
Theoretical Computer Science 411 (2010) 2798–2817

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Window-games between TCP flowsI

Pavlos S. Efraimidis a,∗, Lazaros Tsavlidis a, George B. Mertzios b
a Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece
b Department of Computer Science, RWTH Aachen University, Germany

a r t i c l e i n f o

Article history:
Received 28 December 2008
Received in revised form 14 September
2009
Accepted 23 March 2010
Communicated by P. Spirakis

Keywords:
Algorithmic game theory
Network games
Nash equilibrium

a b s t r a c t

We consider network congestion problems between TCP flows and define a new game, the
Window-game, whichmodels the problemsof network congestion causedby the competing
flows. Analytical and experimental results show the relevance of theWindow-game to real
TCP congestion games and provide interesting insight into the respective Nash equilibria.
Furthermore, we propose a new algorithmic queue mechanism, called Prince, which at
congestion makes a scapegoat of the most greedy flow. We provide evidence which shows
that Prince achieves efficient Nash equilibria while requiring only limited computational
resources.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Algorithmic problems of networks can be studied from a game-theoretic point of view. In this context, the flows are
considered independent players who seek to optimize personal utility functions, such as the bandwidth. The mechanism
of the game is determined by the network infrastructure and the policies implemented at regulating network nodes, like
routers and switches. The above game-theoretic approach has been used for example in [33] and in several recent works
like [22,21,2,30,13,10].
The focus of this work is on congestion problems between competing TCP flows, a problem that has been addressed

in [18,2,12]. The Transmission Control Protocol (TCP) belongs to the Internet protocol suite and is themain data transmission
protocol of the Internet. TCP flows transmit their data by sending a series of packets. Assume a TCP flow that is ready to send
a large volume of data as a sequence of 220 packets, each of size 1024 bytes. How should the flow submit the packets to
the network? Each TCP flow has a parameter w, called the congestion window. The flow starts by submitting w packets to
the network and then waits until either a packet’s arrival is confirmed, normally with an acknowledgement packet (ACK),
or a packet is considered lost. As soon as the number of the in-flight packets of the flow is less than w, the flow submits
new packet(s); the result is that, at any moment in time, the flow can have at mostw packets in flight. So, the sizew of the
congestion window has a strong impact on the transmission rate of a flow. Actually, the size of the congestion window, to a
large degree, controls the speed of transmission of a TCP flow [17]. Consequently, the selection of an appropriate value forw
is a very critical task for each flow, and this is where AIMD (Additive IncreaseMultiplicative Decrease) comes into play. AIMD
is the most popular procedure for a TCP flow to constantly adjust its window size to the current network conditions. The
basic principle of AIMD is that, for each successful packet delivery the flow increases its congestion window size additively
by an amount proportional to a parameter α > 0 (usually α = 1) and for each lost packet, the flow decreases its congestion
window multiplicatively by a parameter β < 1 (usually β = 1/2). The values of the α and β parameters have a decisive

I Preliminary results of this work appeared in the Proceedings of the 1st International Symposium on Algorithmic Game Theory (SAGT 2008), in: Lecture
Notes in Computer Science, vol. 4997, Springer, 2008, pp. 95–108.
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role on the behavior of the AIMD flow. A large value of α and/or β makes the flow more aggressive, whereas a small value
of α and/or β makes it more temperate. A brief description of further TCP related concepts is given in Section 4, while more
details can be found in common computer networks books like [31,34].
In this work, we consider games where flows can freely choose their congestion window size or where flows use the

AIMD algorithm and can choose its parameters. To this end, we propose a new game, the Window-game, which models
the problem of network congestion caused by the competing TCP flows. The novelty of the new model lies in the fact that
it focuses on the congestion window, a parameter that is in the core of the network algorithms of modern TCP flows. As
already noted, the size of the congestion window, to a large degree, controls the speed of transmission of a TCP flow.
TheWindow-game has a router and n flows and is played synchronously, in one or more rounds. Every flow is a player

that in each round selects the size of its congestion window. The router (the mechanism of the game) receives the actions of
all the flows and decides how the capacity is allocated. Based on howmuch of its requested window has been satisfied, each
flow decides on the size of its congestion window for the next round. The utility of each flow is the capacity that it obtains
from the router in each round minus the cost for lost packets.
The main contributions of this work are three. The first is the definition of the Window-game, a game-theoretic model

for network games between TCP flows. Themotivation to address the TCP congestion problem originated from the following
question, posed in [18,30]: Of which game or optimization problem is TCP/IP congestion control the Nash equilibrium or optimal
solution? The Window-game is meant to be a natural model that is simple enough to be studied from an algorithmic and
game-theoretic point of view, while at the same time it captures essential aspects of the real TCP game. By focusing on the
congestionwindow, theWindow-game is simpler andmore abstract than themodel used in [2], while still being sufficiently
realistic to model actual TCP games. The Window-game allows us to address both repeated versions of the game that
resemble actual TCP games (like the games studied in [2]) and one-shot versions of the game with generic (not necessarily
AIMD) flows.
The second contribution is the analysis of interesting queue mechanisms from a game-theoretic point of view. In

particular, the case of DropTail with non-synchronized packet losses, which we consider the most realistic and interesting
version of TCP games, has not been addressed before (to the best of our knowledge). Also new is the analysis of the one-shot
versions of the TCP games.
The final contribution is a new queue policy, called Prince, which is simple and efficient enough to cope with the

requirements of real network routers. We show that the exemplary punishment of the most greedy flow induces strong
incentives on the flows to play in a socially efficient manner. In general, it seems that focusing on the most greedy player
proves to be a simple and very effective way to make selfish players that share a common resource behave responsibly. This
claim is further supported by the fact that punishing the highest rate flow has also been successful in a different network
game model [12] where the flows are Poisson sources. Prince is much simpler than the policy of [12], and it is the first time
the ‘‘punish the leader’’ approach is applied to games with TCP flows.
We provide theoretical evidence and experimental results to support the above claims.

Outline. The rest of the paper is organized as follows: Preliminaries and notation are presented in Section 2. The Window-
game model is described in Section 3. An overview of TCP congestion control concepts is given in Section 4. The Prince
mechanism along with common router policies are discussed in Section 5. We consider Window-games where the players
are AIMD flows in Section 6 and present the corresponding experimental results in Section 7. Window-games with generic,
non-AIMD, flows are discussed in Section 8 (Window-games with complete information) and in Section 9 (Window-games
with incomplete information). Finally, a discussion of the results is given in Section 10.

2. Preliminaries and notation

A Nash Equilibrium (NE) is a strategy profile where no flow can gain by unilaterally changing its behavior. A Symmetric
Nash Equilibrium (SNE) is a NE where all flows have the same behavior. A game in normal form is symmetric if all players
have the same strategy set, and the payoff to playing a given strategy depends only on the strategies being played, not on
who plays them. The basic notation used in work is summarized in Table 1.

3. The Window-game

The Window-game models the interaction between the congestion windows of competing TCP flows. The main entities
of a Window-game are a router with capacity C and a set of n ≤ C flows,1 as depicted in Fig. 1b. The router uses a queue
policy to serve in each round up to C workload. The n flows are the independent players of the game. Unless otherwise
specified, the number n is considered unknown to the players and to the router. The game consists of one ormore rounds. In
each round, every player i selects a sizewi ≤ C for its congestion window and submits it to the router. The router collects all
requests and applies the queue policy to allocate the capacity to the flows. The common resource is the router’s capacity, an

1 The constraint n ≤ C ensures that the fair share of each flow is at least one. A number of flows n > C would indicate a heavily congested router, where
a flow may not be entitled to submit even a single packet. We focus on problems where there is sufficient bandwidth for all flows and each flow tries to
identify its optimal number of packets to submit.
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Table 1
The main notation used in this work.
TCP The Transmission Control Protocol of the Internet protocol suite
AIMD The Additive Increase Multiplicative Decrease algorithm
wi The congestion window size of flow i
αi AIMD parameter for additive increase of flow i
βi AIMD parameter for multiplicative decrease of flow i
g The cost for a lost packet
C The router capacity
n The number of flows in the Window-game
τ The number of rounds between two congestion rounds in a game
τi The number of rounds between two loss rounds of flow i
Gi The goodput of flow i: The (average) number of useful packets per round
Li The (average) number of packets that flow i looses at loss rounds
Ni The (average) size of the congestion window of AIMD flow i after a loss round

1

Flows
Router

Network

2

n

Flows Router

capacity
C

PLAYERS MECHANISM

1

2

n

(a) The network model of the TCP game. (b) One round of the Window-game.

Fig. 1. The Window-game along with the corresponding TCP network model.

abstract concept that corresponds to howmuch load the router can handle in each round. The objective of each player is to
send as many packets as possible. At the same time the player has to avoid packet losses, as each packet loss induces a cost
g ≥ 0 to the player. For games with multiple rounds, each packet loss (and each successful packet) causes the respective
flow to adjust the size of its congestion window. The adjustment is determined by the game strategy of the flow and the
penalty model.

Definition 1. One round of the Window-game.
Mechanism: A router with capacity C > 0 and a queue policy
Players: n flows i = 1, . . . , n, where 2 ≤ n ≤ C
Actions of player i : The window sizewi of i, wherewi ∈ {0, 1, . . . , C}
Utility of player i : u(i) = transmitted(i)− g· dropped(i), where

g: the cost for each dropped packet
transmitted(i): number of successfully transmitted packets
dropped(i): number of dropped packets

Each round of the game is executed independently; no work is pending at the start of a round and no work is inherited to a
following round. The window sizewi of a flow i is alwayswi ≥ 1, except for specific rounds where the flow is compelled by
its penalty model to refrain from transmitting any packet (wi = 0). The penalty models are discussed in Section 4.
Network routers and flows process massive streams of network packets in real time. Therefore, algorithms used by

routers and flows may use only limited computational resources like memory and processing power. In particular, it is
considered unrealistic for network routers to keep detailed statistics on a per flow basis. The queue policy of the router
should be stateless or use as little state information as possible.2
The Window-game can model not only games between AIMD flows but also games between generic flows. The only

requirement is that that the packet stream generated by each generic flow can be represented as a sequence of window
sizes. More precisely, we consider the following cases:

Window-games with AIMD flows. In these games the players are AIMD flows. Each AIMD flow i selects its parameters
(αi, βi) once, for the whole duration of the game. The utility for each flow i is the average number Gi of useful (i.e.,
distinct) packets of the flow that are successfully delivered in each round of the game. Gi is the effective bandwidth
of flow i and is called the goodput of flow i. This class ofWindow-games is strongly related to the game(s) currently
played by real TCP flows and exists implicitly in the analysis of [18,2].

2 Stateful network architectures are designed to achieve fair bandwidth allocation and high utilization, but need to maintain state, manage buffers, and
perform packet scheduling on a per flow basis. Hence, the algorithms used to support these mechanisms are less scalable and robust than those used in
stateless routers. The stateless substance of nowadays IP networks allows Internet to scalewith both the size of the network andheterogeneous applications
and technologies [35,36].
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Window-games with generic flows. These are games where the flows can use arbitrary algorithms to choose their
congestion window. Depending on the number of rounds and on how well each flow is informed about the
existence of other flows, we distinguish the following classes:
• One-shot game with complete information.
• One-shot game with incomplete information with no prior probabilities.
• One-shot game with incomplete information with prior probabilities.
• Repeated game with incomplete information.
The action of a generic flow is to choose the size of its congestion window for each round. In one-shot games, the
utility of the flow is the goodputminus the cost for lost packets. In repeated games, the overall utility is the average
utility of all the game rounds.

Assumptions.Wemake a set of simplifying assumptions similar to the assumptions of [2]. TheWindow-game is symmetric.
All flows use the same network algorithms for loss recovery. All packets of all flows are of the same size and have the same
Round-Trip-Time (RTT), i.e., the time from the submission of a packet P until the corresponding acknowledgement packet
(ACK) is received. Packet losses are caused only by network congestion.
Solution concept. The solution concept for theWindow-games is the Nash equilibrium (NE) and in particular the Symmetric
Nash equilibrium (SNE). A good reason to start with SNE is that the analysis appears to be simpler compared to general NE.
It is noteworthy, that both the analytical and the experimental results show that inmany cases there are only symmetric (or
almost symmetric) NE. For each Window-game, we study its SNE and discuss how efficient the network operates at them.
In certain cases, we search experimentally for general, not necessarily symmetric, NE.
Efficiency and fairness. In the context ofWindow-gameswe consider aNE to be efficient if at equilibrium the router capacity
is utilized without risking a congestion collapse. At the same time, the packet losses of the flows should be as small as
possible. The exact range of acceptable values for a NE to be considered efficient may vary between different Window-
games. Some indicative thresholds are that the total throughput should be larger than 80% of the capacity C and the total
loss rate should not exceed 10% of the packets. We consider a state of the Window-game (at equilibrium or not) fair, if all
flows receive, at least approximately, the same bandwidth. A formalmeasure of fairness is for example the Chiu-Jain fairness
index [7]. For the network model used in this work, the following simple fairness index of [3] is sufficient:

Gmax − Gmin
Gavg

, (1)

where Gmax, Gmin and Gavg are the maximum, minimum and average flow goodputs, respectively.
Network topology. In this work, we assume a one-hop topology with one router and a set of flows that submit packets to
the router. This model, albeit simple, captures important aspects of the real network problem and is commonly used in the
analysis of network games and algorithms; for example in [2,33,22], in [19,10,23,12] and also in the original AIMD analysis
paper [7].
How realistic is the Window-game? An important difference of Window-games to real TCP/IP games is that Window-
games are played in rounds while real TCP/IP network games are clocked at the packet level. One round of the Window-
game corresponds to a time-interval roughly equal to the flow’s Round-Trip-Time. In this time interval, the flowwill receive
ACK’s for all packets that were pending before P. The number of these pending packets is determined by the window size
at the time when packet P where submitted. Therefore, the round-based approach appears to be a natural approximation
of the real TCP/IP game. A round-based approach has also been used in the analysis of [2]. A further difference is that the
Window-gamemodel does not take into account queuing delay. Because of this, the value of the goodput that are calculated
may not always correspond to real goodput value. This, however, is not an obstacle for the applications of theWindow-game
in this work, since we are mainly interested in the relative goodputs for different strategies of a TCP flow. Finally, we use
the term capacity for the router because we want to emphasize that this is the amount of work that the router can handle
in one round. The capacity is determined by the bandwidth load that the router can handle.
The novelties of the Window-game model. The Window-game model is a new, general model for TCP games that
significantly differs from previous models. The Window-game

• is a general model that canmodel games between generic Internet flows. The only requirement is that the packet stream
generated by each flow can be represented with a sequence of window sizes. In the special case of AIMD flows, it reduces
to a model very close to the model of [2];
• is designed to effectively capture games between window-based flows, like TCP flows. To our knowledge, it is the first
model with this feature;
• has a plain game structure that admits the definition and analysis of one-shot games between internet flows. This is
the first model to serve this purpose. The analysis of one-shot games can provide insight into the nature of Internet
congestion games, which in turn can support the analysis of the more realistic repeated Window-games;
• is a model that is both simple and relevant to real Internet congestion problems. The Window-game achieves this by
emphasizing on the most critical parameter of window-based flows, the congestion window.

Conclusion. In our view, the Window-game fulfils an important set of requirements that we had set. That is, to capture
the interaction of the competing flows, to indicate when a flow can gain more goodput by changing its strategy and to
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characterize the efficiency and the fairness of the NE. Additionally, the analytical and experimental evidence show that the
Window-game is strongly related to the actual TCP/IP congestion games.

4. Congestion control in TCP

In this section, we provide a short description of the basic concepts of TCP and TCP congestion control.
TCP: The Transmission Control Protocol (TCP) is one of the core protocols of the Internet protocol suite. TCP is a window-

based transport protocol; in TCP every flow has an adjustable window, which is called the congestion window, and uses it to
control its transmission rate [17].

Congestion Window: A TCP flow submits packets to the network and expects to receive acknowledgements (ACKs) for
the packets that reach their destination. The congestion window defines the maximum number of outstanding packets for
which the flow has not yet received acknowledgements [20]. Essentially, the congestion window represents the sender’s
estimate of the amount of traffic that the network can absorb without becoming congested. The most common algorithm
to increase or decrease the congestion window of a TCP flow is AIMD.

AIMD: The Additive Increase Multiplicative Decrease (AIMD) algorithm [7] can be considered as a probing procedure
designed to find the maximal rate at which flows can send packets under current conditions without incurring packet
drops [18]. An AIMD flow i has two parameters αi and βi; upon success, its congestion window is increased additively by αi
(in each round), and upon failure, its congestion window is decreased multiplicatively by a factor βi.
Definition 2. The basic AIMD algorithm:

wi =

{
wi + α, upon successful delivery of all packets of a round,
wi · β, in case of packet drop.

AIMD is so far considered to be the optimal choice in the traditional setting of TCP Reno congestion control and FIFODropTail
routers. If, however, we consider the developments like TCP SACK and active queue management, AIMD may no longer be
superior [3].

Packet loss:When congestion occurs at a router, packets are dropped. AIMD flows assume that a packet has been lost if
either the corresponding ACK packet does not arrive within a specific interval (timeout) or if the flow receives a duplicate
ACK (DACK) that indicates that some packet has not been received.3 An AIMD flow responds to packet loss with a decrease
of its congestion window and with a loss-recovery procedure which incurs some cost to the flow. Popular versions of TCP,
like TCP Tahoe, TCP-Reno and TCP-SACK, differ in the way they handle a packet loss.

• TCP Tahoe: A packet loss is indicated when the timeout occurs before the corresponding ACK is received. The congestion
windowwill then be reduced to 1 packet and the slow start phase will be initiated. If the sender receives three duplicate
ACKs (DACKs4) for the same packet before a timeout occurs, the sender first retransmits the packet (fast retransmit) and
then reduces its congestion window to 1. This reaction of TCP Tahoe corresponds to the severe reaction to packet loss;
even a single packet loss causes the flow to drastically reduce its congestion window.
• TCP Reno: Has the same mechanism with Tahoe, except that in the case of 3 DACK it retransmits the packet that the
receiver waits for and then halves its congestion window (fast recovery). In the case of multiple dropped packets from
the same congestion window, a Reno flow tries multiple fast retransmissions until a timeout occurs and then comes in
to slow start. The reaction of TCP Reno to packet loss is considered a hybrid reaction.
• TCP SACK: This variant of TCP is an extension of Reno. SACK has a selective acknowledgement option that allows receivers
to additionally report non-sequential data they have received. When coupled with a selective retransmission policy in
TCP senders, an efficient recovery mechanism, which avoids unnecessary retransmissions, is formed. The reaction of TCP
SACK to packet loss is considered a gentle reaction.

Since all loss-recovery schemes incur costs to the flow they can be thought of as a penalty on the flows which suspend
their normal transmission rate until lost packets are retransmitted.

Penalty Model:We formed a penalty-based model, which is similar to the model of [18,2], to define a flow’s behavior
when losses occur. Assume that a flow iwith current window sizewi has lost Li ≥ 1 packets in the last round. Then:

• Gentle penalty (resembles TCP SACK): The flow reduces its window towi = β · wi in the next round.
• Severe penalty (TCP Tahoe): The flow timeouts for τs rounds, i.e., it does not send any packet for τs rounds, and then
continues with a window size ofwi = β · wi.
• Hybrid penalty (TCP Reno): If Li = 1 the flow applies gentle penalty. If Li > 1 a progressive severe penalty is applied. The
flow timeouts for min{2+ Li, 15} rounds and then restarts with a window equal towi/Li. This penalty is justified by the
experimental results of [8,28].

3 A duplicate ACK is sent from the receiver to the sender when an out-of-order packet is received; there are several reasons why an out-of-order packet
might be received. In this work, we will assume that an out-of-order packet is received only when its preceding packet (the one that the receiver was
expecting) has been lost.
4 When a duplicate ACK is received by a real TCP flow, the flow does not know if it is because a TCP segment was lost or simply that a segment was
delayed and received out of order at the receiver. If the receiver can re-order segments, it should not be long before the receiver sends the latest expected
acknowledgement. Typically no more than one or two duplicate ACKs should be received when simple out of order conditions exist. If however more than
two duplicate ACKs are received by the sender, it is a strong indication that at least one segment has been lost.
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5. Router policies and the Prince mechanism

The router, and in particular the queue algorithm deployed by the router to allocate the capacity to the flows, defines
the mechanism of the Window-game. We examine the common policies DropTail, RED, MaxMin, CHOKe and CHOKe+. The
implementations of the above policies in the Window-game aim to simulate the behavior of the real policies on packet
streams. We also examine two variants of the proposed Prince policy. Our interest for all policies is on the NE of the
corresponding Window-games.

• DropTail: The DropTail policy is the simplest and most common queue discipline of network routers. With DropTail the
packets are served in FIFO order. If the queue is full, incoming packets are dropped. The Window-game adaptation of
DropTail, simulates how DropTail would behave in the real, stream-based case. In each round, if the sum wtotal of the
requested windows does not exceed the capacity C , the router serves all packets. Otherwise, the router drops a random
sample of packets of size equal to the overflow, and serves the remaining C packets.
• RED [9]: The Random Early Detection (RED) policy is an active queue management algorithm that may drop packets
even before an overflow occurs. More precisely, at overflow RED behaves like DropTail. However, for queue occupancies
between a low threshold minth and a high threshold maxth of the queue size, packets are dropped with a positive
probability p. The Window-game adaptation of RED works as follows: If the sum wtotal of the requested windows is
wtotal < minth all packets are served. If wtotal ≥ minth a random sample of packets is selected. The selected packets
correspond to positions higher then minth in a supposed queue. Each chosen packet is dropped with a probability
proportional to the router’s load. The values minth = 70% and maxth = 100% are used for the thresholds.
• MaxMin: An allocation of a common resource is MaxMin fair if no share may be increased without simultaneously
decreasing another share which is already smaller. Router policies that implement theMaxMin fairness criterion achieve
fair allocation of the available capacity to the flows. Given a network with its link capacities and a set of flows with
their maximum possible transmission rates, there is a unique set of flow rates that satisfies the max–min conditions.
MaxMin Fairness is a stateful, fair queue policy [5] that conceptually corresponds to applying round-robin for allocating
the capacity. The router offers its packet transmission slots to its users by polling them in round-robin order. If a flow is
offered a chance to use a link slot but has no packets ready, then that same slot is offered to the next flow, until a ready
flow is found. In each pass of a link’s round robin, a flow may transmit only one packet [15]. The adaptation of MaxMin
to the Window-game is straightforward.
• CHOKe: CHOKe [29] is a stateless active queuemanagement algorithm that differentially penalizesmisbehaving flows by
dropping more of their packets. For every packet that arrives at the congested router, CHOKe draws a packet at random
from the FIFO buffer and compares it with the arriving packet. If they both belong to the same flow, then they are both
dropped, else the randomly chosen packet(s) is admitted into the buffer with a probability that depends on the level of
congestion. Packets belonging to a misbehaving flow are both more likely to trigger comparisons and more likely to be
chosen for comparison. Therefore, packets of misbehaving flows are dropped more often than packets of well-behaved
flows [29]. TheWindow-game adaptation of CHOKe is similar to the adaption for RED. Every chosen packet that is above
themin threshold, is compared to a packet chosen randomly from the packets that have been admitted until thatmoment.
For the lower threshold, the upper threshold and the dropping probability we use the same values as for RED.
• CHOKe+: The CHOKE+ policy [2] is a variant of CHOKe that tries to avoid high loss rates and severe under-utilization of
the available capacity, when the number of flows is relatively small. For each incoming packet P, the algorithm randomly
selects k packets from the queue. Let m denote the number of packets from the k chosen candidate packets that belong
to the same flow as the incoming packet. Let 0 ≤ γ2 ≤ γ1 ≤ 1 be positive constants. If m ≥ γ1k, the algorithm drops
packet P along with the m matching candidate packets. Otherwise, a drop probability p is calculated in an equivalent
RED queue. Suppose that P is to be dropped according to RED. Now, if γ2k ≤ m < γ1k, the algorithm also drops the m
matching packets along with P. Otherwise, only packet P is dropped. TheWindow-game adaption is in the same spirit as
the adaptations of CHOKe and RED.

Queue disciplines in use. DropTail is simple and efficient, seems to work reliably in practice and is currently the most
widely used queuing discipline at Internet routers. RED is also widely deployed in order to maintain the buffer’s utilization
within desired levels. Both DropTail and RED, do not actively punish greedy flows.

5.1. The Prince mechanism

We propose a new queue policy, called Prince (of Machiavelli), which, at congestion, drops packets from the flow with
the largest congestion window. If the overflow is larger than the window of the most greedy flow, the extra packets are
dropped from the remaining flows with DropTail. If the overflow does not exceed the number of packets of the most greedy
flow, then flows that do not exceed their fair share do not experience packet loss. Hence a greedy flow does not plunder the
goodput of other flows.
The Prince policy is simple and does not require state information on a per-flow basis. This makes the policy appropriate

for the requirements of real routers. We show that Prince-based queue algorithms clearly outperform traditional queue
policies, likeDroptail andRED,with respect to the efficiency of the inducedNash equilibria. Prince also achieves better results
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than CHOKe and CHOKe+. In most cases, Prince achieves results comparable to the results of well-proven, but heavyweight,
MaxMin-based queue policies.
We define a basic version of Prince that drops packets only in case of overflow and a RED-inspired version of Prince,

called Prince-R, which applies its policy progressively starting from a min threshold minth = 70%.

6. Window-games with AIMD flows

In this section, we analyze three characteristicWindow-game scenarios between AIMD flowswith gentle penalty, where
the flows can choose the value of parameter α. Parameter β is fixed5 at its default TCP value β = 1/2. We admit parameter
α to take integer values in the range [1, C/2]. In our analysis we use machinery from [2]. Let us start with the following
definitions:

Definition 3. A congestion round of the Window-game is a round in which the router has to drop one or more packets. The
common cause for a congestion round is that the sum of the requested windows is larger than the capacity of the router. In
active queue management policies like RED, a congestion round may also occur when the load exceeds some threshold of
the capacity and the router decides to drop one or more packets.

Definition 4. A loss round of flow i is a congestion round in which flow i experiences packet loss.

6.1. A model for AIMD flows

Assume a router with capacity C and a set of n AIMD flows that are active on the router. Let flow i (for fixed i) be one
specific of the n flows. Let (αi, βi = 1/2) be the parameters of flow i. Assume that, when the system has reached steady
state, flow i experiences a loss round every τi + 1 rounds, that is, τi is the number of rounds between two successive loss
rounds of flow i.
Let Ni(k) denote the window size of flow i after its kth loss round. Then, as shown in [2], at steady state the window size

Ni(k)will converge for k→∞ to a fixed value Ni and flow iwill have the following behavior. After each loss round, it starts
with window size Ni and increases its window size successively to Ni + αi,Ni + 2αi, . . . ,Ni + αiτi. When the window size
reaches Ni + αiτi, the flow experiences packet loss and reduces its window size (in the next round) to Ni = βi(Ni + αiτi).
Thus, the congestion window of flow i takes the following sequence of values:

Ni,Ni + αi,Ni + 2αi, . . . ,Ni + αiτi. (2)

By applying the definition of the AIMD algorithm (Definition 2) we get

Ni = βi(Ni + αiτi) =
1
2
(Ni + αiτi), (3)

and this gives

Ni = αiτi. (4)

If we focus on τi + 1 consecutive rounds, starting immediately after a loss round of flow i, then the goodput Gi of flow i is

Gi =
1

τi + 1

(
Ni + (Ni + αi)+ (Ni + 2αi)+ · · · + (Ni + αiτi − Li)

)
,

where Li is the average number of packets that flow i looses at loss rounds. This gives

Gi =
3
2
αiτi −

1
τi + 1

Li. (5)

In most scenarios we can ignore the last term to get the simplified equation

Gi =
3
2
αiτi. (6)

In the above equations for an AIMD flow i we have assumed that the system has reached steady state. Based on this
assumption we derived equations to capture the behavior of the flow. This approach has been introduced in [2]. In an
excessively congested state of the systemwhere, for example, a flowmay experience packet loss in each round, the periodic

5 Experiments with parameter β show that in almost all cases selfish flows will use for β a value close to 1. The same conclusion can be extracted from
the results in [2]. A simple argument for this behavior is that parameter β is very important when the flow has to quickly reduce its window size when the
network conditions change. The TCP games examined in this work are rather static: Static bandwidth, static number of flows, static behavior of all flows
during a game and hence there is no real reason for a flow to be adaptive.
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model of Eq. (2) degenerates and the derived Eqs. (3) and (5) may become inaccurate. To avoid such situations, wemake the
following – reasonable for the scenarios that we consider – assumptions for Window-games with AIMD flows:

n ≤
C
2
, A =

n∑
i=1

αi ≤
C
2
, and ∀ flow i, τi ≥ 1. (7)

In this work, we choose the above equations to model the behavior of AIMD flows in routers. We will use these equations to
study the exact and in some cases the approximate behavior of AIMD flows in Window-games. We deem this model to be
an elegant approximation of the real dynamics of AIMD flows. It is simple, it captures the periodic probing behavior of AIMD
and, finally, it gives analytic results that are shown to be accurate in interesting scenarios. For these reasons, we prefer it
over other models, where for example the flows are assumed to be Poisson sources of packets.

6.2. DropTail router with synchronized packet losses and gentle penalty AIMD flows

The Game: A DropTail router of capacity C serves n gentle penalty TCP flows. The term synchronized packet losses refers
to the following simplifying assumption: At congestion rounds, all flows experience packet loss, that is, every congestion
round is a loss round for all flows. The utility of each flow-player in this game is the goodput of the flow. Each flow can
choose its parameter αi, while parameter β is set to β = 1/2.
Using the Window-game model it is easy to show that the selfish flows will try to over-utilize the common resource

(the network) by using a large value for their parameter α. The outcome will be a network that is heavily congested. A close
analogy is the so-called ‘‘Tragedy of the Commons’’ [16] problem in economics where each individual can improve her own
position by using more of a common resource, but the availability of the resource degrades as the number of greedy users
increases.
Since every congestion round in this game is a loss round for all flows, at steady state, the number τi of rounds between

two successive loss rounds of any flow i is equal to number τ of rounds between two successive congestion rounds of the
system, i.e.,

τ1 = τ2 = · · · = τn = τ . (8)

We have AIMD flows, all with a steady number of rounds between loss rounds. So we can apply the model of Section 6.1.

Let A =
n∑
i=1

αi and Ai = A− αi. After each round without packet loss, the total window size of all flowswtotal =
∑n
i=1wi

increases by A. In congestion roundswtotal exceeds the capacity C of the router, i.e.,wtotal > C . The number of excess packets
in a congestion round is a random integer in the range 1, 2, . . . , A.Wewill assume that the average excess is L = A/2, i.e., the
half of the increase step. Thus, the total window sizewtotal in congestion rounds iswtotal = C + A/2 and the average packet
loss for each flow i is Li = αi/2. After a congestion round, all flowsmultiplicatively decrease their congestion window. Using
Eq. (4), βi = 1/2 and N =

∑n
i=1 Ni we obtain

N =
1
2
(C + A/2). (9)

Using Eq. (3) for all flows and summing up gives:

N =
1
2
(N + A · τ)⇒ τ =

C
2A
+
1
4
. (10)

From Eq. (5) we get that for any flow i the goodput Gi is:

Gi(αi) =
3
2
αi

(
C

2(Ai + αi)
+
1
4

)
− αi

(
C

Ai + αi
+
5
2

)−1
. (11)

We will show that:

Lemma 5. Gi(αi) in (11) is a strictly increasing function of parameter αi, for αi ≤ C and Ai ≤ C.

Proof. The first derivative of Gi with respect to αi is positive at αi = C , for Ai ≤ C . In particular, if the derivative at αi = C
is written as a single fraction, its numerator is

15A2i + 57AiC + 14A
3
i C + 15C

2
+ 64A2i C

2
+ 3A4i C

2
+ 68AiC3 + 15A3i C

3
+ 18C4 + 24A2i C

4
+ 15AiC5 + 3C6,

and its denominator is

4(Ai + C)2
(
3+ AiC + C2

)2
.

The second derivative ofGiwith respect toαi is always negative.More precisely, the second derivativewritten can bewritten
as a fraction where the denominator is strictly positive and the numerator is the sum of the positive terms

12α3i C + 36α
2
i AiC + 36αiA

2
i C + 12A

3
i C + 4α

3
i AiC

2
+ 12α2i A

2
i C
2
+ 12αiA3i C

2
+ 4A4i C

2,
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and the negative terms

−81AiC − 81αiAiC2 + 4α3i AiC
2
− 81A2i C

2
− 27α2i AiC

3
− 54αiA2i C

3

− 27A3i C
3
− 3α3i AiC

4
− 9α2i A

2
i C
4
− 9αiA3i C

4
− 3A4i C

4.

For αi ≤ C , the total sum is always negative, and therefore the second derivative is always negative. Hence, Gi(αi) is strictly
increasing for αi ≤ C . Actually, the result holds even for larger values of Ai up to Ai ≤ 15C , but such values are not relevant
to the scenarios that we consider. Recall that for AIMD flows we have assumed the conditions (7). �

In normal network conditions, the per flow increase parameters αi and the total increase A in each round should be small
compared to C . This means that the term Li can be neglected in the calculation of the goodput Gi of a flow i and that in
congestion rounds wtotal can be assumed to be wtotal = C . Using these assumptions in Eqs. (9)–(11), the previous analysis
gives the simplified expression

Gi =
3αiC

4(Ai + αi)
, (12)

which is clearly an increasing function of αi.
From the above analysis we conclude that in this game, every selfish flow iwill have incentives to increase its parameter

αi. The result is that the game will operate at a very inefficient state, that resembles a Tragedy of the Commons situation.
The above result is not surprising and is in agreement with the results in [2].

6.3. DropTail router with gentle penalty AIMD flows

Weconsider again aDrop-tail router but this timewith non-synchronized packet losses. In this case, at congestion rounds
a random set of packets is dropped. The packets to be dropped are randomly selected from the submitted packets and their
number is equal to the packet excess. In each congestion round, a flowmay or may not experience packet loss. The expected
number of packets that it will lose is proportional to its window size. At first glance, this case appears to provide better
incentives to flows not to behave aggressively. A flowwith a smaller congestionwindow at congestion rounds, has a smaller
probability to experience packet loss, compared to a flowwith a larger congestion window. However, wewill show that this
scenario is a Tragedy of the Commons situation, as well.
This game has not been studied analytically before. The fact that packet losses are not synchronized makes the analysis

harder. We provide an analysis for a toy case with n = 2 players.

6.3.1. DropTail router with two gentle penalty AIMD flows
The Game: Assume a router with capacity C and n = 2 flows with parameters α1, α2, and β1 = β2 = 1/2. Each flow i can

choose the value of its parameter αi. Simplifications:We assume that at congestion only one flow is randomly selected and
the excess is dropped from this flow. Hence only one flow experiences packet loss in each congestion round. The probability
that a flow is selected at a congestion round for dropping the excess packets is proportional to the flow’s window size. We
will also assume that the selected flow has a window size at least as large as the excess. The utility of each flow-player in
this game is the goodput of the flow. Each flow can choose its parameter αi, while parameter β is set to β = 1/2.
We fix the value α1 of flow 1 and assume that flow 2 chooses a value α2 = zα1, for z > 1. We will show that flow 2

achieves a higher goodput by increasing its parameter α2. We assume that the system has reached steady state and we use
the model from Section 6.1 to model the two flows. Note that in this game the number of rounds between loss rounds of a
flow imay vary during the game. To overcome this issue, the values τi andNi will be the average values of the corresponding
measures at steady state. The use of average values has an impact on the accuracy of the goodput equations. The more the
value of τi starts to variate, the less accurate equation (6) becomes. Actually, the exact goodput in this case is larger than
the value given by the equation. For the case of two flows that we analyze, the error in the goodput estimation by Eq. (6)
is bounded (in the experiments it is always less than 5%) and it affects both flows evenly, therefore we will ignore it in the
comparative analysis. From Eqs. (4) and (6) we get that Ni = αiτi and Gi = 3

2αiτi −
1

τi+1
Li, for i = 1, 2.

We can obtain one more expression for the goodput of each flow from a ‘‘typical’’ congestion round of the router. Let
wc,i be the average window size of flow i at congestion rounds. We assume that congestion rounds occur periodically, every
τ + 1 rounds. In this case, the average total number of packets requested by flow i in τ + 1 rounds, where the last round is
a congestion round, is

(wc,i − αiτ)+ (wc,i − αi(τ − 1))+ · · · + (wc,i − αi)+ (wc,i). (13)

During the above τ + 1 rounds, flow i experiences on average (τ + 1)/(τ1 + 1) loss rounds. At each of its loss rounds, flow
i looses on average Li packets. Combining this with Eq. (13) gives that the average goodput of flow i, calculated from an
average congestion round and the previous τ rounds, is

Gi = wc,i −
1
2
αiτ −

Li
τ1 + 1

, (14)
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and if we ignore the Li packets that are lost by the flow at loss rounds, the goodput becomes:

Gi = wc,i −
1
2
αiτ . (15)

Step 1: Let wc,i(k) be the window size of flow i at congestion round k and let Si be the number of loss rounds of flow i after
a large number K of congestion rounds. Let wc = wc,1 + wc,2 be the mean total number of packets in congestion rounds.
Even thoughwc is a mean value, to simplify the analysis we will assume that the total number of packets in each congestion
round is exactly wc . Then, the probability that flow 1 experiences packet loss in congestion round k is wc,1(k)/wc . We can
assume for flow 1 and for each congestion round k a binary random variable X1(k) such that

X1(k) =
{
1, flow 1 experiences packet loss in congestion round k,
0, otherwise.

Then, themean value of X1(k) iswc,1(k)/wc . The total numberΨ1 of loss rounds of flow 1 isΨ1 =
∑
k X1(k) and the expected

total number of loss rounds of flow 1 after K congestion rounds is S1 = E[Ψ1] =
wc,1K
wc
.

We can use an appropriate Hoeffding–Chernoff to show that for large enough K , the random variableΨ1 is arbitrary close
to S1. Assume a positive constant ε, a probability ρ, and a number of rounds K . The following Hoeffding–Chernoff bound is
from [14, Page 200, Theorem 2.3].

Theorem 6. Let the random variables Xi(1), Xi(2), . . . , Xi(K) be independent, with 0 ≤ Xi(k) ≤ 1 for k = 1, . . . , K. Let Ψi
=
∑
Xi(k) and let Si = E[Ψi]. Then

For any t ≥ 0, P [|Ψi − Si| ≥ Kt] ≤ 2e−2Kt
2
.

If K ≥
ln( 12ρ )w

2
c

2ε2w2c,1
then by setting t = wc,1K

wc
in Theorem 6 we obtain that

with probability at least ρ, S1 ∈
[
(1− ε)

wc,1K
wc

, (1+ ε)
wc,1L
wc

]
. (16)

A sufficiently large number of rounds K can make the constant ε arbitrary small and the probability ρ arbitrary high. Since
we consider the system at steady state, we can approximate S1 '

wc,1K
wc
for large K . Thus, we will assume

S1 =
wc,1K
wc

. (17)

Similarly

S2 =
wc,2K
wc

. (18)

Let

y =
wc,2

wc,1
. (19)

Then, from Eqs. (17) and (18) we get S2 = y · S1. The frequency fc,i of loss rounds of each flow i = 1, 2 at congestion rounds
is fc,i = (τ + 1)/(τi + 1). It follows that fc,2/fc,1 = (τ1 + 1)/(τ2 + 1). Additionally, note that fc,2/fc,1 = S2/S1. Thus

y =
τ1 + 1
τ2 + 1

. (20)

Step 2: Since each congestion round is a loss round either for flow 1 or for flow 2, the frequency of congestion rounds is
equal to the sum of the frequencies of loss rounds of the two flows:

1
τ + 1

=
1

τ1 + 1
+

1
τ2 + 1

. (21)

Using Eqs. (21) and (20) we get

τ =
τ1τ2 − 1
τ1 + τ2 + 2

=
yτ2 − 1
y+ 1

=
τ1 − y
y+ 1

. (22)

It follows

τ1 = yτ2 + y− 1 and τ2 =
τ1 − y+ 1

y
. (23)
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The number of excess packets in a congestion round is a random integer in the range 1, 2, . . . , (α1 + α2). We will assume
that the average excess is the half of the mean increase step. This gives that the average total requested window size wc in
congestion rounds is

wc = C +
α1 + α2

2
. (24)

By the definition of the toy case in each congestion round either flow 1 or flow 2 experiences packet loss. We obtain from
Eq. (20) that flow 1 experiences packet loss at a congestion round with probability 1/(y + 1) and flow 2 with probability
y/(y+ 1). Therefore, for i = 1, 2, the average number Li of packets that flow i looses at congestion rounds is

L1 =
1
y+ 1

α1 + α2

2
and L2 =

y
y+ 1

α1 + α2

2
. (25)

Step 3: Usingwc,1 =
C+ α1+α22
y+1 and τ = τ1−y

y+1 we can calculate τ1 as follows:

G1 = wc,1 −
1
2
α1τ −

1
τ1 + 1

L1

⇒
3
2
α1τ1 −

1
τ1 + 1

L1 =
C + α1+α2

2

y+ 1
−
1
2
α1
τ1 − y
y+ 1

−
1

τ1 + 1
L1

⇒
3
2
α1τ1 =

C + α1+α2
2

y+ 1
−
1
2
α1
τ1 − y
y+ 1

.

(26)

Solving for τ1 gives

τ1 =
2C + α1 + zα1 + α1y

3α1y+ 4α1
. (27)

Step 4:Wewill obtain one more equation for τ1 by starting this time from the goodput G2 of flow 2 and then proceeding as
in (26):

G2 = wc,2 −
1
2
α2τ −

1
τ2 + 1

L2

⇒
3
2
α2τ2 −

1
τ2 + 1

L2 =
yC + y α1+α22
y+ 1

−
1
2
α2
τ1 − y
y+ 1

−
1

τ2 + 1
L2

⇒
3
2
zα1

τ1 − y+ 1
y

=
2Cy+ α1y+ α2y
2(y+ 1)

−
1
2
α2
τ1 − y
y+ 1

.

(28)

Solving for τ1 gives

τ1 =
2Cy2 + α1y2 + 5zα1y2 − 3zα1

4zα1y+ 3zα1
. (29)

Step 5: Combining Eqs. (27) and (29) to eliminate τ1 gives the following cubic equation of y:

f (y) = (6C + 15zα1 + 3α1) · y3 + (8C + 16zα1 + 4α1) · y2

− (8Cz + 16zα1 + 4z2α1) · y− (6Cz + 15zα1 + 3z2α1) = 0.
(30)

Lemma 7. For z > 0, Eq. (30) has exactly one positive real solution y(z) and this solution is a strictly increasing function of z.

Proof. Note that f (0) = −(6Cz + 15zα1 + 3z2α1) < 0 and that f (1+ z) > 0 (substituting y = z + 1 and simplifying the
expression gives a sum of strictly positive terms). The derivative of f (y)with respect to y is

f ′(y) = (18C + 9α1 + 45zα1) · y2 + (16C + 8α1 + 32zα1) · y− (8Cz + 16zα1 + 4z2α1). (31)

Consider the equation

f ′(y) = 0. (32)

The discriminant of Eq. (32) is

∆ = (16C + 8α1 + 32zα1)2 + 4 (18C + 9α1 + 45zα1) (8Cz + 16zα1 + 4z2α1), (33)

which is strictly positive for z > 0. Consequently, Eq. (32) has two real solutions

y1,2 =
−16C − 8α1 − 32zα1 ±

√
∆

2(18C + 9α1 + 45zα1)
. (34)
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(a) The graph of y as a function of z. (b) The graphs of τ1 and τ2 (lower line) as functions of z.

Fig. 2. Analytical results for y, τ1 and τ2 .

From (33) and (34), it is clear that one solution is negative and one is positive. Let y2 be the positive solution of (29). The
function f (y) is decreasing in the interval (0, y2) and increasing in (y2,∞). Since f (0) < 0, it follows that f (y) has exactly
one positive real solution y(z), as a function of z > 0. Since f (y2) < 0, it follows that

y(z) > y2. (35)
Since, by definition, y(z) is a root of function f (y), after replacing y by y(z) in (30), differentiating f (y(z))with respect to z,
and solving for the derivative y′(z)we obtain

y′(z)=
num(z)
den(z)

, where:

num(z)=−15α1(y(z))3 − 16α1(y(z))2 + (8C + 8zα1 + 16α1)y(z)+ (6C + 15α1 + 6zα1)
den(z)= (18C + 9α1 + 45zα1)(y(z))2 + (16C + 8α1 + 32zα1)y(z)− (8Cz + 16zα1 + 4z2α1).

(36)

For the numerator num(z) note that:
f (y(z))+ z · num(z) = 3z2α1 + 4z2α1y(z)+ 4α1(y(z))2 + 8C(y(z))2 + 3α1(y(z))3 + 6C(y(z))3 > 0. (37)

Since f (y(z)) = 0 and z > 0, it follows that num(z) > 0. For the denominator den(z) in Eq. (36), note that den(z) = f ′(y(z)).
Now, since y(z) > y2 we get that den(z) is strictly positive. From this we conclude that y′(z) is strictly positive, for z > 0.
This completes the proof. �

Since α2 = zα1, Eqs. (6) and (23) imply that:

G2(z) =
3
2
α2τ2 =

3
2
zα1

τ1 − y+ 1
y

. (38)

Now we substitute τ1 from Eq. (29) and get:

G2(z) =
6Cy+ 3α1y+ 3zα1y+ 3zα1

8y+ 6
. (39)

Lemma 8. Function G2(z) in (39) is increasing for z > 0.
Proof. Taking into consideration that y is a function of z, the derivative of G2(z)with respect to z is:

G′2(z) =
9α1 + 21α1y+ 12α1y2 + 9α1y′ + 3(C − zα1)y′

2(3+ 4y)2
. (40)

Since C ≥ zα1 = α2 and y′ > 0, the proof is complete. �

In Eq. (38) we can also use the more accurate equation (5). In this case, numerical evaluations show that G2(z) is still an
increasing function of z. However, the analytical expression becomes very complicated. Note that Eqs. (27), (29) and (30)
are not influenced if we use the less accurate equation for the goodput, because the term Li is eliminated in Eqs. (26) and (28).
We used the analytical results on a representative game instance with router capacity C = 100 and n = 2 flows. The

calculations have been performed usingMathematica. In particular, we calculated the positive solution of y(z) from Eq. (30).
The results are presented graphically in Fig. 2a. The corresponding plots of τ1 and τ2 are given in Fig. 2b.
We used Eq. (5) to calculate the goodputsG1 andG2 of flows 1 and 2, respectively.We also used the less accurate equation

(6) to calculate G2,approx for flow 2. The results are shown in Fig. 3a. The experimental results for the goodputs G1 and G2
are presented in Fig. 3b. The graphs show that the results of the analytical model are very close to the numerical and the
experimental results, and confirm that the goodput G2(z) of flow 2 is an increasing function of z.
The experiments for the toy case with two flows have been conducted with a simple simulator for Window-games

with basic AIMD flows, called NetKnackSimple. The router capacitywas C = 100. To avoid or at least reduce synchronization
effects the capacity varied randomly fromC−1 to C+1with an average of C . Parameterαwasα1 = 1 for flow1 andα2 = zα1
for flow 2. Each game lasted for 100000 rounds.
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(a) The analytical results for goodputs G1 (lower line), G2 and
G2,approx (dashed line) as functions of z.

(b) The experimental results for goodputs G1 (lower plot)
and G2 as functions of z.

Fig. 3. Analytical and experimental results for goodputs G1 and G2 as functions of z.

6.4. Prince router with gentle penalty flows

We now consider the case of a Prince router of capacity C and n flows i = 1, . . . , n with parameters (αi, βi = 1/2). We
will assume that the overflow in congestion rounds does not exceed the maximum of all windows maxi=1,...,nwi.
We assume that the system has reached steady state and we use the model from Section 6.1 to model the two flows. By

the nature of the Prince mechanism, the operation of any flow i (the number τi of rounds between successive loss rounds of
flow i and the value Ni) does not vary significantly during the course of the game.6 This allows us to use the average values
for parameters τi and Ni. The error that is introduced into Eq. (6) for the goodput is very small and can be safely ignored.

Lemma 9. Let flows i and k be the flows of minimum and maximum goodput, respectively, and let λ = Gk/Gi. Then, it holds
λ ≤ 2.

Proof. FromEq. (6)we know thatGi = 3
2αiτi and that the averagewindow size of i at its loss rounds iswc,i = 2αiτi. Similarly,

Gk = 3
2αkτk and wc,k = 2αkτk. Note that the congestion window of flow k takes values in the range

1
2wc,k, . . . , wc,k. Flow i

has at its congestion rounds the maximum window among all flows. Thus wc,i ≥ 1
2wc,k ⇒ αiτi ≥

1
2αkτk ⇒ Gi ≥ 1

2Gk ⇒
λ ≤ 2. �

Lemma 10. In congestion rounds with total overflow at mostmaxi=1,...,nwi a flow that does not exceed its fair share C/n, does
not lose any packet.

Proof. At congestion,
∑n
i=1wi > C . Clearly, maxi=1,...,nwi > C/n. Thus, a flow iwith wi ≤ C/n cannot have the maximum

window. �

We consider first a toy case with n = 2 flows and then the more general case with n flows.

6.4.1. Prince router with two gentle penalty AIMD flows
The Game: Assume a Prince router with capacity C and two flows i = 1, 2 with parameters α1, α2, and β1 = β2 = 1/2.

Each flow can choose its parameter α. The utility of each flow is the goodput that it achieves.
We fix α1 and assume that α2 > α1. Then, let α2 = zα1, for z > 1. At steady state G1 = 3

2α1τ1 and G2 =
3
2α2τ2. Assuming

λ such that G2 = λG1, we get

zτ2 = λτ1. (41)

If wc,2 is the average window size of flow 2 at its loss rounds, then from Eqs. (3) and (4) we know that wc,2 = 2zα1τ2. Let
ws,1 be the average window size of flow 1 in rounds that are congestion rounds but not loss rounds for it (flow 1). For a

6 At each congestion round, the Princemechanism selects a flowwith themaximumnumber of packets and drops packets from it. Therefore, a necessary
condition for a flow i to experience packet loss at a congestion round is to have a window size larger than C/n. Consequently, the range of window sizes at
which a flow i experiences loss rounds is restricted around the average value wc and the value of parameter Ni is restricted around its average value. For
the same reason, parameter τi is also restricted around its average value.
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round to be a congestion round it must holdw1+w2 > C , and therefore for loss rounds of flow 2 we havews,1+wc,2 > C .
Usingws,1 ≥ α1τ1 we get α1τ1 < C − 2zα1τ2. It follows from Eq. (41) that

α1τ1 <
C

2λ+ 1
. (42)

Furthermore, Prince guarantees that the greatest window size 2a1τ1 of flow 1 equals at least its fair share C/2, i.e., it holds
a1τ1 ≥ C/4. Combining this with (42) gives

λ <
3
2
. (43)

Note that inequality (43) holds for reasonable values of α1, i.e., for cases where α1 is considerably smaller than the router
capacity C .

6.4.2. Prince router with n gentle penalty AIMD flows
The Game: Assume a router with capacity C and n flows i = 1, . . . , nwith parameters (αi, βi = 1/2). The router uses the

Prince policy for its queue. Each flow can choose its parameter αi.
We provide a theoretical argument for symmetric profiles. Assume that flows 1, . . . , n− 1 use value α1 for parameter α

and flow n uses a value αn = zα1, for z > 1. Due to symmetry, it holds τ1 = · · · = τn−1 and G1 = · · · = Gn−1. Let Gn = λG1.
Then from Eq. (6)

3
2
αnτn = λ

3
2
α1τ1 ⇒ zτn = λτ1. (44)

Congestion rounds occur on average every τ + 1 rounds. We focus on flow n and consider the last congestion round, before
flow n experiences packet loss. In this round the window size of flow n is (on average)wn = αnτn + αn(τn − (τ + 1)). Flow
n has not the largest window size in this congestion round, thereforewn ≤ 2α1τ1. Hence

αnτn + αn(τn − (τ + 1)) ≤ 2α1τ1
⇒ 2αnτn ≤ 2α1τ1 + zα1τ + zα1 ⇒ 2λτ1 ≤ 2τ1 + zτ + z

⇒ λ ≤ 1+
z(τ + 1)
2τ1

. (45)

Recall that in each congestion round, exactly one flow experiences packet loss. Thus, the sum of the frequencies of loss
rounds of all flows is equal to the frequency of congestion rounds at the router:

n∑
i=1

1
τi + 1

=
1

τ + 1
. (46)

Since τ1 = · · · = τn−1 it follows from Eq. (46)

1
τ + 1

≥

n−1∑
i=1

1
τi + 1

=
n− 1
τ1 + 1

⇒ τ1 ≥ (n− 1)(τ + 1)− 1

⇒ 2τ1 ≥ (n− 1)(τ + 1). (47)

The last step holds from the condition τ1 ≥ 1 of (7). Using (47) in (45) gives:

λ ≤ 1+
z

n− 1
. (48)

The above upper bound on λ shows that an aggressive flow cannot gain more goodput than a bounding factor above its fair
share. The upper bound on λ converges to 1 as the number of flows n increases. The flow can increase its parameter z but
this incurs costs to the flow. In Eq. (44) we used the approximate type for the goodput, which does not take into account
the packet losses of the flow at loss rounds. If an aggressive flow increases its parameters z, than it experiences packet loss
with a much higher frequency and hence the packet losses at loss rounds become important. We consider the above results
about Prince, strong evidence that Prince will lead the system to efficient and fair Nash equilibria. The experimental results
presented in Section 7 support this claim. We intend to work on a more thorough analysis of Prince.

7. Experimental evaluation for AIMD flows

We performed an extensive set of experiments with the networkmodel of Fig. 1a, with n = 10 AIMD flows, a router with
capacity C = 100, numerous queue policies and both the gentle and the hybrid penalty models. For parameter α we used
values from the set {1, 2, . . . , 50} and for β from the set {0.5, 0.51, . . . , 0.99}. Our main focus is on the results for varying
parameter α when β is fixed at β = 0.5.
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(a) RED router with hybrid penalty flows. The SNE is found in the
second iteration.

(b) MaxMin and Prince routers with hybrid penalty flows. For both
routers, the SNE is found in the first iteration.

Fig. 4. Finding SNE with methodology M1.

7.1. The methodologies

First, we applied the iterative methodology of [2], we call it M1, to find SNE. Second, thanks to the simplicity of the
Window-game, we could perform a brute force search on all symmetric profiles to discover all possible SNE (methodology
M2). Finally, we used random, not necessarily symmetric, starting points along with a generalization of the procedure
M1 to check if the network converges to general, not necessarily symmetric, NE (methodology M3). The experiments
where performed with a simulator for the Window-game, which is called NetKnack [26]. NetKnack is implemented in Java,
supports common queue disciplines and flow penalty models and can perform from a simple experiment to massive series
of experiments.

Methodology M1 is executed in iterations. In the first iteration, we set α1 = 1 for flows 1, . . . , n − 1 and search for the
best response of flow n. Let α1,best be the value α, with which n achieves the best goodput. In the next iteration,
flows 1, . . . , n− 1 play with α2 = α1,best and we search for the best αn in this profile. If at iteration k, αk,best = αk
then this value, denoted by αE , is the SNE of the game.
The evolution of methodology M1 is illustrated in Fig. 4a. The first iteration (α1) shows that α1,best = 4, so at

the second iteration all flows adopt α1,best and again flow n seeks for the best response to this profile. In the last
iteration, the n cannot find a better move than its current strategy and so this profile constitutes a SNE. In some
occasions the initial profile is a SNE, where flow n sticks to α1,best = 1 (see Fig. 4b).

Methodology M2 applies a brute force search enumerating every possible symmetric profile to detect all SNE. Themethod
consists of a main loop on parameter α. For each possible value k of parameter α, the startup profile for flows
1, . . . , n − 1 is set to (α1 = · · · = αn−1 = k) and measurements are made for all possible values of αn of flow n.
If the best response of flow n is the action taken by all other flows, then we have a SNE. We executed experiments
with values for parameter α in the range from 2 to C/2.

Methodology M3 is a heuristic that extendsmethodologyM1 to non-symmetric profiles. The first step is to create a random
non-symmetric starting pointwith a randomwindowsize for each flow. Then, in every iteration, each flow searches
independently for the best response to the current profile, assuming that the other flows do not change their
strategy. The simulation reaches a (possibly non-symmetric) NE when in an iteration all flows select as a best
response the same action as in the previous profile.

By convention, in all the above methodologies a flow switches to a better value of parameter α only if the average
improvement of its utility is at least 2%. We focus on the results for values of parameter α in the range 1 to C/2.
Every experiment consists of 2200 rounds. The first 200 rounds are used to allow the flows to reach steady state. To avoid

synchronization of the windows of the flows, the capacity C changes randomly with ±1 steps, in the region 100 ± 5 with
an average of 100 packets. Finally, all measurements are averaged over 30 independent executions of each experiment.

7.2. The results

We present graphs with the results of experiments where flows i = 1, . . . , 9 use α = 1 and flow 10 iterates through all
possible values for α10 ∈ {1, . . . , 50}. The results for gentle penalty flows with different queue policies are shown in Fig. 5.
We can see that Prince and MaxMin induce efficient Nash equilibria with small values for parameter α10, while DropTail,
RED, CHOKe and CHOKe+ lead flow 10 to use large values for α10. The results for hybrid penalty flows in Fig. 6 show that
with Prince and MaxMin the deviator player 10 has clearly suboptimal performance for α10 > 1. Hence, the symmetric
profile αi = 1, for i = 1, . . . , n, of the first iteration, is a SNE.
SNE that have been found the methodology M1 are given in Table 2a and b. We would like to note that depending on

the parameters of each experiment, like the capacity C and the number of players n, the value α for the NE may differ
significantly.
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(a) RED, DropTail, MaxMin and Prince-R. (b) CHOKe, CHOKe+ and Prince.

Fig. 5. First iteration of M1 with gentle penalty flows. Flows 1, 2, . . . , n − 1 use α = 1, whereas flow n goes through all possible values of α. The graphs
show the goodput of flow n for each possible value of its parameter αn . The graphs show that the Prince-based routers discourage flow n from playing
aggressively.

(a) RED, DropTail, MaxMin and Prince-R. (b) CHOKe, CHOKe+ and Prince.

Fig. 6. First iteration of M1, this time with hybrid penalty flows. The graphs show the goodput of flow n for each possible value of its parameter αn . Like in
Fig. 5, flow n is not motivated to play aggressively.

• Gentle penalty: In the gentle penaltymodel, which corresponds to TCP SACK, a flow experiences amild punishment upon
packet loss. This fact motivates aggressive flows to use large values for parameter α (and parameter β). If, additionally,
the router’s mechanism does not differentially punish greedy flows the game is driven to inefficient SNE. From Table 2a
it is obvious that fully stateless policies like DropTail, RED, CHOKe and CHOKe+ are not able to aim successfully at the
aggressive flow, so the game is drawn away to undesirable equilibria. On the contrary, Prince finds and penalizes only
themost greedy flow, thus no flowwants to be too aggressive (αE = 4). When flows can vary their increase parameter α,
Prince induces efficient equilibria with high goodput and tolerable loss rate. In games where the flows can choose their
parameter β , all policies lead the selfish flows to use large values for β .
• Hybridpenalty: In thehybrid penaltymodel,which corresponds to TCPReno, the cost incurred to flowsbypacket losses is
higher. Therefore, all buffer management policies accomplishmore or less to discourage flows from being too aggressive.
Again, the predominance of Prince is obvious (Table 2b), having the best achieved goodput and a preferable loss rate. In
this scenario, Prince outperforms even MaxMin, a fully stateful policy which keeps a separate queue for each flow. The
success of Prince comes up from its targeted principle, namely punishing (dropping packets) only the largest flow, so
induces minimal average loss rate. It is noteworthy that only Prince andMaxMin achieve to prevent flows from adopting
high values (>0.5) for the decrease parameter β . These policies shield the AIMD algorithm because flows choose to half
their window upon decrease, a fact that can lead the repeated window game to a fair equilibrium (equal window sizes).

The brute force searchmethodM2 on DropTail and REDwith gentle and hybrid flows, found the SNE that had been found
with M1 and revealed additional SNE only for DropTail with hybrid penalty flows. These additional SNE use larger values of
parameter α and are less efficient than the SNE found with methodology M1 for the same game.
Finally, the search for non-symmetric NE with methodology M3 for all queue policies and with both gentle and hybrid

penalty flows, did not reveal any additional NE. On the contrary, it is noteworthy that this generalized methodology
concluded to SNE that had already been found with M1.

8. Non-AIMD flows with complete information.

In the rest of this work we consider the more general class of Window-games where the flows can use an arbitrary
strategy to choose their congestion window. The general description of Window-games with non-AIMD flows is that there
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Table 2
SNE of gameswith gentle and hybrid penalty flows. The SNE in the cases where the flows can select parameter α or when they can select
parameter β , are shown. For each SNE, the corresponding efficiency (goodput, loss rate) is given.

Queue policy Parameter α Parameter β
αE Goodput (packets/round) Loss rate (%) βE Goodput (packets/round) Loss rate (%)

(a) SNE of games with gentle penalty flows.

DropTail α3 = 50 5.499 78.8 β2 = 0.97 9.841 3.9
RED α2 = 49 5.485 78.5 β2 = 0.97 8.309 4.4
CHOKe α3 = 49 3.363 86.8 β2 = 0.94 7.761 5.4
CHOKe+ α3 = 50 5.431 79.1 β2 = 0.96 8.118 4.5
Prince-R α2 = 2 9.987 7.4 β3 = 0.94 9.995 7.3
Prince α2 = 4 9.111 13.9 β2 = 0.94 9.993 7.3
MaxMin Osc. between a = 9 and a = 12 β2 = 0.92 9.998 4.2

(b) SNE of games with hybrid penalty flows.

DropTail α5 = 6 5.863 6.4 β2 = 0.92 7.999 2.4
RED α2 = 4 6.427 4.4 β2 = 0.96 7.591 3.0
CHOKe α2 = 2 6.182 3.6 β4 = 0.78 6.674 2.6
CHOKe+ α2 = 3 6.650 3.8 β2 = 0.93 7.687 2.9
Prince-R α1 = 1 8.693 1.1 β2 = 0.72 8.759 1.6
Prince α1 = 1 9.573 2.1 β1 = 0.50 9.617 2.1
MaxMin α1 = 1 8.547 1.8 β1 = 0.50 8.503 1.9

is a common resource, every player requests an arbitrary part of this resource and the outcome depends on the moves of all
players. Note that even though this game bears some similarity with congestion games [32], it does not fit into the class of
(weighted) congestion games (see for example [32,25,24,11]).
In this section, we discuss the case of games with complete information and analyze several one-shot Window-games,

while in Section 9 we discuss the case of Window-games with incomplete information. A one-shot Window-game is a
Window-game that lasts only one round. In a one-shotWindow-game the only consequence for a flowwhen it looses packets
is the cost g induced by each packet loss. There can be no other consequences for packet losses like window reductions or
timeouts since there is only one round.
For the one-shot Window-game we assume a router of capacity C and n flows i = 1, . . . , n. Letwi be the window size of

flow i andwtotal =
∑
iwi the total request of all flows. Furthermore, let each successfully transmitted packet give a profit of

1 and each lost packet incur a cost of g ≥ 0.

8.1. DropTail

The Game: A DropTail router of capacity C and n flows. The total number of flows n is known to all flows. The game is
played in one round. Each flow i chooses its window sizewi.
If there is no congestion, all packets are served. If there is congestion, i.e.,wtotal > C , thenwtotal−C packets are randomly

selected and dropped. In this case, a flow iwill have on average (wiC)/wtotal successful packets andwi(wtotal− C)/wtotal lost
packets.

Lemma 11. If g = 0, then there is a unique SNE, where each flow requests the maximum possible congestion windoww = C.
Proof. Since g = 0, the utility of any flow i forwtotal =

∑
kwk is:

u(i) =
{

wi, ifwtotal ≤ C,
C

wtotal
wi, ifwtotal > C .

Clearly, in both cases wtotal ≤ C and wtotal > C , the utility of flow i is an increasing function of wi. Thus, there is a unique
SNE, where all flows request the maximum possible valuewi = C . The SNE is very inefficient. �

Lemma 12. If g > 0, then there is a SNE where all flows use the window size

w =
C(1+ g)(n− 1)

gn2
.

Proof. Assume that the n− 1 flows i = 1, . . . , n− 1 usewi = y and that flow n useswn = x. In case x+ (n− 1)y < C we
can increase x at least until x+ (n− 1)y = C , so we will assume

x ≥ C − (n− 1)y. (49)

The utility of flow n is the average number of successful packets minus g times the average number of lost packets:

un(y, x) = x
C

(n− 1)y+ x
− gx

(
1−

C
(n− 1)y+ x

)
. (50)
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Table 3
Window sizes at SNE for the one-shot game with complete
information. For every queuing policy and different values of
the cost factor g , i.e., variations of the utility function, the
window sizes of the corresponding SNE are shown.
Queue policy Utility function

U = passed− g∗dropped
g = 0 g = 0.1 g = 0.5 g = 1.0

DropTail 100 >60 26–30 17,18
RED 100 >70 26–28 20
CHOKe ≈44 ≈35 21–22 14–16
CHOKe+ 100 >70 29 17–18
Prince-R 10,11 10,11 10 10
Prince 10,11 10,11 10 10
MaxMin ≥10 10 10 10

The only positive root of the partial derivative of un(y, x)with respect to x is

x =
gy(1− n)+

√
Cgy(1+ g)(n− 1)
g

. (51)

Setting x = y gives x = y = C(1+g)(n−1)
gn2

. We conclude that there is a SNE at

w =
C(1+ g)(n− 1)

gn2
. �

For example, if g = 1, C = 100 and n = 10, then the SNE is atw = 18. Experimental results are presented in Table 3.
A legitimate question is whether there are reasonable conditions, for which the fair share wi = C/n is a SNE. Using

w ≤ C/n in Lemma 12 and solving for g gives g ≥ n− 1. This shows that the larger the number flows, the higher the cost g
must be, in order to prevent an undesirable SNE. A sufficient condition on the cost g that does not depend on the number of
players n is g ≥ C − 1 ≥ n− 1. However, when g takes such large values the game degenerates. For example, if g ≥ C − 1,
then almost any (not necessarily symmetric) profile with total window size equal to C is a NE.

8.2. MaxMin

The Game: A MaxMin router of capacity C and n flows. The number n is known to all flows. The game is played in one
round. Each flow i chooses its window sizewi.
Shenker showed in [33] that a MaxMin policy enforces a fair NE in a networkmodel where the flows are Poisson sources.

In the Window-game model as well, the MaxMin policy leads the system to desirable equilibria. More precisely:

Lemma 13. In MaxMin, there is a SNE where all flows playwi = C/n. If g > 0, then this is the only NE of the game.

Proof. In MaxMin, a flow i does not loose any packet if wi does not exceed its fair share. Consequently, each flow i will
request at least its fair share, i.e., wi ≥ C/n. Thus, the total request wtotal will be at least wtotal ≥ C and no flow can gain by
playing a value larger than C/n. This implies that there is a SNE where each flow i plays the strategy wi = C/n. If there is a
strictly positive cost g > 0 for each packet loss, then the above SNE is the only NE of the game. �

Clearly, the SNE where all flows request wi = C/n is the optimal solution for the Window-game problem. As already
discussed, the disadvantage of MaxMin is that it is a stateful policy that consumes too many computational resources to be
applied in practice.

8.3. Prince

The Game: A Prince router of capacity C and n flows. The total number of flows n is known to all flows. The game is played
in one round. Each flow i chooses its window sizewi.
The behavior of Prince is very similar to MaxMin. Every flow i can safely request its fair share C/n, sowi ≥ C/n. If a flow

i requests wi > C/n, then it may very well receive far less than its fair share (unlike MaxMin where it will receive at least
its fair share). Clearly, the profile where all flows playwi = C/n is a SNE. If the cost for packet loss is g > 0, then this is the
only NE of the game. Hence:

Lemma 14. If
∑
iwi − C ≤ maxiwi then there is a SNE where all flows play wi = C/n. If g > 0, then this is the only NE of the

game.
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8.4. Experimental results

Results for one-shot games with complete information are presented in Table 3. With MaxMin and both Prince policies,
the equilibrium is at the fair share or almost at the fair share, even for low values of the cost factor g . For DropTail, RED, and
CHOKe routers, a low value for g leads selfish players to request the maximum possible window size (aggressive behavior).
The higher the cost factor g , the more conservative becomes the strategy of selfish flows.
The experiments have been conducted with the simulator NetKnack, with n = 10 flows and router capacity C = 100.

The results for each experiment were calculated from the average of 40 executions. We used methodology M2 of Section 7
to identify the SNE for window sizes in the range {1, . . . , 100}.

9. Non-AIMD flows with incomplete information

In this section, we discuss Window-games in which the players do not know the total number of players n. These
Window-games, where the flows are not fully informed about all the parameters of the game, belong to the class of games
with incomplete information. We distinguish three cases of such Window-games.

9.1. One-shot Window-game with no prior probabilities

The Game: A router of capacity C and n players. The players have no prior probabilities on the number of players, that is,
they have no distribution information for the unknown number n. The game is played in one round and each player chooses
its window size.
Note that in this case, where the players do not have distribution information on the unknown parameters, the

Nash equilibrium or the Bayes–Nash equilibrium concepts cannot be applied. Several concepts, like games with no prior
probability or pre-Bayesian games [4,1] have been proposed to capture games with no prior probabilities. One possibility is
to search for an ex-post equilibrium, which is a profile where each player’s strategy is a best response to the other player’s
strategies, under all possible realizations of the uncertain data [1]. In particular, for the Window-games of this Section,
each player’s strategy would be a best response regardless of the number of participating players. Even though an ex-post
equilibriumwould be a very attractive solution, the problem is that, in general, ex post equilibria do not exist in incomplete-
information games.
Other, more general, related equilibrium concepts are for example the safety-level equilibrium [4], the robust-

optimization equilibrium [1], and theminimax-regret equilibrium. The common characteristic of these equilibriumconcepts
is that the player selects a very conservative action. In this case, the players may, for example, assume that the number of
players n is the maximum possible number n = C . Hence, the players will play as in the game with complete information
with n = C . For strategies like Prince andMaxMin, the choice of each player would bew = 1. Interestingly, in common TCP
implementations, like Reno or Tahoe, flows start with a very conservative initial window sizew = 1.

9.2. One-shot Window-game with prior probabilities

The Game: A router of capacity C and n players. The number of players n is a random variable and the players know the
corresponding probability distribution. The game is played in one round and each player i chooses its window sizewi.
In practice, flows engaged in a TCP-game are likely to have some prior information on the number n or, equivalently,

on their fair share. Note that real TCP flows are actually playing a repeated game, which means that the flow will in most
cases have an estimation on its fair share from the previous rounds (except of the first round or a round after some serious
network change). If the flow has prior information on the distribution of the unknown parameter n, the result is a Bayesian
game. We leave the analysis of this and the following case as future work.

9.3. Repeated Window-game with incomplete information

The Game: A router of capacity C and n players. The number of players n is unknown and probability distribution
information on nmay or may not be given. Each player chooses its window size for each round of the game.
The motivation for this game comes from the fact that the actual game that a TCP flow has to play is a repeated game

with incomplete information. The problem has been addressed from an optimization and an on-line algorithm point of view
in [18]. One other approach would be to consider this as a learning game; there are C players and nature decides for each
player either to participate in the game or to stay idle. The goal of each participating player is to ‘‘learn’’ the unknownnumber
n of players who participate.
We believe that a very interesting class of games that can also be used tomodel this case ofWindow-games, is the class of

unknown games (for example see [6, Section 7.5]). In an unknown game, K players play a game repeatedly, and at each time
instance t , after taking an action, player k observes his loss (or gain) but does not know his entire loss (or gain) function and
cannot observe the other players’ actions. The player may not even know the number of players participating in the game.
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Interestingly, even with such limited information there are conditions under which the game converges to a correlated
equilibrium or even to a Nash equilibrium.
Wemay further define the dynamic version of thisWindow-game,where the number of participating playersmay change

from round to round. In this case, in each round, nature decides with some predetermined probability for every player to
switch between the idle and the non-idle state.

10. Discussion

We present a game-theoretic model for the interplay between the congestion windows of competing TCP flows. The
theoretical analysis and the experimental results show that the model is relevant to the ‘‘real’’ TCP game. Furthermore we
propose a simple queue policy, called Prince, which can achieve efficient SNE despite the presence of selfish flows.
Future work includes the completion of the analysis of Window-games with incomplete information. We also consider

the proposed Prince policy of independent interest and intend to further study it. On the one hand, a thorough analysis
of Prince presents an interesting problem, related to common resource allocation games. On the other hand, we plan to
investigate a realistic adaptation and implementation of Prince, possibly with streaming algorithms, on real TCP networks
or with the network simulator [27].
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