0v +
∑

e∈Ein(v)

Da(e) <
∑

e∈Eout(v)

Da(e).

A bank which is insolvent will necessarily be bankrupt in any schedule.
We will not be concerned with the precise timing of bankruptcy or the recovery or not of any bank in

this paper.
We now detail three variants of the model (alluded to earlier) in which different natural constraints are

imposed on the payment values.
Definition 4. In what follows, e is an arbitrary debt and 1 ≤ t ≤ T some time.

• In the Fractional Payments (FP) variant, the payment values may take rational values; that is, pte ∈ Q
and we allow payments for a smaller amount than the full monetary amount of e.

• In the Partial Payments (PP) variant, the payment values may take only integer values; that is, pte ∈ N
and we allow payments for a smaller amount than the full monetary amount of e.

• In the All-or-Nothing (AoN ) variant, every payment value must fully cover the relevant monetary amount
of e; that is, every payment value must be for the full monetary amount of e or zero. So, pte ∈ {Da(e), 0}.

For example, the instance of Fig. 2 has the following valid schedules:

• (in all variants) the schedule above in which p1u,v = p1v,w = e1 (all debts are paid in full at time 1)
• (in all variants) the schedule in which p2u,v = p2v,w = e1 (all debts are paid in full at time 2)

– under this schedule, node v is bankrupt at time 1 as e1 of the debt (v, w, 0) is unpaid and that debt is
overdue
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• (in the FP variant only) for every a ∈ Q, where 0 < a < 1, the schedule in which p1u,v = p1v,w = ea and
p2u,v = p2v,w = e1− a

– under each of these schedules, node v is bankrupt at time 1 as e1 − a of the debt (v, w, 0) is unpaid
and that debt is overdue.

It is worthwhile clarifying the concepts of instant forwarding and payment-cycles. We emphasize that we
allow a bank to instantly spend income received. Note that in any valid schedule for the instance in Fig. 2, v
instantly forwards money received from u to w (so as not to be withholding); so, the cash assets of v never
exceed 0 in any valid schedule. This behaviour is consistent with the Eisenberg and Noe model [1] in which
financial entities operate under a single clearing authority which synchronously executes payments. Indeed,
in such cases a payment-chain of any length is permitted and the payment takes place instantaneously
regardless of chain length.

Furthermore, and still consistent with the Eisenberg and Noe model, there is the possibility of a payment-
cycle which is a set of banks {u1, u2, . . . , uc}, for some c ≥ 2, with a set of debts {ei = (ui, ui+1, li) : 1 ≤
i ≤ c− 1} ∪ {ec = (uc, u0, lc)} so that at some time t, all debts are active yet none has been fully paid and
where each bank makes a payment, at time t, of the same value a towards its debt. As an illustration, Fig. 3
shows three ‘cyclic’ IDM instances, all with lifetime T = 2. By our definition of a valid schedule, the schedule
p1u,v = p1v,w = p1w,x = p1x,u = e1, forming a payment-cycle, is valid in all three instances. This is intuitive for
Fig. 3a, where each node has sufficient initial external assets available to pay all its debts in full at any time,
irrespective of income. In Fig. 3b, we may imagine that the e1 moves from node u along the cycle, satisfying
every debt at time 1. This is a useful abstraction but not strictly accurate: rather, we should imagine that
all four banks simultaneously order payments forward under a single clearing system. The clearing system
calculates the balances that each bank would have with those payments executed, ensures they are all non-
negative (one of our criteria for schedule validity) and then executes the payments by updating all accounts
simultaneously. This distinction is significant when we consider Fig. 3c in which no node has any initial
external assets. A clearing system ordered to simultaneously pay all debts would have no problem doing so
in the Eisenberg and Noe model and in our model this constitutes a valid schedule. We highlight that there
also exist valid schedules for the instance in Fig. 3c in which all four banks go bankrupt, one schedule being
where all payments at any time are 0: here, no bank is withholding (they all have zero cash assets), so the
schedule is valid, but every bank has an overdue debt and so is bankrupt.

u
1

v
1

w
1

x
1

1@[1, 2]

1@[1, 2]

1@[1, 2]

1@[1, 2]

(a) All nodes start with e1.

u
1

v
0

w
0

x
0

1@[1, 2]

1@[1, 2]

1@[1, 2]

1@[1, 2]

(b) Only u starts with e1.

u
0

v
0

w
0

x
0

1@[1, 2]

1@[1, 2]

1@[1, 2]

1@[1, 2]

(c) All nodes start with e0.

Fig. 3 Examples illustrating the behaviour of cycles in the IDM. In all instances shown the schedule in which all nodes pay their
debts in full at time 1 is valid.

We use payment-cycles throughout our constructions in a context such as that in Fig. 4. Here, a valid
schedule is where all nodes pay their corresponding debts in full at time t. The effect is that the e1 of cash
assets at node u is ‘transferred’ to e1 of cash assets at node v.

2.4 Canonical instances
We wish to replace certain IDM instances with equivalent yet simpler ones. For example, consider the
instance given in Fig. 1 but where every time-stamp in the instance is multiplied by a factor of 100 (so that,
for example, the debt from w to v becomes 25@[400, 600]). This ‘inflated’ instance is in essence equivalent
to the original one but has a lifetime of 600.
Definition 5. Let (G,D,A0) be an instance. Then the set of time-stamps {t : Dt1(e) = t or Dt2(e) =
t, for some edge e} is the set of extremal time-stamps.
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u
1

w
0

x
0

v
0

y
0

1@t 1@t 1@t

2@t 2@t

Fig. 4 Using a payment-cycle to effectively transfer e1 of assets from node u to node v.

There is a simple preprocessing step such that we can assume that the lifetime T of any IDM instance is
polynomially bounded in n and m (that is, the numbers of banks and debts, respectively). This preprocessing
step modifies the instance such that every 1 ≤ t ≤ T is an extremal time-stamp with the process being
to simply omit non-extremal time-stamps and then compact the remaining time-stamps. Observe that this
procedure is such that any valid schedule in the original IDM instance can be transformed into a valid
schedule in the compacted instance so that these schedules have the same number of bankruptcies, eventual
assets and so forth, and vice versa when the compacted instance is expanded into the original instance.
Hence, we need not consider pathological cases in which the lifetime is, say, exponential in the number of
nodes and debts. Given this restriction, we can now revise the notion of the size of an IDM instance to say
that it is n+m+ b where n is the number of banks, m is the number of debts and b is the maximum number
of bits needed to encode any of the numeric values appearing as monetary amounts of debts.
Lemma 1. For any given IDM instance and any schedule, in any of the FP, PP or AoN variants, it is possible
in polynomial-time both to check whether the schedule is valid and to compute the number of bankruptcies
under the schedule.

Proof sketch. It is possible to iterate over the schedule once and calculate: the cash assets of every node,
and which debts are overdue at each time-stamp. Computing the set {v|v has some overdue debt under σ}
is then straightforward, and the number of bankruptcies is the cardinality of that set.

It remains to check the validity of the schedule. We can efficiently verify that there are:

No withholding banks: iterate once over the debts overdue at each time. If the debt e = (u, v, i) is overdue
at time t, verify that ctu is insufficient to make a payment toward e (i.e. ctu = 0 in the FP or PP model, or
ctu < Da(e) in the AoN model).
No overpaid debts: iterate over all debts and ensure payments made with reference to each are no more than
the debt amount.
No debts paid too early: ensure pte = 0 for any t < Dt1(e), for each debt e.

2.5 Problem definitions
We now define some decision problems with natural real-world applications.

Bankruptcy Minimization

Instance: an IDM instance (G,D,A0) and an integer k
Yes-instance: an instance for which there exists a valid schedule σ such that at most k banks go

bankrupt at some time in the schedule σ.

Perfect Scheduling

Instance: an IDM instance (G,D,A0)
Yes-instance: an instance for which there exists a valid schedule σ such that no debt is ever overdue in
σ; that is, a perfect schedule.
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Bailout Minimization

Instance: an IDM instance (G,D,A0) (with n banks) and an integer b
Yes-instance: an instance for which there exists a positive bailout vector B = (b1, b2, . . . , bn) with∑n
i=1 bi ≤ b and valid schedule σ such that σ is a perfect schedule for the instance (G,D,A0 +B).

The problem Perfect Scheduling is equivalent to the Bailout Minimization problem where b = 0
and to the Bankruptcy Minimization problem where k = 0.

Bankruptcy Maximization

Instance: an IDM instance (G,D,A0) and an integer k
Yes-instance: an instance for which there exists a valid schedule σ such that at least k banks go bankrupt

at some time in the schedule σ.

The problem Bankruptcy Maximization is interesting to consider for quantifying a ‘worst-case’
schedule where banks’ behavior is unconstrained beyond the terms of their debts.

All of the problems above exist in the AoN, PP and FP variants and are in NP: for every yes-instance,
there exists a witness schedule, polynomial in the size of the input, the validity of which can be verified in
polynomial time (see Lemma 1).

Every valid PP schedule is a valid FP schedule whereas not every valid AoN schedule is a valid PP
schedule. In an AoN schedule, a bank may go bankrupt while still having assets (insufficient to pay off any
of its debts) whereas this is prohibited in any PP schedule as that bank would be withholding. If we restrict
the instances to only those in which for every debt e, Da(e) = 1 then every valid AoN schedule for that
instance is a valid PP schedule and a valid FP schedule.

We call a digraph G from some IDM instance a multiditree whenever the footprint of G is a tree. We call
a multiditree in which every edge is directed away from the root a rooted out-tree (or just out-tree). By an
out-path we mean an out-tree where the footprint is a path and the root is either of the endpoints. We take
this opportunity to note that an out-tree is both a directed acyclic graph (DAG) and a multiditree, but that
not every multiditree DAG is an out-tree.

A summary of some of our upcoming results is given in Table 1 (with NP-c denoting ‘NP-complete’ and
P denoting ‘polynomial-time’). However, note that there are other, more nuanced results in what follows
that do not feature in Table 1. Also, even though hardness for out-trees entails hardness for multiditrees
and DAGs, we reference a separate result for the latter two settings where that is proven under different
(stronger) constraints for the more general graph class. For example, our proof that AoN Bankruptcy
Minimization is NP-complete on out-trees uses a construction requiring T ≥ 2, but our proof of Theorem
1 has T = 1.

2.6 Discussion of the model
We describe here some notable differences (and similarities) of the IDM as compared with other studied
models.

First and foremost, the IDM is a temporal model; the eponymous “interval debts” are its principal
distinguishing feature when contrasted with other financial network models. The timing of payments, not
their allocation to one payee or another, is the principal question. In fact, in Perfect Scheduling this
is the only question. As we shall see, under the restriction Dt1 = Dt2 that problem (and its superproblem
Bailout Minimization) become straightforwardly solvable in all variants. All of our hardness results arise
from the expressivity of that degree of freedom (the scheduling of payments sooner or later). Indeed, in
Bankruptcy Minimization and Bankruptcy Maximization that freedom remains, and the problems
remain NP-complete under the same restriction Dt1 = Dt2 . Consequently, the results of other works which
do not have a temporal component [6, 7, 9] do not straightforwardly carry over to the IDM.

We take this opportunity to emphasize that interval debts are practically motivated; in particular, some
real-world debts may be paid neither early nor late (see, e.g., Figure 5).

Fig. 5 A real-life interval debt: this 1978 US government bond is
payable between 2003 and 2008.

Non-proportional payments on debts are like-
wise nothing new to financial networks. Recent
work has considered frameworks wherein priorities
are associated with each debt, with higher-priority
debts paid off before lower-priority debts [6, 9]. In
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problem out-tree multiditree DAG general case

FP Bankruptcy Minimization ? ? NP-c
(Thm 1)

NP-c
(Thm 1)

PP Bankruptcy Minimization ? NP-c
(Thm 4)

NP-c
(Thm 1)

NP-c
(Thm 1)

AoN Bankruptcy Minimization NP-c
(Thm 6)

NP-c
(Thm 6)

NP-c
(Thm 1)

NP-c
(Thm 1)

FP Perfect Scheduling P
(Thm 9)

P
(Thm 9)

P
(Thm 9)

P
(Thm 9)

PP Perfect Scheduling P
(Thm 11)

NP-c
(Thm 4)

NP-c
(Thm 3)

NP-c
(Thm 3)

AoN Perfect Scheduling NP-c
(Thm 6)

NP-c
(Thm 6)

NP-c
(Thm 3)

NP-c
(Thm 3)

FP Bailout Minimization P
(Thm 9)

P
(Thm 9)

P
(Thm 9)

P
(Thm 9)

PP Bailout Minimization P
(Thm 11)

NP-c
(Thm 4)

NP-c
(Thm 3)

NP-c
(Thm 3)

AoN Bailout Minimization NP-c
(Thm 6)

NP-c
(Thm 6)

NP-c
(Thm 3)

NP-c
(Thm 3)

FP Bankruptcy Maximization ? ? NP-c
(Thm 7)

NP-c
(Thm 7)

PP Bankruptcy Maximization ? ? NP-c
(Thm 7)

NP-c
(Thm 7)

AoN Bankruptcy Maximization NP-c
(Thm 8)

NP-c
(Thm 8)

NP-c
(Thm 8)

NP-c
(Thm 8)

Table 1 Summary of results.

such a setting, the priority of some debt may be
either chosen by a regulatory authority or left to
the individual agents. In the former case, the hard-
ness of computing a solution which maximizes util-
ity is of particular interest, whereas game-theoretic
approaches are more relevant in the latter. Our
focus in the present work is solely on questions
of computational complexity from a centralized
perspective.

We note that Bailout Minimization and
its subproblem Perfect Scheduling remain
unchanged as decision problems if bankruptcy in
the IDM is redefined to require proportional pay-
ments, or immediate deletion of the bankrupt node.
Both problems fundamentally ask whether a per-
fect schedule exists; consequently, the manner in
which bankruptcy and defaulting are modeled in
the IDM are irrelevant. If there is a perfect sched-
ule σ, then under σ all debts are by definition
paid on time, in full (and hence proportionally).
Conversely, if no such σ exists, then a bankruptcy

(however it is modeled) must occur, and we have a no-instance of the respective problems.
Lastly, we would like to comment briefly on the respective practical value of the AoN, PP and FP variants.

The FP variant is quite intuitive for theoreticians, and yields our main tractable case. On the other hand,
the PP variant realizes the practical constraint that arbitrarily small transfers are impractical, and may be
of interest where a fungible but indivisible resource needs to be exchanged. Personal communication [24]
suggests that, perhaps unexpectedly, the AoN variant may well be the one of most interest to the finance
community. Unlike most other models, the AoN model has the unintuitive property that a bankrupt bank
may retain some assets. We note that this modelling of bankruptcy is not required for any of our hardness
of tractability proofs in the AoN model.

3 Our results
In this section we investigate the complexity of the problems presented above. We present our hardness results
for Bankruptcy Minimization, Perfect Scheduling and Bankruptcy Maximization in Sections 3.1,
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3.2 and 3.3, respectively, and then in Section 3.4 show that under certain constraints the problem Bailout
Minimization and its subproblem Perfect Scheduling become tractable.

3.1 Hardness results for Bankruptcy Minimization
We begin with our core hardness result.
Theorem 1. For each of the AoN, PP and FP variants, the problem Bankruptcy Minimization is NP-
complete, even when we restrict to IDM instances (G,D,A0) for which: T = 1; G is a directed acyclic graph
with a longest path of length 4, has out-degree at most 2 and has in-degree at most 3; the monetary amount
of any debt is at most e3; and initial external assets are at most e3 per bank.

Proof. We build a polynomial-time reduction from the problem 3-Sat-3 to Bankruptcy Minimization
so that all target instances satisfy the constraints in the statement of the theorem (the problem 3-Sat-3,
defined below, was shown to be NP-complete in [25]).
3-Sat-3

Instance: a c.n.f. formula ϕ over n Boolean variables v1, v2, ..., vn so that each of the m clauses c1, c2, ..., cm
has size at most 3 and where there are exactly 3 occurrences of vi or ¬vi in the clauses
Yes-instance: there exists a satisfying truth assignment for ϕ.

We may (and do, throughout the paper) restrict ourselves to those instances in which every literal appears
at least once and at most twice (that is, both vi and ¬vi appear in some clause, for 1 ≤ i ≤ n) and where
no clause contains both a literal and its negation. We define the size of an instance ϕ to be n.

Suppose that we are given a 3-Sat-3 instance ϕ of size n. We construct an IDM instance (G,D,A0) as
follows. For any variable vi, denote by countvi (resp. count¬vi) the number of occurrences of the literal vi
(resp. ¬vi) in ϕ (of course, countvi + count¬vi = 3). We build a digraph G with:

• a source node si, for each variable vi, so that this node has initial external assets e3 (every other type of
node will have initial external assets e0)

• two literal nodes xi and ¬xi, for each variable vi
• a clause node qj , for each clause cj
• a sink node d.

We then add edges and debts as follows. For every 1 ≤ i ≤ n:

• we add the debt (si, xi) with terms 3@1
• we add the debt (si,¬xi) with terms 3@1
• we add the debt (xi, d) with terms count¬vi@1 (note that the monetary amount to be paid is either e1

or e2)
• we add the debt (¬xi, d) with terms countvi@1 (note that the monetary amount to be paid is either e1

or e2)
• for every 1 ≤ j ≤ m:

– we add the debt (qj , d) with terms 1@1
– if the literal vi ∈ cj then we add the debt (xi, qj) with terms 1@1
– if the literal ¬vi ∈ cj then we add the debt (¬xi, qj) with terms 1@1.

Fig. 6 shows a sketch of this construction (where nodes without any depicted initial external assets start
with e0). The IDM instance (G,D,A0) can clearly be built from ϕ in polynomial-time.

We claim that the instance ((G,D,A0), 2n) of Bankruptcy Minimization as constructed above is a
yes-instance of Bankruptcy Minimization (no matter which of the AoN, PP and FP variants we work
with) iff ϕ is a yes-instance of 3-Sat-3.

Before we proceed, we have the following remark. Recall that for each 1 ≤ i ≤ n, countvi + count¬vi = 3;
consequently, countvi = 2 iff count¬vi = 1, and vice versa. For each 1 ≤ i ≤ n, node xi (resp. ¬xi) has a
total monetary debt to the clause nodes of countvi (resp. count¬vi) and a total monetary debt to the sink
node d of count¬vi (resp. countvi); so, each literal node has a total monetary debt of e3.

Claim 1. If ϕ is a yes-instance of 3-Sat-3 then ((G,D,A0), 2n) is a yes-instance of Bankruptcy
Minimization.

Proof. Suppose that ϕ is satisfiable via some truth assignment X. Consider the schedule σ for (G,D,A0) in
which:
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si
3

xi

¬xi

qjd

3@1

3@1

count¬vi@1

countvi@1

1@1 if vi ∈ cj

1@1 if ¬vi ∈ cj

1@1

Fig. 6 Construction sketch for an IDM instance from a given formula ϕ. Note that each of xi and ¬xi owes e3 in total.

• every source node si pays e3 (at time 1, as are all payments) to the literal node xi (resp. ¬xi) if X(vi) =
True (resp. X(vi) = False)

• every literal node xi (resp. ¬xi) for which X(vi) = True (resp. X(vi) = False) pays all its debts in full

– as remarked above, this literal node has total monetary debt e3 but, from above, it receives e3 from si

• every clause node pays its e1 debt to the sink node d

– this is necessarily possible because X is a satisfying truth assignment, meaning every clause node receives
at least e1 from some literal node corresponding to a literal in that clause set to True by X.

Note that σ is valid in all three IDM variants. The total number of bankruptcies in σ is 2n: exactly n
bankrupt source nodes and exactly n bankrupt literal nodes. Hence, if ϕ is satisfiable then the schedule σ
for (G,D,A0) results in at most (in fact, exactly) 2n bankruptcies.

Claim 2. If (G,D,A0), 2n) is a yes-instance of Bankruptcy Minimization then ϕ is a yes-instance of
3-Sat-3.

Proof. Suppose that we have a schedule σ for (G,D,A0) with at most 2n bankruptcies. Consider the set of
all literals L = {v1,¬v1, v2,¬v2, ..., vn,¬vn} w.r.t. ϕ. Define the set of bankrupt literals B ⊆ L to consist of
every literal whose corresponding (literal) node is bankrupt within σ. Define X(w) = True iff w ∈ L \ B.
We claim that X is a (complete) truth assignment. Suppose it is not and that X(vi) = X(¬vi) = True; so,
both xi and ¬xi are bankrupt within σ. However, in any valid schedule (no matter what the IDM variant)
every source node si will necessarily go bankrupt and at least one of the literal nodes xi and ¬xi will go
bankrupt. Thus, as we have at most 2n bankruptcies, our supposition is incorrect. Alternatively, suppose
that X(vi) = X(¬vi) = False; so, neither xi nor ¬xi is bankrupt within σ. But, as stated, this cannot be
the case. So, X is a truth assignment; moreover, σ has exactly 2n bankruptcies with exactly one of any pair
of ‘oppositely-oriented’ literal nodes bankrupt.

Suppose, for contradiction, that X is not a satisfying assignment. So, there exists at least one clause, cj
say, such that every literal in the clause is made False by X. By definition of X, we have that every literal
node corresponding to one of these literals is a bankrupt node. Any such literal node must receive e0 (as the
‘oppositely-oriented’ literal node is not bankrupt and receives e3); consequently, the clause node qj receives
e0 and is bankrupt. This yields a contradiction as we have exactly 2n bankrupt nodes (as detailed above).

Consequently, ϕ is satisfiable iff the IDM instance (G,D,A0) admits a schedule with at most 2n
bankruptcies (again, this holds for each IDM variant). This concludes our proof.

Our next result is perhaps rather surprising in that we restrict to IDM instances (G,D,A0) where G is
a fixed digraph.
Theorem 2. For each of the AoN, PP and FP variants, the problem Bankruptcy Minimization is weakly
NP-complete, even when we restrict to instances ((G,D,A0), k) where G is a fixed, specific digraph with 32
nodes and k = 16.

Proof. We build a polynomial-time reduction from Equal Cardinality Partition to Bankruptcy
Minimization (Equal Cardinality Partition, defined below, was proven weakly NP-complete in [26]).
Equal Cardinality Partition

Instance: a multi-set of positive integers S = {a1, a2, ..., an} where n is even and with sum sum(S) = 2k
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Yes-instance: there exist a partition of S into two equal-sized sets S1 and S2 such that sum(S1) = sum(S2) =
k.

The size of such an instance is nb where b is the least number of bits so that any integer ai can be represented
in binary using b bits.

Given an instance S = {a1, a2, ..., an} of Equal Cardinality Partition (where n ≥ 1), we construct
the IDM instance (G,D,A0) that is illustrated in Fig. 7. Every appearance of the shaded node p in Fig. 7
corresponds to the same single node, that we refer to as the sink, and thus this instance has 32 nodes in
total. We use the symbol ‘∞’ to denote a suitably high monetary amount (though 2k + n+ 1 suffices) and
T = 10n + 7. Our IDM instance can trivially be constructed from S in time polynomial in the size of the
instance S. We now show that (G,D,A0) admits a valid schedule with at most 16 bankruptcies iff S is a
yes-instance of Equal Cardinality Partition (no matter whether we are in the AoN, PP or FP variant).
Until further stated, we will work solely within the PP variant and return to the AoN and FP variants later.

s
2k

m1p ∞@1

m2

m3

∞@1

a1@10, a1@15
...

an@10n, an@10n+ 5

a1@10, a1@15
...

an@10n, an@10n+ 5

a1@[10, 15]
...

an@[10n, 10n+ 5]

mA
4

p ∞@1

mA
5

mA
6

∞@1

a1@10
...

an@10n

a1@10
...

an@10n

∞@1

mA
7

∞@1

mA
8

p

∞@1

mA
9

mA
10

mA
11 mA

12

n/2

1@10
...

1@10n

1@11
...

1@10n+ 1

1@11
...

1@10n+ 1

1@11
...

1@10n+ 1

∞@1

∞@1

1@11
...

1@10n+ 1

mA
13

p
∞@1

mA
14

mA
15

mA
16

k@[1, T ]

a1@12
...

an@10n+ 2

a1@12
...

an@10n+ 2

∞@1

∞@1

mB
4

p∞@1

mB
5

mB
6

∞@1

a1@15
...

an@10n+ 5

a1@15
...

an@10n+ 5

∞@1

mB
7

∞@1

mB
8

p

∞@1

mB
9

mB
10

mB
11mB

12

n/2

1@15
...

1@10n+ 5

1@16
...

1@10n+ 6

1@16
...

1@10n+ 6

1@16
...

1@10n+ 6

∞@1

∞@1

1@16
...

1@10n+ 6

mB
13

p
∞@1

mB
14

mB
15

mB
16

k@[1, T ]

a1@17
...

an@10n+ 7

a1@17
...

an@10n+ 7

∞@1

∞@1

d

k@T k@T

Fig. 7 Construction of an IDM instance (with k = 16) corresponding to the Equal Cardinality Partition instance S =
{a1, . . . , an}. Dashed red edges are “practically infinite” bankrupting debts.
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Claim 3. If the IDM instance ((G,D,A0), 16) is a yes-instance of Bankruptcy Minimization then S is
a yes-instance of Equal Cardinality Partition.

Proof. Suppose that (G,D,A0
e) admits a valid schedule σ with at most 16 bankruptcies. Note that the 14

nodes m1, m3, mA
4 , mA

6 , mA
8 , mA

11, mA
13, mA

15, mB
4 , mB

6 , mB
8 , mB

11, mB
13 and mB

15 are necessarily bankrupt in
every valid schedule because they are debtors of debts of monetary amount ∞ at time 1 and no payments
are made before time 10 (these nodes are dashed and highlighted in red in Fig. 7 as are the debts at time
1 of monetary amount ∞). Note also that these nodes can never have any cash assets at any time and nor
can the nodes m2, mA

5 , mA
9 , mA

10, mA
14, mB

5 , mB
9 , mB

10 and mB
14 (as they would otherwise be withholding).

Consequently, we can only have at most another 2 nodes going bankrupt within σ. We begin by showing
that one of {mA

7 ,m
A
12} must be bankrupt and one of {mB

7 ,m
B
12} must be bankrupt (which will account for

all bankrupt nodes).
Suppose that none of the nodes mA

7 , mA
9 , mA

10 and mA
12 are bankrupt in σ. By considering mA

12 at the
times t ∈ {11, 21, . . . , 10n + 1}, on at least n

2 of these occasions mA
12 must have received at least e1 via

payments from mA
11 (so as to service all its debts to mA

7 ). Consider the first occasion t′ ∈ {11, 21, . . . , 10n+1}
that mA

12 receives a non-zero payment from mA
11 (note that all payments from mA

11 to mA
12 are made at some

time from {11, 21, . . . , 10n+1}). There must have been a payment of e1 from mA
10 to mA

11 at time t′ as well
as payments of e1 from mA

9 to mA
10 and from mA

8 to mA
9 at time t′. So, mA

8 must receive at least e1 from
mA

7 and mA
11 at time t′. As mA

11 makes a non-zero payment to mA
12 at time t′, any payment from mA

11 to
mA

7 at time t′ must be for some amount strictly less than e1. Consequently, mA
8 must receive a non-zero

payment from mA
7 at time t′. The only way that this can happen is if there is an overdue debt from mA

7 to
mA

8 ; that is, mA
7 is bankrupt, which yields a contradiction. Hence, at least one of mA

7 , mA
9 , mA

10 and mA
12 is

bankrupt. An analogous argument shows that at least one of mB
7 , mB

9 , mB
11 and mB

12 is bankrupt. Hence,
exactly one of mA

7 , mA
9 , mA

10 and mA
12 is bankrupt and exactly one of mB

7 , mB
9 , mB

11 and mB
12 is bankrupt.

Suppose that mA
9 is bankrupt. So, mA

10 is necessarily bankrupt. Conversely, if mA
10 is bankrupt then mA

9

must be bankrupt also. Consequently, neither mA
9 nor mA

10 is bankrupt and we must have that either mA
7 or

mA
12 is bankrupt and analogously either mB

7 or mB
12 is bankrupt. In particular, s, m2, mA

5 , mA
13, mA

15, mB
5 ,

mB
13 and mB

15 are not bankrupt.
Let us turn to analysing the flow of resource via the schedule σ. As σ is valid, we must have that both

debts from mA
16 and mB

16 are paid on time with e2k in total reaching d. The question is: does this resource
consist of the e2k emanating from s or does it consist of resource emanating from s but supplemented with
resource emanating from mA

12 or mB
12? Let us look at the possible debt payments at time 10 (which is the

earliest time that payments can be made). In particular, let us look at payments made by mA
6 to mA

7 at
time 10. Note that all payments made from mA

6 to mA
7 are at a time from {10, 20, . . . , 10n}.

Case (a): An amount of ex > 0 is paid from mA
6 to mA

7 at time 10.
There are two essential sub-cases at time 10:

(i) mA
7 services its debt to mA

8 , which pays e1 to the sink, with perhaps ey ≥ 0 paid from mA
7 to mA

13 and
from there to the sink, so that ex− y − 1 ≥ 0 resides at mA

7 in cash assets at time 10
(ii) mA

7 does not service its debt to mA
8 and pays ex to mA

13 with this payment immediately going to the sink,
so that e0 resides at mA

7 in cash assets at time 10; hence, mA
7 is bankrupt (note that no cash assets can

reside at mA
7 at time 10 as otherwise mA

7 would be withholding).

Now consider what happens at time 11. Suppose that we are in Case (a.i). There must be a payment-
cycle involving mA

8 , mA
9 , mA

10 and mA
11 and as n

2 ≥ 1, mA
12 must service its debt to mA

7 , with perhaps mA
7

paying ez ≥ 0 to mA
13 which is immediately paid to the sink. The e1 from mA

12 does not supplement the
resource emanating from s but just ‘replaces’ e1 which was ‘lost’ to the sink at time 10. Note that the cash
assets of mA

12 at time 11 are n
2 − 1.

Suppose that we are in Case (a.ii). Note that as mA
7 is bankrupt, mA

12 can never become bankrupt and
so must service its debts when required. There are four possibilities as regards what happens at time 11
(bearing in mind the overdue debt from mA

7 to mA
8 ):

(1) mA
12 pays e1 to mA

7 which pays e1 to mA
8 which immediately goes to the sink, with a payment-cycle

involving mA
8 , mA

9 , mA
10 and mA

11

(2) mA
12 pays e1 to mA

7 which pays e1 to mA
8 which pays e1 to mA

9 which pays e1 to mA
10 which pays e1 to

mA
11 which pays e1 to mA

8 which immediately goes to the sink
(3) mA

12 pays e1 to mA
7 which pays e1 to mA

13 which immediately goes to the sink, with a payment-cycle
involving mA

8 , mA
9 , mA

10 and mA
11

(4) mA
12 pays e1 to mA

7 which pays e1 to mA
8 which pays e1 to mA

9 which pays e1 to mA
10 which pays e1 to

mA
11 which pays e1 to mA

12; that is, we have a payment cycle involving mA
7 , mA

8 , mA
9 , mA

10, mA
11 and mA

12.
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In (1-3) above, the e1 from mA
12 does not supplement the resource emanating from s but is lost to the sink

(as are the ex > 0 at time 10). Note that in (3), the debt from mA
7 to mA

8 at time 10 is overdue and cannot
be paid at time 11 as mA

7 has no cash assets at time 10; so it remains overdue. In (4), again no supplement
is made, although en

2 still resides at mA
12 in cash assets at time 11, and ex > 0 emanating from s has been

lost to the sink.
In both Case (a.i) and Case (a.ii), at time 12, the only possible non-payment-cycle payments involve s,

m1, mA
7 , mA

13, mA
14 and mA

15 but any such payments do not affect whether the resources emanating from mA
12

or mB
12 supplement the resource emanating from s. In Case (a.ii.3), the debt from mA

7 to mA
8 at time 10 is

overdue and so must be paid from the cash assets of mA
7 at time 12, if it has any and unless all of these

assets are paid to mA
13. All such payments by mA

7 will immediately go to the sink.
Case (b): No payment is made from mA

6 to mA
7 at time 10.

Consequently, mA
7 cannot pay its debt to mA

8 and becomes bankrupt. At time 11, mA
12 must necessarily

service its debt to mA
7 and there are four possibilities with these possibilities being exactly the possibilities

(1-4) in Case (a.ii). As before, at time 12, the only possible non-payment-cycle payments made involve s,
m1, mA

7 , mA
13, mA

14 and mA
15 but any such payments do not affect whether the resources emanating from mA

12

or mB
12 supplement the resources emanating from s. Note that in (3), the debt from mA

7 to mA
8 at time 10

is still overdue at time 11 and cannot be paid at time 12 as mA
7 has no cash assets at time 12; so it remains

overdue. In (4), again no supplement is made, although en
2 still resides at mA

12 in cash assets at time 12.
So, the resources emanating from mA

12 cannot supplement the resources emanating from s at any time
t < 15. An identical argument can be applied to time 15 so as to yield a similar conclusion as regards the
resources emanating from mB

12 at any time t < 20.
Consider the situation at time 20. With regard to the sub-network involving mA

6 , mA
7 , mA

8 , mA
9 , mA

10,
mA

11, mA
12 and mA

13 (that is, the sub-network of study above), the situation is similar to that at time 10 except
that there may be additional restrictions on what can happen given: a possible existing overdue debt from
mA

7 to mA
8 (the debt due at time 10); possible non-zero cash assets at mA

7 ; and possibly reduced cash assets
at mA

12 of n
2 − 1. Note that if mA

7 has cash assets prior to time 20 then this can be thought of as mA
7 having

acquired these assets from mA
6 at time 20; that is, we are in Case (a) above. Given the fact that the situation

at time 20 is a restricted version of the situation at time 10 where the resources emanating from mA
12 could

not supplement those emanating from s, the same is true again. By analysing each time t = 25, 30, 35, . . .,
we can see that no resources emanating from either mA

12 or mB
12 can supplement those emanating from s.

Hence, in order to secure total cash assets of e2k at d after time T , we need that all of the e2k resource
emanating from s reaches d; that is, none of it is lost to the sink en route (although some of it might have
been ‘replaced’ as per Case (a.i)).

We can now repeat the above analysis except that now we know that we cannot lose resource emanating
from s unless it is replaced as in Case (a.i). This simplifies things considerably. If mA

7 has ex > 0 at time
t ∈ {10, 20, . . . , 10n} (either as cash assets or from a payment by mA

6 at time t) then it must be the case
that mA

7 services the debt to mA
8 at time t, e1 is lost to the sink and mA

7 retains x − 1 in cash assets. At
time t + 1, mA

12 must service its debt to mA
7 so as to replace the lost e1, with ex residing at mA

7 in cash
assets at time t+1. Consequently, there can only be at most n

2 times in {10, 20, . . . , 10n} when mA
7 receives

a payment from mA
6 (recall that mA

6 only makes payments to mA
7 at times from {10, 20, . . . , 10n}). When

mA
7 either has no cash assets or receives no payment from mA

6 at time t ∈ {10, 20, . . . , 10n}, we either lose
e1 of cash assets from mA

12 to the sink (and so we also lose some capacity to ‘replace’ resource emanating
from s that is lost to the sink) or we are in case (4) above and have a payment cycle involving mA

7 , mA
8 , mA

9 ,
mA

10, mA
11 and mA

12. Analogous comments can be made as regards the corresponding nodes superscripted B
and times in {15, 25, . . . , 10n+ 5}.

Bearing in mind that none of the resource emanating from s goes to the sink before it reaches either mA
6

or mB
6 , at least n distinct payments are made from s and these payments result in at least n payments in

total from mA
6 to mA

7 or from mB
6 to mB

7 . Thus, from above, mA
6 must make exactly n

2 payments to mA
7 and

mB
6 must make exactly n

2 payments to mB
7 . This means that any payment from mA

6 to mA
7 or from mB

6 to
mB

7 must be for an amount from {a1, a2, . . . , an} and we have a partition of {a1, a2, . . . , an} into equal-sized
sets both of whose sum is k; that is, our instance S of Equal Cardinality Partition is a yes-instance
and the claim follows.

Claim 4. If S is a yes-instance of Equal Cardinality Partition then ((G,D,A0), 16) is a yes-instance
of Bankruptcy Minimization.

Proof. Suppose that our instance S = {a1, a2, . . . , an} of Equal Cardinality Partition is such that
n = 2m and

∑m
i=1 aαi =

∑m
i=1 aβi , where {αi, βi : 1 ≤ i ≤ m} = {1, 2, . . . , n}. We need to build a valid

schedule σ for (G,D,A0) with at most 16 bankruptcies. Let 1 ≤ i ≤ n and suppose that i = αj , where
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1 ≤ j ≤ m. The node s pays its ith debt to m1 (that is, the debt ai@[10i, 10i + 5]) at time 10i and this
payment is percolated all the way down to mA

7 at time 10i. The debt 1@10i from mA
7 to mA

8 is paid at time
10i with this e1 being replaced from mA

12 at time 10i+ 1 (see Case (a.i) from the proof of Claim 3 above).
We also have a payment cycle involving mA

8 , mA
9 , mA

10 and mA
11 at time 10i+1. The cash assets of ai at mA

7

are percolated down to mA
16 at time 10i + 2. At time 10i + 5, we have suitable payment cycles involving:

m1, m2 and m3; m4, m5 and m6; and mA
13, mA

14 and mA
15. We also have a payment cycle involving mA

7 , mA
8 ,

mA
9 , mA

10, mA
11 and mA

12 (see (4) from the proof of Claim 3 above). An analogous course of action is taken if
i = βj , for some 1 ≤ j ≤ m. The resulting schedule is valid and the 16 nodes m1, m3, mA

4 , mA
6 , mA

7 , mA
8 ,

mA
11, mA

13, mA
15, mB

4 , mB
6 , mB

7 , mB
8 , mB

11, mB
13 and mB

15 are bankrupt. The claim follows.

So, our main result holds for the PP variant of Bankruptcy Minimization. Note that everything above
holds for the AoN variant too, though Theorem 6 is a strictly stronger result for that setting.

Let us consider now the FP variant. As it happens, an argument similar to that above works within the
FP variant although there are more complicated nuances. Rather than repeat the whole nuanced argument
in detail, and given the above complete proof for the PP variant, we only sketch the proof for the FP variant.
Henceforth, we assume that we are working within the FP variant.

Consider the proof of the corresponding version of Claim 3. The reasoning that establishes that we must
have that either mA

7 or mA
12 is bankrupt and that either mB

7 or mB
12 is bankrupt holds for the FP variant.

Consider payments made from mA
6 to mA

7 at time 10.
Case (a): An amount of ex > 0 is paid from mA

6 to mA
7 at time 10.

There are two essential sub-cases at time 10:

(i) mA
7 services its debt to mA

8 , which pays e1 to the sink, with perhaps ey ≥ 0 paid from mA
7 to mA

13 and
from there to the sink, so that ex− y − 1 ≥ 0 resides at mA

7 in cash assets at time 10
(ii) mA

7 does not fully service its debt to mA
8 but pays ew, where 0 ≤ w < 1, to mA

8 , which immediately goes
to the sink, and ex − w to mA

13, which immediately goes to the sink, so that e0 resides at mA
7 in cash

assets at time 10; hence, mA
7 is bankrupt.

Consider what happens at time 11. In Case (a.i), there must be a payment cycle involving mA
8 , mA

9 , mA
10

and mA
11 and mA

12 services its debt to mA
7 . The e1 from mA

12 does not supplement the resource emanating
from s but just ‘replaces’ e1 which was ‘lost’ to the sink at time 10.

Suppose that we are in Case (a.ii). There are two scenarios:

(1) mA
12 pays e1 to mA

7 which pays e1−w to mA
8 of which ew′ goes immediately to the sink and e1−w−w′

is paid to mA
9 ; mA

7 has cash assets of at most ew as it may be the case that mA
7 also makes a payment to

mA
13 which goes straight to the sink, or

(2) mA
12 pays e1 to mA

7 which pays ey to mA
8 , where 0 ≤ y < 1 − w, of which ey′ goes immediately to the

sink and ey − y′ is paid to mA
9 ; also, e1− y is paid to mA

13 which goes straight to the sink.

In (1), it must be the case that mA
8 receives at least w+w′ from mA

11 (so as to fully service its debt to mA
9 );

hence, mA
11 pays at most e1 − w − w′ to mA

12. In any case, ex have been lost to the sink with mA
7 gaining

ew from mA
12 (with x ≥ w). In (2), it must be the case that mA

8 receives at least e1− (y− y′) from mA
11 (so

as to fully service its debt to mA
9 ); hence, mA

11 pays at most ey − y′ to mA
12. In any case, ex have been lost

to the sink with mA
7 gaining nothing from mA

12.
Case (b): No payment is made from mA

6 to mA
7 at time 10.

At time 11, it must be the case that mA
12 services its debt to mA

7 and then we are essentially in Case (a.ii)
above.

The outcome is that the resources emanating from mA
12 cannot supplement the resources emanating form

s at any time t < 15. An identical argument can be applied to time 15 so as to yield a similar conclusion
as regards the resources emanating from mB

12 at any time t < 20. The rest of the proof of Claim 3 holds for
the FP variant and we have that Claim 3 holds for the FP variant.

The schedule σ described in the proof of Claim 4 is a valid schedule in the FP variant and so Claim 4
also holds for the FP variant. This complete our proof of the main theorem.

The proof of Theorem 2 clearly demonstrates the intricacies of reasoning in our financial networks. By
Theorem 2, it follows that each of the AoN, PP and FP variants of Bankruptcy Minimization are para-
NP-hard when parameterized by any parameter that is upper-bounded by the number of vertices, such as,
e.g., the number of bankruptcies k or the treewidth of the footprint. Note that Theorem 2 concerns weak
completeness results (in particular, the integers in an instance of Equal Cardinality Matching appear
explicitly as monetary debts in the corresponding instance of Bankruptcy Minimization).
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3.2 Hardness results for Perfect Scheduling
We now turn to Perfect Scheduling. Since this is a subproblem of Bankruptcy Minimization and
Bailout Minimization, hardness results in this section also apply to both of those problems.
Theorem 3. The problem Perfect Scheduling is NP-complete for the AoN and PP variants even when
we restrict to IDM instances (G,D,A0) for which: T ≤ 3; G is a directed acyclic graph with out-degree at
most 3 and in-degree at most 3; the monetary amount of any debt is at most e2; and any initial cash assets
of a node is at most e3 per bank.

Proof. Let us work within the PP variant until further notice. We introduce the multiplier gadget shown in
Fig. 8 and use this gadget in our main reduction (the gadget sits within the blue dotted line). We claim the
following.

m0
2

m1

m2

m3

s
2

in

out

2@[1, 3]

2@3

1@[2, 3]

1@[1, 3]
1@[1, 2]

1@1

1@[1, 3]

∗2

Fig. 8 The multiplier gadget. Intuitively, the gadget “amplifies” payments into it at time 1 by a factor 2.

Claim 5. Assume that the node in of the multiplier gadget has initial cash assets of e1.

(a) In any perfect schedule for the multiplier gadget, if no payment is made by in to m1 at either time 1 or
time 2 then no payment is made by m0 to out at time 1.

(b) There is a perfect schedule σ0 for the multiplier gadget so that a payment is made by in at time 3.
(c) There is a perfect schedule σ1 for the multiplier gadget so that a payment is made by in to m1 at time 1

and a payment of e2 is made from m0 to out at time 1.

Proof. Suppose that no payment is made by in to m1 at times 1 and 2; so m1 receives no payment at time
1 and makes no payment at time 1. As there is a payment of e1 from m2 to m3 at time 1, there must be
a payment of e1 from m0 to m2 at time 1. Suppose that a payment of e1 is made from m0 to out at time
1. If so then m0 can make no payment to m1 at time 2 and m1 is bankrupt which yields a contradiction.
Hence, there is no payment from m0 to out at time 1. The statement (a) follows.

Consider the schedule whereby:

• at time 1: m0 pays e1 to m2; m2 pays e1 to m3

• at time 2: m0 pays e1 to m1; m1 pays e1 to m2

• at time 3: s pays e2 to m0; m0 pays e2 to out; in pays e1 to m1.

This yields a perfect schedule and statement (b) follows.
Suppose that there is a payment of e1 made from in to m1 at time 1; so, we can also make payments

of e1 from m1 to m2 and from m2 to m3 at time 1. Additionally, we can make a payment of e2 from m0
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to out at time 1. At time 2, no payments are made. At time 3, we can make payments of: e2 from s to m0;
e1 from m0 to m2; and e1 from m0 to m1. This yields a perfect schedule and statement (c) follows.

Our reduction is from 3-Sat-3 (again) to Perfect Scheduling. As before, we assume that all 3-Sat-
3 instances are such that every literal appears at least once and at most twice and that no clause contains
both a literal and its negation. Given a 3-Sat-3 instance ϕ involving n Boolean variables and m clauses, we
construct an IDM instance (G,D,A0) as portrayed in Fig. 9 (we omit the formal description of (G,D,A0)
as it can be immediately derived from Fig. 9; moreover, we proceed similarly with other IDM instances that
we construct later on). The types of nodes (source, literal, clause and sink) are as in the proof of Theorem 1,
although we have additional so-called a-type nodes, and we abbreviate our multiplier gadget as a square box
with ∗2 inside (note that we have 2n distinct copies of our multiplier gadget where the node in is taken as
ai and the node out as the literal node xi or the literal node ¬xi, for 1 ≤ i ≤ n; of course, we have m clause
nodes, n source nodes, n a-type nodes and one sink node).

si
1

ai
1

xi¬xi

qj

d

∗2∗2

1@3

1@[1, 3]1@[1, 3]

2@[1, 3]2@[1, 3]

1@[1, 3] if vi ∈ cj1@[1, 3] if ¬vi ∈ cj

1@1

Fig. 9 Illustration of the reduction from 3-SAT 3 to Perfect Scheduling restricted to Directed Acyclic Graphs (DAGs).

Claim 6. If (G,D,A0) is a yes-instance of Perfect Scheduling then ϕ is a yes-instance of 3-Sat-3.

Proof. Define the truth assignment X via: if, within σ, xi receives a payment of at least e1 at time 1 then
X(vi) = True; otherwise X(vi) = False.

Fix 1 ≤ j ≤ m. We must have that qj pays e1 to d at time 1 and so qj must receive e1 from some node
xi at time 1 or e1 from some node ¬xi at time 1.

Suppose that qj receives e1 from xτj at time 1; in particular, vτj ∈ cj . Hence, xτj receives at least e1
from its corresponding multiplier gadget at time 1 and so, by definition, X(vτj ) = True with the clause cj
satisfied by X.

Alternatively, suppose that qj receives e1 from ¬xτj at time 1; in particular, ¬vτj ∈ cj . Hence, ¬xτj

receives at least e1 from its corresponding multiplier gadget at time 1. By Claim 5.a, there must be a
payment of e1 made from aτj to this multiplier gadget at either time 1 or time 2. Consequently, no payment
is made by aτj to the complementary multiplier gadget (that is, the one with a debt to xτj ) at either time 1
or time 2. By Claim 5.a, no payment is received by xi at time 1 and so, by definition, X(vτj ) = False with
the clause cj satisfied by X. The claim follows.

Claim 7. If ϕ is a yes-instance of 3-Sat-3 then (G,D,A0) is a yes-instance of Perfect Scheduling.

Proof. Let X be a satisfying truth assignment for ϕ. For each clause cj , let vτj be a Boolean variable whose
occurrence in cj , either via the literal vτj or the literal ¬vτj , leads to cj being satisfiable. So, we get a list
L = vτ1 , vτ2 , . . . , vτm of ‘satisfying’ Boolean variables, possibly with repetitions although no variable appears
in the list more than twice and if a Boolean variable v does appear twice then the corresponding literals in
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the two corresponding clauses are both positive or both negative (of course, this stems from the format of
ϕ as an instance of 3-Sat-3): if the occurrences are positive then we say that v has positive polarity, with
negative polarity defined analogously. Note that any debt from a literal node to a clause node in our IDM
instance exists solely because of the occurrence of the corresponding literal in the corresponding clause; in
particular, we can never have debts from both literal nodes corresponding to some variable to the same
clause node.

Consider the following schedule σ. At time 1, for each 1 ≤ j ≤ m:

• qj pays e1 to d
• if vτj appears in L with positive (resp. negative) polarity then xτj (resp. ¬xτj ) pays e1 to qj
• if vτj appears in L with positive (resp. negative) polarity then aτj pays e1 to the multiplier gadget which

has a debt to xτj (resp. ¬xτj ).

In addition, for each 1 ≤ j ≤ m, if vτj appears in L with positive (resp. negative) polarity then:

• within the multiplier gadget that has a debt to xτj (resp. ¬xτj ), we include the schedule σ1 from Claim 5.c
• within the multiplier gadget that has a debt to ¬xτj (resp. xτj ), we include the schedule σ0 from Claim 5.b.

At time 3, for each 1 ≤ j ≤ m:

• sτj pays e1 to aτj
• if vτj appears in L with positive (resp. negative) polarity then aτj pays e1 to the multiplier gadget which

has a debt to ¬xτj (resp. xτj ).

Finally, having done the above, add any Boolean variable v not appearing in L to L and proceed as above
with these Boolean variables and assuming that they have positive polarity (note that the restriction of X
to these Boolean variables has no effect on whether X satisfies ϕ). What results is a perfect schedule.

Given that our IDM instance (G,D,A0) of Perfect Scheduling can be built from the instance ϕ of
3-Sat-3 in polynomial time, we obtain our result for the PP variant.

Consider now the AoN variant. As it happens, all of the above schedules are perfect schedules within the
AoN variant and all associated reasoning still holds. Hence, we have our result for the AoN variant too.

Theorem 4. The problem Perfect Scheduling is NP-complete for the PP and AoN variants even when
we restrict to IDM instances (G,D,A0) for which: G is a multiditree with diameter 6; all debts have monetary
amount e1; and there is a maximum of 6 debts between any pair of nodes.

Proof. We show that, given an instance ϕ of 3-Sat-3, involving n Boolean variables and m clauses, we can
construct in polynomial-time an IDM instance (G,D,A0) where G satisfies the criteria stated in the theorem
so that (G,D,A0) admits a perfect schedule iff ϕ has a satisfying truth assignment. As usual, we restrict
ourselves to those instances of 3-Sat-3 in which every literal appears at least once and at most twice and
where no clause contains both a literal and its negation. In particular, we can label any appearance of any
literal in ϕ as the first appearance or the second appearance.

Our reduction is portrayed in Fig. 10. There is a distinct variable gadget for each Boolean variable vi,
with 1 ≤ i ≤ n, and a distinct clause gadget, for each clause cj , with 1 ≤ j ≤ m. There is one node r. The
debts in any variable gadget or involving the node r are self-evident whereas the debts in a clause gadget
are more involved.

• If the literal vi is in the clause cj and this appearance is the first (resp. second) appearance of vi in ϕ then
there are:

– debts 1@10(i− 1) + 1 (resp. 1@10(i− 1) + 3) from bj to aj and from ej to dj
– debts 1@10(i− 1) + 2 (resp. 1@10(i− 1) + 4) from aj to bj and from dj to ej .

• If the literal ¬vi is in the clause cj and this appearance is the first (resp. second) appearance of ¬vi in ϕ
then there are:

– debts 1@10(i− 1) + 6 (resp. 1@10(i− 1) + 8) from bj to aj and from ej to dj
– debts 1@10(i− 1) + 7 (resp. 1@10(i− 1) + 9) from aj to bj and from dj to ej .

• If the clause cj has 3 literals (resp. 2 literals) then there are:

– two separate1 debts 1@[1, T ] (resp. a single debt 1@[1, T ]) from aj to ej and from ej to aj .

1By having only unit debts in the instance we have that every PP schedule is also an AoN schedule, and vice versa; for the PP
variant we could instead have a single debt 2@[1, T ].
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The legend in Fig. 10 shows the time intervals corresponding to each literal, which we call the active windows
of the literals, and the occurrence of x1 (resp. ¬x2, x6) in cj in Fig. 10 is the first (resp. second, first)
occurrence.

r

ui
1

yi wi

1@10i+ 1
1@10i+ 6

1@10i+ 4
1@10i+ 9

1@[10i+ 1, 10i+ 9]

1@[10i+ 1, 10i+ 9]

variable gadget for vi

ajbj
1

ejdj

1@1 1@18 1@51

1@2 1@19 1@52

1@[1, T ]
1@[1, T ]

1@[1, T ]
1@[1, T ]

1@1 1@18 1@51

1@2 1@19 1@52

clause gadget for cj = (x1,¬x2, x6)

1@[1,T]

1@[1,T]

1@[10i+ 1,
10i+ 9]

1@[10i+ 1,
10i+ 9]

literal active window
x1 [1,4]
¬x1 [6,9]
x2 [11,14]
¬x2 [16,19]
. . . . . .
xi+1 [10i+1, 10i+4]
¬xi+1 [10i+6, 10i+9]
. . . . . .

Fig. 10 A reduction from 3-Sat-3 to Perfect Scheduling restricted to multiditrees.

Claim 8. If (G,D,A0) is a yes-instance of Perfect Scheduling then ϕ is a yes-instance of 3-Sat-3.

Proof. Suppose that there is a perfect schedule σ for (G,D,A0). Consider a clause gadget, corresponding
to the clause cj . There are 4 debts due within each active window corresponding to a literal in the clause.
Suppose that the active windows are [α1, β1], [α2, β2] and [α3, β3], with β1 < α2 and β2 < α3 (we are
assuming that our clause has 3 literals but the arguments for clauses with only 2 literals run analogously).
If no payment has been received by ej from r by time β1 + 1 then: the e1 at bj within the clause gadget
must have been used in σ:

• to pay the debts of bj to aj , aj to ej and ej to dj at time α1

• to pay the debts of dj to ej , ej to aj and aj to bj at time α1 + 1,

if the appearance of the corresponding literal is the first; or

• to pay the debts of bj to aj , aj to ej and ej to dj at time α1 + 2
• to pay the debts of dj to ej , ej to aj and aj to bj at time α1 + 3 = β1,

if the appearance of the corresponding literal is the second (note that the payments made towards the debts
of aj to ej and ej to aj are only partial payments). We have an analogous situation as regards the interval
[α2, β2] when no payment has been received by ej from r by time β2 + 1. However, if no payment has been
received by ej from r by time β3 + 1 then we obtain a contradiction as the debts from aj to ej and from ej
to aj will have been fully paid and consequently ej will be bankrupt at time β3. Hence, within σ, there must
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be a payment of e1 received by ej from r and this is the only payment made from r to ej . Furthermore,
there can be no payment from ej to r strictly before the time at which a payment is made from r to ej and
if a payment is made from ej to r at the same time that a payment is made from r to ej then this can be
interpreted as no resource leaving or entering the clause gadget, with the external resource satisfying both
debts involving r and ej , which cannot be the case.

Consider now a variable gadget, corresponding to the variable vi. At times t ∈ [0, 10i] ∪ [10i + 4, 10i +
5] ∪ [10i + 9, T ] there must be cash assets of (at least) e1 at node ui. So, outside the active windows of
the literals associated with the variable vi, there must be at least e1 of cash assets at the node ui. Also,
note that the e1 originating at node ui can only leave and return to the variable gadget at some times in
[10i + 1, 10i + 5] or in [10i + 6, 10i + 9] but not both. Consequently, at any time, there is at most e1 of
resource that originated within a variable gadget outside that particular variable gadget.

Consider the time interval [1, 9]. Within this time interval, the e1 originating at u1 is the only euro that
might be possibly ‘outside’ the variable gadget corresponding to v1. Call this euro E. Suppose E leaves its
variable gadget at some time in [1, 4]. It needs to be back at y1 by time 4 (and will never leave the variable
gadget again). Suppose that E is paid from r to ej , for some j, within the time interval [1, 4]. If the literal
x1 is not in cj then all debts involving only aj and bj and all debts involving only dj and ej will be due at
some time outside [1, 4] and so E is of no use to the clause gadget for cj . If E is paid from r to ej at time
1 (resp. by time 3) and the literal x1 is in clause cj as the first (resp. second) appearance then E can be
used to pay the debts from ej to dj at time 1 (resp. time 3) and from dj to ej at time 2 (resp. time 4). Note
that E cannot be used to pay the debt from aj to bj at time 2 or time 4 as it would not get back to its
variable gadget by time 4. Given that E leaves the clause gadget by time 4, no more resource either enters
or leaves the clause gadget. Alternatively, suppose that E leaves the variable gadget corresponding to v1 at
some time in [6, 9]. Exactly the same argument can be made as that above except with respect to the literal
¬x1 appearing in some clause or other.

Let us continue with the time interval [11, 19] and the e1 originating at u2. An analogous argument to
that above holds. Note that all clause gadgets that were previously ‘visited’ by E, above, are now ‘closed’
in that they accept or eject no further resource. Indeed, an analogous argument to that above holds for
every euro originating at some node ui. As σ is a perfect schedule, every clause gadget must be visited by
some euro originating in some variable gadget and the particular literal corresponding to the active window
during which the euro left its variable gadget must appear in the clause. Define the truth assignment X
via: X(vi) = True (resp. False) if the euro from the variable gadget corresponding to vi leaves its variable
gadget during the active window [10i + 1, 10i + 4] (resp. [10i + 6, 10i + 9]) and visits a clause gadget, with
any Boolean variables vi for which X(vi) has not been defined such that X(vi) is defined arbitrarily. Given
the above discussion, it should be clear that X satisfies ϕ.

Claim 9. If ϕ is a yes-instance of 3-Sat-3 then (G,D,A0) is a yes-instance of Perfect Scheduling.

Proof. Suppose that X is a satisfying truth assignment for ϕ. Define the schedule σ as follows.
If X(vi) = True then at time 10(i− 1) + 1, the euro originating at ui is paid from ui to yi to wi to r.

• If the clause cj containing the first appearance of the literal xi exists and has not been visited by some
euro originating within a variable gadget then at time 10i+ 1, the euro is paid from r to ej and on to dj .
At time 10i+ 2, the same euro is paid from dj to bj and on to r.

• If there is no clause containing the literal xi or if the clause gadget corresponding to the first appearance
of xi has already been visited in the schedule σ by some euro originating within a variable gadget, then
do nothing.

• If the clause cj containing the second appearance of the literal xi exists and has not been visited by some
euro originating within a variable gadget then at time 10i+ 3, the euro is paid from r to ej and on to dj .
At time 10i+ 4, the same euro is paid from dj to bj and on to r.

• If there is no clause containing the literal xi or if there is no second appearance of the literal xi or if the
clause gadget corresponding to the second appearance of xi has already been visited in the schedule σ by
some euro originating within a variable gadget, then do nothing.

• Our euro at r is paid at time 10i+ 4 from r to wi to yi to ui.

If X(vi) = False then at time 10i+ 6, the euro originating at ui is paid from ui to yi to wi to r.

• If the clause cj containing the first appearance of the literal ¬xi exists and has not been visited by some
euro originating within a variable gadget then at time 10i+ 6, the euro is paid from r to ej and on to dj .
At time 10i+ 7, the same euro is paid from dj to ej and on to r.
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• If there is no clause containing the literal ¬xi or if the clause gadget corresponding to the first appearance
of ¬xi has already been visited in the schedule σ by some euro originating within a variable gadget, then
do nothing.

• If the clause cj containing the second appearance of the literal ¬xi exists and has not been visited by
some euro originating within a variable gadget then at time 10i+ 8, the euro is paid from r to ej and on
to dj . At time 10i+ 9, the same euro is paid from dj to ej and on to r.

• If there is no clause containing the literal ¬xi or if there is no second appearance of the literal ¬xi or if
the clause gadget corresponding to the second appearance of ¬xi has already been visited in the schedule
σ by some euro originating within a variable gadget, then do nothing.

• Our euro at r is paid at time 10i+ 9 from r to wi to yi to ui.

Within any clause gadget corresponding to cj , the euro originating at bj is used to pay the debts correspond-
ing to the literal not addressed by the euro from a variable gadget. It can easily be seen that σ is valid and
a perfect schedule.

The result follows, given that the construction of (G,D,A0) can clearly be undertaken in polynomial-time.

In all the above results, the input IDM instance is allowed to have unlimited (i.e., unbounded) total
initial assets which might be unrealistic in practically relevant financial systems. We now show that even in
the highly restricted case where there is just e1 in initial external assets in total, Perfect Scheduling
still remains NP-complete in the AoN and PP variants.
Theorem 5. The problem Perfect Scheduling is NP-complete in the AoN and PP variants even when
the total value of all initial external assets in any instance is e1.

Proof. The following proof applies to both the AoN and PP variants. Our reduction is a reduction from the
problem Sourced Hamiltonian Path defined as follows.
Sourced Hamiltonian Path

Instance: a digraph H and a vertex x
Yes-instance: there exists a Hamiltonian path in H with source x.

This problem can be trivially shown to be NP-complete by reducing from the standard problem of deciding
whether a digraph has a Hamiltonian path [26].

Let H be some digraph on the n vertices {xi : 1 ≤ i ≤ n} and w.l.o.g. let x = x1. In order to describe
our reduction, we first describe a gadget, namely the at-least-once gadget. We have one of these gadgets for
each vertex of H and we refer to the gadget corresponding to the vertex xi of H as at-least-once(i). Our
at-least-once gadget can be defined as in Fig. 11 where the value T is defined as 2n+1. Note that the gadget
is exactly the nodes and debts within the blue dotted box and so contains its own copies of nodes vL, vC
and vR and the 4n− 1 debts involving them. The nodes v′R and v′′L are not part of the gadget but are nodes
in other gadgets as we now explain.

vL vC vRv′R v′′L

1@[1, T ] 1@[1, T ]

1@T1@T

1@1 1@3 . . . 1@T − 2

1@[1, T − 1]
. . .

1@[1, T − 1]
(n− 1 times)

1@2 1@4 . . . 1@T − 1

1@[1, T − 1]
. . .

1@[1, T − 1]
(n− 1 times)

1@T

at-least-once(i)

Fig. 11 An at-least-once gadget. Note that as T = 2n+ 1 there are, n e1 debts owed by vL to vC and by vC to vR.

Set T = 2n+ 1. Our IDM instance (G,D,A0) can be defined as follows:

• there is the at-least-once(i) gadget, for 1 ≤ i ≤ n
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• for every edge (xi, xj) of H, there is a debt of e1 from vR of at-least-once(i) to vL of at-least-once(j) to
be paid in the interval [1, T ] and a debt of e1 from vL of at-least-once(j) to vR of at-least-once(i) to be
paid at time T

• all nodes have initial external assets of 0 except for node vL of at-least-once(1) which has initial external
assets of 1.

We refer to the single euro of initial external assets as the initial euro. The IDM instance (G,D,A0) can
clearly be constructed in time polynomial in n.

Claim 10. If (G,D,A0) is a yes-instance of Perfect Scheduling then (H,x) is a yes-instance of Sourced
Hamiltonian Path.

Proof. Note that strictly prior to time T , the only payment-cycles that can exist within G involve the two
nodes vL and vC of some at-least-once gadget or the two nodes vC and vR of some at-least-once gadget. Note
also that within some gadget there are n debts of e1 from vL to vC needing to be satisfied and n− 1 debts
of e1 from vC to vL. An analogous statement can be made as regards vC and vR. Consequently, in order
to satisfy all debts involving vL and vC within some gadget, at some odd time in [1, T − 1], the initial euro
must be within that gadget so as to satisfy some debt from vL to vC (by moving from vL to vC). Similarly,
at some even time in [1, T − 1], the initial euro must be within the gadget so as to satisfy some debt from
vC to vL (by moving from vC to vR). Moreover, at any time in [1, T − 1], the initial euro can only satisfy at
most one of the debts mentioned above. Hence, given that T = 2n+ 1, at any time in [1, T − 1], the initial
euro must be satisfying exactly one of the above debts.

Suppose that the initial euro satisfies some debt from vL to vC in some at-least-once gadget at time t.
As the initial euro needs to satisfy one of the above debts at time t+1, we need that at time t+1 the initial
euro satisfies a debt from vC to vR in the same gadget. Also, it cannot be the case that a debt from vC to vR
in some gadget is satisfied by the initial euro before the euro satisfies some debt from vL to vR in the same
gadget. As the initial euro starts at vL in at-least-once(1), our schedule must be such that the initial euro
‘moves’ through the at-least-once gadgets corresponding to every node, entering at the node vL and exiting
at the node vR. Consequently, its path within G corresponds to a path x = x1, x2, . . . , xn in H where every
node on this path is distinct and where there is a directed edge from node xi to xi+1, for 1 ≤ i ≤ n− 1; that
is, a Hamiltonian path in H with source x.

Claim 11. If (H,x) is a yes-instance of Sourced Hamiltonian Path then (G,D,A0) is a yes-instance of
Perfect Scheduling.

Proof. Let x = x1, x2, . . . , xn be a Hamiltonian path P in the digraph H. Consider the following schedule σ:

• the initial euro is used so as to pay the following debts:

– e1 at time 2i−1 from vL to vC in at-least-once(xi) and e1 at time 2i from vC to vR in at-least-once(xi),
for 1 ≤ i ≤ n

– e1 at time 2i from vR in at-least-once(xi) to vL in at-least-once (xi+1), for 1 ≤ i ≤ n− 1

• for any vL and vC within some at-least-once gadget and at any odd time t < T when a debt is not being
paid from vL to vC using the initial euro, there is a payment-cycle consisting of payments of e1 from vL
to vC and of e1 from vC to vL

• for any vC and vR within some at-least-once gadget and at any even time t < T when a debt is not being
paid from vC to vR using the initial euro, there is a payment-cycle consisting of payments of e1 from vC
to vR and of e1 from vR to vC

• for any edge (xi, xj) of H that does not feature in the Hamiltonian path P , there is a payment-cycle
consisting of payments at time T of e1 from vR in at-least-once(xi) to vL in at-least-once(xj) and of e1
from vL in at-least-once(xj) to vR in at-least-once(xi)

• the initial euro is used so as to pay the following debts:

– e1 at time T from vR to vL in at-least-once(xi), for 1 ≤ i ≤ n
– e1 at time T from vL in at-least-once(xi) to vR in at-least-once(xi−1), for 2 ≤ i ≤ n.

The ‘path’ taken by the initial euro within (G,D,A0) can be visualized as in Fig. 12 where the debt arrows
are tagged with the time of payment. It is clear that σ is valid and a perfect schedule.

Our main result follows.
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· · ·

vL
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vR

at-least-once(1)
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at-least-once(3)
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at-least-once(5)

at-least-once(n)
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34
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2n− 2

2n− 1

2n

1

2

2n+ 1

2n+ 1

2n+ 1
2n+ 1

2n+ 1

2n+ 1

2n+ 1

2n+ 1

2n+ 1

2n+ 1

2n+ 1

2n+ 1

Fig. 12 The path taken by the initial euro straightforwardly corresponds to a sourced Hamiltonian path in the original graph.

Of course, one can obtain additional restrictions on the structure of the IDM instances for Perfect
Scheduling in Theorem 5 by looking at NP-completeness results relating to Sourced Hamiltonian Path
on restricted digraphs; however, we have refrained from doing so (as nothing of any significance emerges).

We can constraint the digraph G of an instance (G,D,A0) of Perfect Scheduling even further in
the AoN variant; indeed, so that it is always a directed path of length 3. The price we pay is that the initial
external assets are potentially large.
Theorem 6. Consider the problem Perfect Scheduling restricted so that every instance (G,D,A0) is
such that G is a directed path of bounded length.

(a) If, further, T is restricted to be 2 then the resulting problem is weakly NP-complete in the AoN variant.
(b) If there are no restrictions on T then the resulting problem is strongly NP-complete in the AoN variant.

Proof. Consider (a). We reduce from the problem Partition defined as follows (and proven in [26] to be
weakly NP-complete).
Partition

Instance: a multi-set of integers S = {a1, a2, . . . , an} with sum(S) = 2k
Yes-instance: there exists a partition of S into two subsets S1 and S2 such that sum(S1) = sum(S2) = k.

In general, an instance S = {a1, a2, . . . , an} has size nb where b is the least number of bits required to express
any of the integers of S in binary.

Let S be an instance of Partition of size nb. Consider the IDM instance (G,D,A0) in Fig. 13. Note that
the time taken to construct (G,D,A0) from S is polynomial in nb.

s
2k

v w x

a1@[1, 2]
a2@[1, 2]

...
an@[1, 2]

k@1
k@2

k@1
k@2

Fig. 13 An IDM instance encoding an instance {a1, . . . , an} of Partition with sum 2k.

Claim 12. If (G,D,A0) is a yes-instance of Perfect Scheduling then S is a yes-instance of Partition.

Proof. Suppose that there is a valid schedule σ for (G,D,A0) that is a perfect schedule. It must be the case
that the total amount paid by s at time 1 is ek and that this payment is immediately paid by v to w and

23



from w to x at time 1. As we are in the AoN variant, it must be the case that the sum of a subset of integers
of S amounts to k. An analogous argument applies to the payments made at time 2 and the remainder of
the integers in S. the claim follows.

Claim 13. If S is a yes-instance of Partition then (G,D,A0) is a yes-instance of Perfect Scheduling.

Proof. Suppose that S1 and S2 is a partition of S such that sum(S1) = sum(S2) = k. Define the schedule σ
so that:

• at time 1: s pays ek to v; if ai ∈ S1, for 1 ≤ i ≤ n, then v pays eai to w; and w pays ek to x
• at time 2: s pays ek to v; if ai ∈ S2, for 1 ≤ i ≤ n, then v pays eai to w; and w pays ek to x.

The schedule σ is a valid perfect schedule.

The proof of (a) follows. Now consider (b). We reduce from the strongly NP-complete problem 3-Partition
defined as follows (see [27]).
3-Partition

Instance: a multi-set of integers S = {a1, a2, . . . , a3m}, for some m ≥ 1, with sum(S) = mk
Yes-instance: there exists a partition of S into m triplets S1, S2, . . . Sm such that sum(Si) = k, for each

1 ≤ i ≤ m.

In general, an instance S = {a1, a2, . . . , a3m} has size mb where b is the least number of bits required to
express any of the integers of S in binary.

Let S be an instance of 3-Partition of size mb. By multiplying all integers by 4 if necessary, we may
assume that every integer of S is divisible by 4 as is k. Consider the IDM instance (G,D,A0) in Fig. 13.
Note that the time taken to construct (G,D,A0) from S is polynomial in mb.

s
m(k + 3)

v w x

a1 + 1@[1,m]
a2 + 1@[1,m]

. . .
a3m + 1@[1,m]

k + 3@1
k + 3@2

. . .
k + 3@m

k + 3@1
k + 3@2

. . .
k + 3@m

Fig. 14 An IDM instance showing the reduction from 3-Partition to AoN Perfect Scheduling.

Claim 14. If (G,D,A0) is a yes-instance of Perfect Scheduling then S is a yes-instance of 3-Partition.

Proof. Suppose that there is a valid schedule σ for (G,D,A0) that is a perfect schedule. It must be the
case that the total amount paid by s at time i, for every 1 ≤ i ≤ m, is ek + 3 and that this payment is
immediately paid by v to w and by w to x. Suppose that the payment at time i by v to w pays at least
4 of the debts due. So, there exists another time j, say, where the payments made by v to w pay at most
2 debts. So, we have that either aα + aβ + 2 = k + 3 or aα + 1 = k + 3, for some 1 ≤ α ̸= β ≤ 3m. This
yields a contradiction as the right-hand sides of these equations are equivalent to 3 modulo 4 whereas the
left-hand sides are not. So, at any time i, for 1 ≤ i ≤ m, exactly three debts are paid by v to w at time i. If
1 ≤ α, β, γ ≤ 3m are distinct so that debts of monetary amounts aα + 1, aβ + 1 and aγ + 1 are paid by v to
w at some time then aα + 1+ aβ + 1+ aγ + 1 = k+ 3; that is, aα + aβ + aγ = k. So, we have a yes-instance
of 3-Partition. The claim follows.

Claim 15. If S is a yes-instance of 3-Partition then (G,D,A0) is a yes-instance of Perfect Scheduling.

Proof. Suppose that S can be partitioned into triplets so that the sum of the integers in each triplet is k;
so, suppose that aαi + aβi + aγi = k, for each 1 ≤ i ≤ m, where S = {aαi , aβi , aγi : 1 ≤ i ≤ m}. Define the
following schedule σ: at time i, for each 1 ≤ i ≤ m, s pays ek + 3 to v; v pays eaαi + aβi + aγi + 3 = k + 3
to w; and w pays ek + 3 to x. The schedule σ is valid and a perfect schedule. The claim follows.

The main result follows.
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3.3 Hardness results for Bankruptcy Maximization
We now turn to Bankruptcy Maximization.
Theorem 7. The problem Bankruptcy Maximization is NP-complete in the AoN, PP and FP variants
even when for an instance (G,D,A0): T = 2; G is a directed acyclic graph with out-degree at most 2, in-
degree at most 3; all monetary debts are at most e2 per edge; and initial external assets are at most e3 per
bank.

Proof. We build a polynomial-time reduction from the problem 3-Sat-3, with the usual restrictions on
instances (see the proof of Theorem 1). Suppose that we have some instance ϕ of 3-Sat-3 where there are
n Boolean variables and m clauses. We start with the chain gadget chain(l), where l ≥ 1, as portrayed in
Fig. 15 (note that the gadget is the path of l nodes within the blue dotted box). The key point about any
chain gadget is that in some schedule: if at time 1, node u does not make a payment to node m1 then u
and all the nodes of the chain gadget are bankrupt; and if at time 1, u pays its debt to m1 then none of the
nodes of the chain gadget is bankrupt. As in our proof of Theorem 2, we first work in the PP variant unless
otherwise stated, though the reasoning will apply to the AoN and FP variants as well.

u m1 m2 m3 ml
1@1 1@1 1@1 1@1 1@1. . .

chain(l)

Fig. 15 The chain gadget. In any valid schedule, either p1u,m1
< 1 and all vertices mi are bankrupt, or p1u,m1

= 1 and no vertices
mi are bankrupt.

We now define variable nodes {si : 1 ≤ i ≤ n}, literal nodes {xi,¬xi : 1 ≤ i ≤ n}, clause nodes
{qj : 1 ≤ j ≤ m} and a sink node d analogously to as in the proof of Theorem 1 and include the debts as
depicted in Fig. 16 so as to obtain our IDM instance (G,D,A0). Note that the chain gadgets corresponding
to the different literal nodes are all distinct and |cj | denotes the number of literals in the clause cj of ϕ.

si
3

xi

¬xi

qj d

chain(m+ 1)

chain(m+ 1)

3@1

3@1

1@2 if ¬vi ∈ cj

1@2 if vi ∈ cj

|cj |@2

1@1

1@1

Fig. 16 An IDM instance illustrating the reduction from 3-SAT 3 to Bankruptcy Maximization, using chain gadgets.

Note that because all debts of (G,D,A0) are due at an exact time, rather than over an interval, reasoning
in the AoN variant is identical to reasoning in the PP variant.

Claim 16. In any valid schedule σ for (G,D,A0) in which c ≥ 0 variable nodes si either pay e3 to xi or
e3 to ¬xi:

• all n variable nodes are bankrupt
• exactly n literal nodes are bankrupt
• exactly c(m+ 1) chain nodes are bankrupt.

Consequently, this amounts to exactly 2n + c(m + 1) bankrupt nodes with any other bankrupt nodes
necessarily being clause nodes.

Proof. Suppose that in the valid schedule σ, si, for some 1 ≤ i ≤ n, pays e1 to a node from {xi,¬xi} at
time 1 and e2 to the other node from {xi,¬xi} at time 1. Since both xi and ¬xi have e1 at time 1, both
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must pay e1 to their corresponding chain gadget; so, none of the nodes of either of these chain gadgets is
bankrupt. As any variable and its negation both appear at least once in some clause of ϕ, exactly one of the
nodes xi and ¬xi is bankrupt at time 2.

Alternatively, suppose that sj , for 1 ≤ j ≤ n, pays e3 to either xj or ¬xj at time 1. So, the literal node
to which sj makes no payment is bankrupt at time 1 as are all the nodes of its corresponding chain gadget.
As any variable and its negation both appear at least once in some clause of ϕ, exactly one of the nodes xj

and ¬xj is bankrupt at time 2.
In any case, we have: n variable nodes that are bankrupt; n literal nodes that are bankrupt; and c(m+1)

chain nodes that are bankrupt. This results in 2n+ c(m+1) bankrupt nodes. As the sink node d cannot be
bankrupt, the claim follows.

Claim 17. If ((G,D,A0), 2n+ n(m+ 1) +m) is a yes-instance of Bankruptcy Maximization then ϕ is
a yes-instance of 3-Sat-3.

Proof. Suppose that there exists a valid schedule σ that results in at least 2n+ n(m+1)+m bankruptcies.
So, by Claim 16, every variable node si pays e3 to either xi or ¬xi and also every clause node qj is bankrupt
in σ. The reason a clause node qj is bankrupt is because there is some literal vi or ¬vi in clause cj but where
¬xi or xi, respectively, receives no payment from si. Define the truth assignment X on the variables of ϕ so
that X(vi) = True iff xi receives a payment of e3 from si, for 1 ≤ i ≤ n. This truth assignment satisfies
every clause of ϕ.

Claim 18. If ϕ is a yes-instance of 3-Sat-3 then ((G,D,A0), 2n + n(m + 1) + m) is a yes-instance of
Bankruptcy Maximization.

Proof. Suppose that there is a satisfying truth assignment X for ϕ. Consider the following schedule σ:

• at time 1, every si pays: e3 to xi if X(vi) = True; and e3 to ¬xi if X(vi) = False
• if xi (resp. ¬xi) received e3 from si at time 1 then:

– at time 1, it pays e1 to its corresponding chain gadget so as to satisfy all debts in the gadget
– at time 2, it pays e1 to each clause node qj for which the literal ¬vi ∈ cj (resp. vi ∈ cj)

• if xi (resp. ¬xi) received no payment from si at time 1 then at times 1 and 2 then it can make no payments
• each qj makes a payment of however many euros it has to d at time 2 (note that it never received more

than e|cj |).

The schedule σ is clearly valid. By Claim 16, we have at least 2n + n(m + 1) bankrupt nodes with any
additional bankrupt nodes necessarily clause nodes. Consider some clause node qj containing some literal vi
so that X(vi) = True. By definition, ¬xi receives no payment from si at time 1 and so the debt of e1 at
time 2 from ¬xi to qj is not paid. Consequently, qj is bankrupt. Hence, we have exactly 2n+ n(m+ 1) +m
bankrupt nodes and the claim follows.

Note that the above reasoning clearly holds in the AoN variant (since in the schedules we consider all
debts are paid either in full or not at all) as well as in the FP variant (since in order for si to bankrupt one
of the chains attached to xi and ¬xi it must pay strictly less than £1 to the bankrupt node and hence at
least £2 to the “surviving” node). As the construction of ((G,D,A0), 2n+ n(m+ 1) +m) can be completed
in time polynomial in n, the result follows.

Just as we did with Perfect Scheduling in Theorem 6, we can restrict Bankruptcy Maximization
in the AoN variant so that any IDM (G,D,A0) in any instance is such that G is a directed path of bounded
length (here 2).
Theorem 8. Consider the problem Bankruptcy Maximization restricted so that every instance
((G,D,A0), k) is such that G is a directed path of length 3. If, further, T is restricted to be 2 then the
resulting problem is weakly NP-complete in the AoN variant.

Proof. We reduce from the weakly NP-complete problem Subset Sum defined as follows (see [27]).
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Subset Sum

Instance: a multi-set of integers S = {a1, a2, . . . , an} and an integer k
Yes-instance: there exists a subset S1 of S so that the sum of the numbers in S1 is k.

In general, an instance S = {a1, a2, . . . , an} has size nb where b is the least number of bits required to
express any of the integers of S in binary. Let S be an instance of Subset Sum of size nb. By doubling
all integers if necessary, we may assume that every integer of S is at least 2. Consider the IDM instance
(G,D,A0) in Fig. 17 (for which T = 2). The value A in Fig. 17 is the sum of all integers in S. Note that the
time taken to construct (G,D,A0) from S is polynomial in nb.

u
A

v
k

w

a1@[1, 2]
. . .

an@[1, 2]

1@1

A@2

Fig. 17 An IDM instance corresponding to an instance of Subset Sum.

Claim 19. If ((G,D,A0), 1) is a yes-instance of Bankruptcy Maximization then S is a yes-instance of
Subset Sum.

Proof. Suppose that σ is a valid schedule within which there is at least 1 bankruptcy in the IDM instance
(G,D,A0). The nodes u and w are never bankrupt; so, v must be bankrupt within σ. At time 2, the node v
necessarily pays off all of the unpaid debts to w of monetary amount greater than e1, as it receives sufficient
funds from u at time 2 to do this. Hence, v must be bankrupt at time 1; that is, v does not pay its debt
to w of monetary amount e1 at time 1. As σ is valid, v is not withholding at time 1 and the only way for
this to happen is for v to pay debts to w amounting to ek. That is, we have a subset of integers of S whose
total sum is k; that is, S is a yes-instance of Subset Sum. The claim follows.

Claim 20. If S is a yes-instance of Subset Sum then ((G,D,A0), 1) is a yes-instance of Bankruptcy
Maximization.

Proof. Suppose that the subset S1 of S is such that sum(S1) = k. W.l.o.g. let S1 = {a1, a2, . . . , ar}. Define
the schedule σ as: at time 1, v pays the debts a1@[1, 2], . . . , ar@[1, 2]; and at time 2, u pays its debt to v
and v pays the debts ar+1@[1, 2], . . . , an@[1, 2]. Note that this is a valid schedule, as no node is withholding
at any time, within which v is bankrupt. The claim follows.

The main result follows.

3.4 Polynomial-time algorithms
In this section we show that Bailout Minimization in the FP variant is solvable in polynomial-time and
also that Bailout Minimization in the PP variant is solvable in polynomial-time when our IDM instances
are restricted to out-trees. We begin with the FP variant result.

Theorem 9. The problem Bailout Minimization in the FP variant is solvable in polynomial time.

Proof. A solution to FP Bailout Minimization is a bailout vector B of size |V | together with a sched-
ule σ consisting of |E|T payment values pte. We describe below how an instance G,D,A0, b of Bailout
Minimization can be encoded as a linear program (LP), which can then be solved in polynomial time.

Our variables are:

• Bailout variables {B[v]|v ∈ V } (altogether |V | variables),
• Payment variables {pte|e ∈ e, t ∈ [T ]} (altogether |E|T variables), and
• Income variables {Itv|v ∈ V, t ∈ [T ]}, outgoing variables {Ot

v|v ∈ V, t ∈ [T ]}, and cash asset variables
{ctv|v ∈ V, t ∈ [0, T ]} (altogether 3 · |V | · T variables).

In the below, for a, b ∈ N0, [a, b] denotes the set {a, a+ 1, . . . , b}, and we write [b] as shorthand for [1, b].
Our constraints are:

• The total bailout is at most b: ∑
v

B[v] ≤ b
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• The starting cash assets of a node (at time 0) are its external assets (specified by A0) plus any bailout it
receives. For each v ∈ V :

c0v = A0[v] +B[v]

• No debt is paid early, and all payments are non-negative. For each e ∈ E and t ∈ [0, T ]:

pte

{
= 0, if t < Dt1(e)

≥ 0, otherwise

• The income (resp. outgoings) of a node at some time are obtained by summing over payments into (resp.
out of) that node at each time. These then can be used to compute external (cash) assets at all nodes
and times. For each v ∈ V and t ∈ [T ]:

Itv =
∑

e∈Ein(v)

pte (resp. Ot
v =

∑
e∈Eout(v)

pte)

etv = et−1
v + Itv −Ot

v

• No bank has negative assets at any point. For each v ∈ V, t ∈ [T ]:

etv ≥ 0

• Each debt is paid in full within its interval. This guarantees that there are no bankruptcies in the schedule
(and that no banks are withholding, a validity constraint). For each e ∈ E with D(e) = (a, t1, t2):∑

t∈[t1,t2]

pte = a

Recall from our discussion of canonical instances in Section 2.4 that we may assume T is at most 2|E|.
Then we have O(nm+m2) variables and O(nm+m2) constraints. If the largest integer in the input instance
G,D,A0, b required β bits to encode, then our constructed LP has size polynomial in n + m + β. Any
assignment to B and to the payment variables pte satisfying the above is necessarily a perfect valid schedule
for ((G,D,A0), b). As linear programs can be solved in polynomial-time, our result follows.

Note the limitations of the use of linear programming for other problems. For Bailout Minimization
in the PP variant, proceeding as in the proof of Theorem 9 results is an integer linear program, the solution
of which is NP-complete in general. Moreover, we have already proven Perfect Scheduling, the special
case of Bailout Minimization with b fixed to 0, to be NP-complete in the PP variant through the proofs
in Theorems 3, 4 and 5. As regards trying to use linear programming for Bankruptcy Minimization in
the FP variant, it is not possible to express a constraint on the number of bankruptcies through a linear
combination of the payment variables; indeed, we have already proven Bankruptcy Minimization in the
FP variant to be NP-complete in Theorems 1 and 2.

For the AoN and PP variants, by restricting the temporal properties of the IDM instances considered,
we obtain tractability of Bailout Minimization, namely when all debts are due at an exact time.

Theorem 10. The problem (AoN/PP/FP) Bailout Minimization is solvable in polynomial time when
restricted to inputs (G,D,A0) such that Dt1 = Dt2 .

Proof. Let (G,D,A0) be an IDM instance satisfying the above. In such an instance, all debts are due at an
exact point in time, rather than an interval. For convenience, we use Dt as shorthand for either of Dt1 or Dt2 .
By definition, for any bailout vector B (including the all-zero vector) a perfect schedule for (G,D,A0 +B)

is one in which every debt is paid in full and on time. Let σ be the schedule defined by p
Dt(e)
e = Da(e) for

each edge e, with all other payment variables equal to zero. Clearly, for any vector B, a perfect schedule for
(G,D,A0 +B) exists if and only if σ is a valid schedule (and hence a perfect schedule).

Moreover, we can efficiently compute a vector B of minimum sum such that σ is a perfect schedule for
(G,D,A0 + B). For each vertex v and time t, compute ctv under σ for the instance (G,D,A0). Note that
if (G,D,A0) does not admit a perfect schedule then ctv will be negative for some v and t, and σ is not a
valid schedule for that instance (without a bailout). Denote the minimum (again, possibly negative) cash
assets of v at any time by cmin

v . Compute bv := max(−1 · cmin
v , 0) for each v, and let B = (bv|v ∈ V ). By

construction, σ is a perfect schedule for (G,D,A0 +B), and σ is not a perfect schedule for (G,D,A0 +B′)
for any B′ with sum(B′) < sum(B).
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All of our arguments hold in all three variants (AoN, PP, and FP), and the result follows.

Interestingly, Theorem 10 is the only positive result we derive for the All-or-Nothing setting. We also
obtain tractability results for the problem PP Bailout Minimization if we restrict the structure of IDM
instances.
Theorem 11. The problem Bailout Minimization in the PP variant is solvable in polynomial-time when
our IDM instances are restricted to out-trees.

Proof. Let ((G,D,A0), b) be an instance of Bailout Minimization so that G is an out-tree. Suppose that
G has node set {ui : 1 ≤ i ≤ n}. We need to decide whether we can increase the initial external assets of
each node ui by bi so that

∑
i bi ≤ b and (G,D,A0 +B) has a perfect schedule, where B = (b1, b2, . . . , bn);

that is, whether (G,D,A0) is ‘b-bailoutable’ via a b-bailout vector B. Our intention is to repeatedly amend
(G,D,A0) so that (G,D,A0) is ‘b-bailoutable’ iff the resulting IDM instance is ‘b′-bailoutable’, for some
amended b′; in such a case, we say that the two problem instances are equivalent. We will then work with
the (simplified) amended instance.

We proceed as follows. First, identify nodes v for which, at any time t, the sum of all debts v must pay
by time t minus the sum of all debts which could be paid to v by time t exceeds v’s initial external assets
c0v. We call these nodes prefix-insolvent. Note that if a node v is prefix-insolvent then under any perfect
schedule σ, we would have I

[t]
v + c0v < O

[t]
v , violating a validity constraint, and hence there is no such perfect

schedule. Also note that every insolvent node is prefix-insolvent (namely by taking t = T ). For any node
that is prefix-insolvent, increase the initial external assets by the minimal amount that causes the node to
cease to be prefix-insolvent and simultaneously decrease the bailout amount by this value. Our new instance
is clearly equivalent with our initial instance. If, in doing this, the bailout amount becomes less than 0 then
we answer ‘no’ and we are done. So, we may assume that none of our nodes is prefix-insolvent.

Before we start, we make a simple amendment to the debts D: we replace any debt from node u to node v
of the form a@[t1, t2], where a > 1, with a distinct debts 1@[t1, t2]. Our resulting instance, with bailout b, is
equivalent to our initial instance, with bailout b, as we are working within the PP variant. This amendment
simplifies some of the reasoning coming up. Note that it may be necessary to simulate this operation rather
than actually performing it (since if a is exponential in the instance size then the operation takes exponential
time), but that the reasoning which follows can easily be “scaled up” to deal with non-unit amounts.

Consider a leaf node v and its parent u in the out-tree G. Replace every debt of the form 1@[t1, t2] from
u to v by the debt 1@t2 and denote the revised instance by (G,D′, A0). Let σ be a perfect valid schedule for
(G,D,A0+B) (here, and throughout, we write B to denote some b-bailout vector; that is, some assignment
of resource to the nodes of G so that the total bailout amount does not exceed the total available b). Define
the schedule σ′ for (G,D′, A0 + B) by amending any payment from u to v of some debt 1@[t1, t2] so that
the payment is made at time t2. The schedule σ′ is clearly a perfect valid schedule for (G,D′, A0 + B).
Furthermore, any perfect valid schedule for (G,D′, A0 + B) is a perfect valid schedule for (G,D,A0 + B).
Hence, we can replace ((G,D,A0), b) by ((G,D′, A0), b), as these instances are equivalent. We can proceed
as above for every leaf node and its parent and so assume that all debts from a parent to a leaf are due at
some specific time only; that is, have a singular time-stamp and are of the form 1@t. Note also that no node
of G is insolvent.

Suppose that we have two leaf nodes v and w with the same parent u. We can replace v and w with a
‘merged’ node vw so that all debts from u to v or from u to w are now from u to vw. Our initial problem
instance is clearly equivalent to our amended problem instance (note that we never assign bailout resource
to either v or w as this is pointless). We can proceed likewise for all such triples (u, v, w). Hence, we may
assume that our digraph G is such that: no two leaves have a common parent; all debts to a leaf node have
monetary amount e1 and have a singular time-stamp; and no node in G is prefix-insolvent.

Suppose that we have a leaf node w that is the only child of its parent node v whose parent is u (such
a node w exists: take a leaf of the tree that is furthest away from the root). We may assume that v has no
initial external assets as we would simply use these assets to pay as many debts to w as possible (in increasing
order of time-stamp); that is, we could remove all these debts from D along with the corresponding amount
from the initial external assets of v. If the result of doing this is that there are no debts from v to w then we
remove w from G and any remaining initial external assets from v. We would then repeat all of the above
amendments until it is the case that our nodes u, v and w are such that v has no initial external assets.

By the above, every debt from v to w is of the form 1@t. Let t′ be the minimum time-stamp for all debts
from v to w and let dv be a debt from v to w of the form 1@t′. Consider the debts from u to v: these have
the form 1@[t1, t2]. There are various cases:

(a) there is a debt du from u to v of the form 1@[t1, t2] where t2 ≤ t′
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(b) there is no debt from u to v of the form 1@[t1, t2] where t2 ≤ t′ but there is a debt from u to v of the
form 1@[t1, t2] where t1 ≤ t′ ≤ t2

(c) there is no debt from u to v of the form 1@[t1, t2] where t1 ≤ t′.

The nodes u, v and w can be visualized as in Fig. 18(d) and the three cases above in Fig. 18(a)–(c).
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Fig. 18 Cases when a leaf has a parent with one child in our algorithm for PP Bailout Minimization on out-trees.

Case (a): We amend G by: introducing a new node v′ whose parent is u and a new debt d′ from u to v′ of
the form 1@[t1, t2]; removing the debt du from u to v; and removing the debt dv from v to w. Denote this
revised IDM instance by (G′, D′, A0). Suppose that there exists a perfect valid schedule σ for (G,D,A0+B).
Define the schedule σ′ for (G′, D′, A0 + B) from σ by: changing the payment from u to v, at time t where
t1 ≤ t ≤ t2 ≤ t′ and covering the debt du, so that the payment is made from u to v′ at time t (so as to cover
the new debt d′); and dropping the payment, at time t′, that covers the debt dv. The resulting schedule σ′ is
clearly valid and perfect. Conversely, suppose that we have a perfect valid schedule σ′ for (G′, D′, A0 +B).
Define the schedule σ for (G,D,A0 + B) from σ′ by: changing the payment from u to v′ at time t where
t1 ≤ t ≤ t2 ≤ t′ and covering the debt d′, so that the payment is made from u to v at time t, so as to cover
the debt du; and using the e1 received by v so as to cover the debt dv from v to w. The resulting schedule σ
is clearly a perfect valid schedule for (G,D,A0 + B). Consequently, ((G,D,A0), b) and ((G′, D′, A0), b) are
equivalent and we can work with ((G′, D′, A0), b).
Case (b): Let Du be the set of debts from u to v and let Dv be the set of debts from v to w. Order the k
debts of Dv in increasing order of time-stamp as dv = d1, d2, . . . , dk where the corresponding time-stamps
are t′ = t̄1, t̄2, . . . , t̄k (there may be repetitions). Suppose that for some 1 ≤ i ≤ k, the number of debts in Du

of the form 1@[t1, t2] with t1 ≤ t̄i is strictly less than i. Consequently, at time t̄i, the debt di cannot be paid
and we necessarily need to give v some bailout amount, ec > 1 say, to cover the c debts that cannot be paid
by v at time t̄i. We do this and reduce the overall bailout amount by ec. We then delete debts d1, d2, . . . , dc
from G and remove the bailout amount of ec from v. If doing this results in there being no remaining debts
from v to w then we delete w from G. Irrespective of this, the resulting instance ((G′, D′, A0), b′), where
b′ = b− c, is equivalent to ((G,D,A0), b). We would then repeat all of the amendments above and so w.l.o.g.
we may assume that we are in Case (b) and for every 1 ≤ i ≤ k, the number of debts in Du of the form
1@[t1, t2] with t1 ≤ t̄i is at least i. In particular, there are at least k debts in Nu.

Suppose that σ is a valid perfect schedule for (G,D,A0+B), for some B where v receives a bailout amount
of ec > 0. Suppose further that there is no B′ where there is a valid perfect schedule for (G,D,A0 + B′)
with v receiving a bailout of less than ec. The reason that v receives the bailout amount of ec is that in
the schedule σ, if we ignore the payments by v that use the bailout amount at v then there are c debts from
d1, d2, . . . , dk that are not paid on time; let us call these debts the ‘bad’ debts. Note that for each bad debt,
there is a debt from u to v that might have been paid at a time early enough to cover the debt but wasn’t.
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Let e1, e2, . . . , ec be distinct debts from Du that might have been paid earlier so as to enable the payment
of the bad debts. Amend the bailout B so that the ec formerly given as bailout to v is now given to u and
denote this revised bailout by B′. Revise the schedule σ so that for each 1 ≤ i ≤ c, e1 of bailout at u is
used to pay the debt ei at the earliest time possible. Doing so results in us being able to pay all bad debts
on time; hence, we have a perfect schedule for (G,D,A0 + B′) where v receives no bailout. This yields a
contradiction and so if there is a bailout B and a valid perfect schedule for (G,D,A0 + B) then there is a
bailout B′ and a valid perfect schedule for (G,D,A0+B′) where v receives no bailout funds. We shall return
to this comment in a moment.

From the debts of Du, we choose a debt du = 1@[t1, t2], where t1 ≤ t′ ≤ t2, so that from amongst all of
the debts of Du of the form 1@[t3, t4], where t3 ≤ t′ ≤ t4, we have that t2 ≤ t4; that is, from all of the debts
of Du that ‘straddle’ t′, du is a debt whose right-most time-stamp is smallest. We amend G by: introducing
a new node v′ and a new debt d′ from u to v′ of the form 1@t′; removing the debt du from u to v; and
removing the debt dv from v to w. Denote this revised IDM instance by (G′, D′, A0); it can be visualized as
in Fig. 18(e).

Suppose that σ is a valid perfect schedule for (G,D,A0 +B), for some B. From above, we may assume
that there is no bailout to node v in B. Consider the payment by v to w of the debt dv. If the actual e1 that
pays this debt came from the payment of a debt from Du \ {du} of the form 1@[t3, t4] (where t3 ≤ t′ ≤ t4),
then we can amend σ so that we use this e1 to pay the debt du at the time t′ and use the e1 that paid the
debt du to pay the debt 1@[t3, t4] (at whatever time du was paid); that is, we swap the times of the payment
of the debts du and 1@[t3, t4] in σ except that we now pay du at time t′. If the actual e1 that pays dv came
from the payment of du then we can amend the payment time of du to t′ (if necessary).

Build a schedule σ′ in (G′, D′, A0 + B) from σ by: instead of paying du (at time t′), we pay the new
debt d′ from u to v′; and we remove the payment of the debt dv. The schedule σ′ is clearly a valid perfect
schedule of (G′, D′, A0 + B). Conversely, if σ′ is a valid perfect schedule of (G′, D′, A0 + B), we can build
a schedule σ for (G,D,A0 + B) from σ′ by: instead of paying the debt d′ (at time t′), we pay the debt du
at time t′; and we use this e1 to pay immediately the debt du. The schedule σ is clearly a valid perfect
schedule of (G,D,A0 +B). Hence, ((G,D,A0), b) and ((G′, D′, A0), b) are equivalent and we can work with
((G′, D′, A0), b).
Case (c): Suppose that there is no debt from u to v of the form 1@[t1, t2] where t1 ≤ t′. This case cannot
happen as we have ensured that no node of G is insolvent.

By iteratively applying all of the amendments to the instance ((G,D,A0), b),
as laid out above, we reduce ((G,D,A0), b) to an equivalent instance ((G′, D′,
(A′)0), b′) where G consists of a solitary directed edge and all debts have a singular time-stamp. The process
of reduction can clearly by undertaken in time polynomial in the size of the initial instance ((G,D,A0), b)
and the resulting instance ((G′, D′, (A′)0), b′) can clearly be solved in time polynomial in the size of the
initial instance ((G,D,A0), b). Hence, Bailout Minimization is solvable in polynomial-time.

Our polynomial-time algorithm for Bailout Minimization, and so Perfect Scheduling, in the
PP variant in Theorem 11 when we restrict to out-trees contrasts with the NP-completeness of Perfect
Scheduling when we restrict to directed acyclic graphs or multiditrees, as proven in Theorem 3 and
Theorem 4, respectively.

4 Conclusion and open problems
This paper introduces the Interval Debt Model (IDM), a new model seeking to capture the temporal aspects
of debts in financial networks. We investigate the computational complexity of various problems involving
debt scheduling, bankruptcy and bailout with different payment options (All-or-nothing (AoN), Partial (PP),
Fractional (FP)) in this setting. We prove that many variants are hard even on very restricted inputs but
certain special cases are tractable. For example, we present a polynomial time algorithm for PP Bailout
Minimization where the IDM graph is an out-tree. However, for a number of other classes (DAGs, multitrees,
total assets are e1), we show that the problem remains NP-hard. This leaves open the intriguing question of
the complexity status of problems which are combinations of two or more of these constraints, most naturally
on multitrees which are also DAGs, an immediate superclass of our known tractable case.

An interesting result of ours is the (weak) NP-completeness of Bankruptcy Minimization on a fixed,
32-node footprint graph (with edge multiplicity unbounded) in Theorem 2. It is noteworthy that constantly
many nodes suffice to express the complexity of any problem in NP, and this leads to several open questions.
Does the same hold when integers must be encoded in unary? We know this is true for the AoN case (as
shown in Theorem 6). What is the smallest number n such a family of n-node (FP/PP) Bankruptcy
Minimization instances is NP-complete? From the other side, what is the largest number n such that any
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n-node (FP/PP) Bankruptcy Minimization instance may be solved in polynomial time, and with what
techniques?

We prove that FP Bailout Minimization is polynomial-time solvable by expressing it as a Linear
Program. Can a similar argument be applied to some restricted version of FP Bankruptcy Minimization
(which is NP-Complete, in general)? A natural generalization is simultaneous Bailout and Bankruptcy
minimization i.e. can we allocate eb in bailouts such that a schedule with at most k bankruptcies becomes
possible. Variations of this would be of practical interest. For example, if regulatory authorities can allocate
bailouts as they see fit, but not impose specific payment times, it would be useful to consider the problem
of allocation of eb in bailouts such that the maximum number of bankruptcies in any valid schedule is at
most k. Conversely, where financial authorities can impose specific payment times, the combination of the
problems Bankruptcy Minimization and Bailout Minimization would be more applicable.

Finally, can we make our models more realistic and practical? How well do our approaches perform on
real-world financial networks? Can we identify topological and other properties of financial networks that
may be leveraged in designing improved algorithms? What hardness or tractability results hold for variants
in which the objective is, instead of the number of bankruptcies, the total amount of unpaid debt (or any
other objective, for that matter)?
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