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Abstract

Temporal graphs are graphs whose topology is subject to discrete changes
over time. Given a static underlying graph G, a temporal graph is represented
by assigning a set of integer time-labels to every edge e of G, indicating the
discrete time steps at which e is active. We introduce and study the complex-
ity of a natural temporal extension of the classical graph problem Maximum
Matching, taking into account the dynamic nature of temporal graphs.
In our problem, Maximum Temporal Matching, we are looking for the
largest possible number of time-labeled edges (simply time-edges) (e, t) such
that no vertex is matched more than once within any time window of ∆ con-
secutive time slots, where ∆ ∈ N is given. We prove strong computational
hardness results for Maximum Temporal Matching, even for elementary
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cases, as well as fixed-parameter algorithms with respect to natural param-
eters and polynomial-time approximation algorithms.

Keywords: Link Streams, Temporal Line Graphs, NP-hardness,
APX-hardness, Approximation Algorithms, Fixed-Parameter Tractability,
Kernelization, Independent Set

1. Introduction

Computing a maximum matching in an undirected graph (a maximum-
cardinality set of “independent edges”, i.e., edges which do not share any
endpoint) is one of the most fundamental graph-algorithmic primitives. In
this work, we lift the study of the algorithmic complexity of computing max-
imum matchings from static graphs to the—recently strongly growing—field
of temporal graphs [1–3, 7, 10, 16, 27, 52, 53]. In a nutshell, a temporal graph
is a graph whose topology is subject to discrete changes over time. We adopt
a simple and natural model for temporal graphs which originates from the
foundational work of Kempe et al. [45]. According to this model, every edge
of a static graph is given along with a set of time labels, while the vertex set
remains unchanged.

Definition 1.1 (Temporal Graph). A temporal graph G = (G, λ) is a pair
(G, λ), where G = (V,E) is an underlying (static) graph and λ : E → 2N\{∅}
is a time-labeling function that specifies which edge is active at what time.

An alternative way to view a temporal graph is to see it as an ordered set
(according to the discrete time slots) of static graphs (called snapshots) on
a fixed vertex set. Due to their vast applicability in many areas, temporal
graphs have been studied from different perspectives under various names
such as time-varying [61], evolving [21, 28], dynamic [14, 34], and graphs
over time [49]; see also the survey papers [12–14] and the references therein.

In this paper we introduce and study the complexity of a natural tem-
poral extension of the classical problem Maximum Matching, which takes
into account the dynamic nature of temporal graphs. To this end, we ex-
tend the notion of “edge independence” to the temporal setting: two time-
labeled edges (simply time-edges) (e, t) and (e′, t′) are ∆-independent when-
ever (i) the edges e, e′ do not share an endpoint or (ii) their time labels t, t′
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are at least ∆ time units apart from each other.4 Then, for any given ∆,
the problem Maximum Temporal Matching asks for the largest possi-
ble set of pairwise ∆-independent edges in a temporal graph. That is, in a
feasible solution, no vertex can be matched more than once within any time
window of length ∆. This requirement can model settings where a short “re-
covery” period is needed for every vertex that participates in the matching,
e.g., a short rest after an energy-demanding activity. Thus it makes particu-
lar sense to study the complexity of the problem for small (constant) values
of ∆. Note that the concept of ∆-windows has also been employed in other
temporal graph problem settings [3, 15, 39, 53].

Our main motivation for studying Maximum Temporal Matching is
of theoretical nature, namely to lift one of the most classical optimization
problems, Maximum Matching, to the temporal setting. As it turns out,
Maximum Temporal Matching is computationally hard to approximate:
we prove that the problem is APX-hard, even when ∆ = 2 and the lifetime T
of the temporal graph (i.e., the maximum edge label) is 3 (see Section 3.1).
That is, unless P=NP, there is no Polynomial-Time Approximation Scheme
(PTAS) for any ∆ ≥ 2 and T ≥ 3. In addition, we show that the problem
remains NP-hard even if the underlying graph G is just a path (see Sec-
tion 3.2). Consequently, we mainly turn our attention to approximation and
to fixed-parameter algorithms (see Section 4). In order to prove our hard-
ness results, we introduce the notion of temporal line graphs which form a
class of (static) graphs of independent interest and may prove useful in other
contexts, too. This notion paves the way to reduce Maximum Temporal
Matching to the problem of computing a large independent set in a static
graph (i.e., in the temporal line graph that is defined from the input tempo-
ral graph). Moreover, as an intermediate result, we show (see Theorem 3.13)
that the classic problem Independent Set (on static graphs) remains NP-
hard on induced subgraphs of diagonal grid graphs, thus strengthening an
old result of Clark et al. [20] for unit disk graphs.

During the last few decades it has been repeatedly observed that for
many variations of Maximum Matching it is straightforward to obtain
online (resp. greedy offline approximation) algorithms which achieve a com-
petitive (resp. an approximation) ratio of 1

2
, while great research efforts have

4Throughout the paper, ∆ always refers to that number, and never to the maximum
degree of a static graph (which is another common use of ∆).
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been made to increase the ratio to 1
2

+ ε, for any constant ε > 0. Originat-
ing in the foundational work of Karp et al. [44] on the randomized online
algorithm Ranking for the Online Bipartite Matching problem, there
has been a long line of recent research on providing a sequence of (1

2
+ ε)-

competitive algorithms for many different variations of Online Matching,
see e.g. [11, 30, 40, 41]. This difficulty of breaking the barrier of the ratio
1
2

also appears in offline variations of the Matching problem. It is well
known that an arbitrary greedy algorithm for Matching gives approxima-
tion ratio at least 1

2
[38, 47], while it remains a long-standing open problem

to determine how well a randomized greedy algorithm can perform. Aronson
et al. [5] provided the so-called Modified Randomized Greedy (MRG) algo-
rithm which approximates the maximum matching within a factor of at least
1
2

+ 1
400,000

. Recently, Poloczek and Szegedy [59] proved that MRG actually

provides an approximation ratio of 1
2

+ 1
256

. Similarly to the above problems,
it is straightforward5 to approximate Maximum Temporal Matching in
polynomial time within a factor of 1

2
. However, we manage to provide a sim-

ple (non-randomized) approximation algorithm which, for any constant ∆,
achieves an approximation ratio 1

2
+ ε for some ε = ε(∆). For ∆ = 2 this

ratio is 2
3
, while for an arbitrary constant ∆ it becomes ∆

2∆−1
= 1

2
+ 1

2(2∆−1)

(see Section 4.1).
Apart from polynomial-time approximation algorithms, the classical

(static) maximum matching problem (which is polynomial-time solvable [26])
has recently also attracted many research efforts in the area of parameter-
ized algorithms for polynomial-time solvable problems. Parameters which
have been studied include the solution size [35], the modular-width [48],
the clique-width [22], the treewidth [29], the feedback vertex number [51],
and the feedback edge number [46, 51]. Given that Maximum Temporal
Matching is NP-hard, we show fixed-parameter tractability with respect
to the solution size as a parameter. An extended abstract [54] of this arti-
cle described an FPT-algorithm with respect to the combined parameter of
time-window size ∆ and the size of a maximum matching of the underlying
graph (which may be significantly smaller than the cardinality of a maxi-
mum temporal matching of the temporal graph). Recently, this algorithm

5To achieve the straightforward 1
2 -approximation it suffices to just greedily compute

at every time slot a maximal matching among the edges that are ∆-independent with the
current solution.
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has been improved to a running time of ∆O(ρ) · |G|, where ρ is the maximum
vertex cover number of the underlying graph of the temporal subgraph of G
induced by any ∆-window [64]. Note that, the number ρ can be arbitrarily
smaller than the maximum matching size of the underlying graph but it is
at most twice this parameter.

It is worth mentioning that another temporal variation of Maximum
Matching was recently proposed by Baste et al. [9]. The main difference
to our model is that their model requires edges to exist in at least ∆ consec-
utive snapshots in order for them to be eligible for a matching. Thus, their
matchings need to consist of time-consecutive edge blocks, which requires
some data cleaning on real-word instances in order to perform meaningful
experiments [9].

It turns out that the model of Baste et al. is a special case of our model,
as there is an easy reduction from their model to ours, and thus their results
are also implied by ours. Baste et al. [9] showed that solving (using their
definition) Maximum Temporal Matching is NP-hard for ∆ ≥ 2. In
terms of parameterized complexity, they provided a polynomial-sized kernel
for the combined parameter (k,∆), where k is the size of the desired solu-
tion. The problem has also been investigated on certain geometric temporal
graphs [57].

To the best of our knowledge, the main alternative model for temporal
matchings in temporal graphs is the concept of multistage (perfect) match-
ings which was introduced by Gupta et al. [37]. This model, which is inspired
by reconfiguration or reoptimization problems, is not directly related to ours:
roughly speaking, their goal is to find perfect matchings for every snapshot
of a temporal graph such that the matchings only slowly change over time.
In this setting one mostly encounters computational intractability, which
leads to several results on approximation hardness and approximation algo-
rithms [8, 18, 37].

Recently, so-called 0-1 timed matchings in temporal graphs have been
studied [50]. Here, each edge of the temporal graph is associated with a
set of non-overlapping time intervals and the goal is to find a maximum set
of edges such that their intervals are pairwise non-overlapping. Here, also
mostly intractability and approximation results are obtained.
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2. Preliminaries

In this section we present all necessary notation and terminology as well
as some easy initial observations about our problem setting.

2.1. Notation and Terminology

Let N denote the natural numbers without zero. We refer to a set of
consecutive natural numbers [i, j] = {i, i + 1, . . . , j} for some i, j ∈ N with
i ≤ j as an interval, and to the number j− i+ 1 as the length of the interval.
If i = 1, then we denote [i, j] simply by [j].

Static graphs. We use standard notation and terminology from graph the-
ory [24]. Given an undirected (static) graph G = (V,E) with E ⊆

(
V
2

)
, we

denote by V (G) = V and E(G) = E the sets of its vertices and edges, re-
spectively. We call two vertices u, v ∈ V adjacent if {u, v} ∈ E. We call two
edges e1, e2 ∈ E adjacent if e1 ∩ e2 ̸= ∅. By Pn we denote a graph that is a
path with n vertices. Whenever it is clear from the context, we omit G. Two
graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a bijection
σ : V1 → V2 such that for all u, v ∈ V1 we have that {u, v} ∈ E1 if and only if
{σ(u), σ(v)} ∈ E2. Given a graph G = (V,E) and an edge {u, v} ∈ E, sub-
dividing the edge {u, v} results in a graph isomorphic to G′ = (V ′, E ′) with
V ′ = V ∪ {w} for some w /∈ V and E ′ = (E \ {{u, v}}) ∪ {{v, w}, {u,w}}.
A graph H is a subdivision of a graph G if there is a sequence of graphs
G1, G2, . . . , Gx with G1 = G such that for each Gi = (Vi, Ei) with i < x
there is an edge e ∈ Ei and subdividing e results in a graph isomorphic to
Gi+1, and Gx is isomorphic to H. A graph H is a topological minor of G
if there is a subgraph G′ of G that is a subdivision of H. A graph H is
an induced topological minor of G if there is an induced subgraph G′ of G
that is a subdivision of H. A line graph of a (static) graph G = (V,E) is
the graph L(G) with V (L(G)) = {ve | e ∈ E} and for all ve, ve′ ∈ V (L(G))
we have that {ve, ve′} ∈ E(L(G)) if and only if e ∩ e′ ̸= ∅ [24]. Recall
that a maximum independent set of a (static) graph G = (V,E) is a vertex
set V ′ ⊆ V of maximum cardinality such that for all u, v ∈ V ′ we have that
{u, v} /∈ E. In the context of matchings, line graphs are of special interest
since the cardinality of a maximum matching in a graph equals the cardinal-
ity of a maximum independent set in its line graph. Indeed, a matching in
a graph can directly be translated into an independent set in its line graph
and vice versa [24].
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Parameterized complexity. We use standard notation and terminology from
parameterized complexity [23, 25]. A parameterized problem is a language
L ⊆ Σ∗ × N, where Σ is a finite alphabet. We call the second component
the parameter of the problem. A parameterized problem is fixed-parameter
tractable (in the complexity class FPT) if there is an algorithm that solves
each instance (I, r) in f(r) · |I|O(1) time, for some computable function f .
If a parameterized problem L is NP-hard for a constant parameter value,
i.e., L is para-NP-hard, it cannot be contained in FPT6 unless P = NP. A
parameterized problem L admits a polynomial kernel if there is a polynomial-
time algorithm that transforms each instance (I, r) into an instance (I ′, r′)
such that (I, r) ∈ L if and only if (I ′, r′) ∈ L and |(I ′, r′)| ≤ rO(1).

Temporal graphs. Throughout the paper we consider temporal graphs G with
finite lifetime T (G) := max{t ∈ λ(e) | e ∈ E}, that is, there is a maximum
label assigned by λ to an edge of G. When it is clear from the context,
we denote the lifetime of G simply by T . The snapshot of G at time t is
the static graph Gt = (V,Et), where Et := {e ∈ E | t ∈ λ(e)}. We refer
to each integer t ∈ [T ] as a time slot of G. For every e ∈ E and every
time slot t ∈ λ(e), we denote the appearance of edge e at time t by the pair
(e, t), which we also call a time-edge. We denote the set of edge appearances
of a temporal graph G = (G = (V,E), λ) by E(G) := {(e, t) | e ∈ E and
t ∈ λ(e)}. For every v ∈ V and every time slot t, we denote the appearance
of vertex v at time t by the pair (v, t). That is, every vertex v has T different
appearances (one for each time slot) during the lifetime of G. For every
time slot t ∈ [T ], we denote by Vt := {(v, t) : v ∈ V } the set of all vertex
appearances of G at time slot t. Note that the set of all vertex appearances
in G is V × [T ] =

⋃
1≤t≤T Vt. Two vertex appearances (v, t) and (w, t) are

adjacent if the temporal graph has the time-edge ({v, w}, t). For a temporal
graph G = (G, λ) and a set of time-edges M , we denote by G \M := (G′, λ′)
the temporal graph G without the time-edges in M , where G′ := (V,E ′) with
E ′ := {e ∈ E | λ(e)\{t | (e, t) ∈M} ≠ ∅}, and λ′(e) := λ(e)\{t | (e, t) ∈M}
for all e ∈ E ′. For a time-edge set E and integers a and b, we denote by
E [a, b] := {(e, t) ∈ E | a ≤ t ≤ b} the subset of E between the time steps a and
b. Analogously, for a temporal graph G := (V, (Ei)

T
i=1) we denote by G[a, b]

the temporal graph on the vertex set V with the time-edge set E(G)[a, b].

6It cannot even be contained in the larger parameterized complexity class XP unless
P = NP.
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In the remainder of the paper we denote by n and m the number of
vertices and edges of the underlying graph G, respectively, unless otherwise
stated. We assume that there is no compact representation of the labeling λ,
that is, G is given with an explicit list of labels for every edge, and hence the
size of a temporal graph G is |G| := |V |+ ∑T

t=1 max {1, |Et|} ∈ O(n + mT ).
Furthermore, in accordance with the literature [63, 65] we assume that the
lists of labels are given in ascending order.

Temporal matchings. A matching in a (static) graph G = (V,E) is a set
M ⊆ E of edges such that for all e, e′ ∈ M we have that e ∩ e′ = ∅. In the
following, we transfer this concept to temporal graphs.

For a natural number ∆, two time-edges (e, t), (e′, t′) are ∆-independent
if e ∩ e′ = ∅ or |t − t′| ≥ ∆. If two time-edges are not ∆-independent,
then we say that they are in conflict. A time-edge (e, t) ∆-blocks a vertex
appearance (v, t′) (or (v, t′) is ∆-blocked by (e, t)) if v ∈ e and |t−t′| ≤ ∆−1.
A ∆-temporal matching M of a temporal graph G is a set of time-edges of G
which are pairwise ∆-independent. Formally, it is defined as follows.

Definition 2.1 (∆-Temporal Matching). A ∆-temporal matching of a tem-
poral graph G is a set M of time-edges of G such that for every pair of distinct
time-edges (e, t), (e′, t′) in M we have that e ∩ e′ = ∅ or |t− t′| ≥ ∆.

A ∆-temporal matching is called maximal if it is not properly contained in
any other ∆-temporal matching. A ∆-temporal matching is called maximum
if there is no ∆-temporal matching of larger cardinality. We denote by µ∆(G)
the size of a maximum ∆-temporal matching in G.

Having defined temporal matchings, we naturally arrive at the following
central problem.

Maximum Temporal Matching

Input: A temporal graph G = (G, λ) and an integer ∆ ∈ N.
Output: A ∆-temporal matching in G of maximum cardinality.

We refer to the problem of deciding whether a given temporal graph
admits a ∆-temporal matching of a given size k by Temporal Matching.

Temporal Matching

Input: A temporal graph G = (G, λ) and integers k ∈ N and
∆ ∈ N.

Question: Does G contain a ∆-temporal matching of size k?
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We remark that our definition of a ∆-temporal matching is similar to γ-
matchings by Baste et al. [9]. We discuss some basic observations about our
problem settings in Section 2.2 and discuss the relation between our model
and the model of Baste et al. [9] in Section 2.3.

Temporal line graphs. In the following, we transfer the concept of line graphs
to temporal graphs and temporal matchings. We make use of temporal line
graphs in the NP-hardness result of Section 3.2.

The ∆-temporal line graph of a temporal graph G is a static graph that has
a vertex for every time-edge of G and two vertices are connected by an edge if
the corresponding time-edges are in conflict, i.e., they cannot be both part of
a ∆-temporal matching of G. We say that a graph H is a temporal line graph
if there exists ∆ and a temporal graph G such that H is isomorphic to the
∆-temporal line graph of G. Formally, temporal line graphs and ∆-temporal
line graphs are defined as follows.

Definition 2.2 (Temporal Line Graph). Given a temporal graph G = (G =
(V,E), λ) and a natural number ∆, the ∆-temporal line graph L∆(G) of G
has vertex set V (L∆(G)) := {et | e ∈ E ∧ t ∈ λ(e)} and edge set E(L∆(G)) :
s = {{et, e′t′} | e ∩ e′ ̸= ∅ ∧ |t − t′| < ∆}. We say that a graph H is a
temporal line graph if there is a temporal graph G and an integer ∆ such
that H = L∆(G).

By definition, ∆-temporal line graphs have the following property.

Observation 2.3. Let G be a temporal graph and let L∆(G) be its ∆-temporal
line graph. The cardinality of a maximum independent set in L∆(G) equals
the size of a maximum ∆-temporal matching of G.

It follows that solving Temporal Matching on a temporal graph G is
equivalent to solving Independent Set on L∆(G).

2.2. Preliminary results and observations

Note that when the input parameter ∆ in Maximum Temporal
Matching is equal to 1, the problem can be solved efficiently, because it
reduces to T independent instances of (static) Maximum Matching.

At the other extreme, there are instances (G = (G, λ),∆, k) in which ∆
coincides with the lifetime T , i.e., ∆ = T . In this case the problem can also
be solved in polynomial time. Indeed, a maximum ∆-temporal matching M
can be found as follows:
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G1

1

G2

2

· · · G∆

∆

(V, ∅)

∆ + 1

G∆+1

∆ + 2

· · · G2∆

2∆ + 1

(V, ∅)

2∆ + 2

· · · · · · · · · GT

T + bT/∆c

Figure 1: Inserting “empty” snapshots to reduce Temporal Matching on instances
(G,∆, k) to Temporal Matching on instances (G,∆+ 1, k).

1. Find a maximum matching R in the underlying graph G;

2. Initialize M = ∅. For every edge e in R add in the final solution M
exactly one (arbitrary) time-edge (e, t), where t ∈ λ(e).

3. Output M .

The time complexity of the above procedure is dominated by the time re-
quired to construct the underlying graph G and the time needed to find a
maximum matching in G. The former can be done in O(Tm) = O(∆m)
time. The latter can be solved in O(

√
nm) time [55]. Thus, we have the

following.

Observation 2.4. Let G be a temporal graph of lifetime T . We can compute
a T -temporal matching in G in O(m(

√
n + T )) time.

Furthermore, it is easy to observe that computational hardness of Tem-
poral Matching for some fixed value of ∆ implies hardness for all larger
values of ∆. This allows us to construct hardness reductions for small fixed
values of ∆ and still obtain general hardness results.

Observation 2.5. For every fixed ∆, the problem Temporal Matching
on instances (G,∆ + 1, k) is computationally at least as hard as Temporal
Matching on instances (G,∆, k).

Proof. The result immediately follows from the observation that a temporal
graph G has a ∆-temporal matching of size at least k if and only if the tem-
poral graph G ′ has a (∆+1)-temporal matching of size at least k, where G ′ is
obtained from G by inserting one edgeless snapshot after every ∆ consecutive
snapshots (see Figure 1).

Lastly, it is easy to see that one can check in polynomial time whether a
given set of time-edges is a ∆-temporal matching. This implies that Tem-
poral Matching is contained in NP and in subsequent NP-completeness
statements we will only discuss the hardness part of the proof.
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2.3. Relation to γ-Matching by Baste et al. [9]

We refer to the variant of temporal matching introduced by Baste et al. [9]
as γ-Matching. They defined γ-matchings in a very similar way. Their
definition requires a time-edge to be present for γ consecutive time slots
to be eligible for a temporal matching. There is an easy reduction from
their model to ours: For every sequence of γ consecutive time-edges starting
at time slot t, we introduce only one time-edge at time slot t, and set ∆
to γ. This already implies that Temporal Matching is NP-complete [9,
Theorem 1] and that our algorithmic results also hold for γ-Matching. We
are not aware of an equally easy reduction in the reverse direction.

In addition, it is easy to check that the algorithmic results of
Baste et al. [9] also carry over to our model. Hence, there is a 2-approximation
algorithm for Maximum Temporal Matching [9, Corollary 1] and Tem-
poral Matching admits a polynomial kernel when parameterized by
k + ∆ [9, Theorem 2]. Some of our hardness results can also easily be
transferred to γ-Matching. Whenever this is the case, we will indicate
this.

3. Hardness Results

In this section we present our computational hardness results. In Sec-
tion 3.1 we show that the optimization problem Maximum Temporal
Matching is APX-hard and in Section 3.2 we show that Temporal
Matching is NP-hard even if the underlying graph is a path.

3.1. APX-completeness of Maximum Temporal Matching

In this subsection, we look at Maximum Temporal Matching where
we want to maximize the cardinality of the temporal matching. We prove
that Maximum Temporal Matching is APX-complete even if ∆ = 2
and T = 3. For this we provide an L-reduction [6] from the APX-complete
Maximum Independent Set problem on cubic graphs [4] to Maximum
Temporal Matching. Together with the constant-factor approximation
algorithm that we present in Section 4.1, this implies APX-completeness
for Maximum Temporal Matching. The reduction also implies NP-
completeness of Temporal Matching. Formally, we show the following
result.

11



Theorem 3.1. Temporal Matching is NP-complete and Maximum
Temporal Matching is APX-complete even if ∆ = 2, T = 3, and ev-
ery edge of the underlying graph appears only once. Furthermore, for any
δ ≥ 664

665
, there is no polynomial-time δ-approximation algorithm for Maxi-

mum Temporal Matching, unless P = NP.

It is easy to check that the construction uses only three time steps and
every edge appears in exactly one time step.

Construction 3.2. Let G = (V,E) be an n-vertex cubic graph. We construct
in polynomial time a corresponding temporal graph (H,λ) of lifetime three as
follows. First, we find a proper 4-edge coloring c : E → {1, 2, 3, 4} of G.
Such a coloring exists by Vizings’s theorem and can be found in O(|E|) time
[60]. Now the underlying graph H = (U, F ) contains two vertices v0 and
v1 for every vertex v of G, and one vertex we for every edge e of G. The
set F of the edges of H contains {v0, v1} for every v ∈ V , and for every
edge e = {u, v} ∈ E it contains {we, uφ}, {we, vφ}, where c(e) ≡ φ (mod 2).
In the temporal graph (H, λ) every edge of the underlying graph appears in
exactly one of the three time slots:

1. λ({we, uφ}) = λ({we, vφ}) = 1, where c(e) ≡ φ (mod 2), for every edge
e = {u, v} ∈ E such that c(e) ∈ {1, 2};

2. λ({v0, v1}) = 2 for every v ∈ V ;

3. λ({we, uφ}) = λ({we, vφ}) = 3, where c(e) ≡ φ (mod 2), for every edge
e = {u, v} ∈ E such that c(e) ∈ {3, 4}. ◁

Construction 3.2 is illustrated in Figure 2. We first show that if we find
a 2-temporal matching in the constructed graph (H,λ), then we can assume
w.l.o.g. that if {u, v} ∈ E, then the temporal matching contains at most
one of the two time-edges ({u0, u1}, 2) and ({v0, v1}, 2). This will allow us
to construct an independent set for the original graph G from the temporal
matching.

Lemma 3.3. Let G = (V,E) be a cubic graph and let (H,λ) be the temporal
graph obtained by applying Construction 3.2 to G. Let M be a 2-temporal
matching of (H,λ). Then there exists a 2-temporal matching M ′ of (H,λ)
such that |M ′| = |M |, and for every edge e = {u, v} ∈ E the matching M ′

contains at most one of the two time-edges ({u0, u1}, 2) and ({v0, v1}, 2).
Moreover, M ′ can be constructed from M in polynomial time.

12



a

bc

d

31
2

4
13

(a) A cubic graph G. The edge labels correspond
to the 4-edge coloring.

a0a1

b0

b1
c0

c1

d0 d1wcd wbd

wac wab

wad

wcb

(b) The underlying graph H. White vertices
correspond to edges of G, black vertices

correspond to vertices of G.

snapshot at time 1: snapshot at time 2: snapshot at time 3:

(c) The temporal graph (H,λ).

Figure 2: Example of the reduction from Maximum Independent Set on cubic graphs
to Maximum Temporal Matching.

Proof. We prove the first part of the lemma by induction on the number of
edges {u′, v′} ∈ E such that M contains both ({u′

0, u
′
1}, 2) and ({v′0, v′1}, 2).

Let us denote this number by k. For k = 0 the statement is trivial. Let

13



k ≥ 1, and let e = {u, v} ∈ E be an edge such that both ({u0, u1}, 2)
and ({v0, v1}, 2) are in M . Without loss of generality we assume that c(e) =
1. Since the lifetime of (H,λ) is three and ({u0, u1}, 2) ∈ M , no time-
edge in M other than ({u0, u1}, 2) is incident with u0 or u1. Similarly, no
time-edge in M besides ({v0, v1}, 2) is incident with v0 or v1. In particular,
({we, u1}, 1), ({we, v1}, 1) /∈ M . Hence, M ′′ obtained from M by replacing
({u0, u1}, 2) with ({we, u1}, 1) is a 2-temporal matching of (H,λ) with |M ′′| =
|M |, and the number of edges {u′, v′} ∈ E such that M ′′ contains both
({u′

0, u
′
1}, 2) and ({v′0, v′1}, 2) is k − 1. Hence, by the induction hypothesis,

there exists a desired 2-temporal matching M ′.
Clearly, the above arguments can be turned into a polynomial-time algo-

rithm that transforms M into M ′ by iteratively finding edges {u′, v′} ∈ E
such that both ({u′

0, u
′
1}, 2) and ({v′0, v′1}, 2) are in the current temporal

matching and replacing one of the time-edges by an appropriate incident
time-edge.

Next, we formally show how to obtain an independent set of G from a
2-temporal matching of the constructed graph (H, λ).

Lemma 3.4. Let G = (V,E) be a cubic graph and let (H,λ) be the temporal
graph obtained by applying Construction 3.2 to G. Let M be a 2-temporal
matching of (H,λ). Then G contains an independent set S of size at least
|M | − 3n

2
. Moreover, S can be computed from M in polynomial time.

Proof. First, by Lemma 3.3, we can assume that for every {u, v} ∈ E the
temporal matching M contains at most one of the time-edges ({u0, u1}, 2) and
({v0, v1}, 2). Now we compute in polynomial time S := {v | ({v0, v1}, 2) ∈
M}. The above assumption implies that S is an independent set.

Furthermore, notice that for every edge e ∈ E the underlying graph H
contains exactly two edges incident with we and both of them appear in the
same time slot. Hence M can contain at most one time-edge incident with
we, and therefore |M | ≤ |S|+ |E| = |S|+ 3n

2
, which completes the proof.

Now we investigate how the size of a temporal matching in the constructed
graph relates to the size of the corresponding independent set in the original
graph. For a static graph G we denote by α(G) the size of a maximum
independent set in G, and for a temporal graph (H,λ) we denote by µ2(H,λ)
the size of a maximum 2-temporal matching in (H, λ).

14



Lemma 3.5. Let G = (V,E) be a cubic graph and let (H,λ) be the temporal
graph obtained by applying Construction 3.2 to G. Then µ2(H, λ) = α(G) +
3n
2
.

Proof. Let α := α(G) and µ2 := µ2(H,λ). We start by proving µ2 ≤ α + 3n
2

.
Let M be a maximum 2-temporal matching of (H,λ). By Lemma 3.4 there
exists an independent set S in G of size at least |S| ≥ |M | − 3n

2
. Hence we

have µ2 = |M | ≤ |S|+ 3n
2
≤ α + 3n

2
.

To prove the converse inequality, we consider a maximum independent
set S in G, and show how to construct a 2-temporal matching M of (H,λ)
of size at least |S|+ 3n

2
. First, for every v ∈ S we include ({v0, v1}, 2) in M .

Second, for every edge e = {u, v} ∈ E we add one more time-edge to M as
follows. Since S is independent, at least one of u and v is not in S, say u.
Then we add to M

1. ({weu1}, 1) if c(e) = 1,

2. ({weu0}, 1) if c(e) = 2,

3. ({weu1}, 3) if c(e) = 3, and

4. ({weu0}, 3) if c(e) = 4.

By construction we have |M | = |S|+ 3n
2

. Now we show that M is a 2-temporal
matching. For any two distinct vertices u and v in S the edges {u0, u1} and
{v0, v1} are not adjacent in H, therefore the time-edges ({u0, u1}, 2) and
({v0, v1}, 2) are not in conflict. Furthermore, for any pair of adjacent edges
{we, uφ}, {u0, u1} in H the corresponding time-edges are not in conflict in
M , as, by construction, at most one of them is in M . For the same reason,
for every edge e = {u, v} ∈ E the time-edges corresponding to {we, uφ} and
{we, vφ}, where c(e) ≡ φ (mod 2), are not in conflict in M . It remains
to show that the time-edges ({we, uφ}, i) and ({we′ , uφ}, j) corresponding to
the adjacent edges {we, uφ} and {we′ , uφ} in H are not in conflict in M .
Suppose to the contrary that the time-edges are in conflict. Then both of
them are in M and |i− j| ≤ 1. Since by definition i, j ∈ {1, 3}, we conclude
that i = j, i.e., the time-edges appear in the same time slot. Notice that e
and e′ share vertex u, and hence c(e) ̸= c(e′). Hence, since c(e) ≡ φ (mod 2)
and c(e′) ≡ φ (mod 2), we conclude that either {c(e), c(e′)} = {1, 3}, or
{c(e), c(e′)} = {2, 4}, but, by construction, this contradicts the assumption
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that i = j. This completes the proof that M is a 2-temporal matching, and
therefore we have µ2 ≥ |M | = |S|+ 3n

2
= α + 3n

2
.

Lastly, we formally show that Construction 3.2 together with the proce-
dure described in Lemma 3.4 to obtain an independent set from a temporal
matching is actually an L-reduction. Before we proceed, let us recall the
definition of an L-reduction [6]. Let A and B be two maximization problems
and let cA and cB be their respective cost functions. By definition, a pair of
functions f and g is an L-reduction if all of the following conditions are met:

(1) functions f and g are computable in polynomial time;

(2) if I is an instance of problem A, then f(I) is an instance of problem
B;

(3) if M is a feasible solution to f(I), then g(M) is a feasible solution to
I;

(4) there exists a positive constant β such that OPTB(f(I)) ≤ β ·OPTA(I);
and

(5) there exists a positive constant γ such that, for every feasible solution
M to f(I), it holds that OPTA(I) − cA(g(M)) ≤ γ · (OPTB(f(I)) −
cB(M)).

Lemma 3.6. Construction 3.2 together with the procedure described by
Lemma 3.4 constitute an L-reduction from Maximum Independent Set
on cubic graphs to Maximum Temporal Matching with β = 7 and γ = 1.

Proof. In our case Maximum Independent Set in cubic graphs corre-
sponds to problem A and Maximum Temporal Matching corresponds
to problem B. The reduction mapping a cubic graph G to a temporal graph
(H, λ) described in Construction 3.2 corresponds to function f . Clearly, the
reduction is computable in polynomial time. The polynomial-time procedure
guaranteed by Lemma 3.4 corresponds to function g. It remains to show that
conditions (4) and (5) in the definition of an L-reduction are met.

By Lemma 3.5 we know that µ2(H,λ) = α(G) + 3n
2

= α(G) + 6n
4
≤

7α(G), where the latter inequality follows from the fact that the independence
number of an n-vertex cubic graph is at least n

4
. Hence, condition (4) holds

with parameter β = 7.
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Let now M be a 2-temporal matching of (H,λ), and let S be an indepen-
dent set in G guaranteed by Lemma 3.4, then

α(G)−|S| = µ2(H, λ)−3n

2
−|S| ≤ µ2(H, λ)−3n

2
−|M |+3n

2
= µ2(H,λ)−|M |,

where the first equality follows from Lemma 3.5 and the inequality follows
from Lemma 3.4. Thus, condition (5) holds with parameter γ = 1.

We are now ready to prove the main result of this subsection.

Proof of Theorem 3.1. The NP-completeness claim follows directly from
Lemma 3.5 and the NP-completeness of the Maximum Independent Set
in cubic graphs [33, 56].

In Section 4.1 we provide a constant-factor approximation algorithm for
Maximum Temporal Matching, which implies that the problem belongs
to APX. In the rest of the proof we argue that there is no polynomial-time
664
665

-approximation algorithm for Maximum Temporal Matching, unless
P = NP, which also implies APX-hardness, and therefore APX-completeness.

We will show that our reduction together with a polynomial-time δ-
approximation algorithm A for Maximum Temporal Matching, where
δ ≥ 664

665
, would imply a polynomial-time 94

95
-approximation algorithm for

Maximum Independent Set in cubic graphs. The result will then follow
from the fact that it is NP-hard to approximate Maximum Independent
Set in cubic graphs to within factor of 94

95
[19].

Let G be a cubic graph and (H,λ) be the corresponding temporal graph
from the reduction. Let also M be a 2-temporal matching found by algorithm
A, and let S be the independent set in G corresponding to M . Since A is a δ-
approximation algorithm, we have |M |

µ2(H,λ)
≥ δ. Furthermore, by Lemma 3.6,

our reduction is an L-reduction with parameters β = 7 and γ = 1, that is,
µ2(H,λ) ≤ 7α(G) and α(G)− |S| ≤ µ2(H,λ)− |M |. Hence, we have

α(G)− |S| ≤ µ2(H, λ)− |M | ≤ µ2(H,λ) · (1− δ) ≤ 7α(G) · (1− δ),

which together with δ ≥ 664
665

imply |S|
α(G)
≥ 7δ − 6 ≥ 94

95
, as required.

The Exponential Time Hypothesis (ETH) implies (together with the
Sparsification Lemma) that there is no 2o(#variables + #clauses)-time algorithm
for 3SAT [42, 43]. For Temporal Matching we can observe the following.
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Observation 3.7. Temporal Matching does not admit a 2o(k) · |G|f(T )-
time algorithm for any function f , unless the Exponential Time Hypothesis
fails.

Proof. When investigating the original reduction from 3SAT to Vertex
Cover on cubic graphs [33, 56], it is easy to verify that the size of the con-
structed instance is linear in the size of the 3SAT formula. Hence, it follows
that there is no 2o(|V |)-time algorithm for Vertex Cover on cubic graphs
unless the ETH fails. It follows that there is no 2o(|V |)-time algorithm for
Independent Set on cubic graphs unless the ETH fails. If we treat the
reduction presented in Construction 3.2 as a polynomial-time many-one re-
duction, then we set the solution size for the Temporal Matching instance
to the solution size of the Independent Set instance plus 3/2 times the
number of vertices in the Independent Set instance (see Lemma 3.4 and
Lemma 3.5), and hence we have k ∈ O(|V |). It follows that the existence of a
2o(k) · |G|f(T )-time algorithm (for any function f) for Temporal Matching
implies a 2o(|V |)-time algorithm for Independent Set on cubic graphs (note
that T is constant in the reduction), which contradicts the ETH.

Observation 3.8. Temporal Matching is NP-complete, even if ∆ = 2,
T = 5, and the underlying graph of the input temporal graph is complete.

Proof Sketch. We observe that Construction 3.2 can be modified in such a
way that it produces a temporal graph that has a complete underlying graph.
Namely, we can add two additional snapshots to the construction, one edge-
less snapshot at time slot four, and one snapshot that is a complete graph
at time slot five. This has the consequence that the size of the matching
increases by exactly ⌊n/2⌋ and the underlying graph of the constructed tem-
poral graph is a complete graph. Hence, we obtain Observation 3.8.

The importance of this observation is due to the following parameterized
complexity implication. Parameterizing Temporal Matching by struc-
tural graph parameters of the underlying graph that are constant on com-
plete graphs cannot yield fixed-parameter tractability (or even existence of
an XP-algorithm) unless P = NP, even if combined with the lifetime T . In
other words, Temporal Matching is para-NP-hard for these parameter
combinations. Note that many structural parameters fall into this category,
such as domination number, distance to cluster graph, clique cover number,
etc.
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Adapting Construction 3.2 to the Model of Baste et al. [9]. We remark
that our reduction for Theorem 3.1 can easily be adapted to the model of
Baste et al. [9]: recall that every edge of the underlying graph of the temporal
graph constructed in the reduction (see Construction 3.2) appears in exactly
one time step. Hence, for each of these time-edges, we can add a second
appearance exactly one time step after the first appearance without creating
any new matchable edges. Of course, in order to do that for time-edges ap-
pearing in the third time step, we need another fourth time step. It follows
that γ-Matching [9] is NP-hard and its canonical optimization version is
APX-hard even if γ = 2 and T = 4, which strengthens the hardness result
by Baste et al. [9].

3.2. NP-completeness of Temporal Matching with underlying Paths

In this subsection we show NP-completeness of Temporal Matching
even for a very restricted class of temporal graphs.

Theorem 3.9. Temporal Matching is NP-complete even if ∆ = 2 and
the underlying graph of the input temporal graph is a path.

We show this result by a reduction from Independent Set on connected
cubic planar graphs, which is known to be NP-complete [31, 32]. More specif-
ically, we show that Independent Set is NP-complete on the temporal line
graphs of temporal graphs that have a path as underlying graph. Recall that
by Observation 2.3, solving Independent Set on a temporal line graph is
equivalent to solving Temporal Matching on the corresponding temporal
graph. We proceed as follows.

1. We show that 2-temporal line graphs of temporal graphs that have a
path as underlying graph have a grid-like structure. More specifically,
we show that they are induced subgraphs of so-called diagonal grid
graphs or king’s graphs [17, 36].

2. We show that Independent Set is NP-complete on induced sub-
graphs of diagonal grid graphs which together with Observation 2.3
yields Theorem 3.9.

• We exploit that cubic planar graphs are induced topological mi-
nors of grid graphs and extend this result by showing that they
are also induced topological minors of diagonal grid graphs.
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e1, λ(e1) = {1, 2, 3, 4, 5}

e2, λ(e2) = {1, 2, 3, 4, 5}

e3, λ(e3) = {1, 2, 3, 4, 5}

e4, λ(e4) = {1, 2, 3, 4, 5}

e5, λ(e5) = {1, 2, 3, 4, 5}

(a) Temporal graph G = (P6, λ) with λ(e) = [5]
for all e ∈ E(P6).

e1

1

e2

2

e3

3

e4

4

e5

5

(b) 2-Temporal line graph L2(G). The
horizontal dimension corresponds to time slots
1 to 5, the vertical dimension corresponds to

the edges of P6.

Figure 3: A temporal line graph with a path as underlying graph where edges are always
active and its 2-temporal line graph.

• We show how to modify the subdivision of a cubic planar graph in
a way that results in an induced subgraph of a diagonal grid graph,
such that NP-hardness of finding independent sets of certain size
is preserved.

Definition 3.10 (Diagonal Grid Graph [17, 36]). A diagonal grid graph Ẑn,m

has a vertex vi,j for all i ∈ [n] and j ∈ [m] and there is an edge {vi,j, vi′,j′} if
and only if |i− i′|2 + |j − j′|2 ≤ 2.

It is easy to check that for a temporal graph with a path as underlying
graph and where each edge is active at every time step, the 2-temporal line
graph is a diagonal grid graph.

Observation 3.11. Let G = (Pn, λ) with λ(e) = [T ] for all e ∈ E(Pn), then

L2(G) = Ẑn−1,T .

Further, it is easy to see that deactivating an edge at a certain point
in time results in removing the corresponding vertex from the diagonal grid
graph. See Figure 4 for an example. Hence, we have that every induced
subgraph of a diagonal grid graph is a 2-temporal line graph.
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e5, λ(e5) = {1, 2, 5}

e4, λ(e4) = {1, 4}

e3, λ(e3) = {1, 2, 3}

e2, λ(e2) = {2, 4}

e1, λ(e1) = {2, 4, 5}

(a) Temporal graph G = (P6, λ) with λ as
visualized.

1

e1

2

e2

3

e3

4

e4

5

e5

(b) 2-Temporal line graph L2(G).

Figure 4: A temporal line graph with a path as underlying graph where edges are not
always active and its 2-temporal line graph.

Corollary 3.12. Let Z ′ be a connected induced subgraph of Ẑn−1,T . Then
there is a λ and an n′ ≤ n such that Z ′ = L2((Pn′ , λ)).

Having these results at hand, it suffices to show that Independent Set
is NP-complete on induced subgraphs of diagonal grid graphs. By Observa-
tion 2.3, this directly implies that Temporal Matching is NP-complete
on temporal graphs that have a path as underlying graph. Hence, in the
remainder of this section, we show the following result.

Theorem 3.13. Independent Set on induced subgraphs of diagonal grid
graphs is NP-complete.

This result may be of independent interest and strengthens a result by
Clark et al. [20], who showed that Independent Set is NP-complete on unit
disk graphs. It is easy to see from Definition 3.10 that diagonal grid graphs
and their induced subgraphs are a (proper) subclass of unit disk graphs.

In the following, we give the main ideas of how we prove Theorem 3.13.
The first building block for the reduction is the fact that we can embed cubic
planar graphs into a grid [62]. More specifically, a cubic planar graph admits
a planar embedding in such a way that the vertices are mapped to points
of a grid and the edges are drawn along the grid lines. Moreover, such an
embedding can be computed in polynomial time and the size of the grid is
polynomially bounded in the size of the planar graph.
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Note that if we replace the edges of the original planar graph by paths
of appropriate length, then the embedding in the grid is actually a subgraph
of the grid. Furthermore, if we scale the embedding by a factor of two, i.e.
subdivide every edge once, then the embedding is also guaranteed to be an
induced subgraph of the grid. In other words, we argue that every cubic
planar graph is an induced topological minor of a polynomially large grid
graph. We then show how to modify the embedding in a way that insures that
the resulting graph is also an induced topological minor of an polynomially
large diagonal grid graph. The last step is to further modify the embedding
such that it can be obtained from the original graph by subdividing each edge
an even number of times, this ensures that NP-hardness of Independent
Set is preserved [58].

It is easy to check that Theorem 3.13, Observation 2.3, and Corollary 3.12
together imply Theorem 3.9. Theorem 3.9 also has some interesting impli-
cations from the point of view of parameterized complexity: Parameterizing
Temporal Matching by structural graph parameters of the underlying
graph that are constant on a path yields para-NP-hardness, even if the pa-
rameters are combined with ∆. Note that a large number of popular struc-
tural parameters fall into this category, such as maximum degree, treewidth,
pathwidth, feedback vertex number, etc.

Proof of Theorem 3.13. We prove Theorem 3.13 in several steps. We first
use that a cubic planar graph admits a planar embedding in such a way that
the vertices are mapped to points of a grid and the edges are drawn along
the grid lines. Moreover, such an embedding can be computed in polynomial
time and the size of the grid is polynomially bounded in the size of the
planar graph. Furthermore, if we scale the embedding by a factor of two,
i.e. subdivide every edge once, then the embedding is also guaranteed to be
an induced subgraph of the grid. In other words, we argue that every cubic
planar graph is an induced topological minor of an polynomially large grid
graph.

Proposition 3.14 (Special case of Theorem 2 from Valiant [62]). Let G =
(V,E) be a cubic planar graph. Then G is an induced topological minor of
Zn,m for some n,m with n ·m ∈ O(|V |2) and the corresponding subdivision
of G can be computed in polynomial time.

We discuss next how to replace the edges of a cubic planar graph by paths
of appropriate length such that it is an induced subgraph of a diagonal grid
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graph. In other words, we show that every cubic planar graph is an induced
topological minor of a polynomially large diagonal grid graph.

Lemma 3.15. Let G = (V,E) be a cubic planar graph. Then G is an

induced topological minor of Ẑn,m for some n,m with n · m ∈ O(|V |2) and
the corresponding subdivision of G can be computed in polynomial time.

Proof. Let G = (V,E) be a cubic planar graph. By Proposition 3.14 we
know that there are integers n,m with n ·m ∈ O(|V |2) such that G = (V,E)
is an induced topological minor of Zn,m. Let G′ = (V ′, E ′) with V ′ ⊆ N× N
be the corresponding subdivision of G that is an induced subgraph of Zn,m,
i.e. Zn,m[V ′] = G′. Furthermore, for each vertex v ∈ V of G, let v′ ∈ V ′

denote the corresponding vertex in the subdivision G′.
Let G′′ = (V ′′, E ′′) be the graph resulting from subdividing each edge

in G′ eleven additional times and shift the graph three units away from the
boundary of Zn,m in both dimensions. Intuitively, this is necessary to ensure
that all paths in the grid are sufficiently far away from each other, which is
also important in a later modification.

More formally, for each vertex (i, j) ∈ V ′ create a vertex (12i+3, 12j+3) ∈
V ′′. For each edge {(i, j), (i, j+1)} ∈ E ′ create eleven additional vertices, one
for each grid point on the line between (12i+3, 12j+3) and (12i+3, 12j+15).
We connect these vertices by edges such that we get an induced path on the
new vertices together with (12i + 3, 12j + 3) and (12i + 3, 12j + 15) that
follows the grid line they lie on. For each edge {(i, j), (i + 1, j)} ∈ E ′ we
make an analogous modification to G′′. Furthermore, for each vertex v ∈ V
of G, let v′′ ∈ V ′′ denote the corresponding vertex in the subdivision G′′. It
is clear that G′′ is an induced subgraph of Z12n+6,12m+6. We now show how
to further modify G′′ such that it is an induced subgraph of the diagonal grid
graph Ẑ12n+6,12m+6.

For each vertex v ∈ V let v′′ = (i, j) ∈ V ′′, we check the following.

1. If degG′′((i, j)) = 2 and {(i, j), (i, j+1)}, {(i, j), (i+1, j)}, {(i+1, j), (i+
2, j)} ∈ E ′′, then we delete (i + 1, j) from V ′′ and all its incident
edges from E ′′. We add vertex (i + 1, j − 1) to V ′′ and add edges
{(i, j), (i+1, j−1)} and {(i+1, j−1), (i+2, j)} to E ′′. This modification
is illustrated in Figure 5a. Rotated versions of this configuration are
modified analogously.

2. If degG′′((i, j)) = 3 and {(i, j), (i, j+1)}, {(i, j), (i+1, j)}, {(i+1, j), (i+
2, j)}, {(i, j), (i − 1, j)}, {(i − 1, j), (i − 2, j)} ∈ E ′′, then we delete
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(a) (b) (c)

Figure 5: Illustration of the modifications described in the proof of Lemma 3.15. The situ-
ation before the moficication is depiced above, dashed edges show unwanted edges present
in an induced subgraph of a diagonal grid graph. The situation after the modification is
depicted below.

(i + 1, j) from V ′′ and all its incident edges from E ′′. We add vertex
(i+ 1, j− 1) to V ′′ and add edges {(i, j), (i+ 1, j− 1)} and {(i+ 1, j−
1), (i + 2, j)} to E ′′. Furthermore, we we delete (i− 1, j) from V ′′ and
all its incident edges from E ′′. We add vertex (i− 1, j − 1) to V ′′ and
add edges {(i, j), (i − 1, j − 1)} and {(i − 1, j − 1), (i − 2, j)} to E ′′.
This modification is illustrated in Figure 5b. Rotated versions of this
configuration are modified analogously.

Lastly, whenever a path in G′′ that corresponds to an edge in G bends at a
square angle, we remove the corner vertex and its incident edges and recon-
nect the path by a diagonal edge.

More formally, let (i, j− 1), (i, j), (i+ 1, j) ∈ V ′′ be adjacent vertices in a
path in G′′ that corresponds to an edge in G, then we remove (i, j) from V ′′

and all its incident edges and add the edge {(i, j − 1), (i+ 1, j)} to E ′′. This
modification is illustrated in Figure 5c. Rotated versions of this configuration
are modified analogously.

Now it is easy to see that G′′ is an induced subgraph of Ẑ12n+6,12m+6.
Furthermore, G′′ can be computed in polynomial time.

Next we argue that we can always embed a cubic planar graph into a
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diagonal grid graph in a way that preserves NP-hardness. This is based on
the observation that subdividing an edge of a graph two times increases the
size of a maximum independent set exactly by one.

Observation 3.16 (Poljak [58]). Let G = (V,E) be a graph. Then
for every {u, v} ∈ E, the graph G′ = (V ∪ {u′, v′}, (E \ {{u, v}}) ∪
{{u, u′}, {u′, v′}, {v′, v}}) contains an independent set of size k + 1 if and
only if G contains an independent set of size k.

From this observation it follows that if we can guarantee that for every
cubic planar graph there is a subdivision that subdivides every edge an even
number of times and that is an induced subgraph of a diagonal grid graph of
polynomial size, then we are done.

Lemma 3.17. Let G = (V,E) be a cubic planar graph. Then there is a

subdivision of G that is an induced subgraph of Ẑn,m for some n,m with
n · m ∈ O(|V |2) and where each edge of G is subdivided an even number
of times. Furthermore, the subdivision of G can be computed in polynomial
time.

Proof. Let G = (V,E) be a cubic planar graph. By Lemma 3.15 we know
that there are some n,m with n · m ∈ O(|V |2) such that G = (V,E) is an

induced topological minor of Ẑn,m. Let G′ = (V ′, E ′) with V ′ ⊆ N× N be a
subdivision of G constructed as described in the proof of Lemma 3.15.

Recall that every edge e in G is replaced by a path Pe in G′. From
Observation 3.16 it follows that if we can guarantee that all these paths
have an odd number of edges (and hence result from an even number of

subdivisions), then G′ contains an independent set of size k+
∑

e∈E⌊ |E(Pe)|−1
2
⌋

if and only if G contains an independent of size k. In the following we show
how to change the parity of the number of edges of a path Pe in G′ that
corresponds to an edge e in G.

The number of subdivisions performed in the construction that is de-
scribed in the proof of Lemma 3.15 ensures that each path Pe in G′ that
corresponds to an edge e in G contains at least seven consecutive edges
that are either all horizontal or all vertical. Assume that Pe contains an
even number of edges and contains horizontal edges {(i, j), (i + 1, j)}, {(i +
1, j), (i + 2, j)}, {(i + 2, j), (i + 3, j)}, {(i + 3, j), (i + 4, j)}, {(i + 4, j), (i +
5, j)}, {(i + 5, j), (i + 6, j)}, {(i + 6, j), (i + 7, j)}. We remove vertices
(i + 2, j), (i + 3, j), (i + 5, j) and all their incident edges. We add ver-
tices (i + 2, j + 1), (i + 3, j + 2), (i + 4, j + 1), (i + 5, j − 1) and edges
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(a) Before. (b) After.

Figure 6: Illustration of the modification described in the proof of Lemma 3.17. It shows
how to increase the length of an induced path of a diagonal grid graph by one.

{(i+ 1, j), (i+ 2, j + 1)}, {(i+ 2, j + 1), (i+ 3, j + 2)}, {(i+ 3, j + 2), (i+ 4, j +
1)}, {(i+4, j+1), (i+4, j)}, {(i+4, j), (i+5, j−1)}, {(i+5, j−1), (i+6, j)}.
It is easy to check that this reconnects the path and increases the number
of edges by one. This modification is illustrated in Figure 6. The vertical
version of this configuration is modified analogously.

Using this modification we can easily modify G′ in polynomial time in
a way that all paths that correspond to edges of G have an odd number of
edges.

Now, Theorem 3.13 follows directly from Lemma 3.17 and Observa-
tion 3.16.

4. Algorithms

In this section, we present an approximation algorithm (Section 4.1) and
an exact fixed-parameter algorithm (Section 4.2) for Temporal Match-
ing. First, in Section 4.1 we present an ∆

2∆−1
-approximation algorithm for

Maximum Temporal Matching. Second, in Section 4.2 we present an
FPT-algorithm for Temporal Matching parameterized by the solution
size k.

4.1. Approximation of Maximum Temporal Matching

In this subsection, we present a ∆
2∆−1

-approximation algorithm for Maxi-

mum Temporal Matching. Note that for ∆ = 2 this is a 2
3
-approximation,

while for arbitrary constant ∆ this is a (1
2

+ ε)-approximation, where
ε = 1

2(2∆−1)
is a constant too. Specifically, we show the following.

Theorem 4.1. Maximum Temporal Matching admits an
O (Tm(

√
n + ∆))-time ∆

2∆−1
-approximation algorithm.
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The main idea of our approximation algorithm is to compute maximum
matchings for slices of size ∆ of the input temporal graph that are sufficiently
far apart from each other such that they do not interfere with each other,
and hence are computable in polynomial time. Then we greedily fill up the
gaps. We try out certain combinations of non-interfering slices of size ∆ in
a systematic way and then take the largest ∆-matching that was found in
this way. With some counting arguments we can show that this achieves
the desired approximation ratio. In the following we describe and prove this
claim formally.

We first introduce some additional notation and terminology. Recall that
µ∆(G) denotes the size of a maximum ∆-temporal matching in G. Let ∆
and T be fixed natural numbers such that ∆ ≤ T . For every time slot
t ∈ [T − ∆ + 1], we define the ∆-window Wt as the interval [t, t + ∆ − 1]
of length ∆. We use this to formalize slices of size ∆ of a temporal graph.
An interval of length at most ∆ − 1 that either starts at slot 1, or ends at
slot T is called a partial ∆-window (with respect to lifetime T ). For the sake
of brevity, we write partial ∆-window, when the lifetime T is clear from the
context. The distance between two disjoint intervals [a1, b1] and [a2, b2] with
b1 < a2 is a2− b1− 1. For a subset S ⊆ [T ] of time slots and a time-edge set
M , we denote by M |S := {(e, t) ∈M | t ∈ S} the set of time-edges in M with
a label in S. For a temporal graph G, we denote by G|S := G \ (E(G)|[T ]\S)
the temporal graph where only time-edges with a label in S are present.

A ∆-template (with respect to lifetime T ) is a maximal family S of ∆-
windows or partial ∆-windows in the interval [T ] such that any two con-
secutive elements in S are at distance exactly ∆ − 1 from each other. Let
S be a ∆-template. A ∆-temporal matching MS in G = (G, λ) is called a
∆-temporal matching with respect to ∆-template S if MS has the maximum
possible number of edges in every interval W ∈ S, i.e.

∣∣MS |W
∣∣ = µ∆(G|W )

for every W ∈ S.
Now we are ready to present and analyze our ∆

2∆−1
-approximation algo-

rithm, see Algorithm 4.1. The idea of the algorithm is simple: for every
∆-template S compute a ∆-temporal matching MS with respect to S and
among all of the computed ∆-temporal matchings return a matching of the
maximum cardinality. The notions of ∆-window, partial ∆-window, and ∆-
template are illustrated in Figure 7. A time slot t is covered by a ∆-template
S if t belongs to an interval of S. We show the following properties of ∆-
templates which we need to prove the approximation ratio of our algorithm.
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Algorithm 4.1: ∆
2∆−1

-Approximation Algorithm (Theorem 4.1).

1 M ← ∅.
2 foreach ∆-template S do
3 Compute a ∆-temporal matching MS with respect to S.
4 if |MS | > |M | then M ←MS .

5 return M .

1 2 3 4 5 6 7 8 9 10 11 12 T=13

Figure 7: The gray slots form the intervals of a ∆-template, where ∆ = 3. Interval [1, 2]
is a partial ∆-window. Intervals [5, 7] and [10, 12] are ∆-windows.

Lemma 4.2. Let ∆ and T be natural numbers such that ∆ ≤ T . Then

(1) there are exactly 2∆ − 1 different ∆-templates with respect to lifetime
T ;

(2) every time slot in [T ] is covered by exactly ∆ different ∆-templates.

Proof. To prove (1), we first observe that a ∆-template S is uniquely deter-
mined by its leftmost interval. Indeed, by fixing the leftmost interval of S,
by definition, the subsequent intervals of S are located in [T ] uniformly at
distance exactly ∆ − 1 from each other. Now, the maximality of S implies
that the first interval in S is either a partial ∆-window that starts at time
slot 1 or a (possibly partial) ∆-window that starts in one of the first ∆ time
slots of [T ]. Since there are ∆ − 1 intervals of the first type and ∆ inter-
vals of the second type, we conclude that there are exactly 2∆− 1 different
∆-templates with respect to lifetime T .

To prove (2), we note that all ∆-templates can be successively obtained
from the ∆-template S whose first interval is the single-slot partial ∆-window
[1] by shifting by one time slot to the right all the intervals of the current
∆-template (in each shift we augment the leftmost interval if it was a partial
∆-window and truncate the rightmost interval if it covered the last time slot
T ). It is easy to see that every time slot will be covered in exactly ∆ of
2∆− 1 shifting iterations.
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By definition, for any two distinct intervals W1,W2 in a ∆-template S
and for any two time slots t1 ∈ W1 and t2 ∈ W2 we have |t1 − t2| > ∆,
which implies that no two time-edges of G that appear in time slots of dif-
ferent intervals of S are in conflict. This observation together with the fact
that every interval in S is of length at most ∆ imply that a ∆-temporal
matching with respect to S can be computed in polynomial time by com-
puting a maximum ∆-temporal matching in G|W for every W ∈ S and then
taking the union of these matchings7. Since every ∆-template has O

(
T
∆

)
intervals and a maximum ∆-temporal matchings in G|W , W ∈ S can be
computed in O(m(

√
n + ∆)) time, which follows from Observation 2.4, we

conclude that a ∆-temporal matching with respect to S can be computed in

O
(
Tm

(√
n

∆
+ 1

))
time.

Lemma 4.3. Algorithm 4.1 is an O (Tm(
√
n + ∆))-time ∆

2∆−1
-

approximation algorithm for Maximum Temporal Matching.

Proof. Let G = (G, λ) be an arbitrary temporal graph of lifetime T and ∆ be
a natural number such that ∆ ≤ T . Let also M∗ be a maximum ∆-temporal
matching of G.

We show that, given the instance (G,∆) of Maximum Temporal
Matching, Algorithm 4.1 produces in time O (Tm(

√
n + ∆)) a ∆-temporal

matching M of size at least ∆
2∆−1
|M∗|, where n and m are the number of

vertices and the number of edges in the underlying graph G, respectively.
Clearly, the algorithm outputs a feasible solution as M is a ∆-temporal

matching with respect to some ∆-template. We show next that M is the
desired approximate solution. As in the pseudocode of Algorithm 4.1, for
a ∆-template S we denote by MS the ∆-temporal matching with respect
to S computed in Line 3 of Algorithm 4.1. Let S be the family of all ∆-
templates with respect to lifetime T , and let S ′ ∈ S be a ∆-template such
that M = MS′

. It follows from the algorithm that |MS′ | ≥ |MS| for every
S ∈ S. By definition, for every S ∈ S and for every interval W ∈ S we have∑

t∈W |MS
t | ≥

∑
t∈W |M∗

t |, where Mt = M ∩ Et. Hence

|MS | ≥
∑
W∈S

∑
t∈W

|MS
t | ≥

∑
W∈S

∑
t∈W

|M∗
t |.

7The obtained ∆-temporal matching can further be extended greedily to a maximal
∆-temporal matching.
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e1

λ(e1) = {2}
e2

λ(e2) = {1, 3}
e3

λ(e3) = {1}
e4

λ(e4) = {2}

Figure 8: A temporal graph witnessing that the analysis of Algorithm 4.1 is tight for
∆ = 2. An optimal solution {(e2, 1), (e4, 2), (e2, 3)} consists of three time-edges. Algo-
rithm 4.1 considers the following three templates: {[1, 2]}, {[2, 3]}, and {[1, 1], [3, 3]}. In the
first two templates the algorithm might select {(e1, 2), (e4, 2)} and in the third template
{(e3, 1), (e2, 3)}. In each of the cases it is not possible to increase the temporal matching
by adding time-edges from the gaps.

Using the above inequalities and Lemma 4.2 we derive

(2∆− 1)|MS′ | ≥
∑
S∈S

|MS |

≥
∑
S∈S

∑
W∈S

∑
t∈W

|MS
t | ≥

∑
S∈S

∑
W∈S

∑
t∈W

|M∗
t | = ∆

T∑
t=1

|M∗
t | = ∆|M∗|,

which implies the |M | = |MS′ | ≥ ∆
2∆−1
|M∗|.

Now we analyze the time complexity of the algorithm. By Lemma 4.2
there are exactly 2∆ − 1 different ∆-templates, and therefore the for-loop
in Line 2 of Algorithm 4.1 performs exactly 2∆ − 1 iterations. At every
iteration the algorithm computes a ∆-temporal matching with respect to a

∆-template, which, as we discussed, can be done in O
(
Tm

(√
n

∆
+ 1

))
time.

Altogether, the total time complexity is O (Tm(
√
n + ∆)), as claimed.

We remark that our analysis ignores the fact that the algorithm may add
time-edges from the gaps between the ∆-windows defined by the template to
the matching if they are not in conflict with any other edge in the matching.
Hence, there is potential room for improvement. However, our analysis of
the approximation factor of Algorithm 4.1 is tight for ∆ = 2. Namely, there
exists a temporal graph G (see Figure 8) such that on the instance (G, 2)
our algorithm (in the worst case) finds a 2-temporal matching of size two,
while the size of a maximum 2-temporal matching in G is three. In this
example any improvement of the algorithm that utilizes the gaps between
the ∆-windows would not lead to a better performance.

4.2. Fixed-parameter tractability for the parameter solution size

In this section, we show that Temporal Matching parameterized
by the solution size k is fixed-parameter tractable. Beforehand, it was
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only known that Temporal Matching parameterized by k + ∆ is fixed-
parameter tractable [9]. Hence, this improves the result of Baste et al. [9]
from a classification point of view. In particular, we show the following.

Theorem 4.4. Temporal Matching can be solved in O
(
(2k − 1)k · |G|

)
time.

The formal proof of Theorem 4.4 is deferred to the end of this section.
The algorithm behind Theorem 4.4 is a simple search-tree algorithm that is
looking for a small set of time-edges to branch on, meaning that at least one
of the time-edges is in a solution. To this end, we introduce a simple data
reduction rule.

Reduction Rule 4.5. Let (G := (V, (Ei)
T
i=1), k,∆) be an instance of Tem-

poral Matching, where ET = ∅. Then, output the instance (G ′ :=
(V, (Ei)

T−1
i=1 ), k,∆) of Temporal Matching.

Lemma 4.6. Reduction Rule 4.5 can be exhaustively applied in O(|G|) time.
Moreover, the instance we apply Reduction Rule 4.5 on is a yes-instance if
and only if the output instance is an yes-instance as well.

Proof. We iterate once over G to find the maximum p ∈ [T ] such that Ep ̸= ∅.
Then, we copy everything from the input to the output except the edge
sets Ei with i ∈ [p + 1, T ]. Observe that this takes only linear time and that
Reduction Rule 4.5 is not applicable on the output instance, as the last edge
set Ep of the output instance contains at least one edge.

To complete the proof, observe that a time-edge set M is a ∆-temporal
matching in G if and only if it is a ∆-temporal matching in G ′ since E(G) =
E(G ′).

We now observe that when Reduction Rule 4.5 is not applicable, then
any ∆-temporal matching of maximum size contains at least one time-edge
from the last ∆ layers.

Observation 4.7. Let M be a ∆-temporal matching of maximum size in G :=
(V, (Ei)

T
i=1), where ET ̸= ∅ and ∆ ∈ N. Then, M ∩ E(G)[T −∆ + 1, T ] ̸= ∅.

Proof. Suppose that M ∩ E(G)[T − ∆ + 1, T ] = ∅. For any e ∈ ET we
have that M ∪ {(e, T )} is a ∆-temporal matching of size |M | + 1 in G—a
contradiction.
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We can take this observation a little bit further to develop a branching
strategy of a search-tree algorithm for Temporal Matching by selecting
sufficiently many time-edges at the end of the temporal graph (that is, G[T −
∆ + 1, T ]) which are ∆-blocked by one fixed time-edge from time step T . In
particular, we show the following.

Lemma 4.8. Given a temporal graph G and a k ∈ N, one can compute
in O(|G|) time a time-edge set X ⊆ E(G) of size at most 2k − 1 such that
if there is a ∆-temporal matching of size at least k in G, then there is one
containing a time-edge from X.

Proof. Let G be the given temporal graph, and let k ∈ N. We first construct
the time-edge set X and then show that one of these edges is contained in
a ∆-temporal matching of size at least k (if any such ∆-temporal matching
exists).

We assume that k ≤ |E(G)|; otherwise we can output an empty set as
there is no ∆-temporal matching of size k. By Lemma 4.6, we may as-
sume that Reduction Rule 4.5 is not applicable. Hence, there is a time-
edge ({v, û}, T ) ∈ E(G).

Then, we compute a set X of time-edges which ∆-block (v, T ):

X := {({v, w}, t) ∈ E(G)[T −∆ + 1, T ] | ∀({v, w}, t′) ∈ E(G) : t′ ≤ t} .

If |X| > 2k − 1, then we remove arbitrary time-edges from X until |X| =
2k − 1. Intuitively, X is a set of 2k − 1 latest appearing time-edges that ∆-
block (v, T ). Note that we can compute X in O(|G|) time.

Let M be a ∆-temporal matching of size k in G with M ∩X = ∅ and pick
an arbitrary time-edge ({v, u}, T ) ∈ X. Assume that M∪{({v, u}, T )} is not
a ∆-temporal matching, otherwise we would be done. Let ({v, v′}, t′) ∈ M
be the time-edge which ∆-blocks (v, T ). We assume that vertex appear-
ances (v, T ) and (u, T ) are ∆-blocked by different time-edges in M (v′ ̸= u);
otherwise, we could replace ({v, v′}, t′) in M with ({v, u}, T ) to construct a
∆-temporal matching of size |M | = k which contains a time-edge from X.
Note that this implies that we removed some arbitrary time-edges from X,
otherwise the last appearance of edge {v, v′} must be in X and thus we
could again replace ({v, v′}, t′) in M with ({v, u}, T ). Thus, |X| = 2k − 1.
Let Y := {(w, t′′) ∈ V | ({v, w}, t′′) ∈ X} be the set of endpoints of X ex-
cluding vertex v. Note that each time-edge in X is the last appearance of
that edge in G. Hence, |Y | = 2k− 1. Since X only contains last appearances
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v:

u:

time: T − 1T − 2T − 3T − 4T − 5T − 6T − 7 T

({v, u}, T )

X
({v, v̂}, t̂)({v, v′}, t′)

Figure 9: Depicts the situation in the proof of Lemma 4.8 where the pigeonhole principle
is applied. Black dots represent vertex appearances. Vertex appearances that correspond
to the same vertex lie on the same dotted line. Vertex appearances which are ∆-blocked
by time-edges in M are in the red areas. The time-edge set X is marked by the gray area.

and |Y | = 2k − 1, the k − 1 time-edges in M \ {({v, v′}, t′)} can ∆-block at
most 2k − 2 vertex appearances in Y . By the pigeonhole principle, one of
the endpoints in Y is not ∆-blocked. Refer to Figure 9 for an illustration.

Hence, there is a time-edge ({v, v̂}, t̂) ∈ X such that (M \{({v, v′}, t′)})∪
{({v, v̂}, t̂)} is a ∆-temporal matching of size k.

To show Theorem 4.4 (the fixed-parameter tractability of Temporal
Matching parameterized by solution size k), we employ a search-tree algo-
rithm that branches on the time-edge set X from Lemma 4.8.

Proof of Theorem 4.4. Let I := (G := (V, (Ei)
T
i=1), k,∆) be an instance of

Temporal Matching. Assume that k ̸= 0, otherwise we can output yes.
We use an algorithm comprising the following steps.

(i) Set M := ∅.

(ii) Compute time-edge set X from Lemma 4.8. If X = ∅, then output
no.

(iii) Guess a time-edge (e, t) ∈ X and set M := M ∪ {(e, t)}.

(iv) If |M | = k, then output yes. Otherwise, remove (e, t) and all time-
edges from G which are ∆-blocked by (e, t) and jump (recursively) to
Step (ii).

A search-tree algorithm that considers each possible guesses in Step (iii) runs
in O((2k−1)k|G|) time as |X| ≤ 2k−1, |M | grows in each recursive call until
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it reaches k, and all operations expect the recursive call can be computed
in O(|G|) time, see Lemma 4.8. We now show that the described algorithm
outputs yes if and only if the input instance I is a yes-instance.

(⇒): Note that after Step (iii), the time-edge set M is always a ∆-
temporal matching in the original input temporal graph, since either M = ∅
or we removed in Step (iv) all time-edges from G which are not ∆-independent
with time-edges in M . Hence, if we output yes , then I is indeed a yes-
instance.

(⇐): This direction immediately follows from Lemma 4.8 as we consider
each possible time-edge in X and remove only time-edge from G which cannot
be in a ∆-temporal matching together with the time-edge chosen from X.

5. Conclusion

The following issues remain future research challenges. First, on the side
of polynomial-time approximability, improving the constant approximation
factors is desirable and seems feasible. Beyond, by lifting polynomial time
to FPT time, even approximation schemes in principle seem possible, thus
circumventing our APX-hardness result (Theorem 3.1). Taking the view
of parameterized complexity analysis in order to cope with NP-hardness, a
number of directions are naturally coming up. For instance, based on our
fixed-parameter tractability result for the parameter solution size k, the ques-
tion for a polynomial-size kernel for parameter k naturally arises. To enlarge
the range of promising and relevant parameterizations, one may extend the
parameterized studies to structural graph parameters combined with ∆ or
the lifetime of the temporal graph.
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