
On the fixation probability of superstars

Details of Moran Process simulator

Josep Dı́az∗ Leslie Ann Goldberg†‡ George B. Mertzios§

David Richerby†‡ Maria Serna∗ Paul G. Spirakis†¶

In this document, we describe the operation of our simulator for the
Moran process on superstars and prove that it simulates the process cor-
rectly. A brief introduction to the salient features of the C programming
language appears in Section 1. Section 2 gives some mathematical back-
ground and a high-level overview of the code. Sections 3 and 4 describe the
code in more detail and Section 5 proves that it is correct. The C source
code appears in Section 6.

To describe the operation of the code, we say that the successors of a
vertex v in a graph are all vertices w for which there is an edge (v, w). v’s
predecessors are those vertices u for which there is an edge (u, v).

1 The C programming language

The simulator is written in C. We briefly describe the features of the lan-
guage so that a reader who is familiar with programming in other languages
should be able to understand the code.

Operators. = is assignment and == tests equality; != tests disequality.
For positive integers, division rounds down and % is the remainder operator.
x++ and x-- increase and decrease x by one, respectively, known as incre-
ment and decrement. x += y is equivalent to x = x + y; similarly x -= y.
Where a Boolean value is required, zero means false and any nonzero value
means true. || is Boolean or; && is Boolean and.

∗Departament de Llenguatges i Sistemes Informátics, Universitat Politécnica de
Catalunya, Spain. Email: {diaz, mjserna}@lsi.upc.edu .

†Department of Computer Science, University of Liverpool, UK. Email:
{L.A.Goldberg, David.Richerby}@liverpool.ac.uk. Supported by EPSRC grant
EP/I011528/1 Computational Counting.

‡Department of Computer Science, University of Oxford, UK.
§School of Engineering and Computing Sciences, Durham University, UK. Email:

george.mertzios@durham.ac.uk .
¶Department of Computer Engineering and Informatics, University of Patras, Greece.

Email: spirakis@cti.gr . Partially supported by the EU FET IP Project MULTIPLEX
Contract No. 317532.

1

Arrays. The declaration int x[10] declares x to be an array of 10 in-
tegers. Arrays in C are indexed from zero. The function memset (x, 0,

n*sizeof (int)) (ll. 301–4) zeroes the first n elements of the integer array
x.

Pseudorandom numbers are normally generated by the library func-
tion random(), with the generator seeded by srandom(). random()%n gives
a result from {0, . . . , n− 1} that may be treated as having been drawn uni-
formly at random (u.a.r.). We have provided an implementation of the pseu-
dorandom number generator used by the GNU C library, to ensure that the
program gives identical results, regardless of which compiler is used. Our im-
plementation renames the functions localrandom() and localsrandom().

Preprocessor macros. #define A B essentially declares A to be a con-
stant with value B. Before compiling the code, the compiler will substitute
B for each instance of A. #define A(x) B (crucially, with no space before
(x)) is, as it is used in this code, essentially equivalent to defining a func-
tion A that takes argument x and has body B, except that any call A(y) is
implemented by textual substitution rather than standard function call tech-
niques. Traditionally, macro names are written in upper case to distinguish
them from ordinary variables and functions. The declaration #include is
used to include library routines.

2 Overview

The code is designed to simulate the Moran process on large superstars (tens
of thousands of vertices) as efficiently as possible. A significant speed-up is
obtained by applying the following observation, which also appears in [1].

If the vertex chosen to reproduce at time t is a mutant that has no non-
mutant successors (or a non-mutant with no mutant successors), then we
must have Xt+1 = Xt. This will happen the majority of the time when either
most vertices are mutants or most are non-mutants and very frequently
throughout the process. To speed up the simulation, we would like to only
choose the vertex to reproduce from among those that have a successor in the
opposite state, since the state cannot change if any other vertex reproduces.
We describe a vertex as truly active if it has a successor the opposite state.

The centre will be truly active for the overwhelming majority of the time
as it nearly always has both mutants and non-mutants among its successors.
Because of this and because it is somewhat expensive to determine whether
the centre is truly active, we did not limit the simulator to reproduce from
truly active vertices. Instead, we describe a vertex as active if it is the centre
or is truly active (or both). We say that all other vertices are dormant. We

2

refer to the variant of the process where only active vertices are selected for
reproduction as the accelerated process.

As we will see below, the accelerated process has the same fixation prob-
ability as the generalized Moran process. Only selecting active vertices to
reproduce is particularly effective in superstars because every vertex apart
from the centre has a unique successor. This makes it very easy to determine
which of these vertices are active and it also guarantees that the state will
change if an active vertex, other than the centre, is selected. This makes
simulating the accelerated process significantly faster than the ordinary pro-
cess.

Proposition 1. The accelerated process has the same fixation probability
on any graph as the generalized Moran process.

Proof. We may consider the states of the generalized and accelerated Moran
processes to be triples (Xi, ui, vi), where Xi is the set of mutants and ui and
vi are, respectively, the vertices chosen for reproduction and replacement in
the transition from Xi−1 to Xi. Fixation is now the event of reaching any
state (V, u, v) and extinction is reaching any (∅, u, v).

Let (Xi, ui, vi)i≥0 be a generalized Moran process on G and write A(Xi)
for the set of active vertices in state Xi. Define the sequence

t0 = 0

tj+1 = inf{i > tj | ui ∈ A(Xi) or Xi = ∅ or Xi = V } .

The tj are stopping times of the chain and are almost surely finite. It follows
that the sequence (Xtj , utj , vtj)j≥0 is a Markov chain, which corresponds ex-
actly to the accelerated process. Since it is a subsequence of the generalized
Moran process, it must have the same fixation probability.

Thus, each simulation of the process proceeds as follows. First, we choose
a vertex v uniformly at random to be the initial mutant. We set v, all its
predecessors and the centre to be active. Then, we repeat the following steps
until either every vertex is a mutant or none is:

• select an active vertex v to reproduce;

• select a successor to be replaced by v’s offspring;

• update the state of the successor;

• update the set of active vertices.

Note that whether a vertex is active or dormant depends only on whether
it and its successors are mutants or non-mutants, not on whether any neigh-
bours are active or dormant. Therefore, if an active vertex becomes dormant,

3

or vice-versa, there is no “cascade” of updates to the active/dormant status
of its neighbours and on to their neighbours and so on.

The simulator maintains data structures to allow the efficient selection
of vertices and so on.

3 Implementation notes

For performance, the simulator was written in C. The simulation parameters
(principally k, `, m and the mutant fitness r) are compile-time constants,
which allows the compiler to precompute expressions involving them and
avoids memory accesses to retrieve their values. The simulator uses only
integer arithmetic, again for performance. To allow rational values for the
mutant fitness, we give the mutants fitness r and the non-mutants fitness q;
this is clearly equivalent to having mutants with fitness r/q and non-mutants
with fitness 1.

The simulator is single-threaded. Multi-threading is not advantageous
as it adds communication overhead and the program can be trivially paral-
lelized by running multiple copies on different machines and combining the
results.

To make the results verifiable, the simulator outputs the value used to
seed the pseudorandom number generator. When executed, a value for the
seed can be specified as a command-line argument; if no value is given, the
program uses the system time, as is standard practice. This, coupled with
the provision of a pseudorandom number generator in the code (ll. 90–121)
means that a simulation run can be exactly reproduced.

4 Data structures

4.1 Vertex state

Each vertex in the graph has one of four states: it is either a mutant
or non-mutant and is either active or dormant. The symbolic constants
MUTANT, NONMUT, ACTIVE and DORMANT are defined for these states, along
with ACT MUT, ACT NON, DOR MUT and DOR NON for the obvious combinations.

The number of mutants in the reservoir of leaf 0, . . . , L−1 of the superstar
is stored in the array resmut and the total number of mutants in all the
reservoirs in the integer resmuts. In each reservoir, either the mutants or
the non-mutants will be active, according to the state of the first chain
vertex in the same superstar leaf. The array resstate stores the active
vertex type for each superstar leaf, which is either MUTANT or NONMUT. The
mutants (respectively, non-mutants) in a particular superstar leaf are not
distinguishable so it suffices to store only the number of mutants.

4

The state of the centre vertex and the chain vertices is stored vertex-by-
vertex in the array state. The chain vertex ci,j (i.e., the jth chain vertex
of the ith superstar leaf) is at position i + jL.

4.2 Vertex selection

The program maintains two data structures to allow it efficiently to select
the vertex for reproduction. The basic problem is this. We have a sequence
of active vertices v1, . . . , vs of which m are mutants. Hence, the total fitness
is W = mr + (s − m)q and we wish to select one of the vertices such that
each mutant is chosen with probability r/W and each non-mutant with
probability q/W . But we are only able to generate a random number rnd

uniformly from the set {0, . . . , W − 1}.

Chain and centre vertices. For the chain and centre vertices, we main-
tain separate lists of the active mutants and non-mutants in the two-dimen-
sional array vlist. The first co-ordinate is the state (ACT MUT or ACT NON)
and the second is the index into the list. Now, if rnd < mr, we select the
brnd/rcth mutant; otherwise, we select the b(rnd− mr)/qcth non-mutant.

We also store the number of vertices in each of the four states (including
dormant vertices) in the array numinstate and, to allow efficient updating of
the lists, we maintain an inverse mapping in the array posn. If the vertex v
is active, then posn[v] is the index of v in vlist[ACT MUT] or vlist[ACT NON],
according to its state. Thus, for active vertices, we maintain the identity
that

vlist[state[v]][posn[v]] = v .

If vertex v is dormant, the value of posn[v] is meaningless.

Reservoir vertices. The above data structure is inadequate for reservoir
vertices. Even though the simulator just tracks the number of mutants and
non-mutants in each reservoir, we could, in principle, maintain a vlist-
style list of reservoir vertices to aid selection. However, whenever an active
reservoir vertex is chosen to reproduce, it changes the state of the first chain
vertex, which means that each of the M vertices in the reservoir changes
from active to dormant or vice-versa. Thus, maintaining the lists would be
very expensive.

Instead, we use a binary search tree. The nodes in the search tree cor-
respond to leaves of the superstar. The total fitness of the active nodes in
each leaf’s reservoir is stored in the array resactfit. We consider this to
be structured as a tree, with node i having its left child at location 2i + 1
and its right child at 2i + 2. To enable rapid searching in this tree, we store
in the array restree the total fitness of active reservoir vertices for all su-
perstar leaves in the left subtree rooted at each node. The macros LCHILD,

5

RCHILD and PARENT compute the left and right children and the parent of
a given node, respectively. The macro ISLCHILD computes whether a given
node is its parent’s left child (i.e., whether its index is odd). No attempt is
made to balance the tree since the symmetry of the superstar should keep
it reasonably balanced in practice.

The total fitness of all active reservoir vertices (i.e., the sum of the entries
in resactfit) is stored in totresactfit; the total fitness of all active non-
reservoir vertices is stored in totnonresactfit.

5 Correctness

To demonstrate correctness, we show that the variables state, numinstate,
vlist, posn, resmut, resmuts, resstate, resactfit, totresactfit, tot-
nonresactfit and restree are correctly initialized and maintained as a
consistent description of the current simulation state, and that transitions
between states occur with the correct probabilities.

5.1 Macros

It is immediate that the macros N and NONRES correctly define the number
of vertices and number of non-reservoir vertices in terms of K, L and M .
CENTRE denotes the position of the centre vertex in VLIST, immediately after
the chain vertices, which are in positions 0 to L(K − 2) − 1.

ISMUTANT determines whether a vertex in vlist is a mutant: this is the
case if, and only if, its state is even, i.e., ACT MUT or DOR MUT.

It is clear from the discussion in Section 4.2 that the macros LCHILD,
RCHILD, PARENT and ISLCHILD behave correctly. The macro FIRSTSTLEAF

evaluates to the first leaf node of the search tree. There are L nodes, num-
bered 0 to L − 1 so node bL/2c is the first one with no child.

5.2 State updates

The code contains a number of functions to update the variables describing
the state. We show that each one maps consistent states to consistent states.

Lemma 2. setvstate() (ll. 138–172) correctly changes the state of a chain
or centre vertex, maintaining the lists of active chain and centre vertices and
their total fitness.

Note that changing the mutant/non-mutant state of a vertex may require
changes to the active/dormant state of its neighbours. These changes are
the responsibility of the caller.

Proof. We wish to move the chain or centre vertex with index v into state
s from its old state s′. The necessary steps are as follows. We must set v’s

6

state, increase the number of vertices in state s and decrease the number
in s′. If the old state was active, we must delete v from the relevant list of
active vertices and update totnonresactfit; if the new state is active, we
must add v to the relevant list and, again, update totnonresactfit.

To delete a vertex from the list, we overwrite it with the last element
of the list, update that item’s position and decrease the length of the list
(ll. 145–56). Because C arrays are indexed from zero, we actually decrease
the length first as it requires fewer instructions to decrease len by one
and refer to array[len] than it does to refer to array[len-1] and then
decrement len. To add a vertex to a list, we write it one place beyond the
current last element, store its new position in posn and increase the length
by one (ll. 162–71).

In the following lemma, delta may be negative, in which case the func-
tion decreases the specified fitness.

Lemma 3. incresfit (leaf, delta) (ll. 187–97) correctly increases the
total fitness of active vertices in a superstar leaf leaf by delta and correctly
updates the search tree.

Proof. The function increases the recorded fitness of reservoir vertices in the
leaf (l. 195) and the total over all leaves (l. 196). Starting at the leaf’s node
in the search tree, it performs the following at each node on the path back
to the root (excluding the root itself): if the current node is its parent’s
left child, the total fitness of active vertices in the parent’s left subtree is
increased by delta.

Suppose the first vertex of a superstar leaf’s chain is a mutant. It follows
that the mutants in the leaf’s reservoir are dormant and the non-mutants
are active. If one of these non-mutants is selected for reproduction, the
chain vertex becomes a non-mutant and now we must make the reservoir’s
mutants active and its non-mutants dormant. The converse changes must
be made in the case that the chain vertex was originally a non-mutant. We
refer to this as flipping the active vertices in the reservoir.

Lemma 4. flipresstate (leaf) (ll. 205–16) correctly flips the active ver-
tices in the reservoir of the leaf leaf and updates the recorded total fitness
of active reservoir vertices.

Proof. Suppose there are m mutants in the leaf and that mutants are active.
The current active fitness is, therefore, mr and, after the flip, the active
fitness will be (M −m)q. The change is (M −m)q −mr = Mq − (r + q)m.
If non-mutants are currently active, the change is (r + q)m − Mq.

The function flips the active vertices of the given leaf (l. 213) using the
identity ACT NON = 1 − ACT MUT, computes the amount by which the fitness
changes (ll. 201–11) and uses incresfit to effect this change (l. 211).

7

5.3 Global initialization

The random number generator is seeded, either using the system time or a
value supplied on the command line and the number of simulation runs that
have reached fixation and extinction are set to zero.

5.4 Per-run initialization

The initial state of the Moran process is that all vertices are non-mutants,
except for one mutant placed uniformly at random. The centre is active by
our convention; the mutant is active (all its successors are non-mutants) and
so is every predecessor of the mutant. Every other vertex is dormant.

We achieve this in two steps. First (ll. 289–308), we set the centre vertex
to be an active non-mutant and every other vertex to be a dormant non-
mutant. Then (ll. 313–353), we choose a vertex uniformly at random, make
it a mutant, make it active and make all its predecessors active.

Lemma 5. Lines 289–308 correctly set the variables to the state where no
vertex is a mutant and every vertex but the centre is dormant.

Proof. The state of the centre is set to ACT NON (l. 299) and the state of all
chain vertices to DOR NON (ll. 294–5). Thus, there is one active non-mutant
and every other non-reservoir vertex is a dormant non-mutant (ll. 289–92);
the list of active non-mutants is just the centre (l. 297), at the head of the
list (l. 298).

No leaf has any mutants in its reservoir (l. 301, l. 306), there are no
active reservoir vertices, so no active fitness there (l. 302, l. 307) and the
total active fitness in any branch of the search tree is zero (l. 304). Since all
chain vertices are non-mutants, the mutants would be active in each leaf, if
there were any (l. 303). The total fitness of active vertices is q (l. 308), since
the only active vertex is the non-mutant centre.

Lemma 6. Lines 313–352 choose an initial mutant uniformly at random
and correctly set the variables for this state.

Proof. A value rnd is chosen u.a.r. from {0, . . . , N − 1} (l. 313). If rnd <
L(K − 2), a chain vertex is chosen (l. 334); if rnd = L(K − 2) (l. 347), the
centre is chosen; otherwise, a reservoir vertex is chosen (l. 322). Hence the
initial mutant is chosen with the correct probability. We now show that the
state is modified correctly.

Reservoir vertex. By symmetry, we may place the initial vertex in leaf 0.
Thus, this reservoir contains one mutant (l. 324), there is one reservoir
mutant in total (l. 325) and the fitness of active vertices in leaf 0’s reservoir
has increased by r. (Recall that mutants were initially defined to be active
in each reservoir, so no further changes are needed.)

8

Chain vertex. The chosen vertex, which we may take to be the one in-
dexed by rnd is set to be an active mutant (l. 336). Recall that the jth
chain vertex in the ith leaf has index i + jL. Thus, if rnd < L, the initial
mutant is the first vertex in its leaf’s chain so non-mutants are now active in
that leaf’s reservoir (ll. 338–9); otherwise, the previous vertex in the chain
becomes active (ll. 340–1).

Centre vertex. The centre is set to be an active mutant (l. 349) and the
last vertex of every chain also becomes active (ll. 350–1).

5.5 Inner simulation loop

It is clear that the inner simulation loop (ll. 358–501) runs until either the
total number of mutants (mutants in the reservoirs and active and dormant
mutants in the chains and the centre) is either zero or N , the total number
of vertices. If there are no mutants left, the run has gone extinct (ll. 506–7);
otherwise, it has reached fixation (ll. 508–9). Every ten trials and after all
trials have been performed, the number of trials run so far, the numbers
of fixations and extinctions seen and the fixation probability are printed
(ll. 514-26).1

Let Wres, Wchain and Wcent be the total fitness of active vertices in the
reservoirs, chains and the centre, respectively, and let W = Wres + Wchain +
Wcent.

Lemma 7. The inner simulation loop selects a reservoir (respectively, chain
or centre) vertex for reproduction with probability Wres/W (respectively,
Wchain/W or Wcent/W)

Proof. An integer rnd is chosen u.a.r. from {0, . . . , W −1} (l. 364). If rnd <
Wres, a reservoir vertex is chosen (l. 369).

Otherwise, a vertex is chosen from vlist, i.e., from the active chain ver-
tices and the centre. Each mutant within this set is chosen with probability

r

W − Wres

·
W − Wres

W
=

r

W
,

and each non-mutant, similarly, with probability q/W (ll. 415–20). Since
Wcent = r if the centre is a mutant and q if it is a non-mutant, the cen-
tre is chosen with probability Wcent/W , so a chain vertex is chosen with
probability (W − Wres − Wcent)/W = Wchain/W .

Lemma 8. If a reservoir vertex is chosen, the state is correctly updated.

1The cast to double at line 521 is to force floating-point arithmetic. Without it, the
probability would be rounded down to the next integer, which would be zero unless every
trial had reached fixation.

9

Proof. The active reservoir vertices within a superstar leaf are indistinguish-
able since they all receive an edge from the centre and send an edge to
the leaf’s first chain vertex, and are either all mutants or all non-mutants.
Therefore, given that a reservoir vertex has been chosen, choosing an active
vertex with probability proportional to its fitness is equivalent to choosing
a leaf of the superstar with probability proportional to the total weight of
its active reservoir vertices.

Having chosen the leaf, we must update the state of the leaf’s first chain
vertex. Conveniently, its index in state is the same as the leaf’s index in the
arrays holding reservoir state. Suppose the active vertices in the reservoir
are mutants. Then the first chain vertex will also become an active mutant
(l. 392), unless the second chain vertex is also a mutant (ll. 400–3) or K = 3
and the centre is a mutant (ll. 394–8). In these two cases, the first chain will
become a dormant mutant. Finally, because the first chain vertex is now a
mutant, the non-mutants in the reservoir become active (l. 411). The case
where the active reservoir vertices were non-mutants is analogous.

It remains to check that we select the leaf with the right probability. For
` ∈ {0, . . . , L}, let S` be the set of all nodes in the subtree of the search
tree rooted at node `. Let W` = resactfit[`] be the total fitness of active
vertices in the reservoir of leaf ` and let T̀ =

∑
i∈S`

Wi be the total fitness
of all active reservoir vertices in the subtree rooted at node `. Note that
T0 = totresactfit is the total fitness of all active reservoir vertices. We
claim that, if rnd is chosen u.a.r. from {0, . . . , T̀ − 1}, then the procedure
at lines 371–88 selects the jth leaf with probability Wj/T̀ for each j in the
subtree rooted at `.

Proof of the claim is by induction on the initial value of leaf, which we
call `. If ` ≥ FIRSTSTLEAF = bL/2c then T̀ = W`. The loop test fails at the
first iteration so, with probability W`/T̀ = 1, we choose leaf `, as required.

Now, suppose that ` < FIRSTSTLEAF. Let x = 2` + 1 and y = 2` + 2 be
the left and right children of `. There are three cases.

• With probability Tx/T̀ , we have 0 ≤ rnd < Tx = restree[`] (l. 378).
We recurse on the left subtree (l. 379) and, by the inductive hypothesis,
any leaf j ∈ Sx is then chosen with probability Wj/Tx.

• With probability W`/T̀ , we have Tx ≤ rnd < Tx + W` (ll. 382–3). We
break out of the loop (l. 384) and choose `.

• With probability Ty/T̀ , we have Tx + W` ≤ rnd < Tx + W` + Ty = T̀ .
(l. 378). We set rnd to rnd− Tx − W` (l. 385) and recurse on the left
subtree (l. 386). By the inductive hypothesis, any leaf j ∈ Sy is then
chosen with probability Wj/Ty.

By the first bullet, any leaf j ∈ Sx is chosen with probability (Tx/T̀)(Wj/Tx) =
Wj/T̀ and, similarly, by the third bullet, any leaf j ∈ Sy is chosen with

10

probability Wj/T̀ . By the second bullet, ` is chosen with probability W`/T̀ .
Since S` = Sx ∪ {`} ∪ Sy, the claim is proven.

Since we initially set leaf=0 (l. 371), it follows that we choose a leaf
` from the whole search tree (S0) such that the jth leaf is chosen with
probability proportional to Wj , as required.

Lemma 9. If a chain vertex is chosen, the state is correctly updated.

Proof. The chosen vertex v has index src and, since the jth vertex of the
ith leaf has index i+ jL, the chosen vertex has position bsrc/Lc in its chain
(l. 427), where position 0 is adjacent to the reservoir and position K − 3 is
adjacent to the centre.

If v is adjacent to the centre (ll. 432–42), we must change the state of
the centre to be that of v, which was necessarily active (l. 434). Since the
centre vertex has changed its mutant/non-mutant state, the last vertex of
every leaf’s chain must change its active/dormant state. These vertices have
index L(K − 3), . . . , L(K − 2) − 1 (ll. 440–1).

If the chosen vertex v is not the centre (ll. 443–63) then its successor w
is also a chain vertex and is at position src + L (l. 448). w will receive the
same mutant/non-mutant status as v but we must determine whether w will
be active or dormant. Specifically, w will be active unless it has the same
mutant/non-mutant status as its own successor, which may be the centre or
the next vertex in the chain, depending on w’s position (ll. 451–60).2

Finally, since v now has the same mutant/non-mutant status as its suc-
cessor, it must be made dormant (l. 461) and w must receive its new status
(l. 463).

Lemma 10. If the centre vertex is chosen, the state is correctly updated.

Proof. If the centre is chosen to reproduce, we must choose a reservoir vertex
uniformly at random to receive the offspring. This vertex will become either
a mutant or non-mutant, according to the state of the centre and we must
update appropriately the total weight of active vertices in the relevant leaf
and in the search tree. This is implemented in lines 472–99. Note that there
is no change to which types of vertex are active: the centre is defined to
be active always and whether mutants or non-mutants are active in a given
leaf’s reservoir depends only on whether that leaf’s first chain vertex is a
non-mutant or mutant, which does not change.

Since all reservoirs have the same size, choosing a reservoir vertex u.a.r.
is equivalent to choosing a leaf u.a.r. (l. 475) and then choosing a vertex
in that leaf’s reservoir u.a.r. (l. 477). Suppose there are m mutants in the

2The test K > 3 && chainpos == K-4 appears redundant since chainpos is necessarily
non-negative so can only take the value K−4 if K > 3. We include the test K > 3 because
this can be determined at compile-time and, if K = 3, the subsequent test on chainpos

will be omitted as the conjunction must be false.

11

chosen leaf. There is no fixed ordering of the vertices in the reservoir so we
may assume that the mutants are indexed 0, . . . , m−1 and the non-mutants
are indexed m, . . . , M − 1.

If the centre is a mutant and the chosen reservoir vertex is a non-mutant
(l. 479), the number of mutants in the reservoir and in total increases by
one (ll. 481–2). If mutants are active in that leaf, the total fitness of active
vertices will increase by r (there is one more mutant; ll. 483–4); otherwise,
non-mutants are active and the total fitness decreases by q (there is one fewer
non-mutant; ll. 485–6). The case where the centre is a non-mutant and the
reservoir vertex is a mutant is analogous (ll. 488-96). If the centre and
reservoir vertex are both mutants or both non-mutants, nothing happens.
Finally, if there is a change to be made to the reservoir’s fitness and, hence,
to the search tree, this is done at lines 497–8.

5.6 Correctness

Theorem 11. The program correctly simulates the generalized Moran pro-
cess on superstars.

Proof. The program simulates the accelerated Moran process which, by
Proposition 1 has the same fixation probability as the generalized Moran
process.

By Lemmas 5 and 6, each run is correctly initialized with one mutant
placed uniformly at random. At each stage of the simulation, the vertex
that will reproduce is chosen from either among the reservoir vertices, the
chain vertices or the centre vertex with probability proportional to its weight
(Lemma 7) and the state updated accordingly (Lemmas 8, 9 and 10, re-
spectively). Once each run reaches fixation or extinction, the statistics are
updated as appropriate.

It is clear that the program performs TRIALS runs of the process and cor-
rectly computes the fixation and extinction probabilities as the proportion
of results that reach those states.

6 Simulator source code

The following is the C source code of the simulator program. The line
numbers are included for ease of reference and do not form part of the code.
Two very long lines (248 and 263) have been wrapped in this presentation;
the continuation lines have not been numbered. The code is also available
as an ancillary file.

1 /*

2 * superstar.c -- David Richerby, 2011-12.

3 * Superstar simulator that keeps track of which vertices are in a

4 * different state than their out-neighbours so can cause a state

12

5 * change if selected for reproduction.

6 *

7 * WARNING! This code will not compile as-is. For efficiency, the

8 * simulation parameters are set as compile-time constants. It is

9 * recommended that the program be compiled with the runsuperstar

10 * script. If you are not using that script, replace the values

11 * __RVAL, __QVAL, __KVAL, __LVAL, __MVAL and __TVAL with the

12 * appropriate numerical values and compile with as many

13 * optimizations enabled as possible. (With gcc, use -O3 .)

14 *

15 *

16 * $Id: superstar.c,v 1.13 2012/01/18 18:56:20 davidr Exp $

17 */

18

19 #include <stdlib.h>

20 #include <stdio.h>

21 #include <errno.h>

22 #include <string.h>

23 #include <time.h>

24 #include <unistd.h>

25

26 /*

27 * Simulation parameters.

28 */

29 #define r __RVAL

30 #define q __QVAL

31 #define K __KVAL

32 #define L __LVAL

33 #define M __MVAL

34 #define TRIALS __TVAL

35

36

37 /*

38 * Useful constants.

39 */

40 #define N ((L)*((M)+((K)-2))+1) /* Total number of vertices. */

41 #define NONRES ((L)*((K)-2)+1) /* Number of non-reservoir vertices.*/

42 #define CENTRE ((L)*((K)-2)) /* Index of centre vertex in vlist. */

43

44 #define FIRSTSTLEAF ((L)/2) /* First leaf vertex of the reservoir */

45 /* fitness search tree. */

46

47 /*

48 * Vertex states

49 */

50 #define MUTANT 0

51 #define NONMUT 1

52 #define ACTIVE 0

53 #define DORMANT 2

13

54 #define ACT_MUT 0 /* Active mutant. */

55 #define ACT_NON 1 /* Active non-mutant. */

56 #define DOR_MUT 2 /* Dormant mutant. */

57 #define DOR_NON 3 /* Dormant non-mutant. */

58 #define NUMSTATES 4

59

60

61 /**/

62 /* Globals */

63 /**/

64

65 int state[NONRES]; /* State of each vertex. */

66 int numinstate[NUMSTATES]; /* Number of vertices in each state. */

67 int vlist[2][NONRES]; /* List of vertices in each state. */

68 int posn[NONRES]; /* Position of each vertex in the one list it’s in.*/

69 int totresactfit; /* Total fitness of active vertices in reservoirs. */

70 int totnonresactfit; /* Total fitness of other active vertices.*/

71 int resmut[L]; /* Number of mutants in each reservoir. */

72 int resmuts; /* Total number of mutants in reservoirs. */

73 int resstate[L]; /* Are mutants or non-mutants active in each res.? */

74 int resactfit[L]; /* Fitness of active vertices in each leaf. */

75 int restree[L]; /* Search tree for reservoir fitness. */

76

77

78 /**/

79 /* Random number generation */

80 /**/

81

82 /*

83 * A re-implementation of the algorithm used by glibc 2.12.2 (and,

84 * presumably other versions), based on Peter Selinger’s description

85 * at http://www.mscs.dal.ca/~selinger/random/

86 * Gives identical results to glibc’s random() but included here for

87 * reproducability of results on other systems.

88 */

89

90 #define POOLSIZE 34

91 unsigned int rndpool[POOLSIZE];

92 int rndidx = 0;

93

94 static unsigned int localrandom ()

95 {

96 rndidx = (rndidx + 1) % POOLSIZE;

97 rndpool[rndidx%POOLSIZE] = rndpool[(rndidx+31)%POOLSIZE]

98 + rndpool[(rndidx+3)%POOLSIZE];

99 return ((unsigned)rndpool[rndidx%POOLSIZE]) >> 1;

100 }

101

102 static void localsrandom (unsigned int seed)

14

103 {

104 long long x;

105 int i;

106

107 rndpool[0] = seed;

108 for (i = 1; i < 31; i++)

109 {

110 rndpool[i] = (16807LL * rndpool[i-1]) % 2147483647;

111 if (rndpool[i] < 0)

112 rndpool[i] += 2147483647;

113 }

114 rndpool[31] = rndpool[0];

115 rndpool[32] = rndpool[1];

116 rndpool[33] = rndpool[2];

117

118 rndidx = -1;

119 for (i = 34; i < 344; i++)

120 (void)localrandom();

121 }

122

123 /**/

124 /* Vertex state manipulation */

125 /**/

126

127 /*

128 * True if the chain/centre vertex with index v is a mutant (active or

129 * dormant).

130 */

131 #define ISMUTANT(v) ((state[(v)] % 2) == 0)

132

133 /*

134 * void setvstate (int v, int s)

135 * Change the state of vertex v to s, adjusting total fitness of

136 * active vertices as appropriate.

137 */

138 void setvstate (int v, int s)

139 {

140 int olds = state[v];

141

142 /*

143 * Remove from old state.

144 */

145 numinstate[olds]--;

146 if (olds <= ACT_NON)

147 {

148 int movedvtx = vlist[olds][numinstate[olds]];

149

150 vlist[olds][posn[v]] = movedvtx;

151 posn[movedvtx] = posn[v];

15

152 if (olds == ACT_NON)

153 totnonresactfit -= q;

154 else

155 totnonresactfit -= r;

156 }

157

158 /*

159 * Place in new state.

160 */

161 state[v] = s;

162 if (s <= ACT_NON)

163 {

164 vlist[s][numinstate[s]] = v;

165 posn[v] = numinstate[s];

166 if (s == ACT_NON)

167 totnonresactfit += q;

168 else

169 totnonresactfit += r;

170 }

171 numinstate[s]++;

172 }

173

174 /*

175 * Macros for manipulating reservoir fitness search tree.

176 */

177 #define LCHILD(x) (2*(x)+1) /* Left child of node x. */

178 #define RCHILD(x) (2*(x)+2) /* Right child of node x. */

179 #define PARENT(x) (((x)-1)/2) /* Parent of node x. */

180 #define ISLCHILD(x) ((x)%2 == 1) /* True iff node x is a left child.*/

181

182 /*

183 * void incresfit (int leaf, int delta)

184 * Increase the fitness of the leaf-th reservoir by delta and update

185 * the reservoir fitness search tree accordingly.

186 */

187 void incresfit (int leaf, int delta)

188 {

189 int i;

190

191 for (i=leaf; i>0; i = PARENT(i))

192 if (ISLCHILD(i))

193 restree[PARENT(i)] += delta;

194

195 resactfit[leaf] += delta;

196 totresactfit += delta;

197 }

198

199 /*

200 * void flipresstate (int leaf)

16

201 * Flip the state of the leaf-th reservoir from mutants being active

202 * to non-mutants, or vice versa, making the necessary changes to the

203 * leaf’s fitness and the search tree.

204 */

205 void flipresstate (int leaf)

206 {

207 int delta;

208

209 delta = M * q - (r + q) * resmut[leaf];

210 if (resstate[leaf] == ACT_NON)

211 delta *= -1;

212

213 resstate[leaf] = 1 - resstate[leaf];

214

215 incresfit (leaf, delta);

216 }

217

218

219 /**/

220 /* Main program */

221 /**/

222

223 /*

224 * A vertex is "active" if it sends an edge to a vertex in the

225 * opposite state; otherwise, it is "dormant".

226 */

227

228 int main(int argc, char **argv)

229 {

230 int i; /* General loop counter. */

231 int t; /* Loop counter for trials. */

232 int rnd; /* Output of random(). */

233

234 int src, dest; /* Source and target vertices of reproduction. */

235 int newstate; /* The new state for the target vertex. */

236

237 int extinctions, /* The number of extinctions and fixations in a */

238 fixations; /* batch of simulations. */

239

240 unsigned int seed; /* Random number generator seed value. */

241

242 /*

243 * Print simulation parameters.

244 */

245 setbuf (stdout, NULL); /* Turn off buffering on stdout so */

246 /* progress reports appear properly. */

247 printf ("$Id: superstar.c,v 1.13 2012/01/18 18:56:20 davidr Exp $\n");

248 printf ("K=%d, L=%d, M=%d, N=%d, r=%d/%d, %d trials\n", K, L, M, N,

r, q, TRIALS);

17

249

250 /*

251 * Initialize random number generator. If there is one, use the

252 * first command-line parameter as the seed; otherwise, use the

253 * system time.

254 */

255 seed = time (NULL);

256 if (argc > 1)

257 {

258 char *p;

259

260 long int val=strtol (argv[1], &p, 10);

261 if (p == argv[1] || *p != ’\0’ || val < 0)

262 {

263 fprintf (stderr, "Error. If an argument is supplied, it

must be a positive integer seed the\n

random number generator. Call with no

argument to seed with the system time.\n");

264 return 1;

265 }

266 seed = (unsigned)val;

267 }

268

269 printf ("Random seed = %u\n\n", seed);

270

271 localsrandom (seed);

272

273 /*

274 * Initialize statistics collection.

275 */

276 extinctions = fixations = 0;

277

278 /*

279 * Outer simulation loop (simulate TRIALS times to fixation).

280 */

281 for (t = 1; t <= TRIALS; t++)

282 {

283 /*

284 * Initialize mutant lists. The initial state is fully

285 * consistent: everything is a dormant non-mutant, except the

286 * centre, which is an active non-mutant. In a moment, we’ll

287 * pick an initial mutant and change its state.

288 */

289 numinstate[ACT_MUT] = 0;

290 numinstate[ACT_NON] = 1;

291 numinstate[DOR_MUT] = 0;

292 numinstate[DOR_NON] = NONRES-1;

293

294 for (i = 0; i < CENTRE; i++)

18

295 state[i] = DOR_NON;

296

297 vlist[ACT_NON][0] = CENTRE;

298 posn[CENTRE] = 0;

299 state[CENTRE] = ACT_NON;

300

301 memset (resmut, 0, L * sizeof (int));

302 memset (resactfit, 0, L * sizeof (int));

303 memset (resstate, 0, L * sizeof (int));

304 memset (restree, 0, L * sizeof (int));

305

306 resmuts = 0;

307 totresactfit = 0;

308 totnonresactfit = q;

309

310 /*

311 * Choose initial mutant.

312 */

313 rnd = localrandom() % N;

314

315 /*

316 * Initial mutant is a reservoir vertex. WLOG, we may place

317 * it in the first leaf. And the active vertices are already

318 * correct: the centre is active and any leaf whose first

319 * chain vertex is a non-mutant has the mutants active, even

320 * if there aren’t actually any.

321 */

322 if (rnd > CENTRE)

323 {

324 resmut[0] = 1;

325 resmuts = 1;

326 incresfit (0, r);

327 }

328 /*

329 * Initial mutant is in a chain. If it’s the first vertex in

330 * its chain, the non-mutants in the leaf’s reservoir are

331 * active; otherwise, the mutant’s predecessor in the chain

332 * is.

333 */

334 else if (rnd < CENTRE)

335 {

336 setvstate (rnd, ACT_MUT);

337

338 if (rnd < L) /* Head of the chain. */

339 flipresstate (rnd);

340 else

341 setvstate (rnd-L, ACT_NON);

342 }

343 /*

19

344 * Initial mutant is in the centre. The tail of each chain

345 * becomes active.

346 */

347 else

348 {

349 setvstate (rnd, ACT_MUT);

350 for (i = L*(K-3); i < CENTRE; i++)

351 setvstate (i, ACT_NON);

352 }

353

354 /*

355 * Inner simulation loop (simulate until the mutants take

356 * over or die out).

357 */

358 while (numinstate[ACT_MUT] + numinstate[DOR_MUT] + resmuts > 0

359 && numinstate[ACT_MUT] + numinstate[DOR_MUT] + resmuts < N)

360 {

361 /*

362 * Choose a source from the set of active vertices.

363 */

364 rnd = localrandom() % (totnonresactfit + totresactfit);

365

366 /*

367 * Source is a reservoir vertex.

368 */

369 if (rnd < totresactfit)

370 {

371 int leaf = 0;

372

373 /*

374 * Find which leaf’s reservoir we’ve hit.

375 */

376 while (leaf < FIRSTSTLEAF)

377 {

378 if (rnd < restree[leaf])

379 leaf = LCHILD(leaf);

380 else

381 {

382 rnd -= restree[leaf];

383 if (rnd < resactfit[leaf])

384 break;

385 rnd -= resactfit[leaf];

386 leaf = RCHILD(leaf);

387 }

388 }

389

390 /* Don’t need to set dest, as the the index of the

391 * first vertex of the leaf-th leaf is just leaf. */

392 newstate = resstate[leaf];

20

393

394 if (K == 3)

395 {

396 if (resstate[leaf] == state[CENTRE]%2)

397 newstate += DORMANT;

398 }

399 else

400 {

401 if (resstate[leaf] == state[leaf+L]%2)

402 newstate += DORMANT;

403 }

404 setvstate(leaf, newstate);

405

406 /*

407 * The head of the chain has flipped state so all

408 * active vertices in the leaf’s reservoir become

409 * dormant and vice-versa.

410 */

411 flipresstate(leaf);

412 }

413 else

414 {

415 rnd -= totresactfit;

416

417 if (rnd < r * numinstate[ACT_MUT])

418 src = vlist[ACT_MUT][rnd/r];

419 else

420 src = vlist[ACT_NON][(rnd - r * numinstate[ACT_MUT])/q];

421

422 /*

423 * If the source is a chain vertex...

424 */

425 if (src < CENTRE)

426 {

427 int chainpos = src / L;

428

429 /*

430 * Last vertex in its chain.

431 */

432 if (chainpos == K-3)

433 {

434 setvstate (CENTRE, state[src]);

435

436 /*

437 * Centre is changing state so need to flip

438 * active/dormant for chain tails.

439 */

440 for (i = L*(K-3); i < CENTRE; i++)

441 setvstate (i, (state[i] + DORMANT) % NUMSTATES);

21

442 }

443 else

444 /*

445 * Not the last vertex in its chain.

446 */

447 {

448 dest = src+L;

449 newstate = state[src];

450

451 if (K > 3 && chainpos == K-4)

452 {

453 if ((ISMUTANT(src)) == (ISMUTANT(CENTRE)))

454 newstate += DORMANT;

455 }

456 else if (K > 4)

457 {

458 if ((ISMUTANT(src)) == (ISMUTANT(dest+L)))

459 newstate += DORMANT;

460 }

461 setvstate (src, state[src] + DORMANT);

462 setvstate (dest, newstate);

463 }

464 }

465 /*

466 * If the source is the centre... Since the centre is

467 * the only vertex with more than one out-edge, this is

468 * the only case where an active vertex might not update

469 * anything.

470 */

471 else

472 {

473 int delta = 0;

474 int dest = 0;

475 int leaf = localrandom() % L;

476

477 dest = localrandom() % M;

478

479 if ((ISMUTANT(CENTRE)) && dest >= resmut[leaf])

480 {

481 resmut[leaf]++;

482 resmuts++;

483 if (resstate[leaf] == ACT_MUT)

484 delta = r;

485 else

486 delta = -q;

487 }

488 else if (!ISMUTANT(CENTRE) && dest < resmut[leaf])

489 {

490 resmut[leaf]--;

22

491 resmuts--;

492 if (resstate[leaf] == ACT_MUT)

493 delta = -r;

494 else

495 delta = q;

496 }

497 if (delta != 0)

498 incresfit (leaf, delta);

499 }

500 }

501 } /* End of inner simulation loop. */

502

503 /*

504 * Statistics collection.

505 */

506 if (numinstate[ACT_MUT] + numinstate[DOR_MUT] + resmuts == 0)

507 extinctions++;

508 else

509 fixations++;

510

511 /*

512 * Report progress every 10 trials and at the end.

513 */

514 if (t % 10 == 0 || t == TRIALS) {

515 if (isatty (1)) {

516 printf ("\b"

517 "\b"

518 "\b");

519 }

520 printf ("t=%-10d Nfix=%-10d Next=%-10d Pfix=%-1.4f ",

521 t, fixations, extinctions, fixations/(double)t);

522

523 if (!isatty (1)) {

524 printf ("\n");

525 }

526 }

527 }

528

529 printf ("\n");

530

531 return 0;

532 }

References

[1] V. C. Barbosa, R. Donangelo, and S. R. Souza. Early appraisal of
the fixation probability in directed networks. Physical Review Series
E, 82(4):046114, 2010.

23

