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Placing Regenerators in Optical Networks to Satisfy
Multiple Sets of Requests

George B. Mertzios, Ignasi Sau, Mordechai Shalom, and Shmuel Zaks

Abstract—The placement of regenerators in optical networks
has become an active area of research during the last few years.
Given a set of lightpaths in a network and a positive integer ,
regenerators must be placed in such a way that in any lightpath
there are no more than hops without meeting a regenerator.
The cost function we consider is given by the total number of
regenerators placed at the nodes, which we believe to be a more
accurate estimation of the real cost of the network than the
number of locations considered in the work of Flammini et al.
(IEEE/ACM Trans. Netw., vol. 19, no. 2, pp. 498–511, Apr. 2011).
Furthermore, in our model we assume that we are given a finite
set of possible traffic patterns (each given by a set of lightpaths),
and our objective is to place the minimum number of regenerators
at the nodes so that each of the traffic patterns is satisfied. While
this problem can be easily solved when or , we
prove that for any fixed , it does not admit a PTAS,
even if has maximum degree at most 3 and the lightpaths
have length . We complement this hardness result with a
constant-factor approximation algorithm with ratio . We
then study the case where is a path, proving that the problem is
polynomial-time solvable for two particular families of instances.
Finally, we generalize our model in two natural directions, which
allows us to capture the model of Flammini et al. as a particular
case, and we settle some questions that were left open therein.

Index Terms—Approximation algorithms, hardness of approxi-
mation, optical networks, overprovisioning, regenerators.

I. INTRODUCTION

A. Background

I N MODERN optical networks, high-speed signals are sent
through optical fibers using wavelength division multi-

plexing (WDM) technology. Networks with each fiber typically
carrying around 80 wavelengths are operational, whereas net-
works with a few hundreds of wavelengths per fiber are already
experimental. As the energy of the signal decreases with the
traveled distance, optical amplifiers are required every some
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fixed distance (a typical value being around 100 km). However,
optical amplifiers introduce noise into the signal, so after a
certain number of amplifications, the optical signal needs to
be regenerated in order to keep the signal-to-noise ratio (SNR)
above a specified threshold. In current technology, the signal is
regenerated as follows. A reconfigurable optical add–drop mul-
tiplexer (ROADM) has the capability of inserting/extracting a
given number of wavelengths (typically, around four) to/from
the optical fiber. Then, for each extracted wavelength, an
optical regenerator is needed to regenerate the signal carried
by that wavelength. That is, at a given optical node, one needs
as many regenerators as wavelengths one wants to regenerate.
See Fig. 1 for a simplified illustration of the aforementioned
devices in the case when the network is a path and the fiber
carries three wavelengths.
The problem of placing regenerators in optical networks has

attracted the attention of several recent research works [1]–[8].
Mostly, these articles propose heuristics and run simulations
in order to reduce the number of regenerators, but no theoret-
ical analysis is presented. Recently, the first theoretical study
of the problem has been done by Flammini et al. in [9]. In the
next paragraph, we discuss how our model differs from the one
studied in [9].
Nowadays, the cost of a regenerator is considerably higher

than the cost of an ROADM (as an example, $160 K versus
$50 K). Moreover, the regenerator cost is per wavelength, as
opposed to ROADM cost that is paid once per several wave-
lengths. Therefore, the total number of regenerators seems to
be the right cost to minimize. Another possible criterion is to
minimize the number of locations (that is, the number of nodes)
in which optical regenerators are placed. This measure is the one
assumed in [9], which makes sense when the dominant cost is
given by the setup of new optical nodes, or when the equipment
to be placed at each node is the same for all nodes. Nevertheless,
the total number of regenerators seems to be a more accurate es-
timate of the real cost of the network, and therefore we consider
this cost in this paper.
It is worth mentioning here that when all the connection re-

quests are known a priori, minimizing the number of regenera-
tors is an easy task. Indeed, suppose that the maximum number
of hops a lightpath can make without meeting a regenerator is
an integer (in the example of Fig. 1, we have ). Then,
for each lightpath , we need to place one regenerator every
consecutive vertices in to get an optimal solution.
Unfortunately, when designing a network, it is usually the

case that the traffic requests are not known in advance. For in-
stance, the traffic in a given network may change dramatically
depending on whether in the foreseeable future an Internet sup-
plier or an e-mail storage server opens or closes a site within
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Fig. 1. Simplified optical network: Amplifiers introduce noise into the signal, which needs to be regenerated after at most hops. When the signal is
regenerated through an ROADM, a different regenerator is needed for each wavelength.

the area of the network. In such a situation of uncertain traffic
forecast, a common approach in order to minimize capital ex-
penses is to predeploy (or overprovision) resources [10]–[13].
That is, the network is designed to satisfy several possible traffic
patterns. A similar setting arises in networks in which there are
several possible traffic configurations that alternate according to
some phenomena, like the weather, the season, an overflow of
the capacity of another network, or a breakdown. In that case,
the network must be designed so that it can satisfy each of the
traffic configurations independently.
In our model, we assume that we are given a finite set of
possible traffic patterns (each given by a set of lightpaths), and
our objective is to place the minimum total number of regener-
ators at the nodes so that each of the traffic patterns is satisfied.
That is, the number of regenerators that must be placed at a node
of the network is the maximum of the number of regenerators
needed by any of the traffic patterns at that node. We aim at min-
imizing the total number of regenerators placed at the network.
We formally define the problem in Section I-B.

B. Definitions

Given an undirected underlying graph that cor-
responds to the network topology, a lightpath is a simple path in
. That is, we assume that the routing of the requests is given

(see [9] for complexity results when the routing of the requests is
not given). We also assume that lightpaths sharing an edge use
different wavelengths. That is, we deal with optical networks
without traffic grooming [14].
The length of a lightpath is the number of edges it contains.

We consider symmetric lightpaths, that is, a lightpath with end-
points and consists of a request from to and a request
from to . The internal vertices (resp. edges) of a lightpath or
a path are the vertices (resp. edges) in different from the first
and the last one. Given an integer , a lightpath is -satisfied
if there are no consecutive internal vertices in without a re-
generator. A set of lightpaths is -satisfied if each of its light-
paths is -satisfied. Given sets of lightpaths , with

(that is, is the number of light-
paths in the set ), we consider the union of all lightpaths in the
sets . An assignment

of regenerators is a function , where
if and only if a regenerator is used at vertex by

lightpath .
We study the following problem: Given sets of light-

paths, and a distance , determine the smallest number of
regenerators that -satisfy each of the sets. Formally, for two

fixed integers , the optimization problem we study is
defined as follows.

-TOTAL REGENERATORS ( -TR)

Input: An undirected graph and sets of
lightpaths .

Output: A function s.t. each
lightpath in is -satisfied.

Objective: Minimize , where
.

Note that, as mentioned in Section I-A, in the case
(that is, when there is a single set of requests), the problem is
trivially solvable in polynomial time, as the regenerators can be
placed for each lightpath independently. The case is not
interesting either, as for each internal vertex and each

, , so there is only one feasible solution,
which is optimal.

C. Our Contribution

In this paper, we provide hardness results and approxima-
tion algorithms for the -TOTAL REGENERATORS problem
[ -TR for short]. We first prove in Section III that for any
two fixed integers , -TR does not admit a poly-
nomial-time approximation scheme (PTAS) (see definition in
Section II) unless , even if the underlying graph
has maximum degree at most 3, and the lightpaths have length
at most . In Section IV, we complement this hardness re-
sult with a constant-factor approximation algorithm with ratio

, where is the th harmonic
number. Section V is devoted to the case where the underlying
graph is a path: We prove that -TR is polynomial-time
solvable in paths when all the lightpaths share the first (or the
last) edge, as well as when the maximum number of lightpaths
sharing an edge is bounded. In Section VI, we generalize the
model presented in Section I-B in two natural directions. This
generalization allows us to capture the model of [9] as a par-
ticular case and to settle some complexity issues that were left
open in [9]. (Since we need some further definitions, we defer
the precise statement of these results to Section VI.) Finally,
in Section VII, we conclude the paper and present a number
of interesting avenues for further research. We first provide in
Section II some standard preliminaries.
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II. PRELIMINARIES

We use standard terminology concerning graphs, complexity,
and algorithms; see for instance [15]–[17], respectively.
Graphs: All the graphs considered in this paper are simple

and undirected. Given a graph , we denote by and
the sets of vertices and edges of , respectively. If is a
subgraph of , we denote it by . Given a graph
and , we denote by the subgraph of in-
duced by the edges in together with their endpoints. Given
a subset , we define to be the set of vertices
of at distance at most 1 from at least one vertex of . If

, we simply use the notation . We also define
. The degree of a vertex is

defined as . A graph is cubic if all its ver-
tices have degree 3. The maximum degree of is defined as

. A matching in a graph is a set
of disjoint edges, and a vertex cover is a set of vertices that con-
tains at least one endpoint of every edge. The girth of a graph
is the length of a shortest cycle. Given an edge ,
by subdividing we denote the operation of deleting the edge

, adding a new vertex , and making it adjacent to
both and .
Complexity and Approximation Algorithms: Given an

NP-hard minimization problem , we say that a polyno-
mial-time algorithm is an -approximation algorithm for
, with , if for any instance of , algorithm finds
a feasible solution with cost at most times the cost of an
optimal solution. For instance, a maximal matching constitutes
a 2-approximation algorithm for the MINIMUM VERTEX COVER
problem. In complexity theory, the class Approximable (APX)
contains all NP-hard optimization problems that can be approx-
imated within a constant factor. The subclass PTAS contains the
problems that can be approximated in polynomial time within
a ratio for any fixed . In some sense, these prob-
lems can be considered to be easy NP-hard problems. Since,
assuming , there is a strict inclusion of PTAS in APX
(for instance, MINIMUM VERTEX COVER ), an
APX-hardness result for a problem implies the nonexistence of
a PTAS unless .

III. HARDNESS RESULTS FOR GENERAL GRAPHS

In this section, we prove that, unless , -TR
does not admit a PTAS for any , even if the underlying
graph has maximum degree at most 3 and the lightpaths have
length . Before this, we need two technical results to be
used in the reductions.
MINIMUM VERTEX COVER is known to be APX-hard in cubic

graphs [18]. By a simple reduction, we prove in the following
lemma that MINIMUM VERTEX COVER is also APX-hard in a
class of graphs with degree at most 3 and high girth, which will
be used in the proofs of Proposition 1 and Theorem 1.
Lemma 1: MINIMUM VERTEX COVER is APX-hard in the

class of graphs obtained from cubic graphs by subdividing
each edge twice.

Proof: Given a cubic graph , let be the graph ob-
tained from by subdividing each edge twice. That is, each

edge gets replaced by three edges , , and
, where are two new vertices. We now claim that

(1)

where indicates the size of a minimum vertex cover.
Indeed, let be a vertex cover of . We proceed
to build a vertex cover of of size . First,
include in all the vertices in . Then, for each of the
three edges , , and of corresponding
to edge , the edge is not covered by ,
and at least one of and is covered by . There-
fore, adding either or to covers the three edges ,

, and . This procedure defines a vertex cover
of of size . Conversely, let
be a vertex cover of , and let us construct a vertex cover

of of size at most . We shall see that we
can construct from by decreasing the cardinality of
by at least one for each edge of . Indeed, consider the three
edges , , and of corresponding to an
edge . Note that at least one of and
belongs to . If both , add either or to if
none of was already in . Otherwise, if exactly one of
and (say, ) belongs to , then at least one of and must
also belong to , and do not add any new vertex to .
Note that as is cubic, each vertex in a solution covers

exactly three edges, so .
In order to prove the lemma, assume for contradiction that

there exists a PTAS for MINIMUM VERTEX COVER in . That
is, for any , we can find in polynomial time a solution

such that . By the
above discussion, we can find a solution such that

where we have used (1) and the fact that
. That is, the existence of a PTAS for MINIMUM

VERTEX COVER in the class of graphs would imply the
existence of a PTAS in the class of cubic graphs, which is a
contradiction by [18] unless .
It is known that the edges of any cubic graph can be

two-colored such that each monochromatic connected compo-
nent is a path (of any length) [19]. In fact, solving a conjecture
of Bermond et al. [20], Thomassen proved [21] a stronger
result: The edges of any cubic graph can be two-colored such
that each monochromatic connected component is a path of
length at most 5 [see Fig. 2(a) for an example]. In addition,
the aforementioned colorings can be found in polynomial
time [19], [21]. Note that in such a coloring of a cubic graph,
each vertex appears exactly once as an endpoint of a path, and
exactly once as an internal vertex of another path. We next
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Fig. 2. (a) Two-coloring of the edges of the Petersen graph (gray and black)
such that each monochromatic component is a path of length at most 5. (b) Con-
struction of the lightpaths from a path of length 2 for several values of , in the
proof of Theorem 1. Full dots correspond to vertices of the VERTEX COVER in-
stance (called black in the proof).

show that these results can be easily strengthened for the family
of graphs defined in Lemma 1.
Lemma 2: Let be the class of graphs obtained from cubic

graphs by subdividing each edge twice. The edges of any graph
in can be two-colored in polynomial time such that each
monochromatic connected component is a path of length at
most 2.

Proof: Let be a graph obtained from a cubic
graph by subdividing each edge twice. That is, edge
of gets replaced by three edges , , and
in . Find a two-coloring of the edges of such that each
monochromatic connected component is a path, using [19]
or [21]. To color the edges of , do the following for each
edge of : Color and with the same color
as , and color with the other color. It is then easy
to check that each monochromatic connected component of the
obtained two-coloring of is a path of length at most 2.
We are now ready to announce the main results of this section.

For the sake of presentation, we first present in Proposition 1 the
result for , and then we show in Theorem 1 how to
extend the reduction to any fixed .
Proposition 1: (2, 2)-TR does not admit a PTAS unless
, even if has maximum degree at most 3 and the lightpaths

have length at most 4.
Proof: The reduction is from MINIMUM VERTEX COVER

(VC for short) in the class of graphs obtained from cubic
graphs by subdividing each edge twice, which does not admit a
PTAS by Lemma 1 unless . Note that by construction,
any graph in has girth at least 9. Given a graph as an
instance of VC, we proceed to build an instance of (2, 2)-TR.
We set , so has maximum degree at most 3.
To define the two sets of lightpaths and , let

be the partition of given by the two-coloring of Lemma 2.
Therefore, each connected component of and is a
path of length at most 2. Each such path in (resp. )
will correspond to a lightpath in (resp. ), which we pro-
ceed to define. A key observation is that as the paths of the
two-coloring have length at most 2, if any endpoint of such
a path had one neighbor in , it would create a triangle, a
contradiction to the fact that the girth of is at least 9. There-
fore, as the vertices of have degree 2 or 3, any endpoint of
a path has at least one neighbor in .
We are now ready to define the lightpaths. Let be a path

with endpoints , and let (resp. ) be a neighbor of
(resp. ) in , such that (such distinct
vertices exist because has length at most 2 and has

girth at least 9; in fact, we only need to have girth at least 5).
The lightpath associated with consists of the concatenation of

, , and . Therefore, the length of each lightpath
is at most 4. This completes the construction of the instance of
(2, 2)-TR. Observe that since we assume that , regener-
ators must be placed in such a way that all the internal edges
of a lightpath (that is, all the edges except the first and the last
one) have a regenerator in at least one of their endpoints. We can
assume without loss of generality that no regenerator serves at
the endpoints of a lightpath, as the removal of such regenera-
tors does not alter the feasibility of a solution. Note that in our
construction, each vertex of appears as an internal vertex in
at most two lightpaths, one (possibly) in and the other one
(possibly) in , so we can assume that for any

.
We now claim that

.
Indeed, first let be a vertex cover of . Placing

one regenerator at each vertex belonging to defines a feasible
solution to (2, 2)-TR in with cost , as at least one endpoint
of each internal edge of each lightpath contains a regenerator.
Therefore, .
Conversely, suppose we are given a solution to (2,2)-TR in
using regenerators. Since and are a partition of

and the set of internal edges of the lightpaths in
(resp. ) is exactly (resp. ), the regenerators placed

at the endpoints of the internal edges of the lightpaths constitute
a vertex cover of of size at most . Therefore,

.
Summarizing, since

and any feasible solu-
tion to using regenerators
defines a vertex cover of of size at most , the existence of
a PTAS for (2, 2)-TR would imply the existence of a PTAS
for VERTEX COVER in the class of graphs , which is a
contradiction by Lemma 1, unless .
Theorem 1: -TR does not admit a PTAS for any

and any unless , even if the underlying graph
satisfies and the lightpaths have length at most .

Proof: The case was proved in Proposition 1.
We next prove the result for and arbitrary . Again,
the reduction is from VERTEX COVER in the class of graphs
defined in Lemma 1. Given a graph as instance of
VERTEX COVER, we partition into and according
to the two-coloring given by Lemma 2.
In order to build , we associate a parity to the edges of

as follows. Recall that the vertices of have degree 2 or 3.
From the set of paths given by Lemma 2, we build a set of
paths as follows. If a vertex appears in as an endpoint of
two paths and (necessarily, of different color), we merge
them to build a new longer path and add it to . We orient each
path arbitrarily and define the parity of the edges of
accordingly (the first edge being odd, the second even, and so
on). This defines the parity of all the edges in .
We now subdivide the edges of as follows. We distinguish

two cases depending on the value of , for each .
• If is even, we subdivide times each edge of
(that is, we introduce new vertices for each edge of
).
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• If is odd, we subdivide times each odd edge of
, and times each even edge of .

This completes the construction of . Note that .
We call the vertices of corresponding to vertices of black,
the other ones being white. An example of this construction is
illustrated in Fig. 2(b) for several values of in a path with
two edges. We now have to define the two sets of lightpaths.
Again, each path of (resp. ) will correspond to a
lightpath in (resp. ), but now we have to be more careful
with the first and last edges of the lightpaths. Namely, we will
construct the lightpaths in such a way that the parities of the
corresponding edges of alternate.
Let be a path of the two-coloring of with endpoints

and . We will argue about , and the same procedure applies
to . We distinguish two cases according to the degree of in
. In both cases, we will associate a vertex with
. First, if has degree 2 in , let be the neighbor of in

(recall that as has girth
at least 9). Note that by the definition of the parity of the edges
of , the edge has different parity from the edge of
containing . Otherwise, has degree 3 in , and let and
be the two neighbors of in . By the properties
of the two-coloring given by Lemma 2, and are
two consecutive edges in a path of the two-coloring, hence they
have different parity. Without loss of generality, let have
different parity from the edge of containing . Equivalently,
the same discussion determines another vertex as-
sociated with (note that due to the high girth of ).
Then, the lightpath associated with consists of the con-

catenation of the edges in corresponding to , , and
. This completes the construction of the instance of
-TR. Note that for both even or odd, the length of the

lighpaths is at most . Note also that the case is consis-
tent with the proof of Proposition 1. As in the case , we
now claim that .
Let be a vertex cover of . Place one regen-

erator at each black vertex of corresponding to a vertex in
; this defines a feasible solution to -TR with cost .
Indeed, at least one of every two consecutive black vertices
of each lightpath hosts a regenerator, so the maximum dis-
tance in a lightpath without meeting a regenerator is bounded
by the distance between the first and the last black vertex
in a sequence of three consecutive black vertices, which is
exactly for both even and odd [see Fig. 2(b)]. Therefore,

.
Conversely, given a solution to -TR in using regen-

erators, we perform the following transformation to each light-
path : Let and be two consecutive black vertices in , and
assume that is on the left of in the chosen orientation of the
path corresponding to . If there are any regenerators at the white
vertices between and , we remove them and put a regener-
ator at , if there was no regenerator before. We perform this
operation for any two consecutive black vertices of each light-
path, inductively from right to left. This defines another feasible
solution to -TR in using at most regenerators since
there is no lightpath with two consecutive black vertices without
a regenerator. Indeed, if there were two consecutive black ver-
tices without a regenerator after the described transformation, it
would imply that the original solution was not feasible, a contra-

diction. The latter property implies that the regenerators at the
black vertices constitute a vertex cover of of size at most .
Therefore, .
That is, the existence of a PTAS for -TR would imply

the existence of a PTAS for VERTEX COVER in the class of
graphs , which is a contradiction by Lemma 1, unless
.
For , it suffices to further refine in an arbitrary way the

partition of given by Lemma 2 into sets of edges, which
correspond to the sets of lightpaths. For instance, if , we
can partition [resp. ] into 2 (resp. 3) sets of paths.
Then, the same proof presented above carries over to any .

IV. APPROXIMATION ALGORITHMS FOR GENERAL GRAPHS

We have seen in Section III that -TR does not admit a
PTAS for unless . In this section, we comple-
ment this result with a constant-factor approximation algorithm
for -TR in general graphs.
Theorem 2: For any fixed , there is a polynomial-

time approximation algorithm for the -TR problem with
ratio , where .

Proof: As mentioned in Section I, -TR is
trivially solvable in polynomial time for any . Note
also that any solution to -TR must -satisfy all the
lightpaths in , for . Therefore, for any instance

.

That is,

, so the union of the optima to the
instances defined by the sets , constitutes a
-approximation to -TR.
A better approximation ratio for most values of and can be

obtained by reducing -TR to MINIMUM SET COVER. The
algorithm is simple, so for the sake of intuition we provide a
high-level description rather than a technical one. Indeed, the
universe of objects to be covered is the union of the edges of the
lightpaths in the sets . These edges are covered by re-
generators placed at vertices. Since we assume that the traffic
requests are symmetric, each lightpath can be arbitrarily ori-
ented, and then each regenerator covers edges only on one side.
Namely, each regenerator covers edges of at most lightpaths,
each lighpath belonging to a different set . Each set of the
MINIMUM SET COVER instance is made of a vertex
together with a choice of the covered edges of at most one
lightpath from each that goes through . The number of pos-
sible sets for each is at most , so the total number of
sets is at most , which is polynomial in the
input size since is fixed. Each such set has cost 1, which cor-
responds to the cost of a regenerator placed at a vertex and used
by these lightpaths. Clearly, a set cover of minimum cost corre-
sponds to a placement of the minimum number of regenerators
-satisfying all the lightpaths. The algorithm of [22] achieves
an approximation ratio of , where is the maximum
size of a set and . In our case, each regenerator
covers at most edges of at most lightpaths, so the size of the
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sets is at most . Therefore, the approximation ratio of the
algorithm is at most .
Note that for big , , so comparing

both approximation ratios, we have that when
.

V. CASE OF THE PATH

While our investigation presented in this paper is restricted
to special cases of traffic on the specific network topology of a
path, they are valuable in several ways. As always, studying ele-
mental cases of a problem can give us insights into more general
versions of the problem. It is also true that insight is obtained
by investigating the border of tractability and intractability in
a problem, as we do in this paper. More practically, solution
methods for simple cases can often be used to obtain good so-
lution methods for general cases.
In this section, we focus on the case where the network

topology is a path, which is one of the most studied topologies
in theoretical networking (see for instance [23]–[26]), as well
as one of the most natural and apparently simplest underlying
graphs to study. Our investigations on the path are valuable in
several ways. As always, studying elemental cases of a problem
can give us insights into more general versions of it. It is also
true that studying the border of tractability and intractability in
a problem, as it seems to be the case of the path in our problem,
usually provides intuition about how to approach it in a more
general setting. More practically, solution methods for simple
cases can often be used to obtain good solution methods for
general cases.
We present polynomial-time optimal algorithms for two par-

ticular families of instances. Namely, we study in Section V-A
the case when all the lightpaths go through the first or the last
edge of the path, and in Section V-B the case when the load
of the path (that is, the maximum number of lightpaths in any
set crossing an edge of the path) is bounded by a logarithmic
function of the input size. We would like to stress here that it
was claimed in the conference version of this paper that the

-TR problem is NP-hard in paths for any ; unfor-
tunately, the proof of this claim contained a flaw, and the compu-
tational complexity of the problem in paths still remains open.

A. Edge Instances

In an edge instance, there is an edge that is used
by all the lightpaths.
Proposition 2: For any fixed , there is a polynomial-

time algorithm solving the -TR problem for edge instances
in a path where all the lightpaths share the first edge.

Proof: Let be the path with
and . By assump-
tion, all the lightpaths share the edge . We first claim
that there is an optimal solution using regenerators only at
vertices . Indeed, consider an optimal solution
in which this property is not satisfied, and consider the first
(leftmost) vertex with index not divisible by containing a
regenerator. We can replace the regenerators at this vertex with
regenerators in the next vertex with index divisible by (satis-
fying the same lightpaths than the previous regenerators were
satisfying) and get a solution with the same cost. Therefore,
the solution recursively obtained in this way is also optimal

and satisfies the claimed property. In the rest of the proof, we
confine ourselves to solutions that use regenerators only at
vertices that are multiples of .
For a vertex and an index , let be the number

of lightpaths in using edge , and let
. We shall see that the following simple al-

gorithm is optimal.

Algorithm 1

procedure
For each vertex which is a positive multiple of do:

Place regenerators at .
For each , , do:

Associate arbitrarily one of these
regenerators with each lightpath in
using edge .

end procedure

Algorithm 1 constructs a feasible solution, as by defini-
tion of there are enough regenerators to -satisfy
each set of lightpaths. The optimality of the algorithm fol-
lows from the fact that any feasible solution uses at least

regenerators since we can assume
that regenerators are only placed at vertices that are multiples
of , and at least regenerators are needed at such
vertex .
It is natural to ask whether Algorithm 1 is optimal for general

edge instances, that is, even if the edge shared by all lightpaths
is an internal one. Unfortunately, the answer is negative even
for , as shown by the following simple example for
and a path on six vertices . Let (resp. ) be a light-
path from vertex 0 to vertex 4 (resp. vertex 1 to vertex 5), so all
lightpaths share, for instance, the edge {2, 3}. If we place regen-
erators only at multiples of , we need at least three regen-
erators (recall that ), but we can do better by 2-satisfying
(resp. ) with a regenerator at vertex 2 (resp. vertex 3), there-

fore using only two regenerators.

B. Bounded Load

It turns out that if we impose that the load of the path is
bounded by an appropriate function of the size of the instance,
then the problem is solvable in polynomial time. Intuitively, this
special case of instances is in the opposite extreme of the edge
instances, where there is an edge with unbounded load.
Proposition 3: For any fixed , -TR is polyno-

mial-time solvable in paths if the load is

, where is the size of the instance.
Proof: The algorithm uses standard dynamic programming

techniques. Again, let be the path with
and . Let be the
subset of consisting of lightpaths crossing the edge ,
and let be the set of lightpaths crossing
. (Note that and that .) We

denote by the set of integers . We consider the
set of all vectors . Namely, a vector is
an assignment of an element of to every lightpath crossing
edge . In our algorithm, such vectors are used to denote
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for each lightpath the distance to the closest (that is,
rightmost) regenerator on the left of vertex used by . If
and , we denote by the vector restricted (or

projected) to the index set . In particular, if is a
single lightpath, then we denote—in the usual way—by the
entry at index of , which is a positive integer.
For each vertex and each vector , we store two

values in the tables, namely and .
The value is the minimum cost of covering all the edges
on the left of by regenerators, such that for each light-
path , the rightmost regenerator of is at vertex .
The vector is a vector achieving .
We visit each vertex . For , we

have , because every lightpath using
edge starts at vertex 0, and therefore it is covered without
any additional regenerators. We set also
indicating the same fact.
For each and for each , we calculate

and as follows:

(2)

Note that . Then, we compute as

(3)

where is a vector of ones of appropriate size. Then,
is set to some vector achieving the minimum in the
above expression.
Finally, we construct an optimum solution as follows.
Set .
For to 0 do: .
For each vertex and each lightpath , we assign a
regenerator at vertex to lightpath
if and only if , i.e., vector has value in the
entry .

Correctness: We shall now see that (3) is correct. Consider a
vertex and a vector . Consider a solution corresponding
to and its cost. This solution defines some vector .
We want to express in terms of . Let and be as in
(2), and consider a lightpath . If , then by defini-
tion , i.e., the rightmost regenerator serving lightpath is
at vertex . Therefore, for we have .
This is true for every index , and thus .
This is exactly the set of values over which the expression
in parentheses is minimized. Now we show that for each pos-
sible value of , the value of this expression is actually the cost
of the solution corresponding to . For any , we have

, i.e., the rightmost regenerator serving lightpath is at
vertex . Therefore, the number of regenerators
at vertex serving lightpaths of is . The number of
regenerators at is the maximum of this value over all . This
is the cost incurred by the solution at vertex . Adding this to
the cost of , we obtain the cost of . Therefore, the algorithm
chooses in (3) the best for a given over all possible values
of .
Running Time: Let be an upper bound on the load of the

instance. Then, we have , and thus
and . The computation of the above minimum

takes at most steps, each of which takes steps in
order to compute the maximum, so we have at most steps
overall. After initialization, we iterate over , and
then over the at most values of . The total number of
steps is . If for some integer , it
holds , the running time of
the presented algorithm is bounded by the polynomial .

VI. MORE GENERAL SETTINGS

In this section, we generalize the -TR problem in
two natural directions. Namely, in Section VI-A, we allow
the number of traffic patterns to be unbounded, and in
Section VI-B, we introduce a parameter that bounds the
number of regenerators that can be placed at a vertex. Tech-
nologically, the latter constraint captures the fact of having a
bounded number of ROADMs per vertex, as the number of
wavelengths (and therefore, the number of regenerators) an
ROADM can handle is usually not too big (see Section I-A).

A. Unbounded Number of Sets of Lightpaths

If is part of the input, then -TR contains as a particular
case the model studied in [9] (the so-called location problem,
denoted in [9]). Indeed, if each set of lightpaths
consists of a single lightpath (that is, when is the number of
lightpaths), then the objective is to place the minimum number
of regenerators such that each lightpath is satisfied. Therefore,
the hardness results stated in [9] also apply to this more general
setting, in particular an approximation lower bound of

unless NP can be simulated in subexponential time. Note
that this hardness bound matches the approximation ratio given
by Theorem 2. Nevertheless, note also that the approximation
algorithm presented in Theorem 2 runs in polynomial time only
for bounded .
We now reformulate the problem studied in [9] using our ter-

minology. Let be a fixed integer.

-REGENERATORS LOCATION ( -RL)

Input: An undirected graph and a set of
lightpaths .

Output: A function s.t. each lightpath
is -satisfied.

Objective: Minimize , where
.

Note that in the above problem, . We now
focus on the case of -RL.
Remark 1: Given an instance of 2-RL in a graph , the

problem can be reduced to aMINIMUMVERTEX COVER problem
in a subgraph of . Indeed, given a set of lightpaths , remove
the first and the last edge of each lightpath, and let be the
subgraph of defined by the union of the edges in the modified
lightpaths. It is then clear that the minimum number of regen-
erators to 2-satisfy all the lightpaths in equals the size of a
minimum vertex cover of .
By Remark 1 and König’s theorem [15], it follows that 2-RL

can be solved in polynomial time in bipartite graphs. This result
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extends the results of [9] for , where it is proved that
for any , -RL is polynomial-time solvable in trees and
rings. Finally, it also follows from Remark 1 that 2-RL admits a
PTAS in planar graphs [27] and, more generally, in any family
of minor-free graphs [28].

B. Bounded Number of Regenerators Per Vertex

From a technological point of view, it makes sense to intro-
duce a parameter that limits the number of regenerators that
can be used at a single vertex. Adding this restriction to the -RL
problem, we get the following problem, which is actually the
so-called -location problem and denoted in [9].
Again, we restate the problem using our terminology. Let

be two fixed integers.

-REGENERATORS LOCATION ( -RL)

Input: An undirected graph and a set of
lightpaths .

Output: A function s.t. each
lightpath is -satisfied and , where

.
Objective: Minimize .

We now resolve two questions that were left open in [9].
Namely, it is proven in [9] that given an instance of (3, 1)-RL,
it is NP-complete to decide whether there exists a feasible solu-
tion for it, which in particular implies that the (3, 1)-RL problem
itself is NP-hard to approximate within any ratio. In the fol-
lowing, we prove that, surprisingly, the situation changes for

and . More precisely, it is in P to decide whether
there exists a feasible solution for an instance of (2, 1)-RL, while
finding an optimal one is NP-hard.
Proposition 4: Given an instance of (2, 1)-RL, it can be de-

cided in polynomial time whether there exists a feasible solution
for it.

Proof: Given an instance of (2, 1)-RL, we re-
duce it to an instance of 2-SAT as follows.We introduce boolean
variables , for every and every , which cor-
respond to , namely is true if and only if there is a
regenerator at vertex of lightpath . We construct the boolean
expression with the following clauses (with two literals each)
that capture exactly the constrains of (2, 1)-RL:

internal edge of

The first family of clauses imposes that there is no vertex
with two lightpaths being served by a regenerator in
( ), and the second family of clauses imposes that every
internal edge of every lightpath is covered by some regener-
ator—in other words, that every lightpath is 2-satisfied. Thus,
there exists a feasible solution for if and only if is satisfi-
able, which can be checked in polynomial time [17].
Finally, we prove the following result by reduction from

MINIMUM VERTEX COVER.
Proposition 5: The (2, 1)-RL problem is NP-hard.

Fig. 3. Reduction from VC to (2, 1)-RL in the proof of Proposition 5. (a) In-
stance of VC, where the squares indicate a vertex cover. (b) Instance of (2,
1)-RL constructed from with lightpaths, where for sim-
plicity the first and last edge of each lightpath are not depicted. Black vertices
correspond to regenerators associated with a vertex and a lightpath, defining a
feasible solution for this instance.

Proof: We prove it by reduction from the MINIMUM
VERTEX COVER (VC for short) problem. Given an instance

of VC, we construct an instance
of (2, 1)-RL as follows.
For each vertex of , we add vertices

to . Note that there are
vertices with even indices and vertices with
odd indices. We also add a lightpath of length
through vertices , in this order. These
lightpaths are termed long lightpaths.
For each edge of , we add a lightpath of length 1,

termed short lightpath. The endpoints of this lightpath are a
vertex and a vertex with even indices such that nei-
ther nor is already an endpoint of a short lightpath. There
are always two such available vertices since there are
vertices with even indices. Finally, we extend both ends of each
lightpath by adding an extra vertex to for every endpoint of
a lightpath, and an additional edge connecting the current end-
point of the lightpath to the new vertex (the reason to do this
transformation is that no regenerator needs to be placed in the
endpoints of a lightpath). This construction is depicted in Fig. 3,
where for simplicity the extra vertices and edges added in the
last step are not shown. Square (resp. circle) nodes correspond
to vertices in (resp. in the network); the colors in the figure
are used in the sequel.
Note that there is exactly one way to 2-satisfy a long light-

path optimally, namely by placing regenerators at
the vertices with even indices, any other solution needing at least

regenerators to 2-satisfy . We claim that there is
a vertex cover of with cardinality at most if and only if there
is a solution of with cost at most .
Indeed, first let be a vertex cover of of size .

For each vertex , we put regenerators at all the odd ver-
tices of the long lightpath (that is, regenera-
tors) and one regenerator in every short lightpath intersecting
at the vertex in their intersection (recall that there is ex-

actly one such lightpath for every even vertex of ). For each
vertex , we put regenerators at all the even vertices of the
long lightpath (that is, regenerators). If a short light-
path has two regenerators (one at each endpoint), we remove
one of them arbitrarily. It can be verified that every lightpath is
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2-satisfied, and that at each vertex there is at most one regener-
ator. This solution uses regenerators for the short lightpaths,
and regenerators for the
long lightpaths. Therefore, its cost is
regenerators.
Conversely, consider a solution to the instance

using at most regenerators. Each short lightpath has a
regenerator in at least one endpoint . Therefore has at
least regenerators to satisfy the short lightpaths. Let be
the set of vertices of containing at least one of these regen-
erators. The set is a vertex cover of , since each edge of
corresponds to a short lightpath in and one of its endpoints
contains a regenerator. Consider a lightpath with .
It cannot be covered with regenerators since at least
one of the even vertices cannot be used because this vertex al-
ready contains a regenerator for a short lightpath. Therefore,
needs at least regenerators. For a lightpath with

, we need at least regenerators. Therefore,
uses at least regenerators. It holds

, and thus .
The above proof is illustrated in Fig. 3. In Fig. 3(a), black

squares indicate a vertex cover of ; in Fig. 3(b), black vertices
correspond to regenerators.

VII. CONCLUSION AND FURTHER RESEARCH

In this paper, we presented a theoretical study of the problem
of placing regenerators in optical networks, so that on each
lightpath we must put a regenerator every at most hops. The
cost is the total number of regenerators. We considered the case
when possible traffic patterns are given (each by a set of light-
paths), and the objective is to place the minimum number of re-
generators satisfying each of these patterns. This setting arises
naturally when designing real networks under uncertain traffic
forecast. The problem is called -TOTAL REGENERATORS
problem, or -TR for short. We now summarize our results
and propose a number of lines for further research.
We proved that for any fixed , -TR does not

admit a PTAS unless , even if the network topology
has maximum degree at most 3 and the lightpaths have length
at most , by reduction from MINIMUM VERTEX COVER in
graphs of maximum degree 3. It would be interesting to deter-
mine which is the explicit approximation lower bound given by
Theorem 1. The recent results of Austrin et al. [29] about the
hardness of MINIMUM VERTEX COVER in graphs of bounded de-
gree may shed some light on this question. We provided an ap-
proximation algorithm for -TR with constant ratio
by reducing it to MINIMUM SET COVER. Finding a poly-

nomial-time approximation algorithm matching the hardness
lower bound given by Theorem 1 seems to be a challenging task.
We proved that -TR is polynomial-time solvable in

paths when all lightpaths use the first (or the last) edge of the
path. It remains to settle the complexity of the case when the
edge shared by all lightpaths is an internal edge of the path,
which could be polynomial or NP-hard. Still in the path, but in
the opposite extreme of the type of instances, we also proved
that -TR can be solved in polynomial time when the
maximum number of lightpaths using an edge is logarithmi-
cally bounded by the size of the instance. It may be possible
to extend our dynamic programming approach to trees with

instances having this property, and even to graphs with bounded
treewidth.
The computational complexity of -TR in paths (for

general instances) is still unknown. Very recently, it has been
proven in [30] that there is a polynomial-time algorithm to
solve -TR in paths for any fixed ; the case
remains open.
We generalized our model by allowing the number of sets of

lightpaths to be unbounded, and by introducing a parameter
that bounds the number of regenerators that can be placed at
a node. This way, the model studied in [9] becomes a partic-
ular case. We settled several complexity questions that were left
open in [9] concerning the case and . As future
work, it seems to be of high importance to consider the param-
eter in the original statement of our -TR problem.
As mentioned in [9], other interesting avenues for further re-

search are to consider the online setting (that is, when the light-
paths are not given in advance) and the weighted version of the
problem (see also [31]), in the sense that the edges of the net-
work have an associated weight, and the distance constraint is
replaced with the corresponding weighted distance.
Considering the parameterized complexity of the -TR

problem is a promising approach in order to better understand
its complexity. A natural choice for a parameter could be the
number of regenerators used by a feasible solution. The pow-
erful techniques of the theory of parameterized complexity [32]
could be very helpful in designing efficient and practical algo-
rithms for finding optimal solutions in real networks, even if

-TR is NP-hard.
Finally, we assumed that we are given a discrete (finite or in-

finite) set of possible traffic patterns. Even if this model can be
applied in a variety of contexts, in some cases the traffic distribu-
tion may be more complicated. In this spirit, a possible direction
is to consider a probability distribution (discrete or continuous)
over the space defined by possible sets of lightpaths, the objec-
tive being to satisfy the lightpaths with high probability, or to
satisfy a given fraction of them.
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