
An Intersection Model for Multitolerance Graphs:
Efficient Algorithms and Hierarchy∗

George B. Mertzios†

Abstract

Tolerance graphs model interval relations in such a way that intervals can tolerate a certain
degree of overlap without being in conflict. This class of graphs has attracted many research
efforts, mainly due to its interesting structure and its numerous applications, especially in
DNA sequence analysis and resource allocation, among others. In one of the most natural
generalizations of tolerance graphs, namely multitolerance graphs, two tolerances are allowed
for each interval – one from the left and one from the right side of the interval. Then, in
its interior part, every interval tolerates the intersection with others by an amount that is a
convex combination of its two border-tolerances. In the comparison of DNA sequences between
different organisms, the natural interpretation of this model lies on the fact that, in some
applications, we may want to treat several parts of the genomic sequences differently. That is,
we may want to be more tolerant at some parts of the sequences than at others. These two
tolerances for every interval – together with their convex hull – define an infinite number of
the so called tolerance-intervals, which make the multitolerance model inconvenient to cope
with. In this article we introduce the first non-trivial intersection model for multitolerance
graphs, given by objects in the 3-dimensional space called trapezoepipeds. Apart from being
important on its own, this new intersection model proves to be a powerful tool for designing
efficient algorithms. Given a multitolerance graph with n vertices and m edges along with
a multitolerance representation, we present algorithms that compute a minimum coloring
and a maximum clique in optimal O(n log n) time, and a maximum weight independent set
in O(m+ n log n) time. Moreover, our results imply an optimal O(n log n) time algorithm for
the maximum weight independent set problem on tolerance graphs, thus closing the complexity
gap for this problem. Additionally, by exploiting more the new 3D-intersection model, we
completely classify multitolerance graphs in the hierarchy of perfect graphs. The resulting
hierarchy of classes of perfect graphs is complete, i.e. all inclusions are strict.

Keywords: Multitolerance graphs, tolerance graphs, intersection model, minimum coloring,
maximum clique, maximum weight independent set.

1 Introduction

A graph G = (V,E) on n vertices is a tolerance graph if there exists a collection I = {Iv | v ∈ V }
of closed intervals on the real line and a set t = {tv | v ∈ V } of positive numbers, such that for any
two vertices u, v ∈ V , uv ∈ E if and only if |Iu ∩ Iv| ≥ min{tu, tv}, where |I| denotes the length
of the interval I. The pair 〈I, t〉 is called a tolerance representation of G. If G has a tolerance
representation 〈I, t〉, such that tv ≤ |Iv| for every v ∈ V , then G is called a bounded tolerance graph
and 〈I, t〉 a bounded tolerance representation of G.

Tolerance graphs have been introduced in [8], in order to generalize some of the well known
applications of interval graphs. If in the definition of tolerance graphs we replace the operation
“min” between tolerances by “max”, we obtain the class of max-tolerance graphs. Both tolerance
and max-tolerance graphs have attracted many research efforts [2, 4, 5, 9–11, 16, 17, 21, 22] as they
find numerous applications, especially in bioinformatics, constrained-based temporal reasoning, and
resource allocation problems, among others [10, 11, 16, 17]. In particular, one of their applications

∗A preliminary conference version of this work appeared in Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), San Francisco, California USA, January 2011, pp. 1306–1317.
†School of Engineering and Computing Sciences, Durham University, UK. Email: george.mertzios@durham.ac.uk

1

is in the comparison of DNA sequences from different organisms or individuals by making use of a
software tool like BLAST [1].

BLAST takes a special genomic sequence Q as a parameter and returns all sequences from its
database that share a strong similarity with at least some part of the input query sequence Q.
The returned sequences from BLAST, together with the corresponding parts of Q with which they
share a strong similarity, can be viewed as a tolerance or a max-tolerance graph (depending on
the interpretation of “strong similarity”). Moreover, a subset of the returned sequences which
share with each other a certain part of Q, are said to build a cluster. Such maximal clusters
are exactly the maximal cliques of the corresponding tolerance (or max-tolerance) graph; it turns
out that these clusters can be interpreted as functional domains carrying biologically meaningful
information. There exist efficient algorithms that output all (at most O(n3)) possible maximal
cliques of a max-tolerance graph [16,17], while the number of maximal cliques in a tolerance graph
may be exponential [10].

In some circumstances, we may want to treat different parts of the above genomic sequences in
BLAST non-uniformly, since for instance some of them may be biologically less significant or we have
less confidence in the exact sequence due to sequencing errors in more error prone genomic regions.
That is, we may want to be more tolerant at some parts of the sequences than at others. This
concept leads naturally to the notion of multitolerance (known also as bitolerance) graphs [11, 23].
The main idea is to allow two different tolerances to each interval, one to the left and one to the
right side, respectively. Then, every interval tolerates in its interior part the intersection with other
intervals by an amount that is a convex combination of these two border-tolerances.

Formally, let I = [l, r] be a closed interval on the real line and lt, rt ∈ I be two numbers between l
and r, called tolerant points; note that it is not necessary that lt ≤ rt. For every λ ∈ [0, 1], we define
the interval Ilt,rt(λ) = [l + (rt − l)λ, lt + (r − lt)λ], which is the convex combination of [l, lt] and
[rt, r]. Furthermore, we define the set I(I, lt, rt) = {Ilt,rt(λ) | λ ∈ [0, 1]} of intervals. That is,
I(I, lt, rt) is the set of all intervals that we obtain when we linearly transform [l, lt] into [rt, r].
For an interval I, the set of tolerance-intervals τ of I is defined either as τ = I(I, lt, rt) for some
values lt, rt ∈ I of tolerant points, or as τ = {R}. A graph G = (V,E) is a multitolerance graph
if there exists a collection I = {Iv | v ∈ V } of closed intervals and a family t = {τv | v ∈ V } of
sets of tolerance-intervals, such that: for any two vertices u, v ∈ V , uv ∈ E if and only if there
exists an element Qu ∈ τu with Qu ⊆ Iv, or there exists an element Qv ∈ τv with Qv ⊆ Iu. Then,
the pair 〈I, t〉 is called a multitolerance representation of G. As we will see in Section 2, tolerance
graphs are a special case of multitolerance graphs. Note that, in general, the adjacency of two
vertices u and v in a multitolerance graph G depend on both sets of tolerance-intervals τu and τv.
However, since the real line R is not included in any finite interval, if τu = {R} for some vertex u of
G, then the adjacency of u with another vertex v of G depends only on the set of tolerance-intervals
τv of v. If G has a multitolerance representation 〈I, t〉, in which τv 6= {R} for every v ∈ V , then G
is called a bounded multitolerance graph and 〈I, t〉 a bounded multitolerance representation of G.

Note by the definition of a multitolerance representation that, if two intervals do not contain
each other then there is an edge if one interval contains the appropriate tolerant point of the other
one. Furthermore, if an interval with bounded tolerance is contained in another interval, then
there is always an edge between them. Moreover, intervals with unbounded tolerance correspond
to independent sets. On the other hand, if an interval with unbounded tolerance is included in an
interval with a bounded tolerance, then there may be an edge or not; this depends on whether the
small interval includes at least one of the tolerance intervals of the large interval.

A graph is perfect if the chromatic number of every induced subgraph equals the clique number of
that subgraph. Perfect graphs include many important families of graphs (e.g. tolerance graphs [11]
and multitolerance graphs [23]) and serve to unify results relating colorings and cliques in those
families. For instance, in all perfect graphs, the coloring problem, maximum clique problem, and
maximum independent set problem can all be solved in polynomial time using the ellipsoid method
for linear programming [13]. However, although these algorithms are polynomial, they are not very
efficient (the exact time complexity is not even mentioned in [13]). Therefore, as it happens for

2

most known subclasses of perfect graphs, it makes sense to devise specific fast algorithms for these
problems on multitolerance graphs.

A graph G = (V,E) with n vertices is the intersection graph of a family F = {S1, . . . , Sn} of
subsets of a set S if there exists a bijection µ : V → F such that for any two distinct vertices u, v ∈ V ,
uv ∈ E if and only if µ(u) ∩ µ(v) 6= ∅. Then, F is called an intersection model of G. Note that
every graph has a trivial intersection model based on adjacency relations [19]. Note also that a
multitolerance representation is not an intersection model, since two intervals may intersect without
the corresponding vertices being necessarily adjacent. Some intersection models provide a natural
and intuitive understanding of the structure of a class of graphs, and turn out to be very helpful
in the design of efficient algorithms that solve optimization problems [19]. Therefore, it is of great
importance to establish non-trivial intersection models for families of graphs. In particular, many
important graph classes can be described as intersection graphs of set families that are derived from
some kind of geometric configuration.

For instance, a permutation (resp. parallelogram and trapezoid) graph is the intersection graph
of line segments (resp. parallelograms and trapezoids) between two parallel lines L1 and L2 [7]. Such
a representation with line segments (resp. parallelograms and trapezoids) is called a permutation
(resp. parallelogram and trapezoid) representation of this graph. Recently, two natural intersection
models for max-tolerance graphs [16] and for tolerance graphs [21] have been presented, given by
semi-squares on the plane [16] and by parallelepipeds in the 3-dimensional space [21], respectively.
These two representations have been used to design efficient algorithms for several generally NP-
hard optimization problems on tolerance and max-tolerance graphs, see [16,17,21].

Bounded multitolerance graphs (also known as bounded bitolerance graphs [3, 11, 15]) coincide
with trapezoid graphs [11,23], which have received considerable attention in the literature, see [11].
However, the intersection model of trapezoids between two parallel lines can not cope with general
multitolerance graphs, in which the set τv of tolerance-intervals for a vertex v can be τv = {R}.
Therefore, the only way until now to deal with general multitolerance graphs was to use the incon-
venient multitolerance representation, which uses an infinite number of tolerance-intervals. This
is the main reason why, despite their apparent practical interpretation, only little is known about
multitolerance graphs, e.g. that the minimum fill-in problem can be solved efficiently and that the
difference between the pathwidth and the treewidth is at most one [23].

Our contribution. In this article we introduce the first non-trivial intersection model for general
multitolerance graphs, given by objects in the 3-dimensional space, called trapezoepipeds. This
trapezoepiped representation unifies in a simple and intuitive way the widely known trapezoid rep-
resentation for bounded multitolerance graphs and the parallelepiped representation for tolerance
graphs [21]. The main idea is to exploit the third dimension to capture the information of the
vertices with τv = {R} as the set of tolerance-intervals. This intersection model can be constructed
efficiently (in linear time), given a multitolerance representation.

Apart of being important on its own, the trapezoepiped representation can be also used to
design efficient algorithms. Given a multitolerance graph with n vertices and m edges, we present
algorithms that compute a minimum coloring and a maximum clique in O(n log n) time (which
turns out to be optimal), and a maximum independent set in O(m+n log n) time (where Ω(n log n)
is a lower bound for the complexity of this problem [6]). In particular, it turns out that the latter
algorithm can be used also for the case where we have weights on the vertices of the input graph;
therefore we present the variation of the algorithm that solves the maximum weight independent
set problem. Moreover, we present a variation of this algorithm that computes a maximum weight
independent set in optimal O(n log n) time, when the input is a tolerance graph, thus closing the
complexity gap of [21]. Note here that, although the parallelepiped representation of tolerance
graphs is similar to the trapezoepiped representation of multitolerance graphs, the coloring and
clique algorithms presented in [21] do not extend to the case of multitolerance graphs, and thus
the algorithms presented here are new. On the contrary, the algorithm presented in [21] for the
maximum weight independent set with complexity O(n2) on tolerance graphs can be extended with
the same time complexity to the case of multitolerance graphs; nevertheless we present here new

3

algorithms for this problem that achieve better running times O(m + n log n) for multitolerance
graphs and optimal O(n log n) for tolerance graphs.

It is noted that the only previously known algorithms for these problems on multitolerance
graphs were the corresponding polynomial algorithms for perfect graphs [13] which are not very
efficient. Furthermore, as we prove in this paper that multitolerance graphs are also a subset of
weakly chordal graphs (cf. Section 6), it follows that these problems can be solved in O(n4) time on
multitolerance graphs using the corresponding algorithms for weakly chordal graphs [24]. In order
to provide our O(n log n) coloring and clique algorithms for multitolerance graphs, we first introduce
a special kind of the trapezoepiped representation, called the canonical representation. We then
provide an algorithm which, given a trapezoepiped representation of a multitolerance graph G with
n vertices, computes a canonical representation for G in O(n log n) time. This algorithm is used
as the main tool for our coloring and clique algorithms. In contrast, our weighted independent
set algorithm does not use the canonical representation. It is important to note here that, as the
recognition of multitolerance graphs remains open, all algorithms assume that a multitolerance
(resp. a trapezoepiped) representation of the given multitolerance graph is provided as input.

Finally, we prove several structural results on the class of multitolerance graphs, using our new
intersection model and some known results from the hierarchy of perfect graphs given in [11]. In
particular, we prove that multitolerance graphs strictly include tolerance and trapezoid graphs,
as well as that they are strictly included in weakly chordal and in co-perfectly orderable graphs.
Furthermore, we prove that multitolerance graphs are incomparable with alternately orientable and
cocomparability graphs, i.e. none of these classes includes the other one. These results complement
the hierarchy of perfect graphs given in [11]. The resulting hierarchy of classes of perfect graphs
is complete, i.e. all inclusions are strict.

Notation. In this article we follow standard notation and terminology, see for instance [11]. We
consider finite, simple, and undirected graphs. Given a graph G = (V,E), we denote by n the
cardinality of V . An edge between vertices u and v is denoted by uv, and in this case vertices u
and v are said to be adjacent. G denotes the complement of G, i.e. G = (V,E), where uv ∈ E if
and only if uv /∈ E. Given a subset of vertices S ⊆ V , the graph G[S] denotes the graph induced
by the vertices in S, i.e. G[S] = (S, F), where for any two vertices u, v ∈ S, uv ∈ F if and only if
uv ∈ E. A subset S ⊆ V is an independent set in G if the graph G[S] has no edges. For a subset
K ⊆ V , the induced subgraph G[K] is a complete subgraph of G, or a clique, if each two of its
vertices are adjacent. The maximum cardinality of a clique in G is denoted by ω(G) and is termed
the clique number of G. A proper coloring of G is an assignment of different colors to adjacent
vertices, which results in a partition of V into independent sets. The minimum number of colors
for which there exists a proper coloring is denoted by χ(G) and is termed the chromatic number
of G. A proper coloring of G with χ(G) colors, i.e. a partition of V into χ(G) independent sets, is
a minimum coloring of G.

Organization of the paper. We present the new intersection model for multitolerance graphs
in Section 2. In Section 3 we present a canonical representation of multitolerance graphs and an
algorithm that computes it in O(n log n) time. Then, using this algorithm, we present in Section 4
optimal O(n log n) time coloring and clique algorithms for multitolerance graphs. In Section 5 we
present algorithms that compute a maximum weight independent set in O(m+ n log n) time on a
multitolerance graph, and in optimal O(n log n) time on a tolerance graph. In Section 6 we classify
multitolerance graphs in the hierarchy of perfect graphs of [11]. Finally, we discuss the presented
results and further research in Section 7.

2 An intersection model for multitolerance graphs

In this section we present a 3D intersection model for general multitolerance graphs, which unifies
the intersection model of trapezoids in the plane for bounded multitolerance graphs [11] and that
of parallelepipeds in the 3-dimensional space for tolerance graphs [21]. Given a multitolerance
graph G = (V,E) along with a multitolerance representation 〈I, t〉 of G, recall that vertex v ∈ V

4

L1

L2

1

|Iv|

T v Tw

tv,1 = tv,2

cv = bv

av = dv

φv,1 = φv,2

|Iw||Iu|

cw = bw

φw,1 = φw,2

aw = dw

tw,1 = tw,2 =∞

du

cu bu

au

lu ru lw rw

φu,1 φu,2

tu,1 tu,2

x

y

φu(x)

ltu rtu

Tu

lv = rtv rv = ltv

Figure 1: Trapezoids T u and T v correspond to bounded vertices u and v, respectively, while Tw
corresponds to an unbounded vertex w.

corresponds to an interval Iv = [lv, rv] on the real line and a set τv of tolerance-intervals, where
either τv = I(Iv, ltv , rtv) for some values ltv , rtv ∈ Iv of tolerant points, or τv = {R}.

Definition 1 Given a multitolerance representation of a multitolerance graph G = (V,E), vertex
v ∈ V is bounded if τv = I(Iv, ltv , rtv) for some values ltv , rtv ∈ Iv. Otherwise, v is unbounded.
VB and VU are the sets of bounded and unbounded vertices in V , respectively. Clearly V = VB ∪ VU .

Definition 2 For a vertex v ∈ VB (resp. v ∈ VU) in a multitolerance representation of G, the values
tv,1 = ltv − lv and tv,2 = rv−rtv (resp. tv,1 = tv,2 =∞) are the left tolerance and the right tolerance
of v, respectively. Moreover, if v ∈ VU , then tv =∞ is the tolerance of v.

It can be now easily seen by Definition 2 that if we set tv,1 = tv,2 for every vertex v ∈ V ,
then we obtain a tolerance representation, in which tv,1 = tv,2 is the (unique) tolerance of v.
We may assume w.l.o.g. that no two bounded vertices share an endpoint or tolerant point,
i.e. {lu, ru, ltu , rtu} ∩ {lv, rv, ltv , rtv} = ∅ for all u, v ∈ VB with u 6= v [23]. Furthermore, by pos-
sibly performing a small shift of the endpoints and the tolerant points, we may assume w.l.o.g. that
tv,1, tv,2 > 0 for every v ∈ V and that the left and right tolerances for every bounded vertex
are distinct, i.e. {tu,1, tu,2}∩{tv,1, tv,2} = ∅ for all u, v ∈ VB with u 6= v. Similarly, if tv,1 6= |Iv|
(resp. tv,2 6= |Iv|) for a bounded vertex v ∈ VB, we may assume w.l.o.g. that also tv,2 6= |Iv|
(resp. tv,1 6= |Iv|). That is, for every v ∈ VB, either tv,1 = tv,2 = |Iv|, or tv,1 < |Iv| and tv,2 < |Iv|.
For more details in the cases of tolerance and bounded multitolerance graphs we refer to [11].

Let now L1 and L2 be two parallel lines at unit distance in the Euclidean plane. In the following
we define for every vertex v ∈ V a trapezoid T v in the plane between the lines L1 and L2. The
values tanφ and cotφ = 1

tanφ denote the tangent and the cotangent of a slope φ, respectively.
Furthermore, φ = arc cotx is the slope φ, for which cotφ = x.

Definition 3 Given an interval Iv = [lv, rv] and tolerances tv,1, tv,2, T v is the trapezoid in R2

defined by the points cv, bv on L1 and av, dv on L2, where av = lv, bv = rv, cv = min {rv, lv + tv,1},
and dv = max {lv, rv − tv,2}. The values φv,1 = arc cot (cv − av) and φv,2 = arc cot (bv − dv) are
the left slope and the right slope of T v, respectively. Moreover, for every unbounded vertex v ∈ VU ,
φv = φv,1 = φv,2 is the slope of T v.

An example is depicted in Figure 1, where T u and T v correspond to bounded vertices u and v,
and Tw corresponds to an unbounded vertex w. For each of these trapezoids, the corresponding
interval (together with the associated tolerant points, if the vertex is bounded) is drawn above
the trapezoid for better visibility. The left (resp. right) tolerant points are depicted by a square
(resp. cycle). Observe that when a vertex v is bounded, the values cv and dv coincide with the
tolerant points ltv and rtv , respectively, while φv,1 = arc cot tv,1 and φv,2 = arc cot tv,2. On the other
hand, when a vertex v is unbounded, the values cv and dv coincide with the endpoints bv and av of Iv,
respectively, while φv,1 = φv,2 = arc cot|Iv|. Observe also that in both cases where tv,1 = tv,2= |Iv|

5

and tv,1 = tv,2=∞, the trapezoid T v is reduced to a line segment (cf. T v and Tw in Figure 1).
Furthermore, similarly to the above, we can assume w.l.o.g. that all endpoints and slopes of the
trapezoids are distinct, i.e. {au, bu, cu, du}∩{av, bv, cv, dv} = ∅ and {φu,1, φu,2}∩{φv,1, φv,2} = ∅ for
every u, v ∈ V with u 6= v. Since |Iv| > 0 and tv,1, tv,2 > 0 for every vertex v, it follows that
0 < φv,1 <

π
2 and 0 < φv,2 <

π
2 for all slopes φv,1, φv,2. Note that the values of φv,1 and φv,2 can be

even irrational according to Definition 3. However, by possibly performing a small perturbation
of the endpoints {au, bu, cu, du} and the slopes {φv,1, φv,2}, we may assume w.l.o.g. that they take
rational values (while remaining distinct and polynomially bounded in the size of the graph).

Definition 4 Let u ∈ VB be a bounded vertex in a multitolerance representation and au, bu, cu, du
be the endpoints of the trapezoid T u. Let x ∈ [au, du] and y ∈ [cu, bu] be two points on the
lines L2 and L1, respectively, such that x = λau + (1 − λ)du and y = λcu + (1 − λ)bu for the
same value λ ∈ [0, 1]. Then φu(x) is the slope of the line segment with endpoints x and y on the
lines L2 and L1, respectively.

In the example of Figure 1, two points x ∈ [au, du] and y ∈ [cu, bu] are depicted on the lines L2

and L1, respectively, such that x = λau + (1 − λ)du and y = λcu + (1 − λ)bu for the same value
λ ∈ [0, 1]. Then, the interval [x, y] on the real line, with values x and y as endpoints, coincides with
the tolerance-interval Iltu ,rtu (1− λ) = [lu + (rtu − lu)(1− λ), ltu + (ru − ltu)(1− λ)] of I(Iu, ltu , rtu)
(cf. the definition of a multitolerance representation). Furthermore, for the slope φu(x), as defined
in Definition 4 (cf. Figure 1), it follows that cotφu(x) = y − x = λ(cu − au) + (1 − λ)(bu − du).
Therefore, since cotφu,1 = cu − au and cotφu,2 = bu − du, the next observation follows.

Observation 1 Let x = λau + (1 − λ)du for a bounded vertex u ∈ VB and some value λ ∈ [0, 1].
Then, cotφu(x) = λ cotφu,1 + (1− λ) cotφu,2.

Note that, in Definition 3, the endpoints av, bv, cv, dv of any trapezoid T v (on the lines L1

and L2) lie on the plane z = 0 in R3. Therefore, since we assumed that the distance between
the lines L1 and L2 is one, these endpoints of T v correspond to the points (av, 0, 0), (bv, 1, 0),
(cv, 1, 0), and (dv, 0, 0) in R3, respectively. For the sake of presentation, we may not distinguish in
the following between these points in R3 and the corresponding real values av, bv, cv, dv, whenever
this slight abuse of notation does not cause any confusion.

We are ready to give the main definition of this article. For a set X of points in R3, denote
by Hconvex(X) the convex hull defined by the points of X. That is, T v = Hconvex(av, bv, cv, dv) for
every vertex v ∈ V by Definition 3, where av, bv, cv, dv are points of the plane z = 0 in R3.

Definition 5 Let G = (V,E) be a multitolerance graph with a multitolerance representation
{Iv = [av, bv], τv | v ∈ V } and ∆ = max{bv | v ∈ V } − min{av | v ∈ V } be the greatest distance
between two interval endpoints. For every vertex v ∈ V , the trapezoepiped Tv of v is the convex
set of points in R3 defined as follows:

(a) if tv,1, tv,2 ≤ |Iv| (that is, v is bounded), then Tv = Hconvex(T v, a
′
v, b
′
v, c
′
v, d
′
v),

(b) if tv = tv,1 = tv,2 =∞ (that is, v is unbounded), then Tv = Hconvex(a
′
v, c
′
v),

where a′v = (av, 0,∆ − cotφv,1), b
′
v = (bv, 1,∆ − cotφv,2), c

′
v = (cv, 1,∆ − cotφv,1), and d′v =

(dv, 0,∆−cotφv,2). The set of trapezoepipeds {Tv | v ∈ V } is a trapezoepiped representation of G.

Note by the definition of ∆ that ∆ − cotφv,1 ≥ 0 and ∆ − cotφv,2 ≥ 0 for every v ∈ V . Fur-
thermore, observe that for each interval Iv, the trapezoid T v of Definition 3 (see also Figure 1)
coincides with the projection of the trapezoepiped Tv on the plane z = 0. An example of this
construction is given in Figure 2. A multitolerance graph G with seven vertices {v1, v2, . . . , v7}
is depicted in Figure 2(a), while the trapezoepiped representation of G is illustrated in Fig-
ure 2(b). The set of bounded and unbounded vertices in this representation are VB = {v3, v4, v6, v7}
and VU = {v1, v2, v5}, respectively. We illustrate the endpoints avi , bvi , cvi , dvi and a′vi , b

′
vi , c

′
vi , d

′
vi

6

v1 v2

v3

v4

v6

v5 v7

G :

(a)

L1

L2

1

Tv1

Tv2

Tv3 Tv4

Tv5
Tv6

Tv7

hv1

hv2

hv3,1

hv3,2

hv4,1
hv5

hv6,1

hv6,2

hv4,2

av6 dv6

cv6
bv6

a′v6

b′v6

d′v6

c′v6

lv6 ltv6
rtv6 rv6rv1lv1

av1

cv1

c′v1

a′v1

Iv1 Iv6

∆ x

y
z

hu7,1 = hu7,2

(b)

Figure 2: (a) A multitolerance graph G and (b) a trapezoepiped representation R of G. Here,
hvi,j = ∆− cotφvi,j for every bounded vertex vi ∈ VB and j ∈ {1, 2}, while hvi = ∆− cotφvi for
every unbounded vertex vi ∈ VU .

of Tvi , as well as the relationship between the interval Ivi and the corresponding trapezoepiped Tvi
for one unbounded and one bounded vertex, cf. v1 and v6, respectively. Note that av1 = dv1 ,
a′v1 = d′v1 , cv1 = bv1 , and c′v1 = b′v1 , since v1 is unbounded. In the case where tvi,1, tvi,2 < |Ivi |,
the trapezoepiped Tvi is three-dimensional, cf. Tv3 , Tv4 , and Tv6 , while in the border case
where tvi,1 = tvi,2 = |Ivi | it degenerates to a two-dimensional rectangle, cf. Tv7 . In these two
cases, each Tvi corresponds to a bounded vertex vi. In the remaining case where vi is unbounded,
i.e. tvi = tvi,1 = tvi,2 = ∞, the trapezoepiped Tvi degenerates to an one-dimensional line segment
above plane z = 0, cf. Tv1 , Tv2 , and Tv5 .

We next prove in Theorem 1 that the trapezoepiped representation forms a 3-dimensional
intersection model for the class of multitolerance graphs (namely, that every multitolerance graph
G can be viewed as the intersection graph of the corresponding trapezoepipeds Tv). To this end,
we first prove the next two lemmas.

Lemma 1 Let u ∈ V and v ∈ VU in a trapezoepiped representation of a multitolerance graph
G = (V,E). If cv < cu, then Tu ∩ Tv = ∅.

Proof. Let first u ∈ VU , i.e. u is unbounded. Then Tu and Tv are both line segments on the disjoint
planes z = ∆ − cotφu and z = ∆ − cotφv of R3, and thus Tu ∩ Tv = ∅. Let now u ∈ VB, i.e. u is
bounded. If T u ∩ T v = ∅, then also Tu ∩ Tv = ∅ by Definition 5. Suppose that T u ∩ T v 6= ∅. Then,
since we assumed that cv < cu, it follows that au < av. Therefore in particular φv > φu,1, and thus
also tanφv > tanφu,1, i.e. ∆− cotφv > ∆− cotφv,1. Suppose first that du < av, i.e. au < du < av.
Then also φv > φu,2, i.e. ∆ − cotφv > ∆ − cotφv,1 and ∆ − cotφv > ∆ − cotφv,2. Therefore the
line Tv lies completely above the trapezoepiped Tu in R3, and thus Tu ∩ Tv = ∅. Suppose now
that av < du, i.e. au < av < du. Consider any point x ∈ [au, av] ⊆ [au, du] on the line L2. Then,
x = λau+(1−λ)du for some value λ ∈ [0, 1]. Consider also the point y ∈ [cu, bu] on the line L1, such
that y = λcu+(1−λ)bu for the same value of λ. Then, the maximum height z of the trapezoepiped
Tu above the point x is λ(∆ − cotφu,1) + (1 − λ)(∆ − cotφu,2), which is equal to ∆ − cotφu(x)
by Observation 1. If Tu ∩ Tv 6= ∅, then there exists such a point x ∈ [av, dv] on the line L2

(and the corresponding point y ∈ [cv, bu] on the line L1), such that ∆ − cotφu(x) > ∆ − cotφv,
i.e. φu(x) > φv. However, x ≤ av and cv < cu ≤ y, and thus φu(x) < φv, which is a contradiction.
Therefore Tu ∩ Tv = ∅. This completes the proof of the lemma.

Lemma 2 Let u ∈ VB and v ∈ VU in a trapezoepiped representation of a multitolerance graph
G = (V,E). Let au, du, and av = dv be the endpoints of T u and T v, respectively, on the line L2.

7

If av < au, then Tu ∩ Tv 6= ∅ if and only if T u ∩ T v 6= ∅. If du < av, then Tu ∩ Tv = ∅. Finally, if
au < av < du, then Tu ∩ Tv 6= ∅ if and only if φv ≤ φu(av).

Proof. Recall first that av = dv and cv = bv, since v is unbounded. Let av < au. If T u ∩ T v = ∅,
then also Tu ∩ Tv = ∅ by the definition of a trapezoepiped representation (cf. Definition 5). If
T u ∩ T v 6= ∅, then cv > cu, since we assumed that av < au. Therefore, in particular φv < φu,1,
and thus also tanφv < tanφu,1, i.e. ∆− cotφv < ∆− cotφu,1. Therefore the line Tv intersects the
trapezoepiped Tu in R, i.e. Tu ∩ Tv 6= ∅.

Let now du < av. If T u∩T v = ∅, then also Tu∩Tv = ∅ by Definition 5. Suppose that T u∩T v 6= ∅.
Then, since we assumed that du < av, it follows that cv < bu. Therefore in particular φv > φu,2,
i.e. ∆ − cotφv > ∆ − cotφu,2. Suppose first that cv < cu, i.e. cv < cu < bu. Then also φv > φu,1,
i.e. ∆− cotφv > ∆− cotφu,1 and ∆− cotφv > ∆− cotφu,2. Therefore the whole trapezoepiped Tu
lies completely below the plane z = ∆−cotφv of R3, on which the line Tv lies, and thus Tu∩Tv = ∅.
Suppose now that cu < cv, i.e. cu < cv < bu. Consider any point y ∈ [cv, bu] ⊆ [cu, bu] on the line L1.
Then, y = λcu + (1 − λ)bu for some value λ ∈ [0, 1]. Consider also the point x ∈ [au, du] on the
line L2, such that x = λau + (1 − λ)du for the same value of λ. Then, the maximum height z of
the trapezoepiped Tu above the point y is λ(∆− cotφu,1) + (1−λ)(∆− cotφu,2), which is equal to
∆−cotφu(x) by Observation 1. If Tu∩Tv 6= ∅, then there exists such a point y ∈ [cv, bu] on the line L1

(and the corresponding point x ∈ [au, du] on the line L2), such that ∆ − cotφu(x) > ∆ − cotφv,
i.e. φu(x) > φv. However, x ≤ du < av and cv ≤ y, and thus φu(x) < φv, which is a contradiction.
Therefore Tu ∩ Tv = ∅.

Let finally au < av < du. Then, av = λau + (1 − λ)du for some value λ ∈ [0, 1]. Consider the
point y ∈ [cu, bu] on the line L1, such that y = λcu + (1 − λ)bu for the same value of λ. Since
v ∈ VU , the line Tv lies on the plane z = ∆ − cotφv of R3. Suppose first that φv ≤ φu(av), and
thus in particular y ≤ cv. Then the maximum height of the trapezoepiped Tu above the point av
of L2 is ∆ − cotφu(av) ≥ ∆ − cotφv. Therefore Tu ∩ Tv 6= ∅ if φv ≤ φu(av). Suppose now that
φv > φu(av), and thus in particular cv < y. Then the maximum height of the trapezoepiped Tu
above the point av of L2 is ∆− cotφu(av) < ∆− cotφv. If cv < cu, then Tu ∩ Tv = ∅ by Lemma 1.
Suppose now that cu < cv, i.e. cu < cv < y < bu. Then cv = λ′cu + (1 − λ′)bu for some value
λ′ ∈ [0, 1]. Note that λ′ > λ, since cv < y = λcu + (1− λ)bu. Consider the point x ∈ [au, du] on the
line L2, such that x = λ′au + (1 − λ′)du for the same value λ′ > λ. Then the maximum height of
the trapezoepiped Tu above the points cv and x is λ′(∆− cotφu,1) + (1− λ′)(∆− cotφu,2), which
is equal to ∆ − cotφu(x) by Observation 1. Furthermore, since λ′ > λ, it follows that x < av.
Thus, since also cv < y, it follows that φu(x) < φv, i.e. ∆− cotφu(x) < ∆− cotφv. Summarizing,
the maximum height of the trapezoepiped Tu above the point av of L2 (resp. above the point cv
of L1) is ∆ − cotφu(av) < ∆ − cotφv (resp. ∆ − cotφu(x) < ∆ − cotφv). Therefore, since Tu is
convex, it follows that the line Tv lies above the trapezoepiped Tu in R3. Therefore Tu ∩ Tv = ∅ if
φv > φu(av). This completes the proof of the lemma.

We are now ready to prove Theorem 1.

Theorem 1 Let G = (V,E) be a multitolerance graph with a multitolerance representation
{Iv = [av, bv], τv | v ∈ V }. Then for every u, v ∈ V , uv ∈ E if and only if Tu ∩ Tv 6= ∅.

Proof. Let au, bu, cu, du and av, bv, cv, dv be the endpoints of the trapezoids T u and T v that
correspond to vertices u and v, respectively (cf. Figure 1). Note that Iu = [au, bu] and Iv = [av, bv]
for the corresponding intervals in the multitolerance representation. W.l.o.g. we may assume that
au < av. Suppose first that both u and v are unbounded. Then Tu and Tv are both line segments
on the disjoint planes z = ∆− cotφu and z = ∆− cotφv of R3, and thus Tu ∩Tv = ∅. On the other
hand, uv /∈ E, since no two unbounded vertices are adjacent in a multitolerance graph G. Suppose
in the following of the proof that u ∈ VB or v ∈ VB (or both).

Suppose that T u ∩ T v = ∅, i.e. du < av and bu < cv. Then also Tu ∩ Tv = ∅. On the other
hand, let Qu = [p, q] ∈ τu (resp. Qv = [p, q] ∈ τv) be a (non-infinite) tolerance-interval of vertex

8

u, if u ∈ VB (resp. of vertex v, if v ∈ VB). Then, p ≤ du < av (resp. bu < cv ≤ q), and thus
Qu * Iv = [av, bv] (resp. Qv * Iu = [au, bu]). Therefore uv /∈ E.

Suppose in the following that T u ∩ T v 6= ∅. We distinguish now two cases according to the
relative positions of the points du and av on the line L2.

Case 1. du < av. Then, since we assumed that T u ∩ T v 6= ∅, it follows that cv < bu. Therefore
in particular φv,1 > φu,2, and thus also tanφv,1 > tanφu,2, i.e. ∆− cotφv,1 > ∆− cotφu,2.

Case 1a. Suppose first that v ∈ VB. Then, necessarily Tu ∩ Tv 6= ∅ by the definition of
a trapezoepiped representation, since T u ∩ T v 6= ∅ and ∆ − cotφv,1 > ∆ − cotφu,2. On the
other hand, consider the tolerance-interval Qv = [av, cv] ∈ τv (Qu exists, since v ∈ VB). Then
Qv ⊆ [au, bu] = Iu, since au ≤ du < av < cv < bu, and thus uv ∈ E. That is, Tu ∩ Tv 6= ∅ and
uv ∈ E.

Case 1b. Suppose now that v ∈ VU , and thus u ∈ VB. Then τv = {R}, and thus Qv * Iu
for any Qv ∈ τv. Consider any tolerance-interval Qu = [p, q] ∈ τu. Then p ≤ du < av, and thus
Qu * Iv = [av, bv]. Therefore uv /∈ E. On the other hand, Tu ∩ Tv = ∅ by Lemma 2, since du < av.
That is, Tu ∩ Tv 6= ∅ and uv ∈ E.

Case 2. av < du. That is, au < av < du, and thus in particular u ∈ VB (since au 6= du).
Case 2a. Suppose first that v ∈ VB. Then, necessarily Tu ∩ Tv 6= ∅ by the definition of a

trapezoepiped representation, since both u, v ∈ VB and T u ∩ T v 6= ∅. We will now prove that also
uv ∈ E. Let first cv < bu on the line L1 and consider the tolerance-interval Qv = [av, cv] ∈ τv.
Then Qv ⊆ Iu = [au, bu], since au < av < cv < bu, and thus uv ∈ E. Let now bu < cv on the
line L1 and consider the tolerance-interval Qu = [du, bu] ∈ τu. Then Qu ⊆ Iv = [av, bv], since
av < du < bu < cv, and thus uv ∈ E. That is, Tu ∩ Tv 6= ∅ and uv ∈ E.

Case 2b. Suppose now that v ∈ VU . Then, av = λau + (1− λ)du for some value λ ∈ [0, 1], since
au < av < du. Consider the point y ∈ [cu, bu] on the line L1, such that y = λcu + (1− λ)bu for the
same value of λ. Since v ∈ VU , the line Tv lies on the plane z = ∆− cotφv of R3.

Let first φv ≤ φu(av), and thus in particular y ≤ cv. Then Tu ∩ Tv 6= ∅ by Lemma 2. On
the other hand, consider the tolerance-interval Qu = [av, y] ∈ τu. Then, Qu ⊆ Iv = [av, bv], since
av < y ≤ cv = bv, and thus uv ∈ E. That is, Tu ∩ Tv 6= ∅ and uv ∈ E, if φv ≤ φu(av).

Let now φv > φu(av), and thus in particular y > cv. Then Tu ∩ Tv = ∅ by Lemma 2. On
the other hand, consider any tolerance-interval Qu = [p, q] ∈ τu. Then, p = λ′au + (1 − λ′)du and
q = λ′cu + (1 − λ′)bu, for some value λ′ ∈ [0, 1]. If λ′ > λ, then p < av, and thus Qu = [p, q] *
[av, bv] = Iv = [av, bv]. If λ′ ≤ λ, then q ≥ y > cv = bv, and thus again Qu = [p, q] * Iv = [av, bv].
Therefore Qu * Iv for every Qu ∈ τu, and thus uv /∈ E. That is, Tu ∩ Tv = ∅ and uv /∈ E, if
φv > φu(av). This completes the proof of the theorem.

Clearly, for each v ∈ V the trapezoepiped Tv can be constructed in constant time; therefore the
next lemma follows directly.

Lemma 3 Given a multitolerance representation of a multitolerance graph G with n vertices, a
trapezoepiped representation of G can be constructed in O(n) time.

3 A canonical representation of multitolerance graphs

In this section we introduce a canonical representation of multitolerance graphs, which is a special
kind of a trapezoepiped representation. Moreover, we present an efficient algorithm that constructs
in O(n log n) time a canonical representation of a multitolerance graph G with n vertices, given
any trapezoepiped representation of G. This algorithm proves to be useful for designing efficient
algorithms on multitolerance graphs for the minimum coloring and the maximum clique problems
with optimal running time O(n log n), as we will present in Section 4. First, we state the following
definition, similarly to the case of tolerance graphs [21] (see also [10,11]).

Definition 6 An unbounded vertex v ∈ VU of a multitolerance graph G is called inevitable (for a
certain trapezoepiped representation), if replacing Tv by Hconvex(T v, a

′
v, c
′
v) creates a new edge uv

9

in G; then u is a hovering vertex of v and the set H(v) of all hovering vertices of v is the hovering
set of v. Otherwise, v is called evitable.

Recall that a′v = d′v and c′v = b′v for every unbounded vertex v ∈ VU , and thus
Hconvex(T v, a

′
v, c
′
v) = Hconvex(T v, a

′
v, b
′
v, c
′
v, d
′
v) in Definition 6. Therefore, replacing Tv by

Hconvex(T v, a
′
v, c
′
v) in the trapezoepiped representation of G is equivalent to replacing in the corre-

sponding multitolerance representation of G the infinite tolerance tv = ∞ by the finite tolerances
tv,1 = tv,2 = |Iv|, i.e. with making v a bounded vertex. Note that the hovering set of an inevitable un-
bounded vertex v can have more than one element, since the replacement of Tv by Hconvex(T v, a

′
v, c
′
v)

may create more than one new edge in G. Furthermore, uv /∈ E for every hovering vertex u of v,
while u can be both bounded or unbounded.

Lemma 4 Let G = (V,E) be a multitolerance graph, R be a trapezoepiped representation of G,
and v ∈ VU be an inevitable unbounded vertex in R. Then, N(v) ⊆ N(u) for every hovering
vertex u of v.

Proof. Note first that av = dv and cv = bv, since v is unbounded. Let u be a hovering vertex
of v in R, i.e. uv /∈ E and replacing Tv by Hconvex(T v, a

′
v, c
′
v) in R creates the new edge uv in G

by Definition 6. Thus, in particular T u ∩ T v 6= ∅, while the line Tv lies above Tu in R. Consider
a vertex w ∈ N(v). Then w is bounded, since v is unbounded and no two unbounded vertices
are adjacent. Furthermore Tv ∩ Tw 6= ∅ and T v ∩ Tw 6= ∅, since w ∈ N(v). We will prove that
also w ∈ N(u), in both cases where u is bounded and unbounded.

Case 1. u is bounded. If dw < av, then Tv ∩ Tw = ∅ by Lemma 2, which is a contradiction.
Thus av < dw. Suppose that av < au. Then, since T u ∩T v 6= ∅, Lemma 2 implies that Tu ∩Tv 6= ∅,
and thus uv ∈ E, which is a contradiction. Thus au < av, i.e. au < av < dw.

Since both u and w are bounded, Tu ∩ Tw 6= ∅ if and only if T u ∩ Tw 6= ∅ (cf. Definition 5).
Therefore, in order to prove that w ∈ N(u), it suffices to prove that T u ∩ Tw 6= ∅, i.e. that the
corresponding trapezoids in the plane intersect. Suppose otherwise that T u ∩ Tw = ∅. Then,
since au < dw, it follows that trapezoid T u lies completely to the left of trapezoid Tw. Therefore,
since both T v ∩ T u 6= ∅ and T v ∩ Tw 6= ∅, it follows that either du < aw < av and cv < bu < cw,
or av < du < aw and bu < cw < cv.

Case 1a. du < aw < av and cv < bu < cw. Recall now that av < dw, i.e. aw < av < dw. Fur-
thermore, note that cv < cw ≤ y for every point y ∈ [cw, bw] on the line L1. Therefore φv > φw(av),
and thus Tv ∩ Tw = ∅ by Lemma 2, i.e. w /∈ N(v), which is a contradiction.

Case 1b. av < du < aw and bu < cw < cv. Consider the tolerance-interval Qu = [du, bu] ∈ τu.
Then Qu ⊆ Iv = [av, bv], since av < du < bu < cv = bv. Therefore uv ∈ E, which is a contradiction.

Therefore T u ∩ Tw 6= ∅, and thus also Tu ∩ Tw 6= ∅, i.e. w ∈ N(u), since both u and w are
bounded.

Case 2. u is unbounded. Then au = du and cu = bu. Furthermore ∆− cotφu < ∆− cotφv,
since the line Tv lies above Tu in R, and thus φu < φv. Therefore au < av and cu > cv. If dw < av,
then Tv ∩ Tw = ∅ by Lemma 2, which is a contradiction, since w ∈ N(v). Suppose that av < aw.
Then cv > cw, since T v ∩ Tw 6= ∅. That is, au < av < aw and cu > cv > cw, and thus in particu-
lar T u ∩ Tw 6= ∅. Then Tu ∩ Tw 6= ∅ by Lemma 2, i.e. w ∈ N(u). Suppose now that aw < av < dw,
i.e. av = λaw + (1− λ)dw for some value λ ∈ [0, 1]. Consider the point y ∈ [cw, bw] on the line L1,
such that y = λcw + (1 − λ)bw for the same value of λ. Since Tv ∩ Tw 6= ∅, Lemma 2 implies that
φv ≤ φw(av), and thus y < cv. That is, au < av and y < cv < cu. Consider now the tolerance-
interval Qw = [av, y] ∈ τw. Then Qw ⊆ Iu = [au, bu], since au < av < y < cu = bu. Therefore
w ∈ N(u) in the case where u is unbounded. This completes the proof of the lemma.

The reader who is familiar with the equivalence between the multitolerance representation (using
intervals) and the trapezoepiped representation may observe that if a vertex u is a hovering vertex
of an unbounded vertex v (cf. Definition 6) then the interval Iv of v is included in the interval Iu
of u in the multitolerance representation, and thus the hovering set of v coincides with the set
Wv = {w ∈ V | Iv ⊆ Iw and vw /∈ E} in the notation of [23]. Note that this observation also

10

provides an alternative way of proving Lemma 4 (using the multitolerance representation rather
than the trapezoepiped representation). In the next definition we introduce the notion of a canonical
representation of a multitolerance graph G.

Definition 7 A trapezoepiped representation of a multitolerance graph G is called canonical if
every unbounded vertex is inevitable.

For example, in the multitolerance graph depicted in Figure 2, v2 and v5 are inevitable un-
bounded vertices, v1 and v4 are hovering vertices of v2 and v5, respectively, while v1 is an evitable
unbounded vertex. Therefore, this representation is not canonical for the graph G. However, if we
replace Tv1 by Hconvex(T v1 , a

′
v1 , c

′
v1), we get a canonical representation for G.

Lemma 5 Let R be a canonical representation of a multitolerance graph G and v ∈ VU be an
inevitable unbounded vertex of G (in the representation R). Then, there exists a hovering vertex u
of v, which is bounded.

Proof. Since R is a canonical representation of G, all unbounded vertices of G in R are inevitable
unbounded by Definition 7. Suppose that there exists an unbounded vertex v, such that every
hovering vertex of v is unbounded, and let v be the vertex with the smallest slope φv among them.
Let u be a hovering vertex of v in R, i.e. replacing Tv by Hconvex(T v, a

′
v, c
′
v) in R creates the new

edge uv in G by Definition 6. Thus, in particular T u ∩T v 6= ∅, while the line Tv lies above Tu in R.
Therefore, ∆− cotφv > ∆− cotφu, and thus φv > φu. Furthermore, since T u ∩ T v 6= ∅ and both u
and v are unbounded, it follows that au < av and cv < cu. Moreover N(v) ⊆ N(u) by Lemma 4.

Since R is a canonical representation and u is unbounded, it follows that u is an inevitable
unbounded vertex of G in R. Then, since φv > φu, it follows by the choice of v that the unbounded
vertex u has at least one hovering vertex u′ in R, which is bounded. That is, u′u /∈ E and
replacing Tu by Hconvex(T u, a

′
u, c
′
u) in R creates the new edge u′u in G. Therefore Tu′ ∩ Tu = ∅

and T u′ ∩ T u 6= ∅. Furthermore, since u′ /∈ N(u) and N(v) ⊆ N(u), it follows that also u′ /∈ N(v).
Therefore Tu′ ∩ Tv = ∅.

We will now prove that T u′∩T v 6= ∅. If au < au′ , then Tu′∩Tu 6= ∅ if and only if T u′∩T u 6= ∅ by
Lemma 2. This is a contradiction, since Tu′∩Tu = ∅ and T u′∩T u 6= ∅. Therefore au′ < au. Suppose
that au′ < au < du′ . Then, since u′u /∈ E, i.e. Tu ∩ Tu′ = ∅, Lemma 2 implies that φu > φu′(au).
Therefore cu < y for some point y ∈ [cu′ , bu′] on the line L1, and thus cu < bu′ . That is, au′ < au < av
and cv < cu < bu′ , and thus T u′ ∩ T v 6= ∅. Suppose now that du′ < au, i.e. du′ < au < av. Then,
since T u′ ∩ T u 6= ∅, it follows that cu < bu′ . That is, du′ < au < av and cv < cu < bu′ , and thus
again T u′ ∩ T v 6= ∅.

Summarizing, Tu′ ∩ Tv = ∅ and T u′ ∩ T v 6= ∅ in every case. Therefore, the replacement of Tv
by Hconvex(T v, a

′
v, c
′
v) in R creates the new edge u′v in G. Thus, u′ is a hovering vertex of v. This

is a contradiction to the assumption on v, since u′ is bounded. Therefore, for every inevitable
unbounded vertex v ∈ VU , there exists a hovering vertex u of v, which is bounded. This completes
the proof of the lemma.

3.1 The construction of a canonical representation

In this section we present Algorithm 1 that constructs a canonical representation of a multitolerance
graph G, given a trapezoepiped representation of G. To this end, we first provide some notions of
computational geometry, which play a crucial role in our algorithm.

Definition 8 Let L be a set of line segments in the plane. The lower envelope Env(L) of L is the
set of those points p = (x, y) of the line segments of L, such that the point (x, y′) does not belong
to any line segment of L, for any y′ < y.

An example of a set L of non-vertical line segments in the Euclidean plane is illustrated in
Figure 3. In this figure, the lower envelope Env(L) of L is drawn gray for better visibility.

11

Algorithm 1 Construction of a canonical representation of a multitolerance graph G

Input: A trapezoepiped representation R of a given multitolerance graph G = (V,E)
Output: A canonical representationR′ ofG and a hovering vertex u for every inevitable unbounded

vertex v of G

1: L← ∅; R′ ← R; R′′ ← R \ {Tv | v ∈ VB}
2: for every vertex v ∈ V do
3: if v ∈ VU then
4: pv ← (av,∆− cotφv)
5: else {v ∈ VB}
6: pv,1 ← (av,∆− cotφv,1); pv,2 ← (dv,∆− cotφv,2); pv,3 ← (bv,∆)
7: `v,1 = (pv,1, pv,2); `v,2 = (pv,2, pv,3); L← L ∪ {`v,1, `v,2}
8: Compute the set U1 of inevitable unbounded vertices in R′′ and a hovering vertex u ∈ VU of v,

for every v ∈ U1, by the algorithm of [21]

9: Compute the lower envelope Env(L) of L by the algorithm of [14]
{During the computation of Env(L), store for every line segment s of Env(L), the line seg-
ment `u,1 or `u,2 of L, in which s belongs}

10: for every vertex v ∈ Vu \ U1 do
11: if v lies above a segment s of Env(L) then {v ∈ U2 \ U1}
12: Let `u,1 or `u,2 be the line segment of L, in which s belongs
13: u ∈ VB is a hovering vertex of v
14: else {v is evitable unbounded}
15: Replace Tv by Hconvex(T v, a

′
v, c
′
v) in R′

{v is made bounded}
16: return R′

The lower envelope Env(L) of such a set L consists also of line segments (cf. Figure 3), and
thus Env(L) can be also specified by the endpoints of its segments. Given a set of n line segments
in the plane, the lower envelope of these segments can be computed in O(n log n) time using the
algorithm presented in [14]. During the computation of Env(L) by this algorithm, we can in the
same time also store for every line segment s of Env(L) the line segment ` of L, in which s belongs.
We define now two subsets U1 and U2 of the set of inevitable unbounded vertices.

Definition 9 Let v ∈ VU be an inevitable unbounded vertex. Then, v ∈ U1 (resp. v ∈ U2) if there
exists at least one hovering vertex u ∈ H(v) of v, such that u is unbounded (resp. u is bounded).

Note that, given a trapezoepiped representation of a multitolerance graph G, the sets U1 and U2

are not necessarily disjoint, since an unbounded vertex may have both unbounded and bounded

x

y
`1 `2

`4
`3

`5

`6

s1

s2
s3

s4

s5

s6

s7

s8

s9

s10

Figure 3: A set L = {`1, . . . , `6} of line segments in the plane and the lower envelope Env(L) of L,
which consists of the line segments {s1, . . . , s10}.

12

hovering vertices. On the other hand, since every inevitable unbounded vertex has at least one
hovering vertex (cf. Definition 6), U1 ∪ U2 coincides with the set of inevitable unbounded vertices.

We associate now with every unbounded vertex v ∈ VU the point pv = (xv, yv) in the Eu-
clidean plane, where xv = av and yv = ∆− cotφv. Moreover, we associate with every bounded
vertex u ∈ VB three points pu,1 = (xu,1, yu,1) = (au,∆− cotφu,1), pu,2 = (xu,2, yu,2) = (du,∆ −
cotφu,2), and pu,3 = (xu,3, yu,3) = (bu,∆) in the plane. Furthermore, we associate with every
bounded vertex u ∈ VB two line segments `u,1 = (pu,1, pu,2) and `u,2 = (pu,2, pu,3) in the plane,
which have the points pu,1, pu,2 and pu,2, pu,3 as endpoints, respectively. An example of this con-
struction is given in Figure 4, where the points pv1 and pv2 are associated with the unbounded
vertices v1 and v2, respectively, while the points pu,1, pu,2, pu,3 and the line segments `u,1, `u,2 are
associated with the bounded vertex u.

L1

L2
du

cu bu

au

φu,1 φu,2

Tu

φu(av1)
av1

cv1

av2

cv2

T v1 T v2

(a)

x

y

`u,1

`u,2

yu,3

pu,1

pu,2

pu,3

au du buav1 av2

pv1

pv2yv2

yv1

yu,1

yu,2

(b)

Figure 4: Two inevitable unbounded vertices v1, v2 ∈ U2, where the bounded vertex u ∈ VB is a
hovering vertex of both v1 and v2: (a) the trapezoids T u, T v1 , T v2 and (b) the line segments `u,1, `u,2
of vertex u and the points pv1 , pv2 of vertices v1, v2, respectively, where yu,1 = ∆− cot(φu,1),
yu,2 = ∆− cot(φu,2), yu,3 = ∆, and yvj = ∆− cot(φvj) for every j = 1, 2.

In the following, let L = {`u,1, `u,2 | u ∈ VB} be the 2|VB| line segments that are associated
with the bounded vertices u ∈ VB. For an arbitrary point p = (x, y) in the plane, we say that p
lies above Env(L) (resp. above the line segment `u,1 or `u,2 of L) if there exists a point p′ = (x, y′)
of Env(L) (resp. of `u,1 or `u,2), such that y > y′. The next lemma, which is crucial for the analysis
of Algorithm 1, characterizes the vertices of U2 using the lower envelope Env(L) of L.

Lemma 6 Let v ∈ VU be an unbounded vertex and pv = (xv, yv) be the associated point in the plane.
Then, v ∈ U2 if and only if pv lies above Env(L). Furthermore, if pv lies above the segment `u,1
or `u,2 of L, then the bounded vertex u is a hovering vertex of v.

Proof. Let u ∈ VB be a bounded vertex and consider an arbitrary point x0 ∈ [xu,1, xu,2] = [au, du].
Then x0 = λxu,1 + (1− λ)xu,2 = λau + (1− λ)du for some value λ ∈ [0, 1]. Thus, the point of the
line segment `u,1 with abscissa x0 is p0 = (x0, λyu,1 + (1− λ)yu,2). Recall that yu,1 = ∆− cotφu,1
and yu,2 = ∆− cotφu,2. Therefore λyu,1 + (1−λ)yu,2 = ∆− (λ cotφu,1 + (1−λ) cotφu,2), and thus
λyu,1 + (1− λ)yu,2 = ∆− cotφu(x0) by Observation 1. That is, the point of the line segment `u,1
with abscissa x0 ∈ [au, du] is p0 = (x0,∆− cotφu(x0)).

Consider now a point x0 ∈ [xu,2, xu,3] = [du, bu]. Then x0 = λxu,2+(1−λ)xu,3 = λdu+(1−λ)bu
for some value λ ∈ [0, 1]. Thus, the point of the line segment `u,2 with abscissa x0 is p0 =
(x0, λyu,2 + (1 − λ)yu,3). Recall that yu,3 = ∆ and that yu,2 = ∆ − cotφu,2. Note also that
cotφu,2 = bu − du, and thus yu,2 = ∆ − bu + du. Therefore λyu,2 + (1 − λ)yu,3 = ∆ − λbu + λdu,
and thus λyu,2 + (1 − λ)yu,3 = ∆ − bu + x0, since x0 = λdu + (1 − λ)bu. That is, the point of the
line segment `u,2 with abscissa x0 ∈ [du, bu] is p0 = (x0,∆− bu + x0).

Let v ∈ VU be an unbounded vertex, such that the point pv = (xv, yv) lies above Env(L). That
is, there exists a point p′ = (xv, y

′) ∈ Env(L), such that yv > y′. This point p′ belongs to the
line segment `u,1 or to the line segment `u,2, for some bounded vertex u ∈ VB. In the example of
Figure 4(b), the point pv1 (resp. pv2) that is associated to the unbounded vertex v1 (resp. v2) lies
above the line segment `u,1 (resp. `u,2) that is associated with the bounded vertex u (cf. Figure 4(b)).

13

Suppose that p′ belongs to a line segment `u,1, where u ∈ VB. Then xv ∈ [xu,1, xu,2] = [au, du],
and thus p′ = (xv, y

′) = (xv,∆ − cotφu(xv)), as we proved above. Furthermore, since yv > y′, it
follows that yv = ∆−cotφv > ∆−cotφu(xv), and thus φv > φu(xv). That is, there exists a bounded
vertex u ∈ VB, such that au < xv = av < du and φv > φu(xv), and thus Tu ∩ Tv = ∅ by Lemma 2.
Moreover T u ∩ T v 6= ∅, since au < av < du, and thus replacing Tv by Hconvex(T v, a

′
v, c
′
v) in the

trapezoepiped representation creates the new edge uv in G. Therefore v is an inevitable unbounded
vertex and the bounded vertex u is a hovering vertex of v by Definition 6. In particular, v ∈ U2.

Suppose now that p′ belongs to a line segment `u,2, where u ∈ VB. Then xv ∈ [xu,2, xu,3] =
[du, bu], and thus p′ = (xv, y

′) = (xv,∆− bu + xv), as we proved above. Recall that yv = ∆− cotφv
and that cotφv = cv − av, and thus yv = ∆ − cv + av. Therefore, since yv > y′, it follows
that yv = ∆ − cv + av > ∆ − bu + xv. Thus, since xv = av, it follows that cv < bu. That is,
there exists a bounded vertex u ∈ VB, such that du < xv = av and cv < bu, and thus T u ∩ T v 6= ∅.
Moreover Tu∩Tv = ∅ by Lemma 2, since du < av, and thus replacing Tv by Hconvex(T v, a

′
v, c
′
v) in the

trapezoepiped representation creates the new edge uv in G. Therefore v is an inevitable unbounded
vertex and the bounded vertex u is a hovering vertex of v by Definition 6. In particular, v ∈ U2.

Conversely, let v ∈ U2. Then, replacing Tv by Hconvex(T v, a
′
v, c
′
v) in the trapezoepiped rep-

resentation creates a new edge uv in G, where u is a bounded hovering vertex of v. That is,
Tu ∩ Tv = ∅ and T u ∩ T v 6= ∅. If av < au, then Lemma 2 implies that Tu ∩ Tv 6= ∅ if and only
if T u ∩ T v 6= ∅, which is a contradiction. Therefore au < av. Suppose first that au < av < du,
or equivalently xu,1 < xv < xu,2. Then φv > φu(av) by Lemma 2, since Tu ∩ Tv = ∅. Therefore
∆ − cotφv > ∆ − cotφu(av). Recall now that the point of the line segment `u,1 with abscissa
xv = av ∈ [au, du] is p = (xv,∆− cotφu(av)). Therefore, since yv = ∆− cotφv > ∆− cotφu(av), it
follows that the point pv = (xv, yv) lies above the line segment `u,1, and thus pv lies above Env(L).

Suppose now that du < av. Then, since T u ∩ T v 6= ∅, it follows that cv < bu. Recall that
av < cv (cf. Definition 3 and Figure 1), and thus du < av < cv < bu, i.e. av ∈ [du, bu]. Note that
yv = ∆ − cotφv = ∆ − (cv − av). Furthermore, recall that the point on the line segment `u,2
with abscissa xv = av ∈ [du, bu] is p = (av,∆ − bu + av). Therefore, since cv < bu, it follows that
yv = ∆− cv + av > ∆− bu + av, and thus the point pv = (xv, yv) lies above the line segment `u,2,
i.e. pv lies above Env(L). This completes the proof of the lemma.

The next theorem shows that, given a trapezoepiped representation, we can construct by Algo-
rithm 1 a canonical representation in O(n log n) time. This result plays a central role in the time
complexity analysis of the algorithms of Section 4.

Theorem 2 Every trapezoepiped representation of a multitolerance graph G with n vertices can be
transformed by Algorithm 1 to a canonical representation of G in O(n log n) time.

Proof. We describe and analyze Algorithm 1 that generates a canonical representation R′ of G.
The main idea is to efficiently detect the evitable and the inevitable unbounded vertices in the given
trapezoepiped representation R of G. Then, we replace Tv by Hconvex(T v, a

′
v, c
′
v) for every evitable

unbounded vertex v ∈ VU , and thus the resulting trapezoepiped representation is canonical.
First, we compute the point pv in the plane for every unbounded vertex v ∈ VU and the three

points pv,1, pv,2, pv,3 in the plane for every bounded vertex v ∈ VB. Moreover, we specify for
every v ∈ VB the two line segments `v,1 and `v,2 in the plane with endpoints pv,1, pv,2 and pv,2, pv,3,
respectively, and we compute the set L = {`v,1, `v,2 | v ∈ VB} of 2|VB| line segments.

Then, we consider the part R′′ of the initial trapezoepiped representation R that consists only
of the trivial trapezoepipeds (lines) Tv, for every unbounded vertex v ∈ VU . Note that the graph
induced by the vertices of VU is an independent set with cardinality |VU |, since no two unbounded
vertices in a multitolerance graph are adjacent. Furthermore, R′′ is a special case of a parallelepiped
representation1 (see [21]). We use now Algorithm 1 of [21] that computes in particular all inevitable
unbounded vertices v of a given parallelepiped representation, as well as a hovering vertex u for

1Note here that, in a parallelepiped representation of a tolerance graph, the height of the line Pv that corresponds
to an unbounded vertex v, equals the slope φv of the line P v, which is the projection of Pv to the plane z = 0; for
details, see [21]. On the other hand, in the trapezoepiped representation R′′ (cf. line 1 of Algorithm 1), the height

14

each one of them. Note that, by the definition of R′′, Algorithm 1 of [21] is applied only to the
graph induced by the unbounded vertices of G in R. Observe now that the computed inevitable
unbounded vertices v by this algorithm are exactly the vertices of U1 (cf. Definition 9). Furthermore,
for each of these vertices v ∈ U1, the computed hovering vertex u is unbounded.

In the sequel, we use the algorithm presented in [14] to compute the lower envelope Env(L) of
the computed set L of 2|VB| line segments. During the computation of Env(L) by this algorithm,
we also store in the same time for every line segment s of Env(L) the line segment ` of L, in which s
belongs.

After the lower envelope Env(L) of L has been computed, we check for every unbounded
vertex v ∈ VU \ U1 whether the point pv lies above Env(L). We distinguish the following cases:

Case 1. pv lies above Env(L). Let s be the line segment of Env(L), above which the point pv
lies, and let `u,1 or `u,2 be the line segment of L, in which s belongs, for some u ∈ VB. Then,
Lemma 6 implies that v is an inevitable unbounded vertex (v ∈ U2) and that u is a bounded
hovering vertex of v.

Case 2. pv does not lie above Env(L). Then v /∈ U2 by Lemma 6. Furthermore, since
also v /∈ U1, it follows that v is not an inevitable unbounded vertex, i.e. v is evitable. Then we
replace the trapezoepiped Tv by Hconvex(T v, a

′
v, c
′
v) in the current trapezoepiped representation and

we consider from now on v as a bounded vertex. This replacement does not add any new edge
to G, since v is evitable.

Regarding the time complexity, the initialization of the trapezoepiped representations R′ and R′′

in line 1, as well as the computation of the O(n) points and O(n) line segments in lines 2-7 can be
done in linear O(n) time. Furthermore, lines 8 and 9 of Algorithm 1 can be executed in O(n log n)
time [14,21]. Recall that, during the computation of Env(L) by the algorithm presented in [14], we
also store in the same time for every line segment s of Env(L) the line segment ` of L, in which s
belongs. Furthermore, note that the endpoints of the line segments of Env(L) are returned sorted
increasingly according to their x values [14].

After the lower envelope Env(L) of L has been computed, we check for every unbounded
vertex v ∈ VU in O(log n) time whether the point pv = (xv, yv) lies above Env(L) (cf. line 11).
This can be done as follows. Among all endpoints of the line segments of Env(L), we compute
in O(log n) time the endpoint p1 = (x1, y1) (resp. p2 = (x2, y2)), such that x1 (resp. x2) is the
greatest (resp. the smallest) value with x1 < xv (resp. xv < x2). Then, we test in constant time
whether the points p1 and p2 define a line segment s of Env(L) and whether the point pv lies above
this segment s. If p1 and p2 do not define a segment s of Env(L), or if p1 and p2 define such a
segment s and pv does not lie above s, then pv does not lie above Env(L). Otherwise, if pv lies
above the line segment s of Env(L) defined by the points p1 and p2, then pv lies above Env(L).

Then, the execution of each of the lines 12, 13, and 15 can be simply done in constant time.
Therefore, since the lines 11-15 are executed |VU\U1| = O(n) times, the complexity of the lines 10-15
is O(n log n). Summarizing, the total time complexity of Algorithm 1 in O(n log n). This completes
the proof of the theorem.

4 Coloring and clique algorithms in O(n log n) time

4.1 Minimum coloring

In the next theorem we present an optimal O(n log n) algorithm for computing a minimum col-
oring of a multitolerance graph G with n vertices, given any trapezoepiped representation of G.
This algorithm uses Algorithm 1 to compute efficiently a canonical representation of G, as well
as the algorithm of [6] that computes a coloring of a given trapezoid graph with n vertices in
optimal O(n log n) time.

of the line Tv that corresponds to the unbounded vertex v ∈ VU equals ∆ − cot(φv), where φv is the slope of the
line T v, which is the projection of Tv to the plane z = 0. Note that for every two unbounded vertices u, v ∈ VU of
the multitolerance graph G, ∆− cot(φv) > ∆− cot(φu) if and only if φv > φu. Therefore, R′′ can be considered as a
special case of a parallelogram representation by changing the height of every line Tv, where v ∈ VU , from ∆−cot(φv)
to φv, since this change of the heights of the lines does not change the relative position of any two lines in R′′.

15

Algorithm 2 Computation of a minimum coloring of a multitolerance graph G

Input: A trapezoepiped representation R of a given multitolerance graph G = (V,E)
Output: A minimum coloring of G

1: Construct a canonical representation R′ of G by Algorithm 1, where a hovering vertex uv is
associated with every inevitable unbounded vertex v

2: Let VB and VU be the bounded and (inevitable) unbounded vertices of G in R′, respectively

3: Color G[VB] by the algorithm of [6]

4: for every vertex v ∈ VU do
5: Create a pointer from the hovering vertex uv of v to the vertex v
6: for every vertex u ∈ VB that has at least one pointer do
7: Assign the color of u to every vertex v ∈ VU that is reachable from u by a sequence of pointers

Theorem 3 A minimum coloring of a multitolerance graph G with n vertices can be computed by
Algorithm 2 in optimal O(n log n) time.

Proof. We present Algorithm 2 that computes a minimum coloring of G. First, we compute from
the initial trapezoepiped representation R of G a canonical representation R′ of G by Algorithm 1.
Denote by VB and VU the sets of bounded and unbounded vertices of G in the canonical represen-
tation R′, respectively. Then, the induced subgraph G[VB] of G on the vertices of VB is a bounded
multitolerance (also called bounded bitolerance) graph, i.e. a trapezoid graph [11, 23]. Thus, we
compute a minimum coloring of G[VB] using the algorithm of [6].

Note that every unbounded vertex v ∈ VU is inevitable, since R′ is canonical. Furthermore,
exactly one hovering vertex uv is assigned to every v ∈ VU by Algorithm 1. Now, for every v ∈ VU ,
we create a pointer from uv to v. Since every v ∈ VU has exactly one hovering vertex uv assigned
to it, it follows that after the execution of lines 4-5 every v ∈ VU has exactly one incoming pointer
from some vertex uv.

Consider now an arbitrary inevitable unbounded vertex v ∈ VU and its hovering vertex uv.
If uv ∈ VB, then a color has been assigned to uv by the coloring of the graph G[VB]. Suppose
that uv ∈ VU . Then, uv is unbounded in both the canonical representation R′ and in the initial
representation R of G. Furthermore, if we replace Tv by Hconvex(T v, a

′
v, c
′
v) in R, we create the

new edge uvv in G. Thus, since both uv and v are unbounded in R, it follows in particular
that ∆ − cot(φv) > ∆ − cot(φuv), i.e. φv > φuv . That is, if a vertex uv ∈ VU has a pointer
to a vertex v ∈ VU , then φv > φuv . Therefore, for every vertex v = v0 ∈ VU , there exists a
maximal chain (v0, v1, . . . , vk) of vertices in VU , such that vi has a pointer to vi−1 and φvi−1 > φvi ,
for every i = 1, 2, . . . , k. Moreover, since every vertex has at most one incoming pointer, such a
maximal chain is unique. Then, since vi is a hovering vertex of vi−1 for every i = 1, 2, . . . , k, it
follows by Lemma 4 that N(v0) ⊆ N(v1) ⊆ . . . ⊆ N(vk). Furthermore, since R′ is canonical, the
unbounded vertex vk is inevitable unbounded, and thus vk has an incoming pointer from a hovering
vertex uvk of vk. In particular, uvk is bounded in R′, i.e. uvk ∈ VB, due to the maximality of the
chain (v0, v1, . . . , vk) in VU . Moreover N(vk) ⊆ N(uvk) by Lemma 4, since uvk is a hovering vertex
of vk, and thus also N(v0) ⊆ N(uvk). That is, for every vertex v ∈ VU , there exists exactly one
vertex u ∈ VB, such that v can be reached by a sequence of pointers from u and N(v) ⊆ N(u).
Therefore, the coloring is well defined.

Now, starting from every bounded vertex u ∈ VB, we assign the color of u (in the coloring
of G[VB]) to every unbounded vertex v that is reachable from u by a sequence of pointers. It
remains to prove that this coloring is a proper coloring of G. Suppose otherwise that there exists a
vertex v ∈ VU and a vertex w ∈ N(v), such that u and w have the same color. Then w is bounded
in both representations R and R′, since two unbounded vertices are never adjacent and w ∈ N(v).
Let u ∈ VB be the unique vertex in G, such that v can be reached from u by a sequence of pointers.
Then N(v) ⊆ N(u) by the previous paragraph, and thus also w ∈ N(u). Furthermore, by definition
of the coloring, all u, v, and w have the same color. This is a contradiction, since u,w ∈ VB and

16

the coloring of G[VB] is proper. Therefore, for every vertex v ∈ VU , all vertices w ∈ N(v) have
different color than v, and thus the constructed coloring of G is proper. Furthermore, this coloring
is minimum, since the constructed coloring of G[VB] in line 3 is also minimum [6].

Regarding the time complexity, the computation of the canonical representation R′ of G can
be done in O(n log n) time by Theorem 2. Furthermore, a minimum coloring of G[VB] can be
computed by the algorithm of [6] in O(n log n) time. The execution of the lines 4-5 can be done in
linear O(n) time, since we visit every vertex v ∈ VU once. Finally, the execution of the lines 6-7
can be also done in linear O(n) time, by traversing the graph G following the pointers that we
created in lines 4-5. Summarizing, Algorithm 2 computes a minimum coloring of G in O(n log n)
time. Moreover, since Ω(n log n) is a lower bound for the time complexity of the minimum coloring
problem on tolerance graphs [21] and on trapezoid graphs2 [6], it follows that Algorithm 2 has also
optimal running time. This completes the proof of the theorem.

4.2 Maximum clique

In the next theorem we present an optimal O(n log n) time algorithm for computing a maximum
clique of a multitolerance graph G with n vertices, given any trapezoepiped representation of G.
This algorithm uses Algorithm 1 for the efficient construction of a canonical representation of G,
as well as the algorithm of [6] that computes a maximum clique of a given trapezoid graph with n
vertices in optimal O(n log n) time.

Theorem 4 A maximum clique of a multitolerance graph G with n vertices can be computed in
optimal O(n log n) time.

Proof. First we compute a canonical representation of G in O(n log n) time by Algorithm 1.
By the correctness of Algorithm 2, cf. the proof of Theorem 3, it follows that χ(G) = χ(G[VB]),
where χ(H) denotes the chromatic number of a given graph H. Since multitolerance graphs are
perfect graphs [23], ω(G) = χ(G) and ω(G[VB]) = χ(G[VB]), where ω(H) denotes the clique
number of a given graph H. Therefore ω(G) = ω(G[VB]). We compute now a maximum clique Q
of the bounded multitolerance (i.e. trapezoid) graph G[VB] in O(n log n) time by the algorithm
presented in [6] for trapezoid graphs. Then, since ω(G) = ω(G[VB]), Q is a maximum clique of G
as well. Finally, since Ω(n log n) is a lower bound for the time complexity of the maximum clique
problem on tolerance graphs [21] and on trapezoid graphs [6], it follows that the clique algorithm
for multitolerance graphs has also optimal running time. This completes the proof of the theorem.

5 Weighted independent set algorithm in O(m + n log n) time

In this section we present Algorithm 3 that computes the value of a maximum weight independent
set of a multitolerance graph G = (V,E) with n vertices and m edges in O(m + n log n) time,
given a trapezoepiped representation of G and a weight w(v) > 0 for every v ∈ V . Although
the algorithm presented in [21] for the maximum weight independent set on tolerance graphs with
complexity O(n2) can be extended with the same time complexity to the case of multitolerance
graphs with a given trapezoepiped representation, we present here a new algorithm for multitol-
erance graphs that achieves a better running time O(m + n log n). Thus this algorithm improves
also the best known running time of O(n2) for the maximum weight independent set on tolerance
graphs [21]. Note here that Ω(n log n) is a lower bound for the time complexity of this problem on
trapezoid graphs [6], and thus also on multitolerance graphs.

2There exists a lower time bound of Ω(n logn) for computing the length of a longest increasing subsequence
in a permutation [6], and thus the same lower bound holds for computing a maximum clique and a maximum
independent set in a permutation graph G. Furthermore, since permutation graphs are perfect graphs [7], the
chromatic number χ(G) of a permutation graph G equals the clique number ω(G) of G. Thus, Ω(n logn) is a lower
time bound for computing the chromatic number of a permutation graph. Finally, since the class of permutation
graphs is a subclass of trapezoid graphs [11], the same lower bounds apply to trapezoid graphs.

17

First, given a trapezoepiped representation of a multitolerance graph G = (V,E), we sort on
the line L2 the points {av, dv | v ∈ V } of the trapezoids T v, v ∈ V , and we visit these points
sequentially from right to left. Note that av = dv for every unbounded vertex v ∈ VU . A vertex v
is called processed only after we visit the endpoint av of T v. During the execution of the algorithm
we maintain two finite sets M and H of O(n) weighted markers each on the line L1, which are
placed at some points cv, where v ∈ V . We maintain the sets M and H in such a way that values
can be inserted to and deleted from these sets, as well as the predecessor or successor of a given
query value can be found. Using binary search trees, for instance AVL-trees, all these operations
can be executed in O(log n) time [12]. In the following of the analysis of Algorithm 3, we will use
for simplicity of the presentation the variable m to denote a marker of the set M (rather than the
number of edges of G); furthermore, we will refer by |E| to the number of edges of G.

The markers of the set M are placed at points cv on the line L1, for some bounded ver-
tices v ∈ VB. After an iteration of the algorithm, where the vertices of the set U ⊆ V have been
processed, the weight W (m) of a marker m placed at the point cv on the line L1 equals the maxi-
mum weight of an independent set, which includes only vertices u ∈ U such that cv ≤ cu. Moreover,
a marker m is placed at cv only if such a maximum weight independent set includes the (bounded)
vertex v.

The markers of the set H are placed at points cv on the line L1, where v ∈ VU . After an
iteration of the algorithm, where the vertices of the set U ⊆ V have been processed, there is a
weighted marker h ∈ H placed at the point cv on L1, for every unbounded vertex v ∈ VU ∩ U ,
while the weight w(h) of h equals the weight w(v) of vertex v. Furthermore, in the AVL-tree of the
set H, we store at every internal vertex x also a label with the total weight of the tree that consists
of x and its right subtree. Note that after an insertion of a new marker h to the AVL-tree that
stores H, we can update in O(log n) time these labels of the internal vertices, as follows. First, we
need to update a constant number of labels during the “trinode restructure” operation (for more
details, see [12]). Then, following the path from the internal vertex that stores the new marker h
to the root, we add the weight w(h) of h to the label of every internal vertex that has h in its right
subtree.

For every two points q and q′ on L1, where q < q′, denote for simplicity by H[q, q′)
(resp. H[q,+∞)) the set of the markers h in the current set H that have been placed in the
semi-closed interval [q, q′) (resp. in the subline [q,+∞)) of L1. Denote also by w(H[q, q′))
(resp. w(H[q,+∞))) the sum of the weights of the markers h ∈ H[q, q′) (resp. h ∈ H[q,+∞)). For
simplicity, in the case where q′ = q, we set w(H[q, q)) = 0. Furthermore, note that if q ≤ q′ ≤ q′′,
then w(H[q, q′′)) = w(H[q, q′))+w(H[q′, q′′)). For every point q on L1, we can compute in O(log n)
time the value w(H[q,+∞)), as follows. First, we locate in O(log n) time the leftmost marker h ∈ H
that has been placed at a point q′, such that q ≤ q′. Then, we follow in the AVL-tree of H the
path from the root to the internal vertex x that stores h and sum up the label stored at x and the
labels stored at the internal vertices of this path, at which we follow the left child. Furthermore,
since w(H[q, q′)) = w(H[q,+∞)) − w(H[q′,+∞)) for every two points q, q′ on the line L1 such
that q ≤ q′, we can compute the value w(H[q, q′)) in O(log n) time as well.

In the following we present our Algorithm 3 that computes the value of a maximum weight
independent set of a multitolerance graph G, given a trapezoepiped representation of G. A slight
modification of this algorithm computes in the same time also a maximum weight independent set
of G, instead of its value. For every marker m ∈M (resp. h ∈ H), we denote by pm (resp. ph) the
point of L1, at which the marker m (resp. h) is placed.

We now prove in the next lemma that Algorithm 3 maintains a monotonicity property of the
weights of the markers in the set M , which is crucial for the proof of correctness of the algorithm.

Lemma 7 Let m1 and m2 be two markers of M after an iteration of Algorithm 3, such that
pm2 < pm1. Then W (m2) > W (m1) + w(H[pm2 , pm1)).

Proof. The proof is done by induction on the iterations of lines 9-23 of the algorithm. The
condition of the lemma clearly holds before the first iteration, since initially the set M has only one

18

Algorithm 3 Maximum weight independent set of a multitolerance graph G

Input: A trapezoepiped representation of a given multitolerance graph G = (V,E)
Output: The value of a maximum weight independent set of G

1: Place a marker m0 at the point pm0 = max{bv | v ∈ V }+ 1 of the line L1

2: W (m0)← 0; M ← {m0}
3: for every v ∈ VB do {initialization}
4: W (v)← 0
5: Compute the value w̃v =

∑{w(u) | u ∈ VU , cu ∈ (cv, bv)}
6: for every u ∈ N(v) do
7: if u ∈ VU and cu ∈ (cv, bv) then {v is not a hovering vertex of u}
8: w̃v ← w̃v − w(u)

9: for every point p ∈ {av, dv | v ∈ V } from right to left do {p lies on the line L2}
10: if p = av for some v ∈ VU then {the unbounded vertex v is being processed}
11: Insert a new marker h ∈ H at the point ph = cv
12: w(h)← w(v)
13: m← the leftmost marker of M to the right of cv on L1

14: Remove all markers m′ ∈M to the left of m, for which W (m′) ≤W (m) + w(H[pm′ , pm))

15: if p = dv for some v ∈ VB then
16: m← the leftmost marker of M to the right of bv on L1

17: W (v)← (w(v) + w̃v) +W (m) + w(H[bv, pm)) {do not modify the markers of M}
18: if p = av for some v ∈ VB then {the bounded vertex v is being processed}
19: m← the leftmost marker of M to the right of cv on L1

20: if W (v) > W (m) + w(H[cv, pm)) then
21: Insert a new marker m′ ∈M at the point pm′ = cv
22: W (m′)←W (v)
23: Remove all markers m′′ ∈M to the left m′, for which W (m′′) ≤W (m′)+w(H[pm′′ , pm′))

24: return W (m) + w(H[c, pm)), where c = min{cv | v ∈ V } − 1 and m is the leftmost marker
of M

marker m0. This proves the induction basis. Suppose that the condition of the lemma holds after
an iteration of the algorithm. For the induction step, consider the next iteration, during which the
algorithm visits a point p ∈ {av, dv | v ∈ V } on the line L2. We distinguish in the following the
cases regarding the point p.

Case 1. p = av = dv for some unbounded vertex v ∈ VU , i.e. v is being processed at this
iteration. Let m be the leftmost marker of M to the right of cv on L1 (cf. line 13 of Algo-
rithm 3). The algorithm adds a marker h to the set H at the point cv of the line L1 with weight
w(h) = w(v). Furthermore, the algorithm removes all markers m′ ∈ M , such that pm′ < pm and
W (m′) ≤W (m) + w(H[pm′ , pm)) (cf. line 14 of Algorithm 3). Consider two markers m1,m2 ∈M ,
such that pm2 < pm1 , i.e. m2 is lies to the left of m1 on the line L1 after the iteration in which v is
processed. Note that cv 6= pm1 and cv 6= pm2 , since v is an unbounded vertex and the points pm1

and pm2 correspond to bounded vertices. Suppose first that cv < pm2 < pm1 or pm2 < pm1 < cv.
Then the values W (m1), W (m2), and w(H[pm2 , pm1)) are the same before and after v is pro-
cessed, and thus W (m2) > W (m1) + w(H[pm2 , pm1)) by the induction hypothesis. Suppose now
that pm2 < cv < pm1 . If m1 = m, then W (m2) > W (m1) + w(H[pm2 , pm1)), since otherwise the
marker m2 would be removed from M after the process of v, which is a contradiction. If m1 6= m,
then pm2 < cv < pm < pm1 by definition of m. Note that W (m2) > W (m) + w(H[pm2 , pm)),
since otherwise m2 would be removed from M , which is again a contradiction. Further-
more W (m) > W (m1) + w(H[pm, pm1)), as we proved above, since cv < pm < pm1 . Summing
up the last two inequalities, it follows that W (m2) > W (m1) + w(H[pm2 , pm)) + w(H[pm, pm1)),
i.e. W (m2) > W (m1) + w(H[pm2 , pm1)).

19

Case 2. p = dv for some bounded vertex v ∈ VB. Then, v is not being processed at this iteration
and the algorithm does not modify the sets M and H. Thus the condition of the lemma holds by
the induction hypothesis.

Case 3. p = av for some bounded vertex v ∈ VB, i.e. v is being processed at this iteration.
Note that the value W (v) has been computed previously (at a previous iteration, if av < dv, or
at the current iteration, if av = dv). Let m be the leftmost marker of M to the right of cv on L1

(cf. line 19 of Algorithm 3). If W (v) ≤ W (m) + w(H[cv, pm)), then the sets M and H are not
modified (cf. line 20 of Algorithm 3), and thus the condition of the lemma holds by the induction
hypothesis. Suppose that W (v) > W (m) + w(H[cv, pm)). Then, the algorithm adds a new marker
m′ to the set M at the point cv with weight W (m′) = W (v). Furthermore, it removes from
M all markers m′′, such that pm′′ < pm′ and W (m′′) ≤ W (m′) + w(H[pm′′ , pm′)) (cf. line 23 of
Algorithm 3).

Suppose first that cv < pm2 < pm1 or pm2 < pm1 < cv. Then the values W (m1), W (m2),
and w(H[pm2 , pm1)) are the same before and after v is processed, and thus W (m2) >
W (m1) + w(H[pm2 , pm1)) by the induction hypothesis. Suppose that cv = pm1 , i.e. m′ = m1 and
pm2 < cv = pm1 = pm′ . Then W (m2) > W (m1) + w(H[pm2 , pm1)), since otherwise the marker m2

would be removed from M after the process of v, which is a contradiction. Suppose that
cv = pm2 , i.e. m′ = m2 and cv = pm2 < pm ≤ pm1 by definition of m. Then W (m′) = W (v) >
W (m)+w(H[cv,m)) by definition of W (m′), i.e. W (m2) > W (m)+w(H[pm2 , pm)). If m1 6= m, then
W (m) > W (m1) + w(H[pm, pm1)), as we proved above, since in this case cv < pm < pm1 . There-
fore, summing up the last two inequalities, it follows that W (m2) > W (m1) + w(H[pm2 , pm)) +
w(H[pm, pm1)), i.e. W (m2) > W (m1) +w(H[pm2 , pm1)). If m1 = m, then it follows by substitution
that W (m2) > W (m1) + w(H[pm2 , pm1)), since W (m2) > W (m) + w(H[pm2 , pm)).

Suppose now that pm2 < cv < pm1 , i.e. pm2 < cv = pm′ < pm ≤ pm1 by definition of m and m′.
Recall that W (v) > W (m)+w(H[cv, pm)). Thus, since W (m′) = W (v) and cv = pm′ , it follows that
W (m′) > W (m)+w(H[pm′ , pm)). Furthermore, note that W (m2) > W (m′)+w(H[pm2 , pm′)), since
otherwise the marker m2 would be removed from M after the process of v, which is a contradiction.
Therefore, summing up the last two inequalities, it follows that W (m2) > W (m)+w(H[pm2 , pm′))+
w(H[pm′ , pm)), i.e. W (m2) > W (m) + w(H[pm2 , pm)). If m1 = m, then it follows by substitution
that W (m2) > W (m1)+w(H[pm2 , pm1)). If m1 6= m, then W (m) > W (m1)+w(H[pm, pm1)), as we
proved above, since in this case cv < pm < pm1 . Recall now that W (m2) > W (m)+w(H[pm2 , pm)).
Therefore, summing up the last two inequalities, it follows that W (m2) > W (m1)+w(H[pm2 , pm))+
w(H[pm, pm1)), i.e. W (m2) > W (m1) + w(H[pm2 , pm1)).

Summarizing Cases 1, 2, and 3, W (m2) > W (m1) + w(H[pm2 , pm1)) for every two markers
m1,m2 ∈ M such that pm2 < pm1 after the iteration, during which the algorithm visits the point
p ∈ {av, dv | v ∈ V }. This completes the induction step, and thus also the proof of the lemma.

Recall that w(H[q, q′)) = w(H[q,+∞))−w(H[q′,+∞)) for every two points q, q′ on the line L1

such that q ≤ q′. Therefore, the next corollary follows directly by Lemma 7.

Corollary 1 Let m1 and m2 be two markers of M after an iteration of Algorithm 3. Then
pm2 < pm1 if and only if W (m2)− w(H[pm2 ,+∞)) > W (m1)− w(H[pm1 ,+∞)).

Definition 10 Let U ⊆ V be a set of vertices and y be a point of the line L1. Then we define
Opt(U, y) to be a maximum weight independent set, which includes only vertices u ∈ U such that
y ≤ cu. The weight w(Opt(U, y)) is the total weight of the vertices of Opt(U, y).

Suppose now that Algorithm 3 visits the point p ∈ {av, dv | v ∈ V } of the line L2 at some
iteration. Then, U = {u ∈ V | p ≤ av} is the set of vertices that have been processed by the
algorithm after this iteration. For every point y ≤ pm0 of the line L1, the next lemma determines
the value w(Opt(U, y)) using only the markers of the sets M and H after this iteration. For the
sake of presentation, we may not distinguish in the following between the set H[q, q′) of markers
(for some points q, q′ on the line L1) and the set of the corresponding unbounded vertices, whenever
this slight abuse of notation does not cause any confusion.

20

Lemma 8 Let U ⊆ V be the set of vertices that have been processed after an iteration of Algo-
rithm 3. Let y ≤ pm0 be a point on the line L1 and my be the leftmost marker of M after this
iteration, for which y ≤ pmy . Then w(Opt(U, y)) = W (my) + w(H[y, pmy)).

Proof. The proof is done by induction on the iterations of the algorithm. Before the first iteration of
the algorithm, U = ∅. Furthermore, in this case my = m0, while W (m0) = 0 and w(H[y, pmy)) = 0.
Thus, before the first iteration, W (my) + w(H[y, pmy)) = 0 equals the weight w(Opt(U, y)) = 0 of
a maximum weight independent set Opt(U, y), which includes only vertices u ∈ U = ∅ such that
y ≤ cu. This proves the induction basis.

Suppose that the condition of the lemma holds after an iteration of the algorithm, where the
vertices of the set U ⊆ V have been processed. For the induction step, consider the next iteration,
during which the algorithm visits a point p ∈ {av, dv | v ∈ V } on the line L2. Let my (resp. m′y)
be the leftmost marker of M , for which y ≤ pmy (resp. y ≤ pm′y) after (resp. before) the iteration
of the algorithm that the point p is visited. We distinguish in the following the cases regarding the
currently visited point p of L2.

Case 1. p = av for some unbounded vertex v ∈ VU . Then, v is being processed at this iteration,
i.e. after this iteration the vertices of the set U ∪ {v} have been processed. Let m∗ be the leftmost
marker of M to the right of cv on L1 (cf. line 13 of Algorithm 3). Note that the marker m∗ belongs
to M before, as well as after the process of v. The algorithm adds a marker h to the set H at
the point ph = cv of the line L1, while the weight of h is w(h) = w(v). Moreover, the algorithm
removes all markers m′ ∈ M , such that pm′ < pm∗ and W (m′) ≤ W (m∗) + w(H[pm′ , pm∗)). Note
that, during the process of the unbounded vertex v, no new marker is inserted to M , while some
markers of M may be removed. Therefore, in particular marker my exists in the set M also before
the process of v, i.e. pm′y ≤ pmy by definition of m′y. We distinguish in the following the cases
regarding the position of the point ph = cv on the line L1. Note that ph 6= pmy and ph 6= pm′y ,
since the point ph corresponds to an unbounded vertex and the points pmy and pm′y correspond to
bounded vertices.

Suppose first that ph < y. Then for every vertex u ∈ U ∪ {v} such that y ≤ cu, it follows
that u 6= v, i.e. u ∈ U . Therefore Opt(U ∪ {v}, y) = Opt(U, y). Furthermore m′y = my, since
during the process of v only markers to the left of ph = cv on L1 may be removed from M . Thus,
since w(Opt(U, y)) = W (m′y) + w(H[y, pm′y)) by the induction hypothesis, it follows that also
w(Opt(U ∪ {v}, y)) = Opt(U, y) = W (my) + w(H[y, pmy)). Since ph < y, note here that the values
w(H[y, pm′y)) and w(H[y, pmy)) remain the same before and after the addition of the marker h
to H.

Suppose now that y ≤ ph. Recall by the induction hypothesis that w(Opt(U, y)) = W (m′y) +
w(H[y, pm′y)), where the value w(H[y, pm′y)) is computed before the process of v, i.e. before the
addition of the marker h to H.

Let Sv be a maximum weight independent set, which includes the unbounded vertex v and
vertices u ∈ U such that y ≤ cu. We will prove that the total weight of the vertices of Sv
is w(Sv) = W (m∗) + w(H[y, pm∗)), where the value w(H[y, pm∗)) is computed after the insertion of
h to H. To this end, let u ∈ U be a bounded vertex of Sv. Then av < au, since v is processed by the
algorithm after u ∈ U . If cu < cv = ph, then T u ∩ T v 6= ∅, and thus also Tu ∩ Tv 6= ∅ by Lemma 2.
That is, uv ∈ E, which is a contradiction, since Sv is an independent set. Therefore ph = cv < cu
for every bounded vertex of Sv. Consider now the point ph = cv of L1 before the process of vertex v.
The induction hypothesis implies that w(Opt(U, ph)) = W (m∗) + w(H[ph, pm∗)), where here the
value w(H[ph, pm∗)) is computed before the process of v, i.e. without the weight w(h) = w(v).
Note that for every vertex u of the independent set Opt(U, ph) we have ph < cu. Therefore, for
every vertex u ∈ Opt(U, ph) and every unbounded vertex u′ ∈ {v} ∪ H[y, ph), Lemma 1 implies
that Tu∩Tu′ = ∅, i.e. uu′ /∈ E, since cu′ ≤ ph < cu for all such vertices u, u′. Thus, since Opt(U, ph)
is optimal (before the process of v), it follows that the set Opt(U, ph) ∪ {v} ∪ H[y, ph) is a max-
imum weight independent set that includes vertex v, as well as unbounded vertices u ∈ U with
y ≤ cu and bounded vertices u′ ∈ U with ph < cu′ . Therefore, since ph = cv < cu for every
bounded vertex u of Sv, it follows that the independent sets Sv and Opt(U, ph)∪{v}∪H[y, ph) have

21

the same total weight. Moreover, note that the weight of Opt(U, ph) ∪ {v} ∪ H[y, ph) is equal to
W (m∗) +w(H[y, pm∗)) (after the insertion of h to H). Therefore w(Sv) = W (m∗) +w(H[y, pm∗)),
where the value w(H[y, pm∗)) is computed after the insertion of h to H.

For the sequel of the analysis for Case 1, we will compare the total weight w(Sv) of Sv with
the weight w(Opt(U, y)) of the independent set Opt(U, y) that does not include vertex v. It is
easy to see that if w(Sv) ≥ w(Opt(U, y)), then w(Opt(U ∪ {v}, y)) = w(Sv). Furthermore, if
w(Sv) ≤ w(Opt(U, y)), then w(Opt(U∪{v}, y)) = w(Opt(U, y)). Note that the induction hypothesis
implies that Opt(U, y) = W (m′y) + w(H[y, pm′y)), where here the value w(H[y, pm′y)) is computed
before the insertion of h to H. Recall that y ≤ ph. Therefore, either y ≤ ph < pm′y or y ≤ pm′y < ph,
as we distinguish in the following cases.

Case 1a. y ≤ ph < pm′y . Then m′y belongs to M also after the process of v, since during the
process of v only markers to the left of ph = cv on L1 may be removed from M . Therefore m′y = my.
Furthermore m′y = m∗ by the definition of m∗. Thus, it follows by the induction hypothesis
that w(Opt(U, y)) = W (m∗) +w(H[y, pm∗)), where the value w(H[y, pm∗)) is computed before the
insertion of h to H. Recall that w(Sv) = W (m∗)+w(H[y, pm∗)), where here the value w(H[y, pm∗))
is computed after the insertion of h to H. Therefore w(Sv) > w(Opt(U, y)), since w(h) = w(v) > 0,
and thus w(Opt(U ∪ {v}, y)) = w(Sv) = W (m∗) + w(H[y, pm∗)) after the insertion of h to H.
Therefore, since m∗ = m′y = my, it follows that w(Opt(U ∪ {v}, y)) = W (my) +w(H[y, pmy)) after
the insertion of h to H.

Case 1b. y ≤ pm′y < ph. Recall that m∗ is the leftmost marker of M to the right of ph = cv on
L1 (cf. line 13 of Algorithm 3). Then y ≤ pm′y < ph < pm∗ . Recall also by the induction hypothesis
that w(Opt(U, y)) = W (m′y) + w(H[y, pm′y)). Note here that the value w(H[y, pm′y)) remains the
same before and after the insertion of h to H, since pm′y < ph.

Suppose first that m′y is removed from M during the process of v, i.e. W (m′y) ≤ W (m∗) +
w(H[pm′y , pm∗)) after the insertion of h to H (cf. line 14 of Algorithm 3). Therefore, after the
insertion of h to H, W (m∗)+w(H[y, pm∗)) = W (m∗)+w(H[y, pm′y))+w(H[pm′y , pm∗)) ≥W (m′y)+
w(H[y, pm′y)), i.e.W (m∗)+w(H[y, pm∗)) ≥ w(Opt(U, y)), where the value w(H[y, pm∗)) is computed
after insertion of h to H. We will now prove that m∗ = my. Consider any marker m of M with
pm′y < pm < pm∗ before the process of v, i.e. pm′y < pm < ph < pm∗ . Then Lemma 7 implies that
W (m) + w(H[pm′y , pm)) < W (m′y) before the process of v. Therefore, since W (m′y) ≤ W (m∗) +
w(H[pm′y , pm∗)) after the insertion of h to H, it follows that W (m) + w(H[pm′y , pm)) < W (m∗) +
w(H[pm′y , pm∗)) after the insertion of h to H, and thus W (m) ≤ W (m∗) + w(H[pm, pm∗)) after
the insertion of h to H, since w(H[pm′y , pm∗)) = w(H[pm′y , pm)) + w(H[pm, pm∗)). That is, every
marker m, for which pm′y ≤ pm < pm∗ , is removed from M during the process of v in line 14 of
Algorithm 3. Therefore m∗ is the leftmost marker of M to the right of y on the line L1 after the
process of v, i.e. m∗ = my. Recall that w(Sv) = W (m∗) + w(H[y, pm∗)) ≥ w(Opt(U, y)) after the
insertion of h to H. Therefore, since m∗ = my, it follows that w(Opt(U ∪ {v}, y)) = w(Sv) =
W (my) + w(H[y, pmy)) after the insertion of h to H.

Suppose now that m′y is not removed from M during the process of v, i.e. m′y = my. Then the
induction hypothesis implies that w(Opt(U, y)) = W (my) + w(H[y, pmy)), since m′y = my. Note
here that the value w(H[y, pmy)) remains the same before and after the insertion of h to H, since
pmy = pm′y < ph. Recall now that y ≤ pmy = pm′y < ph < pm∗ . Therefore Lemma 7 implies that
W (my) > W (m∗)+w(H[pmy , pm∗)), i.e. W (my)+w(H[y, pmy)) > W (m∗)+w(H[y, pm∗)) after the
addition of h to H. This is equivalent to w(Opt(U, y)) > w(Sv), and thus w(Opt(U ∪ {v}, y)) =
w(Opt(U, y)) = W (my) + w(H[y, pmy)) after the insertion of h to H.

Case 2. p = dv for some bounded vertex v ∈ VB. Then, no new vertex is being processed
at this iteration, i.e. the set U is not modified. Furthermore, the algorithm does not modify the
sets M and H, and thus the induction step follows in this case by the induction hypothesis. At this
iteration, the algorithm computes and stores a value W (v). This value will be used at the iteration
where the algorithm visits the point av of the bounded vertex v, i.e. when vertex v is processed. If
a new marker m′ is inserted to M during that iteration (at the point cv of the line L1, cf. line 21
of Algorithm 3), then the value W (v) is assigned as the weight W (m′) of m′ (cf. line 22).

22

We will now prove that the computed value W (v) equals the maximum weight of an independent
set, which includes the bounded vertex v and vertices of the set U ′ = {u ∈ V | av < au, cv < cu}.
This fact will be used for the proof of the induction step in Case 3. First observe that the value w̃v
that is computed in lines 3-8 of Algorithm 3 equals the total weight of the unbounded vertices u,
such that v is a hovering vertex of u and cv < cu < bv. Note that av < au for every such unbounded
vertex u. Indeed, otherwise au < av and cv < cu, i.e. T u ∩ T v 6= ∅, and thus also Tu ∩ Tv 6= ∅ by
Lemma 2, which is a contradiction, since uv /∈ E.

Consider a maximum weight independent set S that includes the bounded vertex v and vertices
of U ′. Observe that for every vertex u ∈ S \ {v}, either v is a hovering vertex of the unbounded
vertex u, or bv < cu and dv < au. Let v be a hovering vertex of the unbounded vertex u ∈ S \ {v},
and suppose that bv < cu. Then, since v is a hovering vertex of u, it follows that T u ∩ T v 6= ∅, and
thus au < dv. That is, au < dv and bv < cu, and thus φu < φv,2. Therefore, the line Tu intersects
the trapezoepiped Tv in the trapezoepiped representation of G, and thus uv ∈ E, which is a
contradiction. Thus cu < bv, if v is a hovering vertex of the unbounded vertex u ∈ S \ {v}, and
thus cv < cu < bv, since u ∈ U ′ by assumption. Let now m be the leftmost marker of M on
the line L1, such that bv < pm (cf. line 16 of Algorithm 3). The induction hypothesis implies that
w(Opt(U, bv)) = W (m) + w(H[bv, pm)). Note that Opt(U, bv) is the maximum weight independent
set among all vertices u, such that bv < cu and dv < au (since the algorithm visits the point p = dv
after all vertices u ∈ U have been processed). Therefore, since the value w̃v equals the total weight
of the unbounded vertices u, such that v is a hovering vertex of u and cv < cu < bv, it follows that
the total weight of S equals (w(u) + w̃v) + w(Opt(U, bv)) = (w(u) + w̃v) +W (m) + w(H[bv, pm)),
which equals the value W (v) computed in line 17 of Algorithm 3. That is, W (v) equals the
maximum weight of an independent set, which includes the bounded vertex v and vertices of the
set U ′ = {u ∈ V | av < au, cv < cu}.

Case 3. p = av for some bounded vertex v ∈ VB. Then, v is being processed at this iteration,
i.e. after this iteration the vertices of the set U ∪ {v} have been processed. Let m∗ be the leftmost
marker of M to the right of cv on L1 (cf. line 19 of Algorithm 3). Note that the induction hypothesis
implies that Opt(U, y) = W (m′y) + w(H[y, pm′y)).

Suppose first that cv < y. Then for every vertex u ∈ U ∪ {v} such that y ≤ cu, it follows
that u 6= v, i.e. u ∈ U . Therefore Opt(U ∪ {v}, y) = Opt(U, y). Furthermore m′y = my, since the
markers of M to the right of cv (and thus also to the right of y) remain the same before and after
the process of v. Therefore, the induction hypothesis implies that Opt(U ∪ {v}, y) = Opt(U, y) =
W (my) + w(H[y, pmy)), since m′y = my.

Suppose now that y ≤ cv. Let Sv be a maximum weight independent set, which includes the
bounded vertex v and vertices u ∈ U such that y ≤ cu. We will prove that the total weight of the
vertices of Sv is w(Sv) = W (v) + w(H[y, cv)). First note that, since all vertices of U have been
processed by the algorithm before v, it follows in particular that av < au for every u ∈ Sv \ {v}.
Suppose that cu < cv for a bounded vertex u ∈ Sv \ {v}. Then T u ∩ T v 6= ∅, and thus also
Tu ∩ Tv 6= ∅, since both u and v are bounded. That is, uv ∈ E, which is a contradiction, since
Sv is an independent set. Therefore cv < cu for every bounded vertex u ∈ Sv \ {v}. Thus, every
vertex u ∈ Sv \ {v} with cu < cv is an unbounded vertex that corresponds to a marker of the set
H[y, cv). Recall by the analysis of Case 2 that W (v) equals the maximum weight of an independent
set, which includes the bounded vertex v and vertices of the set U ′ = {u ∈ V | av < au, cv < cu}.
Furthermore, Lemma 1 implies that Tu ∩ Tu′ = ∅, i.e. uu′ /∈ E, for every unbounded vertex
u ∈ H[y, cv) and every vertex u′ with cv ≤ cu′ . Therefore, since we assumed that v ∈ Sv, it follows
that w(Sv) = W (v) + w(H[y, cv)).

For the sequel of the analysis for Case 3, we will compare the total weight w(Sv) of Sv with
the weight w(Opt(U, y)) of the independent set Opt(U, y) that does not include vertex v. It is
easy to see that if w(Sv) ≥ w(Opt(U, y)), then w(Opt(U ∪ {v}, y)) = w(Sv). Furthermore, if
w(Sv) ≤ w(Opt(U, y)), then w(Opt(U ∪ {v}, y)) = w(Opt(U, y)).

Consider the case where W (v) ≤W (m∗) +w(H[cv, pm∗)). Then the algorithm does not modify
the sets M and H (cf. line 20 of Algorithm 3), and thus in particular my = m′y. Therefore, the

23

induction hypothesis implies that w(Opt(U, y)) = W (my) + w(H[y, pmy)), since my = m′y. Recall
that y ≤ cv and cv < pm∗ , and thus y < pm∗ . Therefore, y ≤ my ≤ pm∗ by definition of my,
and thus Lemma 7 implies that W (my) ≥ W (m∗) + w(H[pmy , pm∗)) (note that here the equality
holds only if my = m∗). Therefore, since w(Opt(U, y)) = W (my) + w(H[y, pmy)), it follows that
w(Opt(U, y)) ≥W (m∗) +w(H[y, pm∗)), i.e. w(Opt(U, y)) ≥W (m∗) + w(H[y, cv)) + w(H[cv, pm∗)).
Furthermore, since W (m∗) + w(H[cv, pm∗)) ≥W (v) by our assumption on W (v), it follows
that w(Opt(U, y)) ≥W (v) + w(H[y, cv)) = w(Sv). That is, w(Opt(U, y)) ≥ w(Sv), and thus
w(Opt(U ∪ {v}, y)) = w(Opt(U, y)) = W (my) + w(H[y, pmy)).

Consider now the case where W (v) > W (m∗) + w(H[cv, pm∗)). Then, the algorithm adds a
marker m′ to the set M at the point pm′ = cv of the line L1, while the weight of m′ is W (m′) = W (v)
(cf. lines 21 and 22 of Algorithm 3). Moreover, the algorithm removes all markers m′′ ∈ M ,
such that pm′′ < pm′ and W (m′′) ≤ W (m′) + w(H[pm′′ , pm′)) (cf. line 23 of Algorithm 3). Re-
call that y ≤ pm′ = cv, and thus y ≤ pmy ≤ pm′ by definition of my. Then, either y ≤ pmy < pm′

or y ≤ pmy = pm′ , as we distinguish in the following cases.
Case 3a. y ≤ pmy < pm′ . Then W (my) > W (m′) + w(H[pmy , pm′)), since otherwise the

marker my would be removed from M after the addition of m′ to M (cf. line 23 of Algo-
rithm 3). We will now prove that m′y = my, i.e. that my was the leftmost marker of M to
the right of y, also before the process of v. Suppose otherwise that m′y 6= my, i.e. pm′y < pmy

and the marker m′y has been removed from M during the process of v (cf. line 23 of Algo-
rithm 3). Then, since pm′y < pmy , Lemma 7 implies that W (m′y) > W (my) + w(H[pm′y , pmy))
before the process of vertex v. Therefore, since W (my) > W (m′) + w(H[pmy , pm′)), it follows that
W (m′y) > W (m′) + w(H[pm′y , pm′)), and thus m′y has not been removed from M during the pro-
cess of v in line 23, which is a contradiction. Thus m′y = my. Therefore the induction hypothesis
implies that w(Opt(U, y)) = W (my) +w(H[y, pmy)), since m′y = my. Furthermore, since W (my) >
W (m′) + w(H[pmy , pm′)), it follows that w(Opt(U, y)) > W (m′) + w(H[y, pm′)). Therefore, since
W (m′) = W (v) and pm′ = cv, it follows that w(Opt(U, y)) > W (v) + w(H[y, cv)) = w(Sv), and
thus w(Opt(U ∪ {v}, y)) = w(Opt(U, y)) = W (my) + w(H[y, pmy)).

Case 3b. y ≤ pmy = pm′ . Then, since the marker my = m′ was not in the set M before the
process of v, it follows that either y ≤ pm′y < pmy = pm′ or y ≤ pmy = pm′ < pm′y .

Suppose first that y ≤ pm′y < pmy = pm′ . Then, the marker m′y is removed from M during
the process of v, since my is after the process of v the leftmost marker of M to the right of y
on the line L1. Thus W (m′y) ≤ W (m′) + w(H[pm′y , pm′)) (cf. line 23 of Algorithm 3). Recall
that w(Opt(U, y)) = W (m′y) +w(H[y, pm′y)) by the induction hypothesis, and thus w(Opt(U, y)) ≤
W (m′) + w(H[y, pm′)). Therefore, since W (my) = W (m′) = W (v) and pmy = pm′ = cv, it
follows that w(Opt(U, y)) ≤W (v) + w(H[y, cv)) = w(Sv), and thus w(Opt(U ∪ {v}, y)) = w(Sv) =
W (my) + w(H[y, pmy)).

Suppose finally that y ≤ pmy = pm′ < pm′y . Recall that m∗ is the leftmost marker of M
to the right of cv on L1 (cf. line 19 of Algorithm 3). Then m∗ = m′y by the definition of the
markers m∗ and m′y, since the marker m′ = my was not in the set M before the process of v.
Recall that W (m′) = W (v) > W (m∗) + w(H[cv, pm∗)), since otherwise the marker m′ would
not be inserted to M , which is a contradiction. Therefore, since m∗ = m′y and cv = pm′ , it fol-
lows that W (m′) > W (m′y) + w(H[pm′ , pm′y)). Recall that w(Opt(U, y)) = W (m′y) + w(H[y, pm′y))
by the induction hypothesis, and thus w(Opt(U, y)) = W (m′y) + w(H[y, pm′)) + w(H[pm′ , pm′y)),
i.e. w(Opt(U, y)) < W (m′) + w(H[y, pm′)). Therefore, since W (my) = W (m′) = W (v) and
pmy = pm′ = cv, it follows that w(Opt(U, y)) < W (v) + w(H[y, cv)) = w(Sv), and thus
w(Opt(U ∪ {v}, y)) = w(Sv) = W (my) + w(H[y, pmy)).

Summarizing Cases 1, 2, and 3, it follows that the condition of the lemma holds also after the
iteration of the algorithm, during which the algorithm visits the point p ∈ {av, dv | v ∈ V } on the
line L2. This completes the induction step and thus also the proof of the lemma.

We are now ready to present the main theorem of this section.

Theorem 5 A maximum weight independent set of a multitolerance graph G = (V,E) with n
vertices can be computed using Algorithm 3 in O(|E|+ n log n) time.

24

Proof. Let c = min{cv | v ∈ V } − 1 and m be the leftmost marker of M on the line L1 after the last
iteration of the algorithm, i.e. after all vertices of G have been processed. Recall by Definition 10
that Opt(V, c) denotes a maximum weight independent set, which includes vertices u ∈ V such
that c ≤ cu, and thus Opt(V, c) is a maximum weight independent set of G. Then, Lemma 8
implies that the returned value W (m) + w(H[c, pm)) equals the weight w(Opt(V, c)) of Opt(V, c).
This implies the correctness of Algorithm 3.

Algorithm 3 can be implemented to run in O(|E| + n log n) time, as follows. First, for the
initialization phase of lines 3-8 of the algorithm, we sort in O(n log n) time all unbounded ver-
tices u ∈ VU increasingly according to their endpoints cu on the line L1. As we described in the
preamble of Algorithm 3, we can store the unbounded vertices in an AVL-tree, such that for
any two points q, q′ on the line L1 we can compute in O(log n) time the total weight of the un-
bounded vertices u ∈ VU with cu ∈ [q, q′) (cf. the weight w(H[q, q′)) in the set H of markers).
Thus, the initialization of the value w̃v in line 5 of the algorithm can be done in O(log n) time
for every v ∈ VB. Then, for every v ∈ VB we need O(|N(v)|) time to execute lines 6-8 of the
algorithm. Note that

∑
v∈VB |N(v)| = O(|E|). Therefore, the initialization phase of lines 3-8

needs O(|E|+ n log n) time.
We now analyze the time complexity of lines 10-23 in the main part of the algorithm. As

we described in the preamble of the algorithm, the insertion and the location of a marker in the
sets M and H can be executed in O(log n) time if we implement the sets M and H with AVL-trees.
Therefore, each of the lines 11, 13, 16, 19, and 21 of the algorithm can be executed in O(log n) time.
Furthermore, as we described in the preamble of the algorithm, we can compute the value w(H[q, q′))
for two given points q, q′ of the line L1 in O(log n) time. Therefore, lines 17 and 20 of the algorithm
can be also executed in O(log n) time each.

Consider now the lines 14 and 23 of Algorithm 3. Recall by Corollary 1 that for any
two markers m1,m2 ∈ M after an iteration of Algorithm 3, pm2 < pm1 if and only if
W (m2)− w(H[pm2 ,+∞)) > W (m1)− w(H[pm1 ,+∞)), i.e. the values W (m)−w(H[pm,+∞)) for
the markers m ∈ M are increasing from right to left on the line L1. Note that this monotonicity
property on the set M is restored in the line 14 (resp. in the line 23) of Algorithm 3 when a new
marker is added to the set H (resp. when a new marker is added to the set M).

Consider first the restoration of the monotonicity property in line 14, when a new marker h
is added to the set H at the position ph = cv, for some unbounded vertex v ∈ VU (cf. line 11).
Let m∗ be the leftmost marker of M to the right of ph = cv (cf. line 13). Then, for every marker m′

to the left of m∗, the value W (m′) − w(H[pm′ ,+∞)) decreases by w(h) after the addition of h
to H. In line 14 we want to find and remove from M all markers m′ to the left of m∗, such that
W (m′)−w(H[pm′ ,+∞)) ≤W (m∗)−w(H[pm∗ ,+∞)) after the addition of h to H, or equivalently
W (m′)− w(H[pm′ ,+∞)) ≤ w(h) +W (m∗)− w(H[pm∗ ,+∞)) before the addition of h to H.

Consider now the restoration of the monotonicity property in line 23, when a new marker m′

is added to the set M at the position pm′ = cv, for some bounded vertex v ∈ VB (cf. line 21). Let
m∗ be the leftmost marker of M to the right of cv (cf. line 19). Then, since W (m′) = W (v) >
W (m∗) + w(H[cv, pm∗)) (cf. lines 20 and 22), the monotonicity property of Corollary 1 holds also
after the addition of m′ to M (cf. line 21) for the markers to the right of m′ on the line L1.
In line 23 we want to find and remove from M all markers m′′ to the left of m′, such that
W (m′′) − w(H[pm′′ ,+∞)) ≤ W (m′) − w(H[pm′ ,+∞)). Equivalently, before the addition of m′

to M , we want to find and remove from M all markers all markers m′′ to the left of m∗, such that
W (m′′)− w(H[pm′′ ,+∞)) ≤W (v)− w(H[cv,+∞)).

Therefore, in both lines 14 and 23 of Algorithm 3, we want to find and remove from M all
markers all markers m to the left of m∗, such that the value W (m)−w(H[pm,+∞)) is smaller than
or equal to a given query value Q. This can be implemented as follows. Except for the two AVL-
trees that store the values of M and of H, respectively, we also maintain in a balanced binary search
tree, for instance an AVL-tree, the markers of the union M ∪H on the line L1. Denote by x.left
and x.right the left and the right child of an arbitrary internal vertex of this tree, respectively.
Furthermore, at every internal vertex x of the AVL-tree of M ∪ H that stores a marker m ∈ M

25

(resp. a marker h ∈ H), we store except the weight W (m) (resp. w(h)) also a label `(x), which
equals the total weight of the markers of H that are stored in the subtree rooted at x. Observe
here that the value w(H[pm,+∞)) for any marker m ∈ M can be computed as follows: in the
path of the AVL-tree from the root to the internal vertex x that stores m, we sum up the values
(`(x) − `(x.left)) and (`(y) − `(y.left)), for every internal vertex of this path, at which we follow
the left child.

We first find in O(log n) time in the AVL-tree of M the first marker m∗∗ of M to the left
of m∗ on the line L1. Then, we locate in O(log n) time the marker m∗∗ in the AVL-tree of M ∪H.
Furthermore, following in this tree the path from the root to the internal vertex that stores m∗∗,
we compute in O(log n) time the value w(H[pm∗∗ ,+∞)) by the labels `(x) of the internal ver-
tices x. If W (m∗∗) + w(H[pm∗∗ ,+∞)) ≤ Q, where Q is the given query value, then we remove
the marker m∗∗ from M (in both AVL-trees for M and for M ∪H, respectively). We iterate until
there is no marker of M to the left of m∗ on the line L1, or until W (m∗∗) + w(H[pm∗∗ ,+∞)) > Q
for the first marker m∗∗ of M to the left of m∗. In the latter case there is no other marker of M
to remove (cf. lines 14 and 23 of Algorithm 3), since the values W (m) − w(H[pm,+∞)) for the
markers m ∈M are increasing from right to left on the line L1.

Furthermore, we can update in O(log n) time the labels `(x) of the internal vertices x of the
AVL-tree of M ∪H, whenever the sets H or M are modified, as follows. If a marker m is inserted to
or removed from M , cf. the lines 14, 21, and 23 of Algorithm 3, then we need to update a constant
number of labels `(x) during each one of at most O(log n) “trinode restructure” operations (see [12]
for more details). Suppose now that a marker h is inserted to H, cf. line 11 of Algorithm 3 (that
is, h is inserted in the AVL-tree that stores the markers of H in line 11). Note that we add h to
the AVL-tree that stores the markers of M ∪ H after the update of the set M in line 14. Then,
we update similarly a constant number of labels `(x) during each one of at most O(log n) “trinode
restructure” operations (see [12]). Moreover, following the path from the internal vertex x that
stores h to the root, we add the weight w(h) to the label `(y) for every internal vertex y of this
path that includes vertex x in the subtree rooted at y.

Summarizing, we can implement in O(log n) time the removal of one marker from M in the
lines 14 and 23 of Algorithm 3. Thus, since during the execution of Algorithm 3 we need to
remove at most O(n) markers from the set M , the total time needed to execute lines 14 and 23
for all iterations of the algorithm is O(n log n). Recall now that the execution of each of the
lines 11, 13, 16, 17, 19, 20, and 21 of the algorithm can be done in O(log n) time. Therefore, since
the lines 10-23 of the algorithm are executed O(n) times, the execution of the lines 9-23 can be done
in O(n log n) time. Furthermore, the line 24 can be executed in O(log n) time by just locating the
leftmost marker m ∈M and computing the value w(H[c, pm)). Therefore, since the initialization
phase of lines 3-8 needs O(|E|+ n log n) time, it follows that Algorithm 3 computes the value of a
maximum weight independent set of G in O(|E|+ n log n) time.

After computing the value w(Opt(V, c)) of a maximum weight independent set Opt(V, c) in G,
we can easily compute in O(n log n) time the set Opt(V, c) itself, instead of its value, as follows.
Initially compute the set of unbounded vertices {u ∈ VU | cu ∈ (c, pm)} and set Opt(V, c) to
be equal to this set. Note that this set of unbounded vertices has total weight w(H[c, pm))
(cf. line 24 of Algorithm 3). Then, visit sequentially all markers of M from left to right. For
every m ∈ M , which is placed at the point pm = cv on the line L1 for some bounded vertex
v ∈ VB, we augment the current set Opt(V, c) by {v}. Moreover, compute the set of unbounded
vertices {u ∈ VU | cu ∈ (cv, bv), u /∈ N(v)} and augment Opt(V, c) by this set. Note that this set
of unbounded vertices has total weight w̃v (cf. the lines 5-8 of Algorithm 3). Furthermore, for
every two consecutive markers m1,m2 in M , where pm1 = cv1 < pm2 for a bounded vertex v1 ∈ VB,
compute the set of unbounded vertices {u ∈ Vu | cu ∈ (bv1 , pm2), u /∈ N(v1)} and augment Opt(V, c)
by this set. Note that the latter set of unbounded vertices has total weight w(H[bv1 , pm2)) (cf. the
line 17 of Algorithm 3). After these computations, it follows easily that the computed set Opt(V, c)
is a maximum weight independent set of G.

Regarding the complexity of these computations, we need linear time O(n) to traverse M from

26

left to right. For the computation of the above O(n) sets of unbounded vertices, we partition the
unbounded vertices u ∈ VU (i.e. the markers of the set H) into |M |+ 1 = O(n) subsets, according
to the position of the endpoints cu on the line L1. We can determine each of these subsets in
O(log n) time using binary search in the AVL-tree that stores the set H. After a partition has been
determined, we need constant time for every vertex u ∈ VU in this partition. Therefore, after the
termination of Algorithm 3, we can compute in O(n log n) time a maximum weight independent
set Opt(V, c) of G, instead of its value. This completes the proof of the theorem.

5.1 An optimal O(n log n) time algorithm for tolerance graphs

In this section we prove that if the input graph G = (V,E) is a tolerance graph with n vertices, we
can slightly modify Algorithm 3, such that it computes a maximum weight independent set of G
in optimal O(n log n) time. In particular, if G is a tolerance graph, the trapezoepiped Tv of every
bounded vertex v ∈ VB in the trapezoepiped representation of G reduces to a parallelepiped, since
in this case φv,1 = φv,2. Using this property of the trapezoepiped representation of tolerance graphs,
we manage to compute the values w̃v for all v ∈ VB in O(n log n) time, instead of O(|E|+ n log n)
time in lines 3-8 of Algorithm 3. Therefore, since the execution of all the remaining lines of
Algorithm 3 can be done in O(n log n) time, a maximum weight independent set of a tolerance
graph can be computed in O(n log n) time, as the next theorem states.

Theorem 6 A maximum weight independent set of a tolerance graph G = (V,E) with n vertices
edges can be computed in O(n log n) time, which is optimal.

Proof. Let G be a tolerance graph and v ∈ VB be a bounded vertex of G. Then, since G is a
tolerance graph, the left tolerance of v equals its right tolerance, i.e. tv,1 = tv,2, cf. Definition 2.
Thus the left slope of T v equals its right slope, i.e. φv,1 = φv,2 (cf. Definition 3 and Figure 1); we
denote for simplicity by φv = φv,1 = φv,2 this common slope of T v. That is, Tv is a parallelepiped
for every v ∈ VB, cf. Definition 5.

Recall by the proof of Lemma 8 (cf. Case 2 in the proof) that for every bounded vertex v ∈ VB,
the value w̃v that is computed in lines 3-8 of Algorithm 3 equals the total weight of the unbounded
vertices u, such that v is a hovering vertex of u and cv < cu < bv. Note now that for every
unbounded vertex u with cv < cu < bv, v is a hovering vertex of u if and only if the line Tu
lies above the parallelepiped Tv, cf. Definition 6. That is, v is a hovering vertex of u if and only
if ∆ − cotφu > ∆ − cotφv, i.e. φu > φv. Therefore, w̃v equals the total weight of the unbounded
vertices u, such that cv < cu < bv and φu > φv.

The values w̃v for every v ∈ VB can be computed in O(n log n) time, as follows. We visit
sequentially all points p ∈ {cv, bv | v ∈ V } on the line L1 from right to left. If the currently visited
point p of L1 corresponds an unbounded vertex u, i.e. if p = cu = bu, then we place a marker h
with weight w(h) = w(u) at the point φu of the real line. Using binary search trees, for instance
AVL-trees, we can insert a new marker in O(log n) time [12]. Furthermore note that, similarly to
our description in the preamble of Algorithm 3 about the computation of H[q,+∞), given a real
value q, we can compute after any iteration the total weight of all previously visited unbounded
vertices u with φu > q in O(log n) time.

Suppose that the currently visited point p of L1 corresponds a bounded vertex v, i.e. p = bv
or p = cv for some v ∈ VB. Then we compute in O(log n) time the total weight ˜̃wp of all previ-
ously visited unbounded vertices u with φu > φv. Thus, for every bounded vertex v ∈ VB, the
value ˜̃wcv − ˜̃wbv equals the total weight of all unbounded vertices u with φu > φv, which have

been visited at all iterations between bv and cv. That is, w̃v = ˜̃wcv − ˜̃wbv . Since there are O(n)
points p ∈ {cv, bv | v ∈ V } on the line L1 and each of these computations can be executed in O(log n)
time, it follows that the values w̃v for every v ∈ VB can be computed in O(n log n) time, instead
of O(|E|+ n log n) time in lines 3-8 of Algorithm 3.

Therefore, using these values w̃v for every v ∈ VB, we can compute by Algorithm 3 a maximum
weight independent set of G. Since these values w̃v can be computed in O(n log n) time, and since

27

perfect

alternately
orientable

weakly
chordal

co-perfectly
orderable

tolerance
trapezoid

bounded tolerance
parallelogram

cocomparability

bounded multitolerance

multitolerance

Figure 5: The classification of multitolerance graphs in the hierarchy of perfect graphs in [11]. This
hierarchy is complete, i.e. every inclusion is strict.

the execution of all the remaining lines of Algorithm 3 (except lines 3-8) can be done in O(n log n)
time (cf. the proof of Theorem 5), a maximum weight independent set of G can be computed
in O(n log n) time.

Regarding the optimality of the running time, note that Ω(n log n) is a lower time bound for
computing a maximum clique and a maximum independent set in a permutation graph [6, 21].
Furthermore, since the class of permutation graphs is a subclass of tolerance graphs [11], the same
lower bound holds also for tolerance and multitolerance graphs. Therefore, O(n log n) is an optimal
running time for computing a maximum weight independent set on tolerance graphs. This completes
the proof of the theorem.

6 Classification of multitolerance graphs

In this section we classify the class of multitolerance graphs inside the hierarchy of perfect graphs
given in [11] (in Figure 2.8). The resulting hierarchy of classes of perfect graphs is complete, i.e. all
inclusions are strict3. This hierarchy is presented in Figure 5. We prove these results by using
the trapezoepiped representation of multitolerance graphs presented in Section 2, as well as some
known results on the hierarchy of perfect graphs given in [11].

First we briefly review the classes shown in Figure 5. Recall that a graph is perfect if the
chromatic number of every induced subgraph equals the clique number of this subgraph. A graph
G is called alternately orientable if there exists an orientation F of the edges of G which is transitive
on every chordless cycle of length at least 4, i.e. the directions of the oriented edges must alternate.
A graph G is called weakly chordal (or weakly triangulated) if G has no induced subgraph isomorphic
to the chordless cycle Cn with n vertices, or to its complement Cn, for any n ≥ 5. A vertex order ≺
of a graph G is called perfect if and only if G contains no induced path abcd with a ≺ b and d ≺ c.
A graph G is called co-perfectly orderable if its complement G admits a perfect order. Moreover, a
comparability graph is a graph which can be transitively oriented and a cocomparability graph is a
graph whose complement is a comparability graph. For more definitions we refer to [11].

Theorem 7 Multitolerance graphs strictly include tolerance and trapezoid graphs, while they are
strictly included in weakly chordal graphs.

3It was claimed in [23] (in Theorem 3.1(b)) that tolerance graphs are strictly included in multitolerance graphs;
however, in the proof of that theorem only inclusion has been shown, and not strict inclusion. We prove strict
inclusion in Theorem 7. Moreover, it has been correctly shown in [23] that a multitolerance graph does not contain
any chordless cycle Cn, where n ≥ 5. We prove in Theorem 7 that actually the same holds also for the complements
Cn of Cn, where n ≥ 5, and thus every multitolerance graph is weakly chordal.

28

T2 :

(a)

B :

(b)

H :

(c)

Figure 6: The graphs (a) T2, (b) B (the Berlin graph), and (c) H.

Proof. First recall that any tolerance graph G = (V,E) is also a multitolerance graph, in which
the left and right tolerances of every vertex coincide, i.e. tv,1 = tv,2 for every v ∈ V (cf. Defini-
tion 2). Furthermore, a graph G is a trapezoid graph if and only if G is a bounded multitolerance
graph [23] (also known as bounded bitolerance graph [11]). Therefore, any trapezoid graph G is
also a multitolerance graph. The graph T2, which is illustrated in Figure 6(a), is a tolerance but
not a trapezoid graph [11]. Furthermore, the Berlin graph B, which is illustrated in Figure 6(b),
is a trapezoid but not a tolerance graph [11]. Therefore, the graph T2 is a multitolerance but
not a trapezoid graph, while the graph B is a multitolerance but not a tolerance graph, and thus
multitolerance graphs strictly include both tolerance and trapezoid graphs.

We will now prove that every multitolerance graph is weakly chordal. To this end, we have to
prove by the definition of weakly chordal graphs that every multitolerance graph G has no induced
subgraph isomorphic to the chordless cycle Cn, with n vertices, or to its complement Cn, for any
n ≥ 5. Since multitolerance graphs are hereditary, it suffices to prove that neither Cn nor its
complement Cn are multitolerance graphs, for any n ≥ 5. Suppose otherwise that Cn (resp. Cn)
is a multitolerance graph, and let R be a trapezoepiped representation of Cn (resp. of Cn). Since
bounded multitolerance graphs, i.e. trapezoid graphs, are known to be weakly chordal [11], it follows
that Cn (resp. Cn) is not bounded multitolerance. Therefore, there exists at least one inevitable
unbounded vertex v in the trapezoepiped representation R of Cn (resp. of Cn). Let u be a hovering
vertex of v. Then uv /∈ E by Definition 6 and N(v) ⊆ N(u) by Lemma 4. However, it is easy to
verify that for any n ≥ 5, the graph Cn (resp. Cn) has no pair of non-adjacent vertices u and v,
such that N(v) ⊆ N(u). This is a contradiction, and thus neither Cn nor its complement Cn are
multitolerance graphs, for any n ≥ 5. Therefore every multitolerance graph is weakly chordal.

Consider finally the complement H of the graph H that is illustrated in Figure 6(c). The
graph H is a weakly chordal but not a trapezoid graph [11]. Suppose that H is a multitolerance
graph and let R be a trapezoepiped representation of H. Since H is not a trapezoid (i.e. bounded
multitolerance) graph, it follows that R has at least one inevitable unbounded vertex v in the
trapezoepiped representation R of H. Let u be a hovering vertex of v. Then uv /∈ E by Definition 6
and N(v) ⊆ N(u) by Lemma 4. It is now easy to verify that the graph H has no pair of non-
adjacent vertices u and v, such that N(v) ⊆ N(u). This is a contradiction, and thus H is not a
multitolerance graph. That is, H is a weakly chordal but not a multitolerance graph, and thus
multitolerance graphs are strictly included in weakly chordal graphs. This completes the proof of
the theorem.

Theorem 8 Multitolerance graphs are strictly included in co-perfectly orderable graphs.

Proof. First we prove that the complement G of every multitolerance graph G is perfectly or-
derable, using the trapezoepiped representation of multitolerance graphs. Let G = (V,E) be a
multitolerance graph and R be a trapezoepiped representation of G. Recall that for every vertex
v ∈ V , Tv denotes the trapezoepiped of v in the trapezoepiped representation R, while the trape-
zoid T v denotes the projection of Tv on the plane z = 0, cf. Figures 1 and 2. We define the linear
order ≺ of a the vertex set V as follows: for every u, v ∈ V , u ≺ v if and only if av < au in the

29

representation R. We will prove that ≺ is a perfect order of the complement G of G. Suppose
otherwise that there exists an induced path v1v2v3v4 of G, such that v1 ≺ v2 and v4 ≺ v3. Note
that, since v1v2v3v4 is an induced path of G, it follows that v2v4v1v3 is an induced path of G.

Since v1v2 /∈ E, it follows that Tv1∩Tv2 = ∅. Suppose that T v1∩T v2 6= ∅. Then, at least one of the
vertices v1 and v2 is unbounded, since otherwise Tv1∩Tv2 6= ∅, which is a contradiction. Furthermore,
either replacing Tv1 by Hconvex(T v1 , a

′
v1 , c

′
v1) or replacing Tv2 by Hconvex(T v2 , a

′
v2 , c

′
v2) in R creates

the new edge v1v2 in G. That is, either v2 is a hovering vertex of the unbounded vertex v1 or v1 is
a hovering vertex of the unbounded vertex v2. If v2 is a hovering vertex of the unbounded vertex
v1, then N(v1) ⊆ N(v2) by Lemma 4. This is a contradiction, since v3 ∈ N(v1) \N(v2). Therefore
v1 is a hovering vertex of the unbounded vertex v2. Furthermore av2 < av1 by the definition of the
vertex order ≺, since v1 ≺ v2. If v1 ∈ VB, then Lemma 2 implies that Tv1 ∩ Tv2 6= ∅ if and only if
T v1 ∩ T v2 6= ∅. This is a contradiction, since we assumed that Tv1 ∩ Tv2 = ∅ and T v1 ∩ T v2 6= ∅.
Suppose that v1 ∈ VU , i.e. both v1 and v2 are unbounded. Then, since av2 < av1 and T v1 ∩T v2 6= ∅,
it follows that cv1 < cv2 , and thus in particular φv1 > φv2 , i.e. ∆− cotφv1 > ∆− cotφv2 . Therefore,
the line Tv1 lies above the line Tv2 in R, and thus replacing Tv2 by Hconvex(T v2 , a

′
v2 , c

′
v2) in R does

not create the new edge v1v2 in G. That is, v1 is not a hovering vertex of the unbounded vertex
v2, which is a contradiction. Therefore T v1 ∩ T v2 = ∅, i.e. either T v2 lies completely to the left or
completely to the right of T v1 . Thus, since av2 < av1 , it follows that T v2 lies completely to the left
of T v1 .

Similarly to the case of v1 and v2, it follows for the symmetric case of v4 and v3 that T v3∩T v4 = ∅,
i.e. either T v3 lies completely to the left or completely to the right of T v4 . Furthermore av3 < av4
by the definition of the vertex order ≺, since v4 ≺ v3. Therefore, T v3 lies completely to the left
of T v4 .

Consider now the vertices v2 and v3. Since v2v3 /∈ E, it follows that Tv2 ∩ Tv3 = ∅. Suppose
that T v2 ∩ T v3 6= ∅. Then, at least one of the vertices v2 and v3 is unbounded, since otherwise
Tv2 ∩ Tv3 6= ∅, which is a contradiction. Furthermore, either replacing Tv2 by Hconvex(T v2 , a

′
v2 , c

′
v2)

or replacing Tv3 by Hconvex(T v3 , a
′
v3 , c

′
v3) in R creates the new edge v2v3 in G. That is, either v3 is

a hovering vertex of the unbounded vertex v2 or v2 is a hovering vertex of the unbounded vertex
v3. If v3 is a hovering vertex of the unbounded vertex v2, then N(v2) ⊆ N(v3) by Lemma 4.
This is a contradiction, since v4 ∈ N(v2) \ N(v3). On the other hand, if v2 is a hovering vertex
of the unbounded vertex v3, then N(v3) ⊆ N(v2) by Lemma 4. This is a contradiction, since
v1 ∈ N(v3)\N(v2). Therefore T v2 ∩T v3 = ∅, i.e. either T v2 lies completely to the left or completely
to the right of T v3 .

Suppose that T v2 lies completely to the left of T v3 . Then, since T v3 lies completely to the
left of T v4 , as we proved above, it follows that T v2 lies completely to the left of T v4 , and thus
T v2 ∩ T v4 = ∅ and Tv2 ∩ Tv4 = ∅. This is a contradiction, since v2v4 ∈ E. On the other hand,
suppose that T v2 lies completely to the right of T v3 , i.e. T v3 lies completely to the right of T v2 .
Then, since T v2 lies completely to the left of T v1 , as we proved above, it follows that T v3 lies
completely to the left of T v1 , and thus T v3 ∩ T v1 = ∅ and Tv3 ∩ Tv1 = ∅. This is a contradiction,
since v3v1 ∈ E.

Summarizing, there exists no induced path v1v2v3v4 of G, such that v1 ≺ v2 and v4 ≺ v3.
Therefore the vertex order ≺ is perfect, i.e. the complement G of G is perfectly orderable. Finally,
the complement C6 of the chordless cycle C6 with six vertices is a co-perfectly orderable but not a
tolerance graph [11]. Moreover, C6 is not a multitolerance graph, since every multitolerance graph
is weakly chordal by Theorem 7. Therefore, C6 is a co-perfectly orderable but not a multitolerance
graph, and thus multitolerance graphs are strictly included in co-perfectly orderable graphs. This
completes the proof of the theorem.

Theorem 9 Multitolerance graphs are incomparable with alternately orientable and with cocom-
parability graphs.

Proof. The Berlin graph B, which is illustrated in Figure 6(b), is a trapezoid but not an alternately
orientable graph [11]. Furthermore the graph T2, which is illustrated in Figure 6(a), is a tolerance

30

but not a cocomparability graph [11]. Therefore, since trapezoid (resp. tolerance) graphs are also
multitolerance graphs (cf. Theorem 7), it follows that B (resp. T2) is a multitolerance but not an
alternately orientable (resp. cocomparability) graph.

On the other hand, the chordless cycle C6 with six vertices is an alternately orientable graph,
while its complement C6 is a cocomparability graph [11]. However, C6 and C6 are not weakly
chordal by the definition of weakly chordal graphs, and thus C6 and C6 are also not multitolerance
graphs by Theorem 7. Therefore, C6 (resp. C6) is an alternately orientable (resp. cocomparability)
but not a multitolerance graph, and thus multitolerance graphs are incomparable with alternately
orientable and with cocomparability graphs. This completes the proof of the theorem.

7 Conclusions and further research

In this article we presented the first non-trivial intersection model for general multitolerance
graphs, given by objects in the 3-dimensional space, called trapezoepipeds. This trapezoepiped
representation unifies in a simple and intuitive way the well known trapezoid representation
for bounded multitolerance graphs and the recently introduced parallelepiped representation
for tolerance graphs in [21]. Using this representation, we presented efficient algorithms that
compute a minimum coloring, a maximum clique, and a maximum weight independent set on a
multitolerance graph, respectively. The running times of the first two algorithms are optimal, while
the third algorithm improves the best known running time for the maximum weight independent
set on tolerance graphs. In particular, a variation of the latter algorithm computes a maximum
weight independent set of a tolerance graph in optimal time, closing thus the complexity gap
of [21]. Furthermore, we proved several structural results on the class of multitolerance graphs,
which complement the hierarchy of perfect graphs given in [11]. The proposed intersection model
provides geometric insight for multitolerance graphs and it can be expected to prove useful in
deriving new algorithmic as well as structural results. It remains open to close the gap between the
lower bound of Ω(n log n) and the upper bound of O(|E| + n log n) for the weighted independent
set on general multitolerance graphs. Furthermore, interesting open problems for further research
include the weighted clique problem, the Hamiltonian cycle problem, as well as the recognition
problem of general multitolerance graphs. On the contrary, it is known that trapezoid (i.e. bounded
multitolerance) graphs can be recognized efficiently [18, 20], while it is NP-complete to recognize
tolerance and bounded tolerance graphs [22], as well as max-tolerance graphs [16].

Acknowledgment. The author would like to thank Sagi Snir from the University of Haifa, Israel,
for indicating the application of multitolerance graphs in the comparison of DNA sequences.

References

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic Local Alignment
Search Tool. Journal of Molecular Biology, 215(3):403–410, 1990.

[2] K. P. Bogart, P. C. Fishburn, G. Isaak, and L. Langley. Proper and unit tolerance graphs.
Discrete Applied Mathematics, 60(1-3):99–117, 1995.

[3] K. P. Bogart and G. Isaak. Proper and unit bitolerance orders and graphs. Discrete Mathe-
matics, 181(1-3):37–51, 1998.

[4] A. H. Busch. A characterization of triangle-free tolerance graphs. Discrete Applied Mathemat-
ics, 154(3):471–477, 2006.

[5] S. Felsner. Tolerance graphs and orders. Journal of Graph Theory, 28(3):129–140, 1998.

[6] S. Felsner, R. Müller, and L. Wernisch. Trapezoid graphs and generalizations, geometry and
algorithms. Discrete Applied Mathematics, 74:13–32, 1997.

31

[7] M. C. Golumbic. Algorithmic graph theory and perfect graphs (Annals of Discrete Mathematics,
Vol. 57). North-Holland Publishing Co., 2004.

[8] M. C. Golumbic and C. L. Monma. A generalization of interval graphs with tolerances. In
Proceedings of the 13th Southeastern Conference on Combinatorics, Graph Theory and Com-
puting, Congressus Numerantium 35, pages 321–331, 1982.

[9] M. C. Golumbic, C. L. Monma, and W. T. Trotter. Tolerance graphs. Discrete Applied
Mathematics, 9(2):157–170, 1984.

[10] M. C. Golumbic and A. Siani. Coloring algorithms for tolerance graphs: reasoning and schedul-
ing with interval constraints. In Proceedings of the Joint International Conferences on Artifi-
cial Intelligence, Automated Reasoning, and Symbolic Computation (AISC/Calculemus), pages
196–207, 2002.

[11] M. C. Golumbic and A. N. Trenk. Tolerance Graphs. Cambridge studies in advanced mathe-
matics, 2004.

[12] M. T. Goodrich and R. Tamassia. Algorithm Design: Foundations, Analysis, and Internet
Examples. John Wiley & Sons, Inc., 2002.

[13] M. Grötschel, L. Lovász, and A. Schrijver. Polynomial algorithms for perfect graphs. Annals
of Discrete Mathematics, 21:325–356, 1984.

[14] J. Hershberger. Finding the upper envelope of n line segments in O(n log n) time. Information
Processing Letters, 33(4):169–174, 1989.

[15] G. Isaak, K. L. Nyman, and A. N. Trenk. A hierarchy of classes of bounded bitolerance orders.
Ars Combinatoria, 69, 2003.

[16] M. Kaufmann, J. Kratochvil, K. A. Lehmann, and A. R. Subramanian. Max-tolerance graphs
as intersection graphs: cliques, cycles, and recognition. In Proceedings of the 17th annual
ACM-SIAM symposium on Discrete Algorithms (SODA), pages 832–841, 2006.

[17] K. A. Lehmann, M. Kaufmann, S. Steigele, and K. Nieselt. On the maximal cliques in c-
max-tolerance graphs and their application in clustering molecular sequences. Algorithms for
Molecular Biology, 1, 2006.

[18] T.-H. Ma and J. P. Spinrad. On the 2-chain subgraph cover and related problems. Journal of
Algorithms, 17(2):251–268, 1994.

[19] T. A. McKee and F. R. McMorris. Topics in intersection graph theory. SIAM Monographs on
Discrete Mathematics and Applications, Philadelphia, 1999.

[20] G. B. Mertzios and D. G. Corneil. Vertex splitting and the recognition of trapezoid graphs.
Discrete Applied Mathematics, 159(11):1131–1147, 2011.

[21] G. B. Mertzios, I. Sau, and S. Zaks. A new intersection model and improved algorithms for
tolerance graphs. SIAM Journal on Discrete Mathematics, 23(4):1800–1813, 2009.

[22] G. B. Mertzios, I. Sau, and S. Zaks. The recognition of tolerance and bounded tolerance
graphs. SIAM Journal on Computing, 40(5):1234–1257, 2011.

[23] A. Parra. Triangulating multitolerance graphs. Discrete Applied Mathematics, 84(1-3):183–
197, 1998.

[24] J. P. Spinrad and R. Sritharan. Algorithms for weakly triangulated graphs. Discrete Applied
Mathematics, 59:181–191, 1995.

32

