
Discrete Applied Mathematics 159 (2011) 1131–1147

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Vertex splitting and the recognition of trapezoid graphs
George B. Mertzios a,∗, Derek G. Corneil b
a Caesarea Rothschild Institute for Computer Science, University of Haifa, Israel
b Department of Computer Science, University of Toronto, Toronto, Canada

a r t i c l e i n f o

Article history:
Received 7 October 2009
Received in revised form 21 November
2010
Accepted 15 March 2011
Available online 21 April 2011

Keywords:
Trapezoid graphs
Permutation graphs
Recognition
Vertex splitting
Polynomial algorithm

a b s t r a c t

Trapezoid graphs are the intersection family of trapezoids where every trapezoid has a
pair of opposite sides lying on two parallel lines. These graphs have received considerable
attention and lie strictly between permutation graphs (where the trapezoids are lines)
and cocomparability graphs (the complement has a transitive orientation). The operation
of ‘‘vertex splitting’’, introduced in (Cheah and Corneil, 1996) [3], first augments a given
graph G and then transforms the augmented graph by replacing each of the original graph’s
vertices by a pair of new vertices. This ‘‘splitted graph’’ is a permutation graph with special
properties if and only if G is a trapezoid graph. Recently vertex splitting has been used
to show that the recognition problems for both tolerance and bounded tolerance graphs
is NP-complete (Mertzios et al., 2010) [11]. Unfortunately, the vertex splitting trapezoid
graph recognition algorithm presented in (Cheah and Corneil, 1996) [3] is not correct. In
this paper, we present a newway of augmenting the given graph and using vertex splitting
such that the resulting algorithm is simpler and faster than the one reported in (Cheah and
Corneil, 1996) [3].

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Consider two parallel horizontal lines, L1, the upper line and L2, the lower line. Various intersection graphs can be defined
on objects formed with respect to these two lines. In particular, for permutation graphs, the objects are line segments
that have one endpoint on L1 and the other on L2. Generalizing to objects that are trapezoids with one interval on L1
and the opposite interval on L2, we define the trapezoid graphs. Between these two classes of graphs lie the PI (for Point-
Interval) graphs where the objects are triangles with one point of the triangle on L1 and the other two points of the triangle
on L2 and PI∗ graphs where again the objects are triangles, but now there is no restriction on which line contains one
point of the triangle and which line contains two [5]. In particular, permutation graphs are strictly contained in PI graphs,
which are strictly contained in PI∗ graphs, which are strictly contained in trapezoid graphs; examples illustrating the strict
containments are presented in [2]. Note that a similar definition holds for parallelogram graphs.

The fastest algorithm for determining whether a given graph G is a trapezoid graph, and finding an intersection
representation if G is trapezoid, uses a transitive orientation algorithm and requires O(n2) time [8]; see [12] for an overview.
This algorithm appeared in 1994 and uses the fact that G is a trapezoid graph if and only if the complement of G has interval
dimension 2, and ‘‘takes a transitive orientation algorithm for the complement ofG and turns the trapezoid graph recognition
problem into a chain cover problem (by way of interval dimension 2)’’ [12]. In 1996, an O(n3) algorithm appeared [3] that
was ‘‘conceptually simpler, easier to code and entirely graph theoretical’’. Unfortunately, there are nontrivial errors in [3]
(as pointed out in [10]; see [11]), which seem to permeate the algorithm presented in [3].

∗ Corresponding author. Fax: +972 492418022216.
E-mail addresses:mertzios@cs.technion.ac.il (G.B. Mertzios), dgc@cs.utoronto.ca (D.G. Corneil).

0166-218X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2011.03.023

http://dx.doi.org/10.1016/j.dam.2011.03.023
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:mertzios@cs.technion.ac.il
mailto:dgc@cs.utoronto.ca
http://dx.doi.org/10.1016/j.dam.2011.03.023

1132 G.B. Mertzios, D.G. Corneil / Discrete Applied Mathematics 159 (2011) 1131–1147

The key idea used in [3] is that of ‘‘vertex splitting’’, which replaces every vertex v ofGwith two vertices v1, v2. Intuitively,
if G is a trapezoid graph with a representation R, this splitting can be considered as a replacement of the trapezoid Tv

representing v in R by two trivial trapezoids, namely lines, that represent v1 and v2. Then the given graph G is a trapezoid
graph if and only if the graph G′ produced by vertex splitting is a permutation graph with a specific property.

Although the algorithm reported in [3] is not correct, the concept of vertex splitting has been successfully used in [11]
where it is shown that the recognition of tolerance and bounded tolerance graphs is NP-complete, thereby settling a long
standing open question. Their proof uses the fact that a graph is a bounded tolerance graph if and only if it is a parallelogram
graph [7,1].

In the present paper, although we also use a vertex splitting approach as in [3], we do so in a very different context. In
particular, both before and after splitting we augment the current graph by adding some new vertices and edges. By doing
so, we establish structural properties that are needed in the trapezoid recognition algorithm. Our algorithm develops a
newway of employing the linear time transitive orientation algorithm of McConnell and Spinrad [9] to show that the graph
constructed by these augmentations and splitting is a permutation graphwith specific properties. Our trapezoid recognition
algorithm is simpler than the one reported in [3] and runs in O(n(n+m)) time rather than O(n3).

The paper is organized as follows. Background definitions and facts about trapezoid graphs are presented in Section 2,
followed by the introduction of Augmentation in Section 3 that adds four new vertices for each vertex of the given graph G.
Once a graph has been augmented, it is then split (in Section 4), whereby each vertex of the original graph G is replacedwith
two new vertices. In Section 5, the notion of ‘‘T-orienting’’ is introduced which plays a key role in the trapezoid recognition
algorithm presented in Section 6. Section 6 also contains the analysis of the running time of this algorithm, followed by
concluding remarks in Section 7.

2. Trapezoid graphs and representations

In this section we investigate several properties of trapezoid graphs and their representations. In particular, we define
the notion of a standard trapezoid representation with respect to a specific vertex. These properties of trapezoid graphs, as
well as the notion of a standard trapezoid representation will then be used for our trapezoid graph recognition algorithm.

Let R be a trapezoid representation of a trapezoid graph G = (V , E), where for any vertex u ∈ V , the trapezoid
corresponding to u in R is denoted by Tu. Since trapezoid graphs are also cocomparability graphs (there is a transitive
orientation of the complement) [6], we can define the partial order (V ,≪R), such that u≪R v, or Tu≪R Tv , if and only if
uv ∉ E and Tu lies completely to the left of Tv in R. In a given trapezoid representation R of a trapezoid graph G, we denote by
l(Tu) and r(Tu) the left and the right lines of Tu in R, respectively. Similarly, we use the relation≪R for the lines l(Tu) and r(Tu),
e.g. l(Tu)≪R r(Tv) means that the line l(Tu) lies to the left of the line r(Tv) in R. Moreover, if the trapezoids of all vertices of
a subset S ⊆ V lie completely to the left (resp. right) of the trapezoid Tu in R, we write R(S)≪R Tu (resp. Tu≪R R(S)). Note
that there are several trapezoid representations of a particular trapezoid graph G. Given one such representation R, we can
obtain another one R′ by vertical axis flipping of R, i.e. R′ is the mirror image of R along an imaginary line perpendicular to
L1 and L2. In the rest of the paper, given a trapezoid representation R, we will use extensively this operation of vertical axis
splitting of R.

In an arbitrary graph G = (V , E), let u ∈ V and U ⊆ V . Then, N(u) = {v ∈ V : uv ∈ E} is the set of adjacent vertices of u
in G,N[u] = N(u)∪ {u}, and N(U) =

u∈U N(u) \ U . If N(U) ⊆ N(W) for two vertex subsets U andW , then U is said to be

neighborhood dominated by W . The relationship of neighborhood domination is clearly transitive. Let C1, C2, . . . , Cω be the
connected components of G \ N[u] and Vi = V (Ci), i = 1, 2, . . . , ω. For simplicity of the presentation, we will identify in
the sequel the component Ci and its vertex set Vi, i = 1, 2, . . . , ω. For i = 1, 2, . . . , ω, the neighborhood domination closure
of Vi with respect to u is the set Du(Vi) = {Vp : N(Vp) ⊆ N(Vi), p = 1, 2, . . . , ω} of connected components of G \ N[u]. The
closure complement of the neighborhood domination closure Du(Vi) is the set D∗u(Vi) = {V1, V2, . . . , Vω} \ Du(Vi).

For a subset S ⊆ {V1, V2, . . . , Vω}, a component Vi of S is called maximal, if there is no component Vj ∈ S, such that
N(Vi) ⊂ N(Vj). Furthermore, we denote by V (S) the vertices of G that belong to the components of S, i.e. V (S) = ∪Vi∈S Vi. A
connected component Vi of G \ N[u] is called a master component of u, if Vi is a maximal component of {V1, V2, . . . , Vω}.

Lemma 1. Let G be a simple graph, let u be a vertex of G, and let V1, V2, . . . , Vω, ω ≥ 1, be the connected components of
G \ N[u]. If Vi is a master component of u, such that D∗u(Vi) ≠ ∅, then D∗u(Vj) ≠ ∅ for every component Vj ∈ {V1, V2, . . . , Vω}.

Proof. Since D∗u(Vi) ≠ ∅, it follows that Du(Vi) ⊂ {V1, V2, . . . , Vω}. Suppose that there exists a component Vj ∈

{V1, V2, . . . , Vω} \ {Vi}, such that D∗u(Vj) = ∅. Then, Du(Vi) ⊂ Du(Vj) = {V1, V2, . . . , Vω}, which is a contradiction, since
Vi is a master component of u. Thus, D∗u(Vj) ≠ ∅ for every component Vj ∈ {V1, V2, . . . , Vω}. �

The following two lemmas will be used in our analysis below.

Lemma 2. Let R be a trapezoid representation of the trapezoid graph G, and let Vi be a master component of u, such that
R(Vi)≪R Tu. Then, Tu≪R R(Vj) for every Vj ∈ D∗u(Vi).

Proof. Suppose otherwise that R(Vj)≪R Tu, for some Vj ∈ D∗u(Vi). We note that if Vj, Vk are two arbitrary distinct connected
components of G\N[u], then R(Vj) and R(Vk) do not overlap. First consider the case where R(Vj)≪R R(Vi)≪R Tu. Then, since

G.B. Mertzios, D.G. Corneil / Discrete Applied Mathematics 159 (2011) 1131–1147 1133

a b

Fig. 1. (a) A trapezoid graph G and (b) a trapezoid representation of G.

Vi lies between Vj and Tu in R, all trapezoids that intersect with Tu and Vj, must also intersect with Vi. Thus, N(Vj) ⊆ N(Vi)
in G, i.e. Vj ∈ Du(Vi), which is a contradiction, since Vj ∈ D∗u(Vi). Consider now the case, where R(Vi)≪R R(Vj)≪R Tu. Then,
we obtain similarly that N(Vi) ⊆ N(Vj) in G, and thus, N(Vi) = N(Vj), since Vi is a master component of u. However, since
Vj ∈ D∗u(Vi), it follows that N(Vj) ⊈ N(Vi), which is a contradiction. Thus, Tu≪R R(Vj) for any component Vj of D∗u(Vi). �

We caution the reader that D∗u(Vi) = ∅ does not mean that there is a trapezoid representation R, such that all connected
components of G \ N[u] lie on the same side of Tu in R. To see this, consider the trapezoid graph G of Fig. 1. In this example,
the connected components of G \ N[u] are V1 = {v1}, V2 = {v2}, and V3 = {v3}. Then, V2 is a master component of u, since
N(V1) = {u1},N(V2) = {u1, u2}, and N(V3) = {u2}. Now, Du(V2) = {V1, V2, V3} and D∗u(V2) = ∅, while V1 and V3 must lie
on opposite sides of Tu in every trapezoid representation of G.

Lemma 3. Let R be a trapezoid representation of the trapezoid graph G. Let Vi be amaster component of u and let Vj be amaximal
component of D∗u(Vi). Then, N(Vj) = N(V (D∗u(Vi))).

Proof. By possibly performing a vertical axis flipping of R, wemay assumewithout loss of generality that R(Vi)≪R Tu. Then,
Lemma 2 implies that Tu≪R R(D∗u(Vi)), i.e. that the trapezoids of every component Vk ∈ D∗u(Vi) lie to the right of Tu in R.
Now let Vk be the leftmost connected component of G \ N[u] in R, which lies to the right of Tu in R. That is, for every other
component Vk′ ≠ Vk of G \ N[u] that lies to the right of Tu in R, we have Tx≪R Tx′ for all trapezoids Tx and Tx′ of Vk and Vk′ ,
respectively. It is easy to see that N(Vℓ) ⊆ N(Vk), for every other connected component Vℓ of G \ N[u] to the right of Tu in
R. Suppose that Vk ∈ Du(Vi). Then, N(Vk) ⊆ N(Vi), and thus, N(Vℓ) ⊆ N(Vi) for every component Vℓ of G \ N[u] to the right
of Tu in R. It follows that Vℓ ∈ Du(Vi) for all these components Vℓ, which is a contradiction, since in particular Vj ∈ D∗u(Vi) by
the assumption. Thus, Vk ∈ D∗u(Vi). Since Tu≪R R(Vk)≪R R(Vℓ) for every connected component Vℓ ≠ Vk of G \ N[u] to the
right of Tu in R, it is easy to see that N(Vℓ) ⊆ N(Vk), for all such components Vℓ. Thus, Vk is a maximal component of D∗u(Vi),
i.e. N(Vk) = N(V (D∗u(Vi))). Finally, since Vj is also a maximal component of D∗u(Vi), it follows that N(Vj) = N(Vk), and thus,
N(Vj) = N(V (D∗u(Vi))). This proves the lemma. �

Let N0(u) = {v ∈ N(u) : N(v) ⊆ N[u]} be the set of neighbors of u that are adjacent only to neighbors of u and to u itself.
If ω = 0, i.e. if V = N[u], then let N1(u) = N2(u) = N12(u) = ∅. Suppose for the following two definitions that ω ≥ 1. In
the rest of the paper, we say that a vertex v is ‘‘adjacent to a connected component Vi of G \ N[u]’’ if v is adjacent to at least
one vertex of Vi. Similarly, we say that v is ‘‘adjacent to the set Du(Vi) (resp. D∗u(Vi)) of components’’ if v is adjacent to at least
one component Vj ∈ Du(Vi) (resp. Vj ∈ D∗u(Vi)).

Definition 1. Let u be a vertex of a graph G. Let Vi be a master component of u, such that D∗u(Vi) ≠ ∅. Then, the vertices of
N(u) \ N0(u) are partitioned into three possibly empty sets:
1. N1(u): vertices adjacent to Vi and not to D∗u(Vi).
2. N2(u): vertices adjacent to D∗u(Vi) and not to Vi.
3. N12(u): vertices adjacent to both Vi and D∗u(Vi).

Note that every neighbor w ∈ N(u) \ N0(u) is adjacent to Du(Vi) or to D∗u(Vi). Furthermore, every w ∈ N(u) \ N0(u) that
is adjacent to Du(Vi) is also adjacent to Vi, and thus, in Definition 1, the sets N1(u),N2(u) and N12(u) indeed partition the set
N(u) \ N0(u).

Definition 2. Let u be a vertex of a graph G. Let Vi be a master component of u, such that D∗u(Vi) = ∅. Then, N2(u) = ∅, and
the vertices of N(u) \ N0(u) are partitioned into two possibly empty sets:
1. N1(u) = {v ∈ N(Vi) : N0(u) ⊈ N(v)}.
2. N12(u) = {v ∈ N(Vi) : N0(u) ⊆ N(v)}.

Note that, if D∗u(Vi) = ∅, i.e. if Du(Vi) = {V1, V2, . . . , Vω}, then every neighbor w ∈ N(u) \ N0(u) is also a neighbor of
the component Vi. Thus, in Definition 2, the sets N1(u) and N12(u) indeed partition the set N(u) \ N0(u). Henceforth, any
reference to the sets N1(u),N2(u),N12(u) is understood to be with respect to some master component Vi, cf. Definitions 1
and 2.

Lemma 4. Let G = (V , E) be a graph, where |V | = n and |E| = m, and let u ∈ V . Then a master component Vi of u, as well as
the related sets N0(u),N1(u),N2(u) and N12(u) can be computed in O(n+m) time.

1134 G.B. Mertzios, D.G. Corneil / Discrete Applied Mathematics 159 (2011) 1131–1147

Proof. Let V = {v1, v2, . . . , vn} be an enumeration of the vertices of G, such that v1 = u and the neighbors of u are stored in
the first deg(u) positions after v1. That is, v1 = u and N(u) = {vk : 2 ≤ k ≤ deg(u)+ 1} in this enumeration. The connected
components V1, V2, . . . , Vω of G \ N[u] can be computed in O(n + m) time by breadth or depth first search. We will use a
linked list to store N(Vj) for each j, and will record |N(Vj)| as vertices are added to N(Vj). Furthermore, for each vertex v in
N(u)wewillmaintain a linked list of the indices of connected components, which are adjacent to v, i.e. which contain at least
one neighbor of v. Also, each such list has an end of list pointer aswell as a variable len(v) indicating the current length of the
list. After appropriate initializations, we will examine each connected component in order V1, V2, . . . , Vω and the adjacency
list for each vertex in the given connected component. Suppose we are examining edge vhvk where vh ∈ Vj, 1 ≤ j ≤ ω. If
k > deg(u)+ 1 (i.e. vk ∉ N(u)), then ignore this edge; otherwise look at vk’s list. If the last element of this list is not j, then
add vk to N(Vj), increment |N(Vj)|, add j to vk’s list and increment len(vk). Note that all of these operations can be charged
to edges of G, and thus our computation is bounded by O(n+m).

To find a master component Vi it suffices to choose a Vi that maximizes |N(Vj)|, 1 ≤ j ≤ ω. Furthermore, N0(u) = {v ∈
N(u) : len(v) = 0}. These sets can be computed in O(n) time.

We now compute D∗u(Vi), the indices of connected components not in Du(Vi). First we create a 0–1 vector of length
|N(u)| to store themembership ofN(Vi) and allow constant time determination ofmembership. Now examine all connected
components Vj other than Vi and scan the N(Vj) list. If at any time an element is encountered that is not in N(Vi) then stop
the scan of the N(Vj) list and place such a j in D∗u(Vi). Again, by charging edges, this can be done in O(n+m) time.

The set N(D∗u(Vi)) =

Vj∈D∗u(Vi)
N(Vj) can now be computed in O(n+m) time by scanning all components whose indices

are in D∗u(Vi) and forming a 0–1 vector of length |N(u)| to store the membership of this set. In the case where D∗u(Vi) ≠ ∅,
we can now compute the sets N1(u),N2(u), and N12(u) in O(n) time, since

N1(u) = N(Vi) \ N(D∗u(Vi))

N2(u) = N(D∗u(Vi)) \ N(Vi)

N12(u) = N(Vi) ∩ N(D∗u(Vi))

by Definition 1. Now consider the case where D∗u(Vi) = ∅. Look at all edges vjvk, where vj ∈ N0(u) and for each such edge
(except vju), increment d(vk), initialized to 0 (note that d(vk) stores |N(vk) ∩ N0(u)|). According to Definition 2,

N12(u) = {vk ∈ N(u) : d(vk) = |N0(u)|}
N1(u) = N(Vi) \ N12(u)
N2(u) = ∅.

This can all be done in O(n+m), thereby completing the lemma. �

Now,we define the notion of a standard trapezoid representationwith respect to a particular vertex of a trapezoid graph,
which is crucial for our recognition algorithm.

Definition 3. Let G be a trapezoid graph and let u be a vertex of G. A trapezoid representation R of G is called standard with
respect to u, if:

1. the line l(Tu) intersects exactly with the trapezoids of N1(u) ∪ N12(u) in R, and
2. the line r(Tu) intersects exactly with the trapezoids of N2(u) ∪ N12(u) in R.

Lemma 5. Let G be a trapezoid graph, and let u be a vertex of G. Then, there exists a standard trapezoid representation of G with
respect to u.

Proof. Let R be a trapezoid representation of G. Let V1, V2, . . . , Vω be the connected components of G \ N[u]. If ω = 0, then
V (G) = N[u] and N1(u) = N2(u) = N12(u) = ∅. In this case, we canmove in R the left line l(Tu) (resp. the right line r(Tu)) to
the left (resp. right), such that all endpoints of the trapezoids corresponding to vertices of G\{u} lie between l(Tu) and r(Tu).
Then, the resulting trapezoid representation R′ satisfies both conditions of Definition 3, and thus, R′ is a standard trapezoid
representation of G with respect to u. Suppose now that ω ≥ 1, and let Vi be a master component of u. Furthermore let
NX (uk), X ∈ {1, 2, 12}, be the sets defined in Definitions 1 and 2 corresponding to the master component Vi. By possibly
performing a vertical axis flipping of R, wemay assumewithout loss of generality that R(Vi)≪R Tu. Denote byD1(u, R) (resp.
D2(u, R)) the set of trapezoids that lie to the left (resp. right) of Tu in R.

Now consider any connected componentVk ofG\N[u], such thatR(Vi)≪R R(Vk)≪R Tu.Wewill prove thatN(Vi) = N(Vk).
Indeed, since Vk lies between Vi and Tu in R, all trapezoids that intersect with Tu and Vi, must also intersect with Vk, and thus,
N(Vi) ⊆ N(Vk). Now, N(Vi) = N(Vk), since Vi is a master component of u, i.e. we may assume without loss of generality that
Vi is the rightmost component of D1(u, R). Thus, N1(u)∪N12(u) is exactly the set of neighbors of u, that are adjacent to some
trapezoids of D1(u, R).

Denote for the purposes of the proof by px and qx the endpoints on L1 and L2, respectively, of the left line l(Tx) of an
arbitrary trapezoid Tx in R. Suppose thatN0(u)∪N2(u) ≠ ∅. Let pv and qw be the leftmost endpoints on L1 and L2, respectively,
of the trapezoids of N0(u)∪ N2(u), and suppose that pv < pu and qw < qu. Let v and w be the vertices of N0(u)∪ N2(u) that
realize the endpoints pv and qw , respectively. Note that, possibly, v = w. Then, all vertices x, for which Tx has an endpoint

G.B. Mertzios, D.G. Corneil / Discrete Applied Mathematics 159 (2011) 1131–1147 1135

a

b

Fig. 2. The movement of the left line l(Tu) of the trapezoid Tu to the left, in the case where D∗u(Vi) ≠ ∅, in order to construct the trapezoid representation
R′ from R.

Fig. 3. The movement of the endpoints of the trapezoids of N12(u) to the right, in the case where D∗u(Vi) = ∅, in order to construct the trapezoid
representation R′′′ from R′′ .

between pv and pu on L1 (resp. between qw and qu on L2) are adjacent to u. Indeed, suppose otherwise that Tx ∩ Tu = ∅, for
such a vertex x. Then, since Tv ∩ Tu ≠ ∅ (resp. Tw ∩ Tu ≠ ∅), it follows that Tx ∩ Tv ≠ ∅ (resp. Tx ∩ Tw ≠ ∅). However,
since Tx ∩ Tu = ∅, and since Tx has an endpoint to the left of Tu in R, it follows that Tx≪R Tu, i.e. Tx ∈ D1(u, R), and thus,
v ∈ N1(u) ∪ N12(u) (resp. w ∈ N1(u) ∪ N12(u)), which is a contradiction.

We now construct a trapezoid representation R′ of G from R, by moving both endpoints pu and qu of l(Tu) directly before
pv and qw on L1 and L2, respectively. Then, all trapezoids that correspond to vertices of N0(u) ∪ N2(u) lie to the right of the
line l(Tu) in R′. Since u is adjacent to all vertices x, for which Tx has an endpoint between pv and pu on L1, or between qw

and qu on L2 in R, the resulting representation R′ is a trapezoid representation of G. Furthermore, since the trapezoids of
N1(u)∪ N12(u) intersect with Tu and with some trapezoids of D1(u, R), they must intersect with the line l(Tu), and thus, the
first condition of Definition 3 is satisfied. Note that, in the case where pv > pu (resp. qw > qu), we do not move the point
pu (resp. qu) in the above construction, while in the case where N0(u) ∪ N2(u) = ∅, we define R′ = R. An example of the
construction of R′ for the case where D∗u(Vi) ≠ ∅ is given in Fig. 2 (for the case where D∗u(Vi) = ∅, the construction of R′ is
the same). In this example, v ∈ N0(u), w ∈ N2(u), z ∈ N1(u), and y ∈ N12(u).

Recall that R′ satisfies the first condition of Definition 3. In the following, we construct another trapezoid representation
R′′ (resp. R′′′) from R′ in the case where D∗u(Vi) ≠ ∅ (resp. D∗u(Vi) = ∅), which also satisfies the second condition of
Definition 3. Thus, R′′ (resp. R′′′) is a standard trapezoid representation of Gwith respect to u.

Suppose first that D∗u(Vi) ≠ ∅, and let Vj be a maximal component of D∗u(Vi). Due to Lemma 3, N(Vj) = N(D∗u(Vi)), i.e.
N2(u) ∪ N12(u) is exactly the set of neighbors of u, that are adjacent to some trapezoids of D2(u, R). If R′ is not a standard
trapezoid representation with respect to u, then we move (similarly to the construction of R′ from R) the right line r(Tu) of
Tu to the right, thus obtaining a trapezoid representation R′′ of G, in which the second condition of Definition 3 is satisfied.
Since, during the construction of R′′ by R′, only the line r(Tu) is possibly moved to the right, the first condition of Definition 3
is satisfied for R′′ as well. Thus, R′′ is a standard representation of Gwith respect to u.

Suppose now that D∗u(Vi) = ∅. Then, N2(u) = ∅ by Definition 2. Similarly to the construction of the trapezoid
representation R′ from R, wemove in R′ the right line r(Tu) possibly to the right, directly after the endpoints of the trapezoids
of N0(u) on L1 and L2. The resulting trapezoid representation R′′ of G satisfies the first condition of Definition 3, while

1136 G.B. Mertzios, D.G. Corneil / Discrete Applied Mathematics 159 (2011) 1131–1147

Fig. 4. The augmentation of the vertex ui of G in the augmented graph G∗(ui).

all trapezoids that correspond to vertices of N0(u) lie to the left of the line r(Tu) in R′′. Since R′′(Vi)≪R′′ Tu, and due to
Definition 2, for every vertex v ∈ N1(u) there exists at least one vertex w ∈ N0(u), such that Tv≪R′′ Tw . Thus, since
R′′(N0(u))≪R′′ r(Tu), it follows that Tv≪R′′ r(Tu) for every vertex v ∈ N1(u).

Furthermore, due to Definition 2, N0(u) ⊆ N(v) for every vertex v ∈ N12(u). Now consider a vertex v ∈ N12(u) and a
vertex z ∈ N(Vi), such that Tv≪R′′ Tz . Suppose, for the sake of contradiction, that N0(u) ⊈ N(z). Then, since R′′(Vi)≪R′′ Tu,
there exists a vertex w ∈ N0(u), such that Tz≪R′′ Tw . Thus, since Tv≪R′′ Tz , it follows that Tv≪R′′ Tw . This is a contradiction,
since every vertex v ∈ N12(u) is adjacent to all vertices w ∈ N0(u). Thus, N0(u) ⊆ N(z), i.e. z ∈ N12(u). Therefore, we can
move the endpoints of the trapezoids ofN12(u) appropriately to the right, such that they all intersect the line r(Tu), and such
that no new adjacency is introduced and all old adjacencies are preserved. The resulting trapezoid representation R′′′ of G
satisfies both conditions of Definition 3, and thus, R′′′ is a standard representation of Gwith respect to u. An example of the
construction of R′′′ from R′′ is given in Fig. 3. In this example, w, w′ ∈ N0(u), x ∈ N1(u), and v, z ∈ N12(u). �

3. An augmenting algorithm

In this section we present the Algorithm Augment-All, which takes as input an arbitrary undirected graph G with n
vertices and augments it to a graph G∗ with 5n vertices. The constructed graph G∗ has the property (see Lemma 11) that for
every vertex ui, i = 1, 2, . . . , n, of the original graph G, there exists a master component Vj of ui in G∗ such that D∗ui(Vj) ≠ ∅.
The graph G∗ will serve as the basis for the vertex splitting described in the next section. We now define the augmented
graph G∗(ui) for an arbitrary graph G and a vertex ui of G.

Definition 4. Let ui be a vertex of a graph G. The augmented graph G∗(ui) of G with respect to ui is defined as follows:
1. V (G∗(ui)) = V (G) ∪ {ui,1, ui,2, ui,3, ui,4},
2. E(G∗(ui)) = E(G)∪{uiui,1, ui,1ui,2, uiui,3, ui,3ui,4}∪{ui,1x, ui,2x : x ∈ N1(ui)∪N12(ui)}∪{ui,3x, ui,4x : x ∈ N2(ui)∪N12(ui)}.

The vertices ui,1, ui,2, ui,3, ui,4 are the augmenting vertices of ui.

Note that, by Definition 4, {ui,2} and {ui,4} are two connected components of G∗(ui) \ NG∗(ui)[ui].

Lemma 6. Let G be an arbitrary graph and let ui be a vertex of G. The graph G∗(ui) is trapezoid if and only if G is trapezoid.
Proof. Suppose that G∗(ui) is a trapezoid graph. Then, since G is an induced subgraph of G∗(ui), and since the trapezoid
property is hereditary, it follows that G is a trapezoid graph as well.

Now suppose that G is a trapezoid graph. Then, by Lemma 5 there exists a standard trapezoid representation R of G
with respect to ui. Therefore, it follows by Definition 3 that the left line l(Tui) of Tui intersects exactly with the trapezoids
of N1(ui) ∪ N12(ui) in R, while the right line r(Tui) of Tui intersects exactly with the trapezoids of N2(ui) ∪ N12(ui) in R. We
can add to R four trivial trapezoids (i.e. lines) ℓ(ui,1), ℓ(ui,2), ℓ(ui,3) and ℓ(ui,4), as follows: ℓ(ui,2) (resp. ℓ(ui,4)) is parallel
with l(Tui) (resp. to r(Tui)) to its left (resp. right), and lies arbitrarily close to l(Tui) (resp. to r(Tui)). Furthermore, ℓ(ui,1) (resp.
ℓ(ui,3)) intersects both l(Tui) and ℓ(ui,2) (resp. both r(Tui) and ℓ(ui,4)), and lies arbitrarily close to them.

An example of this construction is illustrated in Fig. 4. Note that, in the resulting trapezoid representation, the line ℓ(ui,2)
(resp. the line ℓ(ui,4)) intersects with exactly the same trapezoids as the left line l(Tui) (resp. the right line r(Tui)) of Tui . That
is, ℓ(ui,2) (resp. ℓ(ui,4)) intersectswith ℓ(ui,1) (resp. with ℓ(ui,3)), aswell aswith the trapezoids ofN1(ui)∪N12(ui) (resp. with
the trapezoids ofN2(ui)∪N12(ui)). Furthermore, recall by construction that the line ℓ(ui,1) (resp. ℓ(ui,3)) lies arbitrarily close
to the lines l(Tui) and ℓ(ui,2) (resp. to the lines r(Tui) and ℓ(ui,4)). Therefore, in the resulting trapezoid representation, ℓ(ui,1)
intersects with l(Tui) and ℓ(ui,2), as well as with the trapezoids ofN1(ui)∪N12(ui). Similarly, ℓ(ui,3) intersects with r(Tui) and
ℓ(ui,4), as well as with the trapezoids of N2(ui)∪N12(ui). Thus, it follows by Definition 4 that the resulting representation is
a trapezoid representation of G∗(ui), and thus G∗(ui) is a trapezoid graph. This completes the proof of the lemma. �

Lemma 7. Let ui be a vertex of a graph G. Then, {ui,2} and {ui,4} aremaster components of ui in G∗(ui). Furthermore, D∗ui({ui,2}) ≠

∅ and D∗ui({ui,4}) ≠ ∅ in G∗(ui).

Proof. For simplicity reasons, in the proof we will denote the neighborhood NG∗(ui)(U) of a vertex set U in G∗(ui) by
N(U). Let V1, V2, . . . , Vω be the connected components of G \ NG[ui]. The connected components of G∗(ui) \ N[ui] are
{ui,2}, {ui,4}, V1, V2, . . . , Vω . Suppose that {ui,2} (resp. {ui,4}) is not a master component of ui in G∗(ui). Then, there exists

G.B. Mertzios, D.G. Corneil / Discrete Applied Mathematics 159 (2011) 1131–1147 1137

a connected component V0 of G∗(ui) \ N[ui], such that N({ui,2}) ⊂ N(V0) (resp. N({ui,4}) ⊂ N(V0)), and thus, ui,1 ∈ N(V0)
(resp. ui,3 ∈ N(V0)). By the construction of G∗(ui), there exists no connected component V0 ∈ {V1, V2, . . . , Vω, {ui,4}}, such
that ui,1 ∈ N(V0). Similarly, there exists no connected componentV0 ∈ {V1, V2, . . . , Vω, {ui,2}}, such that ui,3 ∈ N(V0), which
is a contradiction. Thus, {ui,2} and {ui,4} are master components of ui in G∗(ui). Finally, since ui,1 ∈ N({ui,2}) \ N({ui,4}) and
ui,3 ∈ N({ui,4}) \ N({ui,2}), it follows that {ui,4} ∈ D∗ui({ui,2}) ≠ ∅ and that {ui,2} ∈ D∗ui({ui,4}) ≠ ∅ in G∗(ui). This proves the
lemma. �

After augmenting a vertex ui of G, obtaining the graph G∗(ui), we can continue by augmenting an arbitrary vertex of
V (G)\{ui} in G∗(ui). This process can be repeated |V (G)| times, until all vertices of V (G) have been augmented, as presented
in Algorithm Augment-All. The resulting graph G∗ has 5|V (G)| vertices, since at every iteration of Algorithm Augment-All
we add four new augmenting vertices. Note that in this algorithm, we choose an arbitrary ordering by which we augment
the vertices of V (G). It is worth mentioning here that, using different such orderings, Algorithm Augment-All may produce
different augmented graphs G∗. However, wewill prove that for any of these orderings, the resulting graph G∗ satisfies some
special properties (cf. Lemmas 9–11) that will be used in Section 4 in order to prove the correctness of Algorithm Split-All.

Algorithm 1 Augment-All.
Input: A graph G with vertex set V = {u1, u2, . . . , un}

Output: Augment every vertex of V to produce G∗

1: G0 ← G
2: for i = 1 to n do
3: Gi ← G∗i−1(ui) {Gi is obtained by augmenting the vertex ui of Gi−1}
4: G∗ ← Gn
5: return G∗

At every step of Algorithm Augment-All, the graph Gi has, by Definition 4, four more vertices ui,1, ui,2, ui,3, ui,4 than
the previous graph Gi−1. Each of these four new vertices has at most |NGi−1(ui)| + 2 neighbors in Gi, while ui has exactly
|NGi−1(ui)| + 2 neighbors in Gi. Thus, in the graph G∗ = Gn returned by Algorithm Augment-All, every vertex ui of the input
graph G has been replaced by an induced path (ui,2, ui,1, ui, ui,3, ui,4), while every edge uiuj of the input graph G has been
replaced by at most 5 · 5 = 25 edges, i.e. at most all possible edges with one endpoint in {ui, ui,1, ui,2, ui,3, ui,4} and one
endpoint in {uj, uj,1, uj,2, uj,3, uj,4}. Summarizing, the graph G∗ = Gn returned by Algorithm Augment-All has O(n) vertices
and O(m) edges, and thus the same holds for every intermediate graph Gi, i = 1, 2, . . . , n. Therefore, since by Lemma 4 the
sets N0,N1,N2, and N12 for a graph with n vertices andm edges can be computed in O(n+m) time, the next lemma follows.

Lemma 8. Algorithm 1 runs in O(n(n+m)) time.

The following corollary easily follows by repeatedly applying Lemma 6.

Corollary 1. The graph G∗ constructed by Algorithm Augment-All is a trapezoid if and only if the input graph G is a trapezoid.

We now show that in any iteration of Algorithm Augment-All after the ith one, if a vertex is made adjacent to ui,2 it is
also made adjacent to ui,1; furthermore, if a vertex is made adjacent to ui,1 it is also made adjacent to ui and to ui,2.

Lemma 9. Let ui be a vertex of a graph G, and let Gk be the graph constructed at the kth step of Algorithm Augment-All, where
k ≥ i, (i.e. after augmenting vertex ui). Then,

• NGk [ui,2] = NGk [ui,1] \ {ui}

• NGk [ui,1] \ {ui,2} ⊆ NGk [ui].

Proof. The lemma will be proved by induction on k. For k = i the lemma clearly holds, due to the construction of the
augmented graph Gi from Gi−1. Suppose that NGk−1 [ui,2] = NGk−1 [ui,1]\{ui} and that NGk−1 [ui,1]\{ui,2} ⊆ NGk−1 [ui], for some
k ≥ i+ 1. Consider the construction of the augmented graph Gk from Gk−1 at the kth step of Algorithm Augment-All. Let Vj
be a master component of uk in Gk−1, and let NX (uk), X ∈ {1, 2, 12}, be the sets defined in Definitions 1 and 2 corresponding
to the master component Vj.

Case 1.D∗uk(Vj) ≠ ∅ in Gk−1 (cf. Definition 1). Suppose that ui,2 is adjacent in Gk to uk,1 and uk,2 (resp. uk,3 and uk,4), i.e. that
ui,2 ∈ N1(uk) ∪ N12(uk) (resp. ui,2 ∈ N2(uk) ∪ N12(uk)) in Gk−1. Then, ui,2 is adjacent in Gk−1 to uk and to at least one vertex
v that belongs to a connected component of Gk−1 \ NGk−1 [uk], i.e. uk, v ∈ NGk−1(ui,2). It follows by the induction hypothesis
that uk, v ∈ NGk−1 [ui,1], and thus, ui,1 ∈ N1(uk) ∪ N12(uk) (resp. ui,1 ∈ N2(uk) ∪ N12(uk)) in Gk−1. Therefore, ui,1 is adjacent
in Gk to uk,1 and uk,2 (resp. uk,3 and uk,4) as well. Thus, NGk [ui,2] ⊆ NGk [ui,1] \ {ui}.

Now we show that NGk [ui,1] \ {ui} ⊆ NGk [ui,2]. Suppose that ui,1 is adjacent in Gk to uk,1 and uk,2 (resp. uk,3 and uk,4),
i.e. that ui,1 ∈ N1(uk) ∪ N12(uk) (resp. ui,1 ∈ N2(uk) ∪ N12(uk)) in Gk−1. Then, similarly to the previous paragraph, ui,1
is adjacent in Gk−1 to uk and to at least one vertex v that belongs to a connected component of Gk−1 \ NGk−1 [uk], i.e.
uk, v ∈ NGk−1(ui,1). Since NGk−1 [ui,1] \ {ui,2} ⊆ NGk−1 [ui], and since ui,2 ≠ uk, it follows that uk ∈ NGk−1(ui). Thus,

1138 G.B. Mertzios, D.G. Corneil / Discrete Applied Mathematics 159 (2011) 1131–1147

ui ≠ v, i.e. uk, v ∈ NGk−1 [ui,1] \ {ui}. Therefore, it follows by the induction hypothesis that uk, v ∈ NGk−1 [ui,2], and thus,
ui,2 ∈ N1(uk)∪ N12(uk) (resp. ui,2 ∈ N2(uk)∪ N12(uk)) in Gk−1. Therefore, ui,2 is adjacent in Gk to uk,1 and uk,2 (resp. uk,3 and
uk,4) as well. Thus, NGk [ui,1] \ {ui} ⊆ NGk [ui,2]. Summarizing, we obtain that NGk [ui,2] = NGk [ui,1] \ {ui} for the case where
D∗uk(Vj) ≠ ∅.

Furthermore, since uk, v ∈ NGk−1 [ui,2], it follows that ui,2 ∉ {uk, v}. Thus, uk, v ∈ NGk [ui,1] \ {ui,2} ⊆ NGk [ui], and thus,
ui ∈ N1(uk)∪N12(uk) (resp. ui ∈ N2(uk)∪N12(uk)) in Gk−1. Therefore, ui is adjacent in Gk to uk,1 and uk,2 (resp. uk,3 and uk,4)
as well, i.e. NGk [ui,1] \ {ui,2} ⊆ NGk [ui]. This completes the induction step for the case where D∗uk(Vj) ≠ ∅.

Case 2. D∗uk(Vj) = ∅ in Gk−1 (cf. Definition 2). Then, N2(uk) = ∅ in Gk−1. First suppose that ui,2 is adjacent in Gk to uk,1 and
uk,2, i.e. ui,2 ∈ N1(uk) ∪ N12(uk) = NGk−1(uk) \ N0(uk) in Gk−1. Then, ui,2 is adjacent in Gk−1 to uk and to at least one vertex
v that belongs to the master component Vj of uk. Thus, since uk, v ∈ NGk−1(ui,2), it follows by the induction hypothesis that
uk, v ∈ NGk−1 [ui,1], and thus ui,1 ∈ NGk−1(uk) \ N0(uk) = N1(uk) ∪ N12(uk) in Gk−1. Hence, ui,1 is adjacent in Gk to uk,1 and
uk,2 as well.

Now suppose that ui,2 is adjacent in Gk to uk,3 and uk,4, i.e. ui,2 ∈ N12(uk) ⊆ NGk−1(uk) \ N0(uk) in Gk−1. Similarly to the
previous paragraph, ui,1 ∈ NGk−1(uk)\N0(uk) = N1(uk)∪N12(uk) inGk−1 aswell. Furthermore, since ui,2 ∈ N12(uk), it follows
by Definition 2 and by the induction hypothesis that N0(uk) ⊆ NGk−1(ui,2) ⊆ NGk−1 [ui,1]. Since ui,1 ∉ N0(uk),N0(uk) ⊆
NGk−1(ui,1), and therefore, ui,1 is adjacent in Gk to uk,3 and uk,4 as well. Summarizing, we see that NGk [ui,2] ⊆ NGk [ui,1] \ {ui}.

Suppose that ui,1 is adjacent inGk to uk,1 and uk,2, i.e. that ui,1 ∈ N1(uk)∪N12(uk) inGk−1. Then, ui,1 is adjacent inGk−1 to uk
and to at least one vertex v that belongs to the master component Vj of uk, i.e. uk, v ∈ NGk−1(ui,1). Since NGk−1 [ui,1] \ {ui,2} ⊆

NGk−1 [ui], and since ui,2 ≠ uk, it follows that uk ∈ NGk−1(ui). Thus, ui ≠ v, i.e. uk, v ∈ NGk−1 [ui,1] \ {ui} = NGk−1 [ui,2]. It
follows that ui,2 ∈ NGk−1(uk) \ N0(uk) = N1(uk) ∪ N12(uk) in Gk−1. Hence, ui,2 is adjacent in Gk to uk,1 and uk,2 as well.
Furthermore, since uk, v ∈ NGk−1 [ui,2], it follows that ui,2 ∉ {uk, v}. Thus, uk, v ∈ NGk [ui,1] \ {ui,2} ⊆ NGk [ui], and thus,
ui ∈ NGk−1(uk) \ N0(uk) = N1(uk) ∪ N12(uk) in Gk−1. Hence, ui is adjacent in Gk to uk,1 and uk,2 as well.

Now suppose that ui,1 is adjacent in Gk to uk,3 and uk,4, i.e. that ui,1 ∈ N12(uk) ⊆ NGk−1(uk) \ N0(uk) in Gk−1.
Similarly to the previous paragraph, ui,2, ui ∈ NGk−1(uk) \ N0(uk) = N1(uk) ∪ N12(uk) in Gk−1 as well. Furthermore, it
follows by Definition 2 that N0(uk) ⊆ NGk−1(ui,1). By the induction hypothesis, and since ui,2, ui ∉ N0(uk), we see that
N0(uk) ⊆ NGk−1 [ui,1] \ {ui} = NGk−1 [ui,2] and N0(uk) ⊆ NGk−1 [ui,1] \ {ui,2} ⊆ NGk−1 [ui]. That is, N0(uk) ⊆ NGk−1(ui,2) and
N0(uk) ⊆ NGk−1(ui). Therefore,ui,2, ui ∈ N12(uk) inGk−1, i.e.ui,2 andui are adjacent inGk touk,3 anduk,4 aswell. Summarizing,
we have shown that NGk [ui,2] = NGk [ui,1] \ {ui} and NGk [ui,1] \ {ui,2} ⊆ NGk [ui]. This proves the induction step in the case
where D∗uk(Vj) = ∅. �

The following lemma is symmetric to Lemma 9.

Lemma 10. Let ui be a vertex of a graph G, and let Gk be the graph constructed at the kth step of Algorithm Augment-All, where
k ≥ i, i.e. after augmenting vertex ui. Then,

• NGk [ui,4] = NGk [ui,3] \ {ui}

• NGk [ui,3] \ {ui,4} ⊆ NGk [ui].

We can now obtain the following lemma, which extends Lemma 7.

Lemma 11. Let ui be a vertex of a graph G. Then, {ui,2} and {ui,4} aremaster components of ui in G∗. Furthermore, D∗ui({ui,2}) ≠ ∅

and D∗ui({ui,4}) ≠ ∅ in G∗.

Proof. Consider the graphG∗ = Gn computed byAlgorithmAugment-All, and let ui be a vertex ofG. For simplicity reasons, in
the proof wewill denote the neighborhoodNG∗(U) of a vertex setU in G∗ byN(U). Suppose first that {ui,2} (resp. {ui,4}) is not
a connected component of G∗ \N[ui]. Then, since ui,2 (resp. ui,4) is not adjacent to ui in G∗, there must be at least one vertex
v of G∗, that is adjacent to ui,2 (resp. ui,4) and not to ui in G∗. However, since v ∉ {ui, ui,2, ui,4}, and since v ∈ N[ui,2] (resp.
v ∈ N[ui,4]), it follows by Lemma9 (resp. Lemma10) that v ∈ N[ui,1]\{ui, ui,2} ⊆ N[ui] (resp. v ∈ N[ui,3]\{ui, ui,4} ⊆ N[ui]),
i.e. that v is adjacent to ui in G∗, which is a contradiction. Thus, {ui,2} (resp. {ui,4}) is a connected component of G∗ \ N[ui].

Now suppose that {ui,2} (resp. {ui,4}) is not a master component of ui in G∗. Then, there exists a connected component
V0 ≠ {ui,2} (resp. V0 ≠ {ui,4}) of G∗ \ N[ui], such that N({ui,2}) ⊂ N(V0) (resp. N({ui,4}) ⊂ N(V0)). Therefore, ui,1 ∈ N(V0)
(resp. ui,3 ∈ N(V0)), i.e. there exists a vertex v ∈ V0, such that v ∈ N[ui,1] (resp. v ∈ N[ui,3]). Thus, since v ≠ ui,2 (resp.
v ≠ ui,4), Lemma 9 (resp. Lemma 10) implies that v ∈ N[ui], i.e. V0 is not a connected component of G∗ \ N[ui], which is a
contradiction. Thus, {ui,2} (resp. {ui,4}) is a master component of ui in G∗. Furthermore, since ui,1 ∈ N({ui,2}) \ N({ui,4}) and
ui,3 ∈ N({ui,4}) \ N({ui,2}), it follows that {ui,4} ∈ D∗ui({ui,2}) ≠ ∅ and that {ui,2} ∈ D∗ui({ui,4}) ≠ ∅ in G∗. This completes the
lemma. �

4. The splitting of a trapezoid graph

In this section we present Algorithm Split-All, which takes as input the augmented graph G∗ with 5n vertices computed
by the Algorithm Augment-All from the input graph G, and computes the graph G# with 6n vertices. This algorithm replaces
every vertex of the input graph G by a pair of new vertices in G#. If the input graph G is a trapezoid, then G# is a permutation
graph with a special structural property.

G.B. Mertzios, D.G. Corneil / Discrete Applied Mathematics 159 (2011) 1131–1147 1139

4.1. A splitting algorithm

In the following definition we state the notion of splitting a vertex in the augmented graph G∗ constructed by Algorithm
Augment-All. The intuition behind this definition is the following. If G is a trapezoid graph with n vertices, then G∗ is a
trapezoid graph with 5n vertices. Given a standard trapezoid representation R∗ of G∗ with respect to a vertex ui ∈ V (G) ⊂
V (G∗), we replace the trapezoid Tui by the two trivial trapezoids in R∗, i.e. lines, l(Tui) and r(Tui). The two new vertices
corresponding to the lines l(Tui) and r(Tui) are denoted by ui,5 and ui,6, respectively.

Definition 5. Let: G be a graph; G∗ be the augmented graph constructed by Algorithm Augment-All from G; ui ∈ V (G) ⊂
V (G∗); and the sets NX (ui) be defined by Definition 1 with respect to the master component {ui,2} of ui in G∗, where
X ∈ {1, 2, 12}. The graph G#(ui) obtained by the vertex splitting of ui in G∗ is defined as follows:

1. V (G#(ui)) = V (G∗) \ {ui} ∪ {ui,5, ui,6},
2. E(G#(ui)) = E[V (G∗) \ {ui}] ∪ {ui,5x : x ∈ N1(ui) ∪ N12(ui)} ∪ {ui,6x : x ∈ N2(ui) ∪ N12(ui)}.

The vertices ui,5 and ui,6 are the derivatives of ui.

After performing the splitting of a vertex ui of G, obtaining the graph G#(ui), we can continue by splitting an arbitrary
vertex vj of V (G)\ {ui} in G#(ui). (Note that to do this further splitting, {uj,2}must still be a master component in G#(ui); this
is proved in Lemma 15.) This process can be repeated |V (G)| times, such that finally all vertices of V (G) have been split, as
presented in Algorithm Split-All. Note that, similarly to AlgorithmAugment-All, also in this algorithmwe choose an arbitrary
ordering by which we split the vertices of V (G). However, given the graph G∗ as input, the graph G# computed by Algorithm
Split-All is the same for any of these orderings. Intuitively, in a trapezoid representation of the augmented graph G∗, every
trapezoid Tui is replaced by its two lines ℓ(ui,5) and ℓ(ui,6), which intersect in the resulting trapezoid representation exactly
with the same trapezoids as the lines ℓ(ui,2) and ℓ(ui,4), respectively.

Algorithm 2 Split-All.
Input: The graph G∗ constructed by Algorithm Augment-All from G, where V (G) = {u1, u2, . . . , un}

Output: The graph G# obtained by splitting every vertex of V (G) in G∗; also, the initial values of the setsNi, i = 1, 2, . . . , n,
which will be used in Algorithm 3

1: H0 ← G∗
2: for i = 1 to n do
3: Hi ← H#

i−1(ui) {Hi is obtained by the vertex splitting of ui of Hi−1}
4: Ni ← N0(ui) in Hi−1 {these sets will be used in Algorithm 3}
5: G#

← Hn
6: return G#, {Ni, 1 ≤ i ≤ n}

At every step of Algorithm Split-All, the vertex ui of the graph Hi−1 is replaced by its two derivatives ui,5, ui,6 in Hi by
Definition 5. Therefore, since the input graph G∗ has 5n vertices, the graph G#

= Hn returned by Algorithm Split-All has in
total 6n vertices. At the ith step of the algorithm, each of the two new vertices ui,5, ui,6 ofHi has atmost |NHi−1(ui)| neighbors
in Hi. Since at every step of Algorithm Split-All, one vertex is replaced by two new ones, the number of edges in the graph
G#
= Hn returned by the algorithm is not greater than four times the number of edges in the input graph G∗. Thus, since

the input graph G∗ has O(m) edges, the resulting graph G# also has in total O(m) edges. Therefore, since by Lemma 4 the
sets N0,N1,N2, and N12 for a graph with n vertices andm edges can be computed in O(n+m) time, the next lemma follows
similarly to Lemma 8.

Lemma 12. Algorithm Split-All runs in O(n(n+m)) time.

Similarly to Lemma 9, we obtain the following lemma.

Lemma 13. Let ui be a vertex of a graph G, and let Hk be the graph constructed at the kth step of Algorithm Split-All, where
0 ≤ k ≤ i− 1, i.e. before the splitting of vertex ui. Then

• NHk [ui,2] = NHk [ui,1] \ {ui}

• NHk [ui,1] \ {ui,2} ⊆ NHk [ui].

Proof. The lemma will be proved by induction on k. For k = 0 the lemma clearly holds due to Lemma 9, and since
H0 = G∗ = Gn. Suppose that NHk [ui,2] = NHk [ui,1] \ {ui} and NHk−1 [ui,1] \ {ui,2} ⊆ NHk−1 [ui], for some 1 ≤ k ≤ i − 1,
i.e. before the splitting of vertex ui. Consider the construction of the split graph Hk from Hk−1 at the kth step of Algorithm
Split-All; Hk has the new vertices uk,5, uk,6 instead of the vertex uk in Hk−1. Similarly to the proof of Lemma 9, let Vj be a
master component of uk in Hk−1, and let NX (uk), X ∈ {1, 2, 12}, be the sets defined in Definitions 1 and 2 corresponding to
the master component Vj.

1140 G.B. Mertzios, D.G. Corneil / Discrete Applied Mathematics 159 (2011) 1131–1147

Case 1. D∗uk(Vj) ≠ ∅ in Hk−1 (cf. Definition 1). Suppose that ui,2 is adjacent in Hk to uk,5 (resp. uk,6), i.e. that ui,2 ∈

N1(uk) ∪ N12(uk) (resp. ui,2 ∈ N2(uk) ∪ N12(uk)) in Hk−1. Then, ui,2 is adjacent in Hk−1 to uk and to at least one vertex v
that belongs to a connected component of Hk−1 \ NHk−1 [uk], i.e. uk, v ∈ NHk−1(ui,2). It follows by the induction hypothesis
that uk, v ∈ NHk−1 [ui,1], and thus, ui,1 ∈ N1(uk) ∪ N12(uk) (resp. ui,1 ∈ N2(uk) ∪ N12(uk)) in Hk−1. Therefore, ui,1 is adjacent
in Hk to uk,5 (resp. uk,6) as well. Thus, NHk [ui,2] ⊆ NHk [ui,1] \ {ui}.

To prove the other direction of this set inclusion, we first suppose that ui,1 is adjacent in Hk to uk,5 (resp. uk,6), i.e.
that ui,1 ∈ N1(uk) ∪ N12(uk) (resp. ui,1 ∈ N2(uk) ∪ N12(uk)) in Hk−1. Then, similarly to the previous paragraph, ui,1
is adjacent in Hk−1 to uk and to at least one vertex v that belongs to a connected component of Hk−1 \ NHk−1 [uk], i.e.
uk, v ∈ NHk−1(ui,1). Since NHk−1 [ui,1] \ {ui,2} ⊆ NHk−1 [ui], and since ui,2 ≠ uk, it follows that uk ∈ NHk−1(ui). Thus,
ui ≠ v, i.e. uk, v ∈ NHk−1 [ui,1] \ {ui}. Therefore, it follows by the induction hypothesis that uk, v ∈ NHk−1 [ui,2], and thus,
ui,2 ∈ N1(uk) ∪ N12(uk) (resp. ui,2 ∈ N2(uk) ∪ N12(uk)) in Hk−1. Therefore, ui,2 is adjacent in Hk to uk,5 (resp. uk,6) as well.
Thus, NHk [ui,1] \ {ui} ⊆ NHk [ui,2]. Summarizing, NHk [ui,2] = NHk [ui,1] \ {ui} for the case where D∗uk(Vj) ≠ ∅.

Furthermore, since uk, v ∈ NHk−1 [ui,2], it follows that ui,2 ∉ {uk, v}. Thus uk, v ∈ NHk [ui,1] \ {ui,2} ⊆ NHk [ui], and thus
ui ∈ N1(uk) ∪ N12(uk) (resp. ui ∈ N2(uk) ∪ N12(uk)) in Hk−1. Therefore ui is adjacent in Hk to uk,5 (resp. uk,6) as well, i.e.
NHk [ui,1] \ {ui,2} ⊆ NHk [ui]. This completes the induction step for the case where D∗uk(Vj) ≠ ∅.

Case 2. D∗uk(Vj) = ∅ in Hk−1 (cf. Definition 2). Then, N2(uk) = ∅ in Hk−1. First suppose that ui,2 is adjacent in Hk to uk,5,
i.e. ui,2 ∈ N1(uk) ∪ N12(uk) = NHk−1(uk) \ N0(uk) in Hk−1. Then, ui,2 is adjacent in Hk−1 to uk and to at least one vertex v
that belongs to the master component Vj of uk. Thus, since uk, v ∈ NHk−1 [ui,2], it follows by the induction hypothesis that
uk, v ∈ NHk−1 [ui,1], and thus ui,1 ∈ NHk−1(uk) \ N0(uk) = N1(uk) ∪ N12(uk) in Hk−1. Hence ui is adjacent in Hk to uk,5 as well.

Now suppose that ui,2 is adjacent in Hk to uk,6, i.e. ui,2 ∈ N12(uk) ⊆ NHk−1(uk) \ N0(uk) in Hk−1. Similarly to the previous
paragraph, ui,1 ∈ NHk−1(uk) \ N0(uk) = N1(uk) ∪ N12(uk) in Hk−1 as well. Furthermore, since ui,2 ∈ N12(uk), it follows
by Definition 2 and by the induction hypothesis that N0(uk) ⊆ NHk−1(ui,2) ⊆ NHk−1 [ui,1]. Since ui,1 ∉ N0(uk),N0(uk) ⊆
NHk−1(ui,1), and therefore, ui,1 is adjacent in Hk to uk,6 as well. Summarizing, NHk [ui,2] ⊆ NHk [ui,1] \ {ui}.

Suppose that ui,1 is adjacent inHk to uk,5, i.e. that ui,1 ∈ N1(uk)∪N12(uk) inHk−1. Then ui,1 is adjacent inHk−1 to uk and to at
least one vertex v that belongs to themaster component Vj of uk, i.e. uk, v ∈ NHk−1(ui,1). SinceNHk−1 [ui,1]\{ui,2} ⊆ NHk−1 [ui],
and since ui,2 ≠ uk, it follows that uk ∈ NHk−1(ui). Thus ui ≠ v, i.e. uk, v ∈ NHk−1 [ui,1] \ {ui} = NHk−1 [ui,2] by the induction
hypothesis. It follows that ui,2 ∈ NHk−1(uk) \ N0(uk) = N1(uk) ∪ N12(uk) in Hk−1. Hence ui,2 is adjacent in Hk to uk,5 as well.
Furthermore, since uk, v ∈ NHk−1 [ui,2], it follows that ui,2 ∉ {uk, v}. Thus uk, v ∈ NHk [ui,1] \ {ui,2} ⊆ NHk [ui], and thus,
ui ∈ NHk−1(uk) \ N0(uk) = N1(uk) ∪ N12(uk) in Hk−1. Hence ui is adjacent in Hk to uk,5 as well.

Now suppose that ui,1 is adjacent in Hk to uk,6, i.e. that ui,1 ∈ N12(uk) ⊆ NHk−1(uk) \ N0(uk) in Hk−1. Similarly to the
previous paragraph, ui,2, ui ∈ NHk−1(uk) \ N0(uk) = N1(uk)∪ N12(uk) in Hk−1 as well. Furthermore it follows by Definition 2
that N0(uk) ⊆ NHk−1(ui,1). By the induction hypothesis, and since ui,2, ui ∉ N0(uk), we see that N0(uk) ⊆ NHk−1 [ui,1] \ {ui} =

NHk−1 [ui,2] and N0(uk) ⊆ NHk−1 [ui,1] \ {ui,2} ⊆ NHk−1 [ui]. That is, N0(uk) ⊆ NHk−1(ui,2) and N0(uk) ⊆ NHk−1(ui), since
ui,2, ui ∉ N0(uk). Therefore ui,2, ui ∈ N12(uk) in Hk−1, i.e. ui,2 and ui are adjacent in Hk to uk,6 as well. Summarizing,
NHk [ui,2] = NHk [ui,1] \ {ui} and NHk [ui,1] \ {ui,2} ⊆ NHk [ui]. This proves the induction step in the case where D∗uk(Vj) = ∅. �

The following lemma is symmetric to Lemma 13.

Lemma 14. Let ui be a vertex of a graph G, and let Hk be the graph constructed at the kth step of Algorithm Split-All, where
0 ≤ k ≤ i− 1, i.e. before the splitting of vertex ui. Then

• NHk [ui,4] = NHk [ui,3] \ {ui}

• NHk [ui,3] \ {ui,4} ⊆ NHk [ui].

Recall by Definition 5 that the notion of splitting a vertex ui is well-defined if there exists a master component {ui,2} of ui
(with one vertex), such that D∗ui({ui,2}) ≠ ∅ (cf. Definition 1). In the next lemma (which extends Lemma 11) we prove that
the notion of vertex splitting is well-defined at every step of Algorithm Split-All, i.e. that Algorithm Split-All is well-defined.

Lemma 15. Let ui be a vertex of a graph G, and let Hk be the graph constructed at the kth step of Algorithm Split-All, where
0 ≤ k ≤ i − 1, i.e. before the splitting of vertex ui. Then {ui,2} and {ui,4} are master components of ui in Hk. Furthermore
D∗ui({ui,2}) ≠ ∅ and D∗ui({ui,4}) ≠ ∅ in Hk.

Proof. For k = 0 the lemmaholds clearly due to Lemma11, and sinceH0 = G∗. Now consider the graphHk constructed at the
kth step of AlgorithmSplit-All, where 1 ≤ k ≤ i−1, i.e. before the splitting of vertex ui. For simplicity reasons, in the proofwe
will denote the neighborhoodNHk(U) of a vertex set U inHk byN(U). First suppose that {ui,2} (resp. {ui,4}) is not a connected
component ofHk \N[ui]. Then, since ui,2 (resp. ui,4) is not adjacent to ui inHk, theremust be at least one vertex v ofHk, which
is adjacent to ui,2 (resp. ui,4) and not to ui in Hk. However, since v ∉ {ui, ui,2, ui,4}, and since v ∈ N[ui,2] (resp. v ∈ N[ui,4]),
it follows by Lemma 13 (resp. Lemma 14) that v ∈ N[ui,1] \ {ui, ui,2} ⊆ N[ui] (resp. v ∈ N[ui,3] \ {ui, ui,4} ⊆ N[ui]), i.e. that
v is adjacent to ui in Hk, which is a contradiction. Thus {ui,2} (resp. {ui,4}) is a connected component of Hk \ N[ui].

Now suppose that {ui,2} (resp. {ui,4}) is not a master component of ui in Hk. Then there exists a connected component
V0 ≠ {ui,2} (resp. V0 ≠ {ui,4}) of Hk \ N[ui], such that N({ui,2}) ⊂ N(V0) (resp. N({ui,4}) ⊂ N(V0)). Therefore ui,1 ∈ N(V0)
(resp. ui,3 ∈ N(V0)), i.e. there exists a vertex v ∈ V0, such that v ∈ N[ui,1] (resp. v ∈ N[ui,3]). Thus, since v ≠ ui,2 (resp.

G.B. Mertzios, D.G. Corneil / Discrete Applied Mathematics 159 (2011) 1131–1147 1141

v ≠ ui,4), Lemma 13 (resp. Lemma 14) implies that v ∈ N[ui], i.e. V0 is not a connected component of Hk \ N[ui], which is a
contradiction. Thus {ui,2} (resp. {ui,4}) is a master component of ui in Hk. Furthermore, since ui,1 ∈ N({ui,2}) \ N({ui,4}) and
ui,3 ∈ N({ui,4}) \ N({ui,2}), it follows that {ui,4} ∈ D∗ui({ui,2}) ≠ ∅ and that {ui,2} ∈ D∗ui({ui,4}) ≠ ∅ in Hk. This completes the
lemma. �

Sincewe split every vertex ofG exactly once inG∗, and sinceG∗ has 5n vertices, where |V (G)| = n, the graphG# computed
by Algorithm Split-All has 6n vertices. Furthermore, if the input graph G is a trapezoid, then G# is a permutation graph, cf.
Theorem 1. Indeed, in this case G∗ is also a trapezoid graph, where the trapezoids corresponding to the augmenting vertices,
i.e. the vertices ofV (G∗)\V (G), are trivial (lines), and at every iteration a trapezoid Tui is replaced by the two trivial trapezoids
(lines) l(Tui) and r(Tui). Denote by R# the resulting permutation representation of G#. In the following, we will specify which
of the 6n lines in R# lie between the lines corresponding to the vertex derivatives ui,5, ui,6 of a vertex ui of G.

4.2. The computation of the intermediate lines

In this section, we present Algorithm Intermediate-Lines that updates the sets {Ni} initialized in Algorithm Split-All
(Algorithm 2). If G is a trapezoid graph (and thus G# is a permutation graph), then as shown in Lemma 17, for each
i = 1, . . . , n,Ni contains the vertices of G# whose corresponding lines lie between ui,5 and ui,6 in R#. For simplicity reasons,
we may identify in the sequel the vertices of G# with the corresponding lines in R#.

Algorithm 3 Intermediate-lines.

Input: The splitted graph G#, and for each i = 1, . . . , n the setNi computed in Algorithm Split-All.
Output: The updated setNi, for each i = 1, . . . , n. If G is trapezoid, then {Ni} satisfies Lemma 17.

1: for i = 1 to n− 1 do
2: for j = i+ 1 to n do
3: if uj,2 ∈ Ni then
4: Ni ← (Ni \ {uj}) ∪ {uj,5}

5: if uj,4 ∈ Ni then
6: Ni ← (Ni \ {uj}) ∪ {uj,6}

7: return Ni, for every i = 1, 2, . . . , n

Since Algorithm Intermediate-Lines iterates for every pair (i, j), 1 ≤ i < j ≤ n, and since (by using the 0–1 membership
vectors used in the proof of Lemma 4) every iteration can be computed in constant time, the next lemma follows easily.

Lemma 16. Algorithm Intermediate-Lines runs in O(n2) time.

Lemma 17. Let G be a trapezoid graph on n vertices, let G# be the graph computed by Algorithm Split-All, and let R# be a
representation of G#. For every i = 1, 2, . . . , n, the lines that lie between the derivatives ui,5 and ui,6 in R# correspond to the
vertices of the set Ni computed by Algorithm Intermediate-Lines.

Proof. Let G be a trapezoid graph and let G∗ be the trapezoid graph constructed by Algorithm Augment-All (Algorithm 1).
LetHi, i = 1, 2, . . . , n be the trapezoid graph constructed at the ith iteration of Algorithm Split-All (Algorithm 2), (i.e. vertex
ui has just been split) where H0 = G∗. For the purposes of the proof, denote by Ri−1, i = 1, 2, . . . , n, a standard trapezoid
representation of Hi−1 with respect to ui (before the splitting of vertex ui). Furthermore, denote by Ri, i = 1, 2, . . . , n, the
trapezoid representation of Hi, which is obtained from Ri−1, when we replace the trapezoid Tui by the lines l(Tui) and r(Tui)
(during the splitting of vertex ui). Recall that these lines correspond to the derivatives ui,5 and ui,6 of ui of Hi. Algorithm
Intermediate-Lines iterates for every i = 1, 2, . . . , n− 1 and for every j = i+ 1, i+ 2, . . . , n. We letNi,j denote the value ofNi at the end of the jth iteration. We will prove by induction on j that, after the iteration that corresponds to a pair (i, j),Ni,j
is exactly the set of vertices of Hj, whose trapezoids lie between ui,5 and ui,6 in Rj. Due to Lemma 5, it is easy to see that
initially, i.e. for j = i,Ni,i = N0(ui) is the set of vertices of Hi, whose trapezoids lie between the derivatives ui,5 and ui,6 of ui

in Ri (in particular,Nn−1,n is the set of lines that lie between un,5 and un,6 in Rn = R#). This proves the induction basis.
Now suppose thatNi,j−1 is exactly the set of vertices of Hj−1, whose trapezoids lie between the derivatives ui,5 and ui,6 in

Rj−1, for some index j, where i+ 1 ≤ j ≤ n. Consider the standard trapezoid representation Rj−1 of Hj−1 with respect to uj,
which is constructed by the proof of Lemma 5 from Rj−1. By Definition 5, let N1(uj),N2(uj), and N12(uj) be the sets defined
by Definition 1 with respect to the master component {uj,2} of uj in Hj−1. Namely N1(uj) ∪ N12(uj) are those neighbors of
uj in Hj−1 which are also adjacent to uj,2, while N2(uj) ∪ N12(uj) are those neighbors of uj in Hj−1, which are also adjacent
to D∗uj({uj,2}). Due to Lemma 15, {uj,4} is also a master component of uj in Hj−1, while {uj,4} ∈ D∗ui({uj,2}). Thus, Lemma 3
implies that N2(uj) ∪ N12(uj) includes those neighbors of uj in Hj−1 which are also adjacent to uj,4.

1142 G.B. Mertzios, D.G. Corneil / Discrete Applied Mathematics 159 (2011) 1131–1147

Since Rj−1 is a standard trapezoid representation of Hj−1 with respect to uj, it follows by Definition 3 that the line l(Tuj),
which corresponds to the vertex uj,5 (resp. the line r(Tuj), which corresponds to the vertex uj,6) intersects exactly with the
trapezoids of N1(uj)∪ N12(uj) (resp. N2(uj)∪ N12(uj)) in Rj−1. Thus, after replacing in Rj−1 the trapezoid Tuj by its lines l(Tuj)
and r(Tuj), the lines uj,5 and uj,2 (resp. uj,6 and uj,4) ofHj intersect with the same trapezoids in Rj, namely with the trapezoids
of N1(uj) ∪ N12(uj) (resp. N2(uj) ∪ N12(uj)). Furthermore, since uj,5 intersects uj,1 (resp. uj,6 intersects uj,3), and since uj,1
intersects uj,2 (resp. uj,3 intersects uj,4) in Hj, it is easy to see that uj,5 (resp. uj,6) lies between ui,5 and ui,6 in Rj if and only if
uj,2 (resp. uj,4) lies between ui,5 and ui,6 in Rj as well. Thus, after the iteration that corresponds to a pair (i, j),Ni,j is exactly
the set of vertices of Hj, whose trapezoids lie between ui,5 and ui,6 in Rj. This completes the induction step, and thus, the
lemma follows. �

Theorem 1. A graph G on n vertices is a trapezoid graph if and only if the graph G# with 6n vertices constructed by Algorithm
Split-All is a permutation graph, with a permutation representation R#, such that Ni is exactly the set of vertices of G#, whose lines
lie between the vertex derivatives ui,5 and ui,6 in R#, for every i = 1, 2, . . . , n.

Proof. The necessity part of the proof follows by Lemma 17. For the sufficiency part, consider a permutation representation
R# of G#, such that Ni is exactly the set of vertices of G#, whose lines lie between the vertex derivatives ui,5 and ui,6 in R#,
for every i = 1, 2, . . . , n. Let Rn = R#. We construct a trapezoid representation R0 as follows. For every i = n, n− 1, . . . , 1,
we replace in Ri the lines of the vertices ui,5 and ui,6 by a trapezoid Tui defined by these lines, obtaining the trapezoid
representation Ri−1. We will prove by induction on i that Ri is a trapezoid representation of Hi (the graph constructed at
the ith step of Algorithm Split-All), for every i = n, n − 1, . . . , 1, 0, from which it then follows that R0 is a trapezoid
representation of H0. For i = n, Rn = R# is clearly a trapezoid representation of G#

= Hn, since R# is by assumption a
permutation representation of G#. This proves the induction basis.

For the induction step, suppose that Ri is a trapezoid representation of Hi, for some i, where 1 ≤ i ≤ n. All vertices of
Hi other than ui,5 and ui,6 are either uj,k for some j ∈ {1, 2, . . . , n} and k ∈ {1, 2, 3, 4} (i.e. augmenting vertices), or uj,k for
some j ∈ {1, 2, . . . , i − 1} and k ∈ {5, 6} (i.e. other vertex derivatives), or uj for some j ∈ {i + 1, . . . , n} (i.e. vertices of G,
which are unsplit in Hi, and thus are represented by trapezoids in Ri). Consider now an arbitrary vertex v ∉ {ui,5, ui,6} of Hi.
We will distinguish in the following three cases regarding the vertex v.

Case 1. Suppose that v ∈ N1(ui)∪ N2(ui)∪ N12(ui) in Hi−1, i.e. Tv intersects by Definition 5 at least one of the derivatives
ui,5 and ui,6 in Ri. Then, in particular v ∈ NHi−1(ui), and thus Tv correctly intersects the new trapezoid Tui of the trapezoid
representation Ri−1.

Case 2. Suppose that v ∉ N1(ui)∪N2(ui)∪N12(ui) inHi−1, where v is either an augmenting vertex or a derivative of a vertex
uj for some j ≤ i− 1. Then, by the initialization of the set Ni in line 4 of Algorithm Split-All, v ∈ Ni if and only if v ∈ N0(ui)

in Hi−1, since v is neither added to nor removed from Ni by Algorithm Intermediate-Lines. Thus, by our assumption on the
initial permutation representation R#, the line Tv lies between the derivatives ui,5 and ui,6 in Ri if and only if v ∈ N0(ui) in
Hi−1, or equivalently, if and only if v ∈ NHi−1(ui) (since by assumption v ∉ N1(ui)∪N2(ui)∪N12(ui) in Hi−1). Thus, for every
such vertex v of Hi−1, Tv intersects the new trapezoid Tui of the trapezoid representation Ri−1 if and only if v ∈ NHi−1(ui).

Case 3. Suppose that v ∉ N1(ui) ∪ N2(ui) ∪ N12(ui) in Hi−1, where v = uj for some j ≥ i + 1, i.e. v is an unsplit vertex
of Hi. In this case, Tuj does not intersect the derivatives ui,5 and ui,6 in Ri, and thus Tuj either lies to the right or to the left of
both ui,5 and ui,6 in Ri, or lies between ui,5 and ui,6 in Ri.

Case 3a. First suppose that Tuj lies to the right or to the left of both ui,5 and ui,6 in Ri. Then, in particular, it is easy to
see that at least one of the lines of the augmenting vertices uj,1 and uj,3 lies to the right or to the left of both ui,5 and ui,6
in Ri. We will prove that in this case uj ∉ NHi−1(ui). Suppose otherwise that uj ∈ NHi−1(ui). Then, since by assumption
uj ∉ N1(ui)∪N2(ui)∪N12(ui) in Hi−1, it follows that uj ∈ N0(ui) in Hi−1, i.e. every neighbor of uj in Hi−1 is also a neighbor of
ui in Hi−1. Therefore, in particular, both uj,1 and uj,3 are neighbors of ui in Hi−1. Thus, eachw ∈ {uj,1, uj,3} either lies between
the derivatives ui,5 and ui,6 in Ri (in the case where w ∈ N0(ui) in Hi−1, or equivalently w ∈ Ni), or intersects at least one
of the derivatives ui,5 and ui,6 in Ri (in the case where w ∈ N1(ui) ∪ N2(ui) ∪ N12(ui) in Hi−1). This is a contradiction, since
at least one of the lines of the augmenting vertices uj,1 and uj,3 lies to the right or to the left of both ui,5 and ui,6 in Ri, as we
proved above. Therefore, uj ∉ NHi−1(ui) in the case where Tuj lies to the right or to the left of both ui,5 and ui,6 in Ri, and thus
Tuj correctly does not intersect the new trapezoid Tui of the trapezoid representation Ri−1.

Case 3b. Now suppose that Tuj lies between ui,5 and ui,6 in Ri. Then, both uj,5 and uj,6 lie between ui,5 and ui,6 in the
initial permutation representation R#, and thus uj,5, uj,6 ∈ Ni by our assumption on R#. Therefore, in particular, uj,2 ∈ Ni

by Algorithm Intermediate-Lines, and thus also uj,2 ∈ N0(ui) in Hi−1 by the initialization of the set Ni in line 4 of Algorithm
Split-All. That is, uj,2 ∈ NHi−1(ui), or equivalently ui ∈ NHi−1(uj,2). Therefore, since 0 ≤ i− 1 < j− 1, it follows by Lemma 13
that ui ∈ NHi−1(uj,1) and ui ∈ NHi−1(uj). Thus Tuj correctly intersects the new trapezoid Tui of the trapezoid representation
Ri−1.

Summarizing, in the trapezoid representation Ri−1, the new trapezoid Tui intersects exactly with the trapezoids Tv , such
that v ∈ NHi−1(ui), and thus Ri−1 is a trapezoid representation of Hi−1. This completes the induction step. Therefore R0 is a
trapezoid representation of H0 = G∗, i.e. G∗ is a trapezoid graph, and thus G is a trapezoid graph as well by Corollary 1. Then
a trapezoid representation R of G can be obtained by removing from R0 the lines of the vertices ui,1, ui,2, ui,3, ui,4 for every
i = 1, 2, . . . , n. This completes the lemma. �

G.B. Mertzios, D.G. Corneil / Discrete Applied Mathematics 159 (2011) 1131–1147 1143

a b

Fig. 5. (a) A graph G and (b) the graphG(ei) obtained after the deactivation of ei = xiyi with respect to Ni = {ei, {z1}}.

5. T -orientations of graphs

Our trapezoid recognition algorithm interprets the property of permutation graphs stated in Theorem 1 in terms of
transitive orientations. In this section we extend the notion of a transitive orientation of a graph to the notion of a T -
orientation, and in Section 6, we provide an algorithm for computing a T -orientation, if one exists. Recall that a graph is
transitively orientable if and only if it is a comparability graph [6]. For simplicity of the presentation, in this sectionG denotes
an arbitrary graph, and not the input graph discussed in Sections 2–4.We first give some definitions on arbitrary graphs that
will be used in the sequel.

Definition 6. Given an edge e = xy of a graph G = (V , E),N(xy) = {v ∈ V : vx, vy ∈ E} is the set of vertices adjacent to
both x and y in E, andE(xy) = {uv ∈ E : u ∈ N(xy), v ∈ {x, y}} ∪ {xy} is the set of edges with one endpoint inN(xy) and the
other in {x, y}, as well as the edge xy.

Definition 7. Let G = (V , E) be a graph. An edge neighborhood set N = {e,N ′} consists of an edge e = xy ∈ E of G, together
with a vertex subset N ′ ⊆ N(xy).

Definition 8. Let F be a transitive orientation of G = (V , E), and let e = xy ∈ E be an edge of G. The T -interval IF (e) of e is
the vertex set defined as follows:

1. if ⟨xy⟩ ∈ F , then IF (e) = {z ∈ V : ⟨xz⟩, ⟨zy⟩ ∈ F},
2. if ⟨yx⟩ ∈ F , then IF (e) = {z ∈ V : ⟨yz⟩, ⟨zx⟩ ∈ F}.

The T -interval IF (e) of an edge e = xy includes exactly the vertices z of G, whose incident arcs to x and y in F imply the arc
⟨xy⟩ (or ⟨yx⟩) in F by direct transitivity. Note that, by Definition 6, for the T -interval IF (e) of an edge e = xy, IF (e) ⊆ N(xy).

Definition 9. LetNi = {ei,N ′i }, i = 1, 2, . . . , k, be a set of edge neighborhood sets inG. If there exists a transitive orientation
F of G such that IF (e) = N ′i for every i = 1, 2, . . . , k, then F is called a T -orientation on N1,N2, . . . ,Nk, and G is called T -
orientable on these edge neighborhood sets.

In the following we define the notion of deactivating an edge ek of G, where Nk = {ek,N ′k} is an edge neighborhood set in
G. The constructed graphG(ek) has four new vertices and will be used for our trapezoid recognition algorithm.

Definition 10. Let G be a graph and let Ni = {ei,N ′i } be an edge neighborhood set in G, where ei = xiyi. The graphG(ei)
obtained by deactivating the edge ei is defined as follows:

1. V (G(ei)) = V (G) ∪ {ai, bi, ci, di},
2. E(G(ei)) = E(G) ∪ {xiai, aibi, bici, cidi, diyi} ∪ {aiz, biz, ciz, diz : z ∈ N(xiyi) \ N ′i }.

An example of the deactivation operation can be seen in Fig. 5. In this example, z1 ∈ N ′i , z2 ∈ N(xiyi) \ N ′i , w1 ∈

N(xi) \ N(yi), and w2 ∈ N(yi) \ N(xi). For better visibility, the edges ofG(ei) \ E(G) are drawn with dashed lines.

Lemma 18. Let G be a graph and let Ni = {ei,N ′i }, i = 1, 2, . . . , k, be a set of edge neighborhood sets in G. Then, G is T -orientable
on N1,N2, . . . ,Nk if and only if G(ek) is T -orientable on N1,N2, . . . ,Nk−1.

Proof. Let ek = xkyk. Suppose first that the graphG = (V , E) is T -orientable onN1,N2, . . . ,Nk, and let F be a T -orientation of
G on these neighborhood sets. Without loss of generality wemay assume that ⟨xkyk⟩ ∈ F . Wewill extend F to an orientation
F ′ ofG(ek), as follows. First, orient the arcs ⟨xkak⟩, ⟨bkak⟩, ⟨bkck⟩, ⟨dkck⟩ and ⟨dkyk⟩ in F ′. For every z ∈ N(xkyk) \ N ′k, either
⟨zxk⟩, ⟨zyk⟩ ∈ F or ⟨xkz⟩, ⟨ykz⟩ ∈ F . If ⟨zxk⟩, ⟨zyk⟩ ∈ F , then orient the arcs ⟨zak⟩, ⟨zbk⟩, ⟨zck⟩, and ⟨zdk⟩ in F ′; otherwise,
orient the arcs ⟨akz⟩, ⟨bkz⟩, ⟨ckz⟩, and ⟨dkz⟩ in F ′. Note that, for every z ∈ N(xkyk) \ N ′k, the incident arcs of z in F ′ \ F are
either all incoming or all outgoing arcs in F ′. In Fig. 6 the orientation F ′ is illustrated on two small examples.

Wewill prove that the resulting orientation F ′ ofG(ek) is transitive. To this end, consider two arbitrary arcs ⟨uv⟩, ⟨vw⟩ ∈
F ′. We will also prove that ⟨uw⟩ ∈ F ′. We distinguish in the following four cases about the arcs ⟨uv⟩ and ⟨vw⟩.

Case 1. Let ⟨uv⟩, ⟨vw⟩ ∈ F . Then clearly ⟨uw⟩ ∈ F ⊆ F ′, since F is transitive.

1144 G.B. Mertzios, D.G. Corneil / Discrete Applied Mathematics 159 (2011) 1131–1147

a b

Fig. 6. Two examples for the orientation F ′ of the graphG(ei), i = k, of Fig. 5, where ek = xkyk .

Case 2. Let ⟨uv⟩, ⟨vw⟩ ∈ F ′ \ F . Then, v ≠ xk (resp. v ≠ yk), since xk (resp. yk) has only one incident arc in F ′ \ F .
Furthermore, v ∉ N(xkyk) \ N ′k, since by the construction of F ′, the incident arcs to every vertex ofN(xkyk) \ N ′k in F ′ \ F are
either all incoming or all outgoing. Thus, v ∈ {ak, bk, ck, dk}. Now, if u ∈ {xk, bk, dk}, then w must belong to N(xkyk) \ N ′k.
However, by the construction of F ′, and since ⟨vw⟩ ∈ F ′, it follows that ⟨xkw⟩, ⟨bkw⟩, ⟨dkw⟩ ∈ F ′, i.e. ⟨uw⟩ ∈ F ′. Similarly,
if w ∈ {ak, ck, yk}, then u must belong to N(xkyk) \ N ′k. By the construction of F ′, and since ⟨uv⟩ ∈ F ′, it follows that
⟨uak⟩, ⟨uck⟩, ⟨uyk⟩ ∈ F ′, i.e. ⟨uw⟩ ∈ F ′. Finally, if both u, w ∈ N(xkyk) \ N ′k, then by the construction of F ′ we see that
⟨uxk⟩, ⟨xkw⟩ ∈ F , and thus, ⟨uw⟩ ∈ F ⊆ F ′, since F is transitive.

Case 3. Let ⟨uv⟩ ∈ F and ⟨vw⟩ ∈ F ′ \ F . Then, v ∉ {ak, bk, ck, dk}, since ak, bk, ck, dk ∈ V (G) \ V (G), and thus, they have
no incident arcs in F . Furthermore v ≠ yk, since yk has no outgoing arcs in F ′ \ F . Thus, v ∈ {xk} ∪ N(xkyk) \ N ′k. In the
case where v = xk, we see that w = ak, since ⟨xkak⟩ is the only outgoing arc from xk in F ′ \ F . Since ⟨uv⟩ = ⟨uxk⟩ ∈ F ,
it follows that u ∉ N ′k. Furthermore, since ⟨uxk⟩, ⟨xkyk⟩ ∈ F , it follows that ⟨uyk⟩ ∈ F , since F is transitive, and thus, in
particular, uyk ∈ E(G(ek)), i.e. u ∈ N(xkyk). Therefore, u ∈ N(xkyk) \ N ′k. Thus, it follows by the construction of F ′ that
⟨uw⟩ = ⟨uak⟩ ∈ F ′. In the case where v ∈ N(xkyk)\N ′k, it follows thatw ∈ {ak, bk, ck, dk}, since ⟨vak⟩, ⟨vbk⟩, ⟨vck⟩, ⟨vdk⟩ are
the only possible outgoing arcs from w in F ′ \ F . Then, ⟨vxk⟩, ⟨vyk⟩ ∈ F by the construction of F ′, and thus, ⟨uxk⟩, ⟨uyk⟩ ∈ F
as well, since F is transitive. It follows that u ∈ N(xkyk) \ N ′k, and thus, ⟨uw⟩ ∈ F ′.

Case 4. Let ⟨uv⟩ ∈ F ′ \ F and ⟨vw⟩ ∈ F . Then, similarly to Case 3, v ∉ {ak, bk, ck, dk}, since ak, bk, ck, dk ∈ V (G)\V (G), and
thus, they have no incident arcs in F . Furthermore v ≠ xk, since xk has no incoming arcs in F ′\F . Thus, v ∈ {yk}∪N(xkyk)\N ′k.
In the case where v = yk, we see that u = dk, since ⟨dkyk⟩ is the only incoming arc to yk in F ′ \ F . Since ⟨vw⟩ = ⟨ykw⟩ ∈ F ,
it follows that w ∉ N ′k. Furthermore, since ⟨xkyk⟩, ⟨ykw⟩ ∈ F , it follows that ⟨xkw⟩ ∈ F , since F is transitive, and thus, in
particular, xkw ∈ E(G(ek)), i.e. w ∈ N(xkyk). Therefore, w ∈ N(xkyk) \ N ′k. Thus, it follows by the construction of F ′ that
⟨uw⟩ = ⟨dkw⟩ ∈ F ′. In the case where v ∈ N(xkyk) \ N ′k, it follows that u ∈ {ak, bk, ck, dk}, since ⟨akv⟩, ⟨bkv⟩, ⟨ckv⟩, ⟨dkv⟩
are the only possible incoming arcs to v in F ′ \ F . Then ⟨xkv⟩, ⟨ykv⟩ ∈ F by the construction of F ′, and thus ⟨xkw⟩, ⟨ykw⟩ ∈ F
as well, since F is transitive. It follows that w ∈ N(xkyk) \ N ′k, and thus, ⟨uw⟩ ∈ F ′.

Thus the constructed orientation F ′ ofG(ek) is transitive. Since F ⊆ F ′ is a T -orientation of G on N1,N2, . . . ,Nk, it follows
that F ′ is a T -orientation ofG(ek) on N1,N2, . . . ,Nk, and thus also a T -orientation ofG(ek) on N1,N2, . . . ,Nk−1.

Conversely, let ek = xkyk and suppose that F ′ is a T -orientation ofG(ek) on N1,N2, . . . ,Nk−1. We will show that F ′ is also
a T -orientation ofG(ek) on Nk. Without loss of generality we may assume that ⟨xkyk⟩ ∈ F ′. Then, since F ′ is transitive, and
since ykak, xkbk, akck, bkdk, ckyk ∉ E(G(ek)), it follows that ⟨xkak⟩, ⟨bkak⟩, ⟨bkck⟩, ⟨dkck⟩, ⟨dkyk⟩ ∈ F ′. First consider a vertex
z ∈ N ′k. Then, since akz ∉ E(G(ek)), since ⟨xkak⟩ ∈ F ′, and since F ′ is transitive, it follows that ⟨xkz⟩ ∈ F ′. Similarly ⟨zyk⟩ ∈ F ′,
since dkz ∉ E(G(ek)), and since ⟨dkyk⟩ ∈ F ′. Thus ⟨xkz⟩, ⟨zyk⟩ ∈ F ′ for every z ∈ N ′k. Now consider a vertex z ∈ N(xkyk) \ N ′k,
and suppose that ⟨xkz⟩ ∈ F ′ (resp. ⟨zxk⟩ ∈ F ′). Then, since xkck, ckyk ∉ E(G(ek)), and since F ′ is transitive, it follows that
⟨ckz⟩, ⟨ykz⟩ ∈ F ′ (resp. ⟨zck⟩, ⟨zyk⟩ ∈ F ′). Thus for every z ∈ N(xkyk) \ N ′k, either ⟨xkz⟩, ⟨ykz⟩ ∈ F ′, or ⟨zxk⟩, ⟨zyk⟩ ∈ F ′.
Therefore F ′ is also a T -orientation ofG(ek) on Nk. Thus the restriction of F ′ on G is a T -orientation of G on N1,N2, . . . ,Nk.
This completes the lemma. �

After deactivating the edge ek of G, obtaining the graph G(ek), we can continue by deactivating sequentially all edges
ek−1, ek−2, . . . , e1 that correspond to the edge neighborhood sets Nk−1,Nk−2, . . . ,N1, as presented in Algorithm Deactivate-
All. Now the next theorem easily follows by repeatedly applying Lemma 18.

Algorithm 4 Deactivate-All.
Input: An undirected graph Gwith edge neighborhood sets Ni = {ei,N ′i }, i = 1, 2, . . . , k
Output: Deactivate all edges ei, i = 1, 2, . . . , k to produceG
1: Pk+1 ← G
2: for i = k downto 1 do
3: Pi ←Pi+1(ei) {Pi is obtained by deactivating the edge ei in Pi+1}
4: G← P1

5: return G

G.B. Mertzios, D.G. Corneil / Discrete Applied Mathematics 159 (2011) 1131–1147 1145

Theorem 2. Let G be a graph, let Ni = {ei,N ′i }, i = 1, 2, . . . , k, be a set of edge neighborhood sets in G, and let G be the graph
computed from G by Algorithm Deactivate-All. Then, G is T -orientable on N1,N2, . . . ,Nk if and only if G is transitively orientable.

Since at every step of Algorithm 4, the graph Pi has, by Definition 10, four more vertices than the previous graph Pi−1,
and since each of them can have at most n neighbors in Pi, the computation of Pi can be computed in O(n) time. Thus, since
we iterate for every edge neighborhood set Ni, i = 1, 2, . . . , k, the next lemma follows.

Lemma 19. Algorithm 4 runs in O(nk) time, where n is the number of vertices in G.

6. A trapezoid graph recognition algorithm

In this section we complete the interpretation of the property of permutation graphs stated in Theorem 1 in terms of
transitive orientations. This will enable us to recognize efficiently whether the graph constructed by Algorithm Split-All
(Algorithm 2) is a permutation graph with this specific property, or equivalently, due to Theorem 1, whether the original
graph is a trapezoid graph. Recall that the class of permutation graphs is the intersection of the classes of comparability and
cocomparability graphs, and thus, a graph is a permutation graph if and only if its complement is a permutation graph as
well. Furthermore, for every transitive orientation F of the complement G of a permutation graph G, we can construct (in
O(n3) time, see [6]) a permutation representation R of G, such that the line of x lies to the left of the line of y in R if and only
if ⟨xy⟩ ∈ F .

Before presenting the trapezoid recognition algorithm, we establish the relationship between T -orientations and
permutation graph representations.

Theorem 3. Let G be a permutation graph, let ei = xiyi, i = 1, 2, . . . , k, be a set of edges of the complement graph G of G, and
let Ni = {ei,N ′i }, i = 1, 2, . . . , k, be a set of edge neighborhood sets in G. Then there exists a permutation representation R of G,
such that for every i = 1, 2, . . . , k, exactly the lines that correspond to vertices of N ′i lie between the lines of xi and yi in R, if and
only if the complement G is T -orientable on Ni = {ei,N ′i }, i = 1, 2, . . . , k.

Proof. Since ei = xiyi is an edge of G for every i = 1, 2, . . . , k, xi is not adjacent to yi in the complement G of G. Furthermore,
since G is a cocomparability graph (as a permutation graph), we can define for every permutation representation R of G a
transitive orientation FR of the complement G of G, such that ⟨xy⟩ ∈ FR if and only if the line of x lies to the left of the line of y
in R. Then, clearly, the line of a vertex z of G lies in R between the lines of two non-adjacent vertices x and y in G if and only if
either ⟨xy⟩, ⟨xz⟩, ⟨zy⟩ ∈ FR, or ⟨yx⟩, ⟨yz⟩, ⟨zx⟩ ∈ FR. This is equivalent to the fact that z ∈ IFR(xy). Therefore IFR(xiyi) = N ′i for
every i = 1, 2, . . . , k if and only if for every i = 1, 2, . . . , k, exactly the lines that correspond to vertices of N ′i lie between
the lines of xi and yi in R. Thus, if there exists such a permutation representation R of G, then FR is a T -orientation of G on
N1,N2, . . . ,Nk, i.e. G is T -orientable on N1,N2, . . . ,Nk.

Conversely, suppose that G is T -orientable on N1,N2, . . . ,Nk, and let F be a T -orientation of G on these neighborhood
sets. By the definition of a T -orientation, F is in particular a transitive orientation of G. Thus, we can construct a permutation
representation R of the complement graph G of G, such that for any two non-adjacent vertices x and y in G, the line of x
lies to the left of the line of y in R if and only if ⟨xy⟩ ∈ F [6]. Then, clearly, the line of a vertex z lies between the lines
of x and y in R if and only if z ∈ IF (xy). Therefore, since G is T -orientable on N1,N2, . . . ,Nk (i.e. IF (xiyi) = N ′i for every
i = 1, 2, . . . , k), it follows that exactly the lines that correspond to vertices of N ′i lie between the lines of xi and yi in R, for
every i = 1, 2, . . . , k. �

Now, we are ready to present our recognition algorithm of trapezoid graphs. Our algorithm uses an existing algorithm
that we now review. McConnell and Spinrad [9] (see also [12]) developed a linear time algorithm for finding an ordering of
the vertices of a given graph Gwith the property that this ordering is a transitive orientation, if G is a comparability graph. If
the given graph G is not a comparability graph, then the ordering produced by their algorithm is an orientation, but it is not
transitive. The fastest known algorithm to determine whether a given ordering is a transitive orientation requires matrix
multiplication, currently achieved in O(n2.376) [4]. However, similarly to [9], we do not need to confirm that our orderings
are transitive orientations. In particular, as pointed out in [12], given an orientation of a graph G and an orientation of its
complement G, we can check in linear O(n+m) timewhether these two orientations produce a permutation representation
of G, where n and m denote the number of vertices and edges of G, respectively. We now present our trapezoid graph
recognition algorithm (Algorithm 5). The correctness of this algorithm is presented in Theorem 4; the timing analysis is
established in Theorem 5.

Theorem 4. If G is a trapezoid graph, then the Recognition of Trapezoid Graphs Algorithm (Algorithm 5) returns a trapezoid
representation of G. Otherwise, it announces that G is not a trapezoid graph.

Proof. Let G = (V , E) be an undirected graph with vertex set V = {u1, u2, . . . , un}, let G∗ be the graph constructed
by Algorithm Augment-All (Algorithm 1) from G, and G# be the graph constructed by Algorithm Split-All (Algorithm 2).
Let ui,5, ui,6 be the vertex derivatives in G# that correspond to vertex ui, i = 1, 2, . . . , n, in G. Furthermore, let Ni, i =
1, 2, . . . , n, be the set of intermediate vertices of ui,5, ui,6 computed by Algorithm Intermediate-Lines (Algorithm 3).

1146 G.B. Mertzios, D.G. Corneil / Discrete Applied Mathematics 159 (2011) 1131–1147

Algorithm 5 Recognition of Trapezoid Graphs.
Input: An undirected graph G = (V , E) with vertex set V = {u1, u2, . . . , un}

Output: A trapezoid representation of G, or the announcement that G is not a trapezoid graph

1: Construct the augmented graph G∗ from G by Algorithm Augment-All (Alg. 1) {G∗ has 5n vertices}
2: Construct the splitted graph G# from G∗ by Algorithm Split-All (Alg. 2) {G# has 6n vertices}
3: Let ui,5, ui,6, i = 1, 2, . . . , n, be the vertex derivatives in G#

4: Compute the setsNi, i = 1, 2, . . . , n, by Algorithm Intermediate-Lines (Alg. 3)
5: Compute an ordering F1 of G# by [9]
6: Compute the complement G# of G#

7: Compute the edge neighborhood sets Ni = {ui,5ui,6,Ni}, i = 1, 2, . . . , n, in G#

8: Compute the graphG from G# and Ni, i = 1, 2, . . . , n, by Algorithm Deactivate-All (Alg. 4)
9: Compute an ordering F2 ofG by [9]

10: F ′2 ← F2|G# {Compute the restriction of F2 on G#}
11: if the orderings F1 and F ′2 do not represent G# as a permutation graph (see [12]) then
12: return ‘‘G is not a trapezoid graph’’
13: else
14: Compute a permutation representation R# of G# from the orderings F1 and F ′2 by [6]
15: Replace in R# the lines of the derivatives ui,5, ui,6, i = 1, 2, . . . , n, by a trapezoid Tui defined by these lines
16: Remove the lines of the vertices {ui,1, ui,2, ui,3, ui,4}, i = 1, 2, . . . , n
17: Let R be the resulting trapezoid representation
18: if R is a trapezoid representation of G then
19: return R
20: else
21: return ‘‘G is not a trapezoid graph’’

First suppose that G is a trapezoid graph. Then, due to Theorem 1, G# is a permutation graph with a permutation
representation R#, such that Ni is exactly the set of vertices of G#, whose lines lie between the vertex derivatives ui,5 and
ui,6 in R#, for every i = 1, 2, . . . , n. Since G# is a comparability graph (as a permutation graph), the orientation F1 of G#

computed in line 5 of the algorithm is a transitive orientation of G# [9]. Furthermore, in particular, the complement G# of G#

is T -orientable on N1,N2, . . . ,Nn by Theorem 3, where Ni = {ui,5ui,6,Ni}, i = 1, 2, . . . , n, are the edge neighborhood sets
of G# computed in line 7. Therefore,G is transitively orientable by Theorem 2, and thus the orientation F2 ofG computed in
line 9 is transitive [9].

Moreover, due to the sufficiency part of the proof of Lemma 18, F2 is also a T -orientation ofG on N1,N2, . . . ,Nn. Thus,
since G# is an induced subgraph ofG, the restriction F ′2 = F2|G# of F2 to G# is also a T -orientation of G# onN1,N2, . . . ,Nn, and
in particular F ′2 is also a transitive orientation of G#. Therefore, since both F1 and F ′2 are transitive orientations of G# and G#,
respectively, they representG# as a permutation graph (see [12]). Thus, we can compute by [6] a permutation representation
R# of G# from the orderings F1 and F ′2, such that for every i = 1, 2, . . . , n, exactly the lines that correspond to vertices ofNi lie between the lines of ui,5 and ui,6 in R#. Then, similarly to the proof of Theorem 1, we can replace in R# the lines of
the derivatives ui,5 and ui,6, i = 1, 2, . . . , n, by a trapezoid Tui defined by these lines, and remove the lines of the vertices
ui,1, ui,2, ui,3, ui,4, obtaining a trapezoid representation R of G, as returned in line 19.

Now suppose that G is not a trapezoid graph. If either or both of F1 and F ′2 are not transitive orientations of G# and G#,
respectively, then the algorithm correctly concludes in line 12 thatG is not a trapezoid graph. Suppose that F1 and F ′2 are both
transitive orientations of G# and G#, respectively (and thus G# is a permutation graph), but F2 is not a transitive orientation
ofG. Then by Theorems 1–3, G is not a trapezoid graph, as confirmed in line 21 of the algorithm. This completes the proof of
the theorem. �

Theorem 5. Let G = (V , E) be an undirected graph, where |V | = n and |E| = m. Then the Recognition of Trapezoid Graphs
Algorithm (Algorithm 5) runs in O(n(n+m)) time.

Proof. The first two lines of the algorithm each require O(n(n+ m)) time by Lemmas 8 and 12, respectively. Furthermore,
the computation of all the sets Ni, i = 1, 2, . . . , n, can be done in O(n2) time by Lemma 16. The complement G# of G# in
line 6 can clearly be computed in O(n2) time. Then the graphG, which is a supergraph of G#, can be computed in O(n2) time
by Lemma 19, since there are in total k = n edge neighborhood sets Ni = {ui,5ui,6,Ni}, i = 1, 2, . . . , n. As pointed out in
the preamble to the algorithm, we can compute the ordering F1 of G# in line 5 (resp. the ordering F2 ofG in line 9) in linear
time in the size of G# (resp. of G) [9], i.e. in O(n + m) time (resp. in O(n2) time). Moreover, the restriction F2|G# of F2 on
G# can be clearly done in O(n) time, just by removing from F2 all vertices ofG \ G#. Then the permutation representation
R# can be computed in O(n2) time by [6]. The replacement of the lines of the derivatives ui,5 and ui,6 by a trapezoid Tui in

G.B. Mertzios, D.G. Corneil / Discrete Applied Mathematics 159 (2011) 1131–1147 1147

R#, i = 1, 2, . . . , n, as well as the removal of all vertices {ui,1, ui,2, ui,3, ui,4}, i = 1, 2, . . . , n, can be now performed in O(n)
time. Finally, the determination of whether R is a trapezoid representation of the given graph G can be simply done in O(n2)
time, thereby yielding an overall time complexity of O(n(n+m)). �

7. Concluding remarks

In this paperwe have shown that the concept of vertex splitting can be used to recognize trapezoid graphs inO(n(n+m))
time. The algorithm transforms a given graph G into a graph G# that is a permutation graph with a special property if and
only if G is a trapezoid graph. In [11] it was shown that vertex splitting can be used to show that the recognition problems of
tolerance and bounded tolerance graphs are NP-complete. It would be interesting to seewhether vertex splitting can be used
to settle the longstanding questions of the recognition status of both PI and PI∗ graphs. As mentioned in the introduction,
both families lie strictly between permutation and trapezoid graphs.

Acknowledgement

The authors thank Faithful Cheah for his helpful comments in the preparation of this paper. The second author wishes to
thank the Natural Sciences and Engineering Research Council of Canada for financial assistance.

References

[1] K.P. Bogart, P.C. Fishburn, G. Isaak, L. Langley, Proper and unit tolerance graphs, Discrete Applied Mathematics 60 (1–3) (1995) 99–117.
[2] F. Cheah, A recognition algorithm for II-graphs, Ph.D. Thesis, Department of Computer Science, University of Toronto, 1990.
[3] F. Cheah, D.G. Corneil, On the structure of trapezoid graphs, Discrete Applied Mathematics 66 (2) (1996) 109–133.
[4] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions, Journal of Symbolic Computation 9 (3) (1990) 251–280.
[5] D.G. Corneil, P.A. Kamula, Extensions of permutation and interval graphs, in: Proceedings of the 18th Southeastern Conference on Combinatorics,

Graph Theory and Computing, Congressus Numerantium, vol. 58, 1987, pp. 267–275.
[6] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, 2nd ed., in: Annals of Discrete Mathematics, vol. 57, North-Holland Publishing Co.,

2004.
[7] L. Langley, Interval Tolerance Orders and Dimension, Ph.D. Thesis, Dartmouth College, 1993.
[8] T.-H. Ma, J.P. Spinrad, On the 2-chain subgraph cover and related problems, Journal of Algorithms 17 (2) (1994) 251–268.
[9] R.M. McConnell, J.P. Spinrad, Modular decomposition and transitive orientation, Discrete Mathematics 201 (1–3) (1999) 189–241.

[10] G.B. Mertzios, Private communications, 2009.
[11] G.B. Mertzios, I. Sau, S. Zaks, The recognition of tolerance and bounded tolerance graphs, in: Proceedings of the 27th International Symposium on

Theoretical Aspects of Computer Science (STACS), 2010, pp. 585–596.
[12] J.P. Spinrad, Efficient Graph Representations, in: Fields Institute Monographs, vol. 19, American Mathematical Society, 2003.

	Vertex splitting and the recognition of trapezoid graphs
	Introduction
	Trapezoid graphs and representations
	An augmenting algorithm
	The splitting of a trapezoid graph
	A splitting algorithm
	The computation of the intermediate lines

	 T -orientations of graphs
	A trapezoid graph recognition algorithm
	Concluding remarks
	Acknowledgement
	References

