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Abstract

In a temporal network with discrete time-labels on its edges, information can
only “flow” along sequences of edges with non-decreasing (resp. increasing)
time-labels. In this paper we make a first attempt to understand how the di-
rection of information flow on one edge can impact the direction of information
flow on other edges. By naturally extending the classical notion of a transitive
orientation in static graphs, we introduce the fundamental notion of a temporal
transitive orientation, and we systematically investigate its algorithmic behav-
ior. Our main result is a conceptually simple, yet technically quite involved,
polynomial-time algorithm for recognizing whether a temporal graph G is tran-
sitively orientable. In wide contrast we prove that, surprisingly, it is NP-hard
to recognize whether G is strictly transitively orientable. Additionally we intro-
duce further related problems to temporal transitivity, notably among them the
temporal transitive completion problem, for which we prove both algorithmic
and hardness results.

Keywords: Temporal graph, transitive orientation, transitive closure,
polynomial-time algorithm, NP-hardness, satisfiability.

?An extended abstract of this work was published in the proceedings of the 46th Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS 2021) [38].

Email addresses: george.mertzios@durham.ac.uk (George B. Mertzios),
molterh@post.bgu.ac.il (Hendrik Molter), m.renken@tu-berlin.de (Malte Renken),
p.spirakis@liverpool.ac.uk (Paul G. Spirakis), zschoche@tu-berlin.de (Philipp
Zschoche)

1Supported by the EPSRC grant EP/P020372/1.
2Supported by the DFG, project MATE (NI 369/17), by the ISF, grants No. 1456/18 and

No. 1070/20, and the ERC, grant number 949707.
3Supported by the DFG, project MATE (NI 369/17).
4Supported by the NeST initiative of the School of EEE and CS at the University of

Liverpool and by the EPSRC grant EP/P02002X/1.

Preprint submitted to Elsevier January 29, 2025



1. Introduction

A temporal (or dynamic) network is, roughly speaking, a network whose
underlying topology changes over time. This notion concerns a great variety
of both modern and traditional networks; information and communication net-
works, social networks, and several physical systems are only few examples of
networks which change over time [40, 43, 28]. Due to its vast applicability in
many areas, the notion of temporal graphs has been studied from different per-
spectives under several different names such as time-varying, evolving, dynamic,
and graphs over time (see [16, 14, 15] and the references therein). In this pa-
per we adopt a simple and natural model for temporal networks which is given
with discrete time-labels on the edges of a graph, while the vertex set remains
unchanged. This formalism originates in the foundational work of Kempe et
al. [29].

Definition 1 (Temporal Graph [29]). A temporal graph is a pair G = (G,λ),
where G = (V,E) is an underlying (static) graph and λ : E → 2N is a time-
labeling function which assigns to every edge of G a discrete-time label. When-
ever |λ(e)| = 1 for every edge e ∈ E, then G is a single-labeled temporal graph.

In this paper we only consider single-labeled temporal graphs, while, for
simplicity of presentation, we refer to them as just temporal graphs. Mainly
motivated by the fact that, due to causality, entities and information in tem-
poral graphs can only “flow” along sequences of edges whose time-labels are
non-decreasing (resp. increasing), Kempe et al. introduced the notion of a
(strict) temporal path, or (strict) time-respecting path, in a temporal graph
(G,λ) as a path in G with edges e1, e2, . . . , ek such that λ(e1) ≤ . . . ≤ λ(ek)
(resp. λ(e1) < . . . < λ(ek)). This notion of a temporal path naturally resembles
the notion of a directed path in the classical static graphs, where the direction
is from smaller to larger time-labels along the path. Nevertheless, in temporal
paths the individual time-labeled edges remain undirected: an edge e = {u, v}
with time-label λ(e) = t can be abstractly interpreted as “u communicates with
v at time t”. Here the relation “communicates” is symmetric between u and v,
i.e. it can be interpreted that the information can flow in either direction.

In this paper we make a first attempt to understand how the direction of
information flow on one edge can impact the direction of information flow on
other edges. More specifically, naturally extending the classical notion of a tran-
sitive orientation in static graphs [25], we introduce the fundamental notion of
a temporal transitive orientation and we thoroughly investigate its algorithmic
behavior in various situations. Imagine that v receives information from u at
time t1, while w receives information from v at time t2 ≥ t1. Then w indirectly
receives information from u through the intermediate vertex v. Now, if the
temporal graph correctly records the transitive closure of information passing,
the directed edge from u to w must exist and must have a time label t3 ≥ t2.
In such a transitively oriented temporal graph, whenever an edge is oriented
from a vertex u to a vertex w with time-label t, we have that every temporal
path from u to w arrives no later than t, and that there is no temporal path
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from w to u. Different notions of temporal transitivity have also been used
for automated temporal data mining [42] in medical applications [41], text pro-
cessing [47]. These notions of temporal transitivity are defined on the so-called
“Allen’s temporal relations” [5], which are relations defined on time intervals.
These transitivity notions are conceptually very different from our setting where
we focus on a temporal ordering of events that happen on the edges of a tempo-
ral graph. Furthermore, in behavioral ecology, researchers have used a notion of
orderly (transitive) triads A-B-C to quantify dominance among species. In par-
ticular, animal groups usually form dominance hierarchies in which dominance
relations are transitive and can also change with time [34].

One natural motivation for our temporal transitivity notion may come from
applications where confirmation and verification of information is vital, where
vertices may represent entities such as investigative journalists or police detec-
tives who gather sensitive information. Suppose that v queried some important
information from u (the information source) at time t1, and afterwards, at time
t2 ≥ t1, w queried the important information from v (the intermediary). Then,
in order to ensure the validity of the information received, w might want to
verify it by subsequently querying the information directly from u at some time
t3 ≥ t2. Note that w might first receive the important information from u
through various other intermediaries, and using several channels of different
lengths. Then, to maximize confidence about the information, w should query
u for verification only after receiving the information from the latest of these
indirect channels.

It is worth noting here that the model of temporal graphs given in Defini-
tion 1 has been also used in its extended form, in which the temporal graph may
contain multiple time-labels per edge [36]. This extended temporal graph model
has been used to investigate temporal paths [50, 10, 12, 17, 36, 3] and other tem-
poral path-related notions such as temporal analogues of distance and diame-
ter [1], reachability [2] and exploration [3, 1, 22, 21], separation [23, 51, 29], and
path-based centrality measures [30, 13], as well as recently non-path problems
too such as temporal variations of coloring [39], vertex cover [4], matching [37],
cluster editing [19], and maximal cliques [49, 27, 9]. However, in order to better
investigate and illustrate the inherent combinatorial structure of temporal tran-
sitivity orientations, in this paper we mostly follow the original definition of tem-
poral graphs given by Kempe et al. [29] with one time-label per edge [18, 20, 8].
Throughout the paper, whenever we assume multiple time-labels per edge we
will state it explicitly; in all other cases we consider a single label per edge.

In static graphs, the transitive orientation problem has received extensive
attention which resulted in numerous efficient algorithms. A graph is called
transitively orientable (or a comparability graph) if it is possible to orient its
edges such that, whenever we orient u towards v and v towards w, then the edge
between u and w exists and is oriented towards w. The first polynomial-time
algorithms for recognizing whether a given (static) graph G on n vertices and m
edges is comparability (i.e. transitively orientable) were based on the notion of
forcing an orientation and had running time O(n3) (see Golumbic [25] and the
references therein). Faster algorithms for computing a transitive orientation of
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a given comparability graph have been later developed, having running times
O(n2) [45] and O(n + m log n) [31], while the currently fastest algorithms run
in linear O(n + m) time and are based on efficiently computing a modular de-
composition of G [33, 32]; see also Spinrad [46]. It is fascinating that, although
all the latter algorithms compute a valid transitive orientation if G is a compa-
rability graph, they fail to recognize whether the input graph is a comparability
graph; instead they produce an orientation which is non-transitive if G is not a
comparability graph. The fastest known algorithm for determining whether a
given orientation is transitive requires matrix multiplication, currently achieved
in O(n2.37286) time [6].

Our contribution. In this paper we introduce the notion of temporal
transitive orientation and we thoroughly investigate its algorithmic behavior
in various situations. An orientation of a temporal graph G = (G,λ) is called
temporally transitive if, whenever u has a directed edge towards v with time-
label t1 and v has a directed edge towards w with time-label t2 ≥ t1, then u
also has a directed edge towards w with some time-label t3 ≥ t2. If we just
demand that this implication holds whenever t2 > t1, the orientation is called
strictly temporally transitive, as it is based on the fact that there is a strict
directed temporal path from u to w. Similarly, if we demand that the transitive
directed edge from u to w has time-label t3 > t2, the orientation is called strongly
(resp. strongly strictly) temporally transitive.

Although these four natural variations of a temporally transitive orientation
seem superficially similar to each other, it turns out that their computational
complexity (and their underlying combinatorial structure) varies massively. In-
deed we obtain a surprising result in Section 3: deciding whether a temporal
graph G admits a temporally transitive orientation is solvable in polynomial time
(Section 3.2), while it is NP-hard to decide whether it admits a strictly tempo-
rally transitive orientation (Section 3.1). On the other hand, it turns out that,
deciding whether G admits a strongly or a strongly strictly temporal transitive
orientation is (easily) solvable in polynomial time as they can both be reduced
to 2SAT satisfiability.

Our main result is that, given a temporal graph G = (G,λ), we can decide in
polynomial time whether G is transitively orientable, and at the same time we
can output a temporal transitive orientation if it exists. Although the analysis
and correctness proof of our algorithm is technically quite involved, our algo-
rithm is simple and easy to implement, as it is based on the notion of forcing an
orientation.5 Our algorithm extends and generalizes the classical polynomial-
time algorithm for computing a transitive orientation in static graphs described
by Golumbic [25]. The main technical difficulty in extending the algorithm
from the static to the temporal setting is that, in temporal graphs we cannot
simply use orientation forcings to eliminate the condition that a triangle is not
allowed to be cyclically oriented. To resolve this issue, we first express the

5That is, orienting an edge from u to v forces us to orient another edge from a to b.
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recognition problem of temporally transitively orientable graphs as a Boolean
satisfiability problem of a mixed Boolean formula φ3NAE∧φ2SAT. Here φ3NAE is
a 3NAE formula, i.e., the disjunction of clauses with three literals each, where
every clause NAE(`1, `2, `3) is satisfied if and only if at least one of the literals
{`1, `2, `3} is equal to 1 and at least one of them is equal to 0. Note that every
clause NAE(`1, `2, `3) corresponds to the condition that a specific triangle in the
temporal graph cannot be cyclically oriented. Furthermore φ2SAT is a 2SAT
formula, i.e., the disjunction of 2CNF clauses with two literals each, where ev-
ery clause (`1 ∨ `2) is satisfied if and only if at least one of the literals {`1, `2}
is equal to 1. However, although deciding whether φ2SAT is satisfiable can be
done in linear time with respect to the size of the formula [7], the problem
Not-All-Equal-3-SAT is NP-complete [44].

In the second part of our paper (Section 4) we consider a natural extension of
the temporal orientability problem, namely the temporal transitive completion
problem. In this problem we are given a (partially oriented) temporal graph
G and a natural number k, and the question is whether it is possible to add
at most k new edges (with the corresponding time-labels) to G such that the
resulting temporal graph is (strongly/strictly/strongly strictly) transitively ori-
entable. We prove that all four versions of temporal transitive completion are
NP-complete, even when the input temporal graph is completely unoriented.
In contrast we show that, if the input temporal graph G is directed (i.e. if
every time-labeled edge has a fixed orientation) then all versions of temporal
transitive completion are solvable in polynomial time. As a corollary of our
results it follows that all four versions of temporal transitive completion are
fixed-parameter-tractable (FPT) with respect to the number q of unoriented
time-labeled edges in G.

In the third and last part of our paper (Section 5) we consider the multilayer
transitive orientation problem. In this problem we are given an undirected
temporal graph G = (G,λ), where G = (V,E), and we ask whether there exists
an orientation F of its edges (i.e. with exactly one orientation for each edge of
G) such that, for every ‘time-layer” t ≥ 1, the (static) oriented graph induced by
the edges having time-label t is transitively oriented in F . Problem definitions
of this type are commonly referred to as multilayer problems [11]. Observe that
this problem trivially reduces to the static case if we assume that each edge has
a single time-label, as then each layer can be treated independently of all others.
However, if we allow G to have multiple time-labels on every edge of G, then
we show that the problem becomes NP-complete, even when every edge has at
most two labels.

2. Preliminaries and Notation

Given a (static) undirected graph G = (V,E), an edge between two vertices
u, v ∈ V is denoted by the unordered pair {u, v} ∈ E, and in this case the ver-
tices u, v are said to be adjacent. If the graph is directed, we will use the ordered
pair (u, v) (resp. (v, u)) to denote the oriented edge from u to v (resp. from v to
u). For simplicity of the notation, we will usually drop the parentheses and the
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comma when denoting an oriented edge, i.e. we will denote (u, v) just by uv.
Furthermore, ûv = {uv, vu} is used to denote the set of both oriented edges uv
and vu between the vertices u and v.

Let S ⊆ E be a subset of the edges of an undirected (static) graph G =

(V,E), and let Ŝ = {uv, vu : {u, v} ∈ S} be the set of both possible orientations

uv and vu of every edge {u, v} ∈ S. Let F ⊆ Ŝ. If F contains at least one
of the two possible orientations uv and vu of each edge {u, v} ∈ S, then F is
called an orientation of the edges of S. F is called a proper orientation if it
contains exactly one of the orientations uv and vu of every edge {u, v} ∈ S.
Note here that, in order to simplify some technical proofs, the above definition
of an orientation allows F to be not proper, i.e. to contain both uv and vu for a
specific edge {u, v}. However, whenever F is not proper, this means that F can
be discarded as it cannot be used as a part of a (temporal) transitive orientation.
For every orientation F denote by F−1 = {vu : uv ∈ F} the reversal of F . Note
that F ∩ F−1 = ∅ if and only if F is proper.

In a temporal graph G = (G,λ), where G = (V,E), whenever λ({v, w}) = t
(or simply λ(v, w) = t), we refer to the tuple ({v, w}, t) as a time-edge of G. A
triangle of (G,λ) on the vertices u, v, w is a synchronous triangle if λ(u, v) =
λ(v, w) = λ(w, u). Let G = (V,E) and let F be a proper orientation of the whole
edge set E. Then (G, F ), or (G,λ, F ), is a proper orientation of the temporal
graph G; for simplicity we may also write that F is a proper orientation of G.
A partial proper orientation F of a temporal graph G = (G,λ) is an orientation
of a subset of E. To indicate that the edge {u, v} of a time-edge ({u, v}, t) is
oriented from u to v (that is, uv ∈ F in a (partial) proper orientation F ), we use
the term ((u, v), t), or simply (uv, t). For simplicity we may refer to a (partial)
proper orientation just as a (partial) orientation, whenever the term “proper”
is clear from the context.

A static graph G = (V,E) is a comparability graph if there exists a proper
orientation F of E which is transitive, that is, if F ∩F−1 = ∅ and F 2 ⊆ F , where
F 2 = {uw : uv, vw ∈ F for some vertex v} [25]. Analogously, in a temporal
graph G = (G,λ), where G = (V,E), we define a proper orientation F of E to
be temporally transitive, if:

whenever (uv, t1) and (vw, t2) are oriented time-edges in (G, F ) such that
t2 ≥ t1, there exists an oriented time-edge (uw, t3) in (G, F ), for some
t3 ≥ t2.

In the above definition of a temporally transitive orientation, if we replace
the condition “t3 ≥ t2” with “t3 > t2”, then F is called strongly temporally
transitive. If we instead replace the condition “t2 ≥ t1” with “t2 > t1”, then F
is called strictly temporally transitive. If we do both of these replacements, then
F is called strongly strictly temporally transitive. Note that strong (strict) tem-
poral transitivity implies (strict) temporal transitivity, while (strong) temporal
transitivity implies (strong) strict temporal transitivity. Furthermore, similarly
to the established terminology for static graphs, we define a temporal graph
G = (G,λ), where G = (V,E), to be a (strongly/strictly) temporal comparability
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graph if there exists a proper orientation F of E which is (strongly/strictly)
temporally transitive.

We are now ready to formally introduce the following decision problem of
recognizing whether a given temporal graph is temporally transitively orientable
or not.

Temporal Transitive Orientation (TTO)

Input: A temporal graph G = (G,λ), where G = (V,E).
Question: Does G admit a temporally transitive orientation F of E?

In the above problem definition of TTO, if we ask for the existence of a
strictly (resp. strongly, or strongly strictly) temporally transitive orientation F ,
we obtain the decision problem Strict (resp. Strong, or Strong Strict)
Temporal Transitive Orientation (TTO).

Let G = (G,λ) be a temporal graph, where G = (V,E). Let G′ = (V,E′)
be a graph such that E ⊆ E′, and let λ′ : E′ → N be a time-labeling function
such that λ′(u, v) = λ(u, v) for every {u, v} ∈ E. Then the temporal graph
G′ = (G′, λ′) is called a temporal supergraph of G. We can now define our next
problem definition regarding computing temporally orientable supergraphs of
G.

Temporal Transitive Completion (TTC)

Input: A temporal graph G = (G,λ), where G = (V,E), a (partial)
orientation F of G, and an integer k.

Question: Does there exist a temporal supergraph G′ = (G′, λ′) of (G,λ),
where G′ = (V,E′), and a transitive orientation F ′ ⊇ F of G′
such that |E′ \ E| ≤ k?

Similarly to TTO, if we ask in the problem definition of TTC for the exis-
tence of a strictly (resp. strongly, or strongly strictly) temporally transitive ori-
entation F ′, we obtain the decision problem Strict (resp. Strong, or Strong
Strict) Temporal Transitive Completion (TTC).

Now we define our final problem which asks for an orientation F of a tempo-
ral graph G = (G,λ) (i.e. with exactly one orientation for each edge of G) such
that, for every “time-layer” t ≥ 1, the (static) oriented graph defined by the
edges having time-label t is transitively oriented in F . This problem does not
make much sense if every edge has exactly one time-label in G, as in this case
it can be easily solved by just repeatedly applying any known static transitive
orientation algorithm. Therefore, in the next problem definition, we assume
that in the input temporal graph G = (G,λ) every edge of G potentially has
multiple time-labels, i.e. the time-labeling function is λ : E → 2N.

Multilayer Transitive Orientation (MTO)

Input: A temporal graph G = (G,λ), where G = (V,E) and λ : E →
2N.

Question: Is there an orientation F of the edges of G such that, for every
t ≥ 1, the (static) oriented graph induced by the edges having
time-label t is transitively oriented?
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u w

v

t3

t2t1

u w

v

t1 t2

t1 = t2 = t3 t1 < t2 = t3 t1 ≤ t2 < t3 t1 = t2 t1 < t2

TTO non-cyclic wu = wv
vw =⇒ uw
vu =⇒ wu

uv = wv uv =⇒ wv

Strong TTO ⊥ wu ∧ wv vw =⇒ uw
vu =⇒ wu

uv = wv uv =⇒ wv

Strict TTO > non-cyclic
vw =⇒ uw
vu =⇒ wu

> uv =⇒ wv

Str. Str. TTO > vu =⇒ wu
uv =⇒ wv

vw =⇒ uw
vu =⇒ wu

> uv =⇒ wv

Table 1: Orientation conditions imposed by a triangle (left) and an induced path of length
two (right) in the underlying graph G for the decision problems (Strict/Strong/Strong
Strict) TTO. Here, > means that no restriction is imposed, ⊥ means that the graph is not
orientable, and in the case of triangles, “non-cyclic” means that all orientations except the
ones that orient the triangle cyclicly are allowed.

3. The recognition of temporally transitively orientable graphs

In this section we investigate the computational complexity of all variants
of TTO. We show that TTO as well as the two variants Strong TTO and
Strong Strict TTO, are solvable in polynomial time, whereas Strict TTO
turns out to be NP-complete.

The main idea of our approach to solve TTO and its variants is to create
Boolean variables for each edge of the underlying graph G and interpret setting
a variable to 1 or 0 as the two possible ways of directing the corresponding edge.

More formally, for every edge {u, v} we introduce a variable xuv and setting
this variable to 1 corresponds to the orientation uv while setting this variable to
0 corresponds to the orientation vu. Now consider the example of Figure 3(a),
i.e. an induced path of length two in the underlying graph G on three vertices
u, v, w, and let λ(u, v) = 1 and λ(v, w) = 2. Then the orientation uv “forces”
the orientation wv. Indeed, if we otherwise orient {v, w} as vw, then the edge
{u,w} must exist and be oriented as uw in any temporal transitive orientation,
which is a contradiction as there is no edge between u and w. We can express
this “forcing” with the implication xuv =⇒ xwv. In this way we can deduce
the constraints that all triangles or induced paths on three vertices impose on
any (strong/strict/strong strict) temporal transitive orientation. We collect all
these constraints in Table 1.

When looking at the conditions imposed on temporal transitive orientations
collected in Table 1, we can observe that all conditions except “non-cyclic” are
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expressible in 2SAT. Since 2SAT is solvable in linear time [7], it immediately fol-
lows that the strong variants of temporal transitivity are solvable in polynomial
time, as the next theorem states.

Theorem 2. Strong TTO and Strong Strict TTO are solvable in poly-
nomial time.

In the variants TTO and Strict TTO, however, we can have triangles
which impose a “non-cyclic” orientation of three edges (Table 1). This can be
naturally modeled by a not-all-equal (NAE) clause.6 However, if we now näıvely
model the conditions with a Boolean formula, we obtain a formula with 2SAT
clauses and 3NAE clauses. Deciding whether such a formula is satisfiable is
NP-complete in general [44]. Hence, we have to investigate these two variants
more thoroughly.

The only difference between the triangles that impose these “non-cyclic”
orientations in these two problem variants is that, in TTO, the triangle is
synchronous (i.e. all its three edges have the same time-label), while in Strict
TTO two of the edges are synchronous and the third one has a smaller time-
label than the other two. As it turns out, this difference of the two problem
variants has important implications on their computational complexity. In fact,
we obtain a surprising result: TTO is solvable in polynomial time while Strict
TTO is NP-complete.

In Section 3.1 we prove that Strict TTO is NP-complete and in Section 3.2
we provide our polynomial-time algorithm for TTO.

3.1. Strict TTO is NP-Complete

In this section we show that in contrast to the other variants, Strict TTO
is NP-complete.

Theorem 3. Strict TTO is NP-complete even if the temporal input graph
has only four different time labels.

Proof. We present a polynomial time reduction from (3,4)-SAT [48] where,
given a CNF formula φ where each clause contains exactly three literals and each
variably appears in exactly four clauses, we are asked whether φ is satisfiable
or not. Given a formula φ, we construct a temporal graph G as follows.

Variable gadget. For each variable x that appears in φ, we add eight vertices
ax, a

′
x, bx, b

′
x, cx, c

′
x, dx, d

′
x to G. We connect these vertices as depicted in Fig-

ure 1, that is, we add the following time edges to G: ({ax, a′x}, 1), ({a′x, bx}, 2),
({bx, b′x}, 1), ({b′x, cx}, 2), ({cx, c′x}, 1), ({c′x, dx}, 2), ({dx, d′x}, 1), ({d′x, ax}, 2).

Clause gadget. For each clause c of φ, we add six vertices uc, u
′
c, vc, v

′
c, wc, w

′
c

to G. We connect these vertices as depicted in Figure 2, that is, we add the
following time edges to G: ({uc, u′c}, 2), (vc, v

′
c}, 1), ({wc, w′c}, 2), ({uc, vc}, 2),

({vc, wc}, 3), ({wc, uc}, 3), ({vc, w′c}, 3), ({wc, v′c}, 3).

6A not all equal clause is a set of literals and it evaluates to true if and only if at least two
literals in the set evaluate to different truth values.
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ax a′x bx b′x cx c′x dx d′x
1 2 1 2 1 2 1

2

Figure 1: Illustration of the variable gadget used in the reduction in the proof of Theorem 3.

uc vc

wc

u′c v′c

w′c

(a)

2

2

3 3

1

2

3

3

uc vc

wc

u′c v′c

w′c

(b)

2

2

3 3

1

2

3

3

uc vc

wc

u′c v′c

w′c

(c)

2

2

3 3

1

2

3

3

Figure 2: Illustration of the clause gadget used in the reduction in the proof of Theorem 3
and three ways how to orient the edges in it.

Connecting variable gadgets and clause gadgets. Let variable x appear for the
ith time in clause c and let x appear in the jth literal of c. The four vertex pairs
(ax, a

′
x), (bx, b

′
x), (cx, c

′
x), (dx, d

′
x) from the variable gadget of x correspond to the

first, second, third, and fourth appearance of x, respectively. The three vertices
u′c, v

′
c, w

′
c correspond to the first, second, and third literal of c, respectively.

Let i = 1 and j = 1. If x appears non-negated, then we add the time edge
({ax, u′c}, 4). Otherwise, if x appears negated, we add the time edge ({a′x, u′c}, 4).
For all other values of i and j we add time edges analogously.

This finishes the reduction. It can clearly be performed in polynomial time.

(⇒): Assume that we have a satisfying assignment for φ, then we can orient
G as follows. Then if a variable x is set to true, we orient the edges of the
corresponding variable gadgets as follows: (ax, a

′
x), (bx, a

′
x), (bx, b

′
x), (cx, b

′
x),

(cx, c
′
x), (dx, c

′
x), (dx, d

′
x), (ax, d

′
x). Otherwise, if x is set to false, we orient as

follows: (a′x, ax), (a′x, bx), (b′x, bx), (b′x, cx), (c′x, cx), (c′x, dx), (d′x, dx), (d′x, ax).
It is easy so see that both orientations are transitive.

Now consider a clause in φ with literals u, v, w corresponding to vertices
u′c, v

′
c, w

′
c of the clause gadget, respectively. We have that at least one of the

three literals satisfies the clause. If it is u, then we orient the edges in the clause
gadgets as illustrated in Figure 2 (a). It is easy so see that this orientation is
transitive. Furthermore, we orient the three edges connecting the clause gadgets
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to variable gadgets as follows: By construction the vertices u′c, v
′
c, w

′
c are each

connected to a variable gadget. Assume, we have edges {u′c, x}, {v′c, y}, {w′c, z}.
Then we orient as follows: (x, u′c), (v

′
c, y), (w′c, z), that is, we orient the edge

connecting the literal that satisfies the clause towards the clause gadget and
the other two edges towards the variable gadgets. This yields a transitive in
the clause gadget. Note that the variable gadgets have time labels 1 and 2 so
we can always orient the connecting edges (which have time label 4) towards
the variable gadget. We do this with all connecting edges except (x, u′c). This
edge is oriented from the variable gadget towards the clause gadget, however it
also corresponds to a literal that satisfies the clause. Then by construction, the
edges incident to x in the variable gadget are oriented away from x, hence our
orientation is transitive.

Otherwise and if v satisfies the clause, then we orient the edges in the clause
gadgets as illustrated in Figure 2 (b). Otherwise (in this case w has to satisfy the
clause), we orient the edges in the clause gadgets as illustrated in Figure 2 (c). It
is easy so see that each of these orientation is transitive. In both cases we orient
the edges connecting the clause gadgets to the variable gadgets analogously to
the first case discussed above. By analogous arguments we get that the resulting
orientation is transitive.

(⇐): Note that all variable gadgets are cycles of length eight with edges having
labels alternating between 1 and 2 and hence the edges have to also be oriented
alternately. Consider the variable gadget corresponding to x. We interpret the
orientation (ax, a

′
x), (bx, a

′
x), (bx, b

′
x), (cx, b

′
x), (cx, c

′
x), (dx, c

′
x), (dx, d

′
x), (ax, d

′
x)

as setting x to true and we interpret the orientation (a′x, ax), (a′x, bx), (b′x, bx),
(b′x, cx), (c′x, cx), (c′x, dx), (d′x, dx), (d′x, ax) as setting x to true. We claim that
this yields a satisfying assignment for φ.

Assume for contradiction that there is a clause c in φ that is not satisfied by
this assignment. Then by construction of the connection of variable gadgets and
clause gadgets, the connecting edges have to be oriented towards the variable
gadget in order to keep the variable gadget transitive. Let the three connect-
ing edges be {u′c, x}, {v′c, y}, {w′c, z} and their orientation (u′c, x), (v′c, y), (w′c, z).
Then we have that (u′c, x) forces (u′c, uc) which in turn forces (wc, uc). We have
that (v′c, y) forces (v′c, vc) which in turn forces (vc, uc). Furthermore, we now
have that (wc, uc) and (vc, uc) force (wc, vc). Lastly, we have that (w′c, z) forces
(w′c, wc) which in turn forces (vc, wc), a contradiction to the fact that we forced
(wc, vc) previously.

3.2. A polynomial-time algorithm for TTO

Let G = (V,E) be a static undirected graph. There are various polynomial-
time algorithms for deciding whether G admits a transitive orientation F . How-
ever our results in this section are inspired by the transitive orientation al-
gorithm described by Golumbic [25], which is based on the crucial notion of
forcing an orientation. The notion of forcing in static graphs is illustrated in
Figure 3 (a): if we orient the edge {u, v} as uv (i.e., from u to v) then we
are forced to orient the edge {v, w} as wv (i.e., from w to v) in any transitive
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Figure 3: The orientation uv forces the orientation wu and vice-versa in the examples of (a) a
static graph G where {u, v}, {v, w} ∈ E(G) and {u,w} /∈ E(G), and of (b) a temporal graph
(G,λ) where λ(u,w) = 3 < 5 = λ(u, v) = λ(v, w).

orientation F of G. Indeed, if we otherwise orient {v, w} as vw (i.e. from v
to w), then the edge {u,w} must exist and it must be oriented as uw in any
transitive orientation F of G, which is a contradiction as {u,w} is not an edge
of G. Similarly, if we orient the edge {u, v} as vu then we are forced to ori-
ent the edge {v, w} as vw. That is, in any transitive orientation F of G we
have that uv ∈ F ⇔ wv ∈ F . This forcing operation can be captured by the
binary forcing relation Γ which is defined on the edges of a static graph G as
follows [25].

uv Γ u′v′ if and only if

{
either u = u′ and {v, v′} /∈ E
or v = v′ and {u, u′} /∈ E . (1)

We now extend the definition of Γ in a natural way to the binary relation Λ
on the edges of a temporal graph (G,λ), see Equation (2). For this, observe from
Table 1 that the only cases, where we have uv ∈ F ⇔ wv ∈ F in any temporal
transitive orientation of (G,λ), are when (i) the vertices u, v, w induce a path
of length 2 (see Figure 3 (a)) and λ(u, v) = λ(v, w), as well as when (ii) u, v, w
induce a triangle and λ(u,w) < λ(u, v) = λ(v, w). The latter situation is
illustrated in the example of Figure 3 (b). The binary forcing relation Λ is
only defined on pairs of edges {u, v} and {u′, v′} where λ(u, v) = λ(u′, v′), as
follows.

uv Λ u′v′ if and only if λ(u, v) = λ(u′, v′) = t and


u = u′ and {v, v′} /∈ E, or
v = v′ and {u, u′} /∈ E, or
u = u′ and λ(v, v′) < t, or
v = v′ and λ(u, u′) < t.

(2)
Note that, for every edge {u, v} ∈ E we have that uv Λ uv. The forcing relation Λ
for temporal graphs shares some properties with the forcing relation Γ for static
graphs. In particular, the reflexive transitive closure Λ∗ of Λ is an equivalence
relation, which partitions the edges of each set Et = {{u, v} ∈ E : λ(u, v) = t}
into its Λ-implication classes (or simply, into its implication classes). Two
edges {a, b} and {c, d} are in the same Λ-implication class if and only ab Λ∗ cd,
i.e. there exists a sequence

ab = a0b0 Λ a1b1 Λ . . . Λ akbk = cd, with k ≥ 0.

12



Note that, for this to happen, we must have λ(a0, b0) = λ(a1, b1) = . . . =
λ(ak, bk) = t for some t ≥ 1. Such a sequence is called a Λ-chain from ab to cd,
and we say that ab (eventually) Λ-forces cd. Furthermore note that ab Λ∗ cd
if and only if ba Λ∗ dc. The next observation helps the reader understand the
relationship between the two forcing relations Γ and Λ.

Observation 4. Let {u, v} ∈ E, where λ(u, v) = t, and let A be the Λ-
implication class of uv in the temporal graph (G,λ). Let G′ be the static graph
obtained by removing from G all edges {p, q}, where λ(p, q) < t. Then A is also
the Γ-implication class of uv in the static graph G′.

For the next lemma, we use the notation Â = {uv, vu : uv ∈ A}.

Lemma 5. Let A be a Λ-implication class of a temporal graph (G,λ). Then

either A = A−1 = Â or A ∩A−1 = ∅.

Proof. Suppose that A ∩ A−1 6= ∅, and let uv ∈ A ∩ A−1, i.e. uv, vu ∈ A.
Then, for any pq ∈ A we have that pq Λ∗ uv and qp Λ∗ vu. Since Λ∗ is an
equivalence relation and uv, vu ∈ A, it also follows that pq, qp ∈ A. Therefore
also pq, qp ∈ A−1, and thus A = A−1 = Â.

Definition 6. Let F be a proper orientation and A be a Λ-implication class of
a temporal graph (G,λ). If A ⊆ F , we say that F respects A.

Lemma 7. Let F be a proper orientation and A be a Λ-implication class of a
temporal graph (G,λ). Then F respects either A or A−1 (i.e. either A ⊆ F or
A−1 ⊆ F ), and in either case A ∩A−1 = ∅.

Proof. We defined the binary forcing relation Λ to capture the fact that, for
any temporal transitive orientation F of (G,λ), if ab Λ cd and ab ∈ F , then
also cd ∈ F . Applying this property repeatedly, it follows that either A ⊆ F or
F ∩ A = ∅. If A ⊆ F then A−1 ⊆ F−1. On the other hand, if F ∩ A = ∅ then
A ⊆ F−1, and thus also A−1 ⊆ F . In either case, the fact that F ∩ F−1 = ∅ by
the definition of a temporal transitive orientation implies that also A ∩ A−1 =
∅.

Let now ab = a0b0 Λ a1b1 Λ . . . Λ akbk = cd be a given Λ-chain. Note
by Equation (2) that, for every i = 1, . . . , k, we have that either ai−1 = ai
or bi−1 = bi. Therefore we can replace the Λ-implication ai−1bi−1 Λ aibi by
the implications ai−1bi−1 Λ aibi−1 Λ aibi, since either aibi−1 = ai−1bi−1 or
aibi−1 = aibi. Thus, as this addition of this middle edge is always possible in
a Λ-implication, we can now define the notion of a canonical Λ-chain, which
always exists.

Definition 8. Let ab Λ∗ cd. Then any Λ-chain of the from

ab = a0b0 Λ a1b0 Λ a1b1 Λ . . . Λ akbk−1 Λ akbk = cd

is a canonical Λ-chain.
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The next lemma extends an important known property of the forcing relation
Γ for static graphs [25, Lemma 5.3] to the temporal case.

Lemma 9 (Temporal Triangle Lemma). Let (G,λ) be a temporal graph with a
synchronous triangle on the vertices a, b, c, where λ(a, b) = λ(b, c) = λ(c, a) = t.
Let A,B,C be three Λ-implication classes of (G,λ), where ab ∈ C, bc ∈ A, and
ca ∈ B, where A 6= B−1 and A 6= C−1.

1. If some b′c′ ∈ A, then ab′ ∈ C and c′a ∈ B.

2. If some b′c′ ∈ A and a′b′ ∈ C, then c′a′ ∈ B.

3. No edge of A touches vertex a.

Proof. 1. Let b′c′ ∈ A, and let bc = b0c0 Λ b1c0 Λ . . . Λ bkck−1 Λ bkck = b′c′

be a canonical Λ-chain from bc to b′c′. Thus note that all edges bici−1
and bici of this Λ-chain have the same time-label t in (G,λ). We will
prove by induction that abi ∈ C and cia ∈ B, for every i = 0, 1, . . . , k.
The induction basis follows directly by the statement of the lemma, as
ab = ab0 ∈ C and ca = c0a ∈ B.
Assume now that abi ∈ C and cia ∈ B. If bi+1 = bi then clearly abi+1 ∈ C
by the induction hypothesis. Suppose now that bi+1 6= bi. If {a, bi+1} /∈ E
then aci Λ bi+1ci. Then, since cia ∈ B and bi+1ci ∈ A, it follows that A =
B−1, which is a contradiction to the assumption of the lemma. Therefore
{a, bi+1} ∈ E. Furthermore, since bici Λ bi+1ci, it follows that either
{bi, bi+1} /∈ E or λ(bi, bi+1) < t. In either case it follows that abi Λ abi+1,
and thus abi+1 ∈ C.
Similarly, if ci+1 = ci then ci+1a ∈ B by the induction hypothesis. Sup-
pose now that ci+1 6= ci. If {a, ci+1} /∈ E then abi+1 Λ ci+1bi+1. Then,
since abi+1 ∈ C and bi+1ci+1 ∈ A, it follows that A = C−1, which is a
contradiction to the assumption of the lemma. Therefore {a, ci+1} ∈ E.
Furthermore, since bi+1ci Λ bi+1ci+1, it follows that either {ci, ci+1} /∈ E
or λ(ci, ci+1) < t. In either case it follows that cia Λ ci+1a, and thus
ci+1a ∈ C. This completes the induction step.

2. Let b′c′ ∈ A and a′b′ ∈ C. Then part 1 of the lemma implies that c′a ∈ B.
Now let ab = a0b0 Λ a1b0 Λ . . . Λ a`b`−1 Λ a`b` = a′b′ be a canonical
Λ-chain from ab to a′b′. Again, note that all edges aibi−1 and aibi of this
Λ-chain have the same time-label t in (G,λ). We will prove by induction
that c′ai ∈ B and bic

′ ∈ A for every i = 0, 1, . . . , k. First recall that
c′a = c′a0 ∈ B. Furthermore, by applying part 1 of the proof to the
triangle with vertices a0, b0, c and on the edge c′a0 ∈ B, it follows that
b0c
′ ∈ A. This completes the induction basis.

For the induction step, assume that c′ai ∈ B and bic
′ ∈ A. If ai+1 = ai

then clearly c′ai+1 ∈ B. Suppose now that ai+1 6= ai. If {ai+1, c
′} /∈ E

then ai+1bi Λ c′bi. Then, since ai+1bi ∈ C and bic
′ ∈ A, it follows that A =

C−1, which is a contradiction to the assumption of the lemma. Therefore
{ai+1, c

′} ∈ E. Now, since aibi Λ ai+1bi, it follows that either {ai, ai+1} /∈
E or λ(ai, ai+1) < t. In either case it follows that c′ai Λ c′ai+1. Therefore,
since c′ai ∈ B, it follows that c′ai+1 ∈ B.
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If bi+1 = bi then clearly bi+1c
′ ∈ A. Suppose now that bi+1 6= bi. Then,

since c′ai+1 ∈ B, ai+1bi ∈ C, and bic
′ ∈ A, we can apply part 1 of the

lemma to the triangle with vertices ai+1, bi, c
′ and on the edge ai+1bi+1 ∈

C, from which it follows that bic
′ ∈ A. This completes the induction step,

and thus c′ak = c′a′ ∈ B.

3. Suppose that ad ∈ A (resp. da ∈ A), for some vertex d. Then, by setting
b′ = a and c′ = d (resp. b′ = d and c′ = a), part 1 of the lemma implies
that ab′ = aa ∈ C (resp. c′a = aa ∈ B). Thus is a contradiction, as the
underlying graph G does not have the edge aa.

Deciding temporal transitivity using Boolean satisfiability. Start-
ing with any undirected edge {u, v} of the underlying graph G, we can clearly
enumerate in polynomial time the whole Λ-implication class A to which the ori-
ented edge uv belongs (cf. Equation (2)). If the reversely directed edge vu ∈ A
then Lemma 5 implies that A = A−1 = Â. Otherwise, if vu /∈ A then vu ∈ A−1
and Lemma 5 implies that A∩A−1 = ∅. Thus, we can also decide in polynomial
time whether A ∩ A−1 = ∅. If we encounter at least one Λ-implication class A
such that A∩A−1 6= ∅, then it follows by Lemma 7 that (G,λ) is not temporally
transitively orientable.

In the remainder of the section we will assume that A ∩ A−1 = ∅ for every
Λ-implication class A of (G,λ), which is a necessary condition for (G,λ) to be
temporally transitive orientable. Moreover it follows by Lemma 7 that, if (G,λ)
admits a temporally transitively orientation F , then either A ⊆ F or A−1 ⊆ F .
This allows us to define a Boolean variable xA for every Λ-implication class
A, where xA = xA−1 . Here xA = 1 (resp. xA−1 = 1) means that A ⊆ F
(resp. A−1 ⊆ F ), where F is the temporally transitive orientation which we are
looking for. Let {A1, A2, . . . , As} be a set of Λ-implication classes such that

{Â1, Â2, . . . , Âs} is a partition of the edges of the underlying graph G.7 Then
any truth assignment τ of the variables x1, x2, . . . , xs (where xi = xAi for every
i = 1, 2, . . . , s) corresponds bijectively to one possible orientation of the temporal
graph (G,λ), in which every Λ-implication class is oriented consistently.

Now we define two Boolean formulas φ3NAE and φ2SAT such that (G,λ)
admits a temporal transitive orientation if and only if there is a truth assign-
ment τ of the variables x1, x2, . . . , xs such that both φ3NAE and φ2SAT are
simultaneously satisfied. Intuitively, φ3NAE captures the “non-cyclic” condition
from Table 1 while φ2SAT captures the remaining conditions. Here φ3NAE is a
3NAE formula, i.e., the disjunction of clauses with three literals each, where
every clause NAE(`1, `2, `3) is satisfied if and only if at least one of the literals
{`1, `2, `3} is equal to 1 and at least one of them is equal to 0. Furthermore
φ2SAT is a 2SAT formula, i.e., the disjunction of 2CNF clauses with two literals
each, where every clause (`1 ∨ `2) is satisfied if and only if at least one of the
literals {`1, `2} is equal to 1.

7Here we slightly abuse the notation by identifying the undirected edge {u, v} with the set
of both its orientations {uv, vu}.
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Algorithm 1 Building the Λ-implication classes and the edge-variables.
Input: A temporal graph (G,λ), where G = (V,E).
Output: The variables {xuv , xvu : {u, v} ∈ E}, or the announcement that (G,λ) is tempo-

rally not transitively orientable.

1: s← 0; E0 ← E
2: while E0 6= ∅ do
3: s← s+ 1; Let {p, q} ∈ E0 be arbitrary
4: Build the Λ-implication class As of the oriented edge pq (by Equation (2))
5: if qp ∈ As then {As ∩A−1

s 6= ∅}
6: return “NO”
7: else
8: xs is the variable corresponding to the directed edges of As
9: for every uv ∈ As do

10: xuv ← xs; xvu ← xs {xuv and xvu become aliases of xs and xs}
11: E0 ← E0 \ Âs
12: return Λ-implication classes {A1, A2, . . . , As} and variables {xuv , xvu : {u, v} ∈ E}

For simplicity of the presentation we also define a variable xuv for every
directed edge uv. More specifically, if uv ∈ Ai (resp. uv ∈ A−1i ) then we
set xuv = xi (resp. xuv = xi). That is, xuv = xvu for every undirected edge
{u, v} ∈ E. Note that, although {xuv, xvu : {u, v} ∈ E} are defined as variables,
they can equivalently be seen as literals in a Boolean formula over the variables
x1, x2, . . . , xs. The process of building all Λ-implication classes and all variables
{xuv, xvu : {u, v} ∈ E} is given by Algorithm 1.

Description of the 3NAE formula φ3NAE. The formula φ3NAE cap-
tures the “non-cyclic” condition of the problem variant TTO (presented in Ta-
ble 1). The formal description of φ3NAE is as follows. Consider a synchronous
triangle of (G,λ) on the vertices u, v, w. Assume that xuv = xwv, i.e., xuv is the
same variable as xwv. Then the pair {uv,wv} of oriented edges belongs to the
same Λ-implication class Ai. This implies that the triangle on the vertices u, v, w
is never cyclically oriented in any proper orientation F that respects Ai or A−1i .
Note that, by symmetry, the same happens if xvw = xuw or if xwu = xvu. As-
sume, on the contrary, that xuv 6= xwv, xvw 6= xuw, and xwu 6= xvu. In this case
we add to φ3NAE the clause NAE(xuv, xvw, xwu). Note that the triangle on u, v, w
is transitively oriented if and only if NAE(xuv, xvw, xwu) is satisfied, i.e., at least
one of the variables {xuv, xvw, xwu} receives the value 1 and at least one of them
receives the value 0.

Description of the 2SAT formula φ2SAT. The formula φ2SAT captures
all conditions apart from the “non-cyclic” condition of the problem variant TTO
(presented in Table 1). The formal description of φ2SAT is as follows. Consider
a triangle of (G,λ) on the vertices u, v, w, where λ(u, v) = t1, λ(v, w) = t2,
λ(w, v) = t3, and t1 ≤ t2 ≤ t3. If t1 < t2 = t3 then we add to φ2SAT the clauses
(xuw ∨xwv)∧ (xvw ∨xwu); note that these clauses are equivalent to xwu = xwv.
If t1 ≤ t2 < t3 then we add to φ2SAT the clauses (xwv ∨ xuw) ∧ (xuv ∨ xwu);
note that these clauses are equivalent to (xvw ⇒ xuw) ∧ (xvu ⇒ xwu). Now
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consider a path of length 2 that is induced by the vertices u, v, w, where λ(u, v) =
t1, λ(v, w) = t2, and t1 ≤ t2. If t1 = t2 then we add to φ2SAT the clauses
(xvu∨xwv)∧ (xvw ∨xuv); note that these clauses are equivalent to (xuv = xwv).
Finally, if t1 < t2 then we add to φ2SAT the clause (xvu ∨ xwv); note that this
clause is equivalent to (xuv ⇒ xwv).

In what follows, we say that φ3NAE ∧ φ2SAT is satisfiable if and only if
there exists a truth assignment τ which simultaneously satisfies both φ3NAE

and φ2SAT. Given the above definitions of φ3NAE and φ2SAT, it is easy to check
that their clauses model all conditions of the oriented edges imposed by the row
of “TTO” in Table 1.

Observation 10. The temporal graph (G,λ) is transitively orientable if and
only if φ3NAE ∧ φ2SAT is satisfiable.

Although deciding whether φ2SAT is satisfiable can be done in linear time
with respect to the size of the formula [7], the problem Not-All-Equal-3-SAT
is NP-complete [44]. We overcome this problem and present a polynomial-time
algorithm for deciding whether φ3NAE ∧ φ2SAT is satisfiable as follows.

Roadmap of the entire process. Our algorithm iteratively produces

at iteration j a formula φ
(j)
3NAE ∧ φ

(j)
2SAT, which is computed from the previous

formula φ
(j−1)
3NAE ∧ φ

(j−1)
2SAT by (almost) simulating the classical greedy algorithm

that solves 2SAT [7]. The classical 2SAT-algorithm proceeds greedily as follows.
For every variable xi, if setting xi = 1 (resp. xi = 0) leads to an immediate
contradiction, the algorithm is forced to set xi = 0 (resp. xi = 1). Otherwise, if
each of the truth assignments xi = 1 and xi = 0 does not lead to an immediate
contradiction, the algorithm arbitrarily chooses to set xi = 1 or xi = 0, and
thus some clauses are removed from the formula as they were satisfied. The
argument for the correctness of this classical 2SAT-algorithm is that new clauses
are never added to the formula at any step. The main technical difference
between the 2SAT-algorithm and our algorithm is that, in our case, the formula

φ
(j)
3NAE ∧ φ

(j)
2SAT is not necessarily a sub-formula of φ

(j−1)
3NAE ∧ φ

(j−1)
2SAT , as in some

cases we need to also add clauses.
Our main technical result is that, nevertheless, if the algorithm does not

return “NO” while applying variable forcings at the initialization phase (during

which φ
(0)
3NAE∧φ

(0)
2SAT is computed), then the input instance is a yes-instance. In

this case, the algorithm proceeds by computing the formulas φ
(j)
3NAE∧φ

(j)
2SAT, for

j = 1, 2, . . ., which eventually determine a valid temporally transitive orientation
of the input temporal graph. The proof of this result (see Lemma 19 and The-
orem 20) relies on a sequence of structural properties of temporal transitive
orientations which we establish. This phenomenon of deducing a polynomial-
time algorithm for an algorithmic graph problem by deciding satisfiability of a
mixed Boolean formula (i.e. with both clauses of two and three literals) occurs
rarely; this approach has been successfully used for the efficient recognition of
simple-triangle (known also as “PI”) graphs [35].
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Brief outline of the algorithm. In the initialization phase, we exhaus-
tively check which truth values are forced in φ3NAE ∧ φ2SAT by using Initial-
Forcing (see Algorithm 2) as a subroutine. During the execution of Initial-
Forcing, we either replace the formulas φ3NAE and φ2SAT by the equivalent

formulas φ
(0)
3NAE and φ

(0)
2SAT, respectively, or we reach a contradiction by showing

that φ3NAE ∧ φ2SAT is unsatisfiable.

The main phase of the algorithm starts once the formulas φ
(0)
3NAE and φ

(0)
2SAT

have been computed. During this phase, we iteratively modify the formulas such

that, at the end of iteration j we have the formulas φ
(j)
3NAE and φ

(j)
2SAT. Note

that, during the execution of the algorithm, we can both add and remove clauses

from φ
(j)
2SAT. On the other hand, we can only remove clauses from φ

(j)
3NAE. Thus,

at some iteration j, we obtain φ
(j)
3NAE = ∅, and after that iteration we only need

to decide satisfiability of φ
(j)
2SAT which can be done efficiently [7].

Two crucial technical lemmas. For the remainder of the section we
write xab

∗⇒φ2SAT xuv (resp. xab
∗⇒
φ
(j)
2SAT

xuv) if the truth assignment xab = 1

forces (in 0 or more iterations) the truth assignment xuv = 1 from the clauses

of φ2SAT (resp. of φ
(j)
2SAT at the iteration j of the algorithm); in this case we say

that xab implies xuv in φ2SAT (resp. in φ
(j)
2SAT). We next introduce the notion

of uncorrelated triangles, which lets us formulate some important properties of

the implications in φ2SAT and φ
(0)
2SAT.

Definition 11. Let u, v, w induce a synchronous triangle in (G,λ), where
each of the variables of the set {xuv, xvu, xvw, xwv, xwu, xuw} belongs to
a different Λ-implication class. If none of the variables of the set
{xuv, xvu, xvw, xwv, xwu, xuw} implies any other variable of the same set in the

formula φ2SAT (resp. in the formula φ
(0)
2SAT), then the triangle of u, v, w is φ2SAT-

uncorrelated (resp. φ
(0)
2SAT-uncorrelated).

Now we present our two crucial technical lemmas (Lemmas 12 and 13) which

prove some structural properties of the 2SAT formulas φ2SAT and φ
(0)
2SAT. These

structural properties will allow us to prove the correctness of our main algorithm
in this section (Algorithm 4). In a nutshell, these two lemmas guarantee that,

whenever we have specific implications in φ2SAT (resp. in φ
(0)
2SAT), then we also

have some specific other implications in the same formula.

Lemma 12. Let u, v, w induce a synchronous and φ2SAT-uncorrelated triangle
in (G,λ), and let {a, b} ∈ E be an edge of G such that |{a, b}∩{u, v, w}| ≤ 1. If

xab
∗⇒φ2SAT

xuv, then xab also implies in φ2SAT at least one of the four variables
in the set {xvw, xwv, xuw, xwu}.

Proof. Let t be the common time-label of all the edges in the synchronous tri-
angle of the vertices u, v, w. That is, λ(u, v) = λ(v, w) = λ(w, u) = t. Denote
by A, B, and C the Λ-implication classes in which the directed edges uv, vw,
and wu belong, respectively. Let xab = xa0b0 ⇒φ2SAT

xa1b1 ⇒φ2SAT
. . . ⇒φ2SAT
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xak−1bk−1
⇒φ2SAT xakbk = xuv be a φ2SAT-implication chain from xab to xuv.

Note that, without loss of generality, for each variable xaibi in this chain, the
directed edge aibi is a representative of a different Λ-implication class than all
other directed edges in the chain (otherwise we can just shorten the φ2SAT-
implication chain from xab to xuv). Furthermore, since xakbk = xuv, note that
akbk and uv are both representatives of the same Λ-implication class A. There-
fore Lemma 9 (the temporal triangle lemma) implies that wak ∈ C and bkw ∈ B.
Therefore we can assume without loss of generality that u = ak and v = bk.
Moreover, let A′ /∈ {A,A−1, B,B−1, C, C−1} be the Λ-implication class in which
the directed edge ak−1bk−1 belongs. Since xak−1bk−1

⇒φ2SAT
xakbk , note that

without loss of generality we can choose the directed edge ak−1bk−1 to be such
a representative of the Λ-implication class A′ such that either ak−1 = ak or
bk−1 = bk. We now distinguish these two cases.

Case 1: u = ak = ak−1 and v = bk 6= bk−1. Then, since xak−1bk−1
=

xakbk−1
⇒φ2SAT

xakbk = xuv and λ(ak, bk) = t, it follows that λ(u, bk−1) ≥
t + 1. Suppose that {w, bk−1} /∈ E. Then xubk−1

⇒φ2SAT
xuw, which

proves the lemma. Now suppose that {w, bk−1} ∈ E. If λ(w, bk−1) ≤
λ(u, bk−1) − 1 then xubk−1

⇒φ2SAT
xuw, which proves the lemma. Suppose

that λ(w, bk−1) ≥ λ(u, bk−1) + 1. Then xubk−1
⇒φ2SAT xwbk−1

⇒φ2SAT xwu,

i.e. xubk−1

∗⇒φ2SAT
xwu, which again proves the lemma. Suppose finally that

λ(w, bk−1) = λ(u, bk−1). Then, since λ(u,w) = t < λ(w, bk−1) = λ(u, bk−1), it
follows that wbk−1 Λ ubk−1. If {v, bk−1} /∈ E then xubk−1

= xwbk−1
⇒φ2SAT xwv,

which proves the lemma. Now let {v, bk−1} ∈ E. If λ(v, bk−1) ≤ λ(w, bk−1)− 1
then xubk−1

= xwbk−1
⇒φ2SAT

xwv, which proves the lemma. If λ(v, bk−1) ≥
λ(w, bk−1) + 1 then xubk−1

= xwbk−1
⇒φ2SAT

xvbk−1
⇒φ2SAT

xwv, which
proves the lemma. If λ(v, bk−1) = λ(w, bk−1) then ubk−1 Λ vbk−1, and thus
xubk−1

= xak−1bk−1
;φ2SAT xakbk = xuv, which is a contradiction.

Case 2: u = ak 6= ak−1 and v = bk = bk−1. Then, since xak−1bk−1
=

xak−1bk ⇒φ2SAT xakbk = xuv and λ(ak, bk) = t, it follows that λ(v, ak−1) ≤
t − 1. Suppose that {w, ak−1} /∈ E. Then xak−1v ⇒φ2SAT

xwv, which proves
the lemma. Now suppose that {w, ak−1} ∈ E. If λ(w, ak−1) ≤ t − 1 then
xak−1v ⇒φ2SAT

xwv, which proves the lemma. Suppose that λ(w, ak−1) = t.
Then, since λ(v, ak−1) ≤ t − 1, it follows that vw Λ at−1w. If {u, ak−1} /∈ E
then also at−1w Λ uw, and thus xwv = xwu, which is a contradiction to the
assumption that the triangle of u, v, w is uncorrelated. Thus {u, ak−1} ∈ E.
If λ(u, ak−1) ≤ t − 1 then again ak−1w Λ uw, which is a contradiction. On
the other hand, if λ(u, ak−1) ≥ t then xak−1v = xak−1bk−1

;φ2SAT
xakbk = xuv,

which is a contradiction.
Finally suppose that λ(w, ak−1) ≥ t + 1. Then, since λ(v, w) = t and

λ(v, ak−1) ≤ t− 1, it follows that xvw ⇒φ2SAT xak−1w ⇒φ2SAT xak−1v. However,

since xak−1v = xak−1bk ⇒φ2SAT
xakbk = xuv, it follows that xvw

∗⇒φ2SAT
xuv,

which is a contradiction to the assumption that the triangle of u, v, w is uncor-
related.
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Lemma 13. Let u, v, w induce a synchronous and φ
(0)
2SAT-uncorrelated triangle

in (G,λ), and let {a, b} ∈ E be an edge of G such that |{a, b}∩{u, v, w}| ≤ 1. If

xab
∗⇒
φ
(0)
2SAT

xuv, then xab also implies in φ
(0)
2SAT at least one of the four variables

in the set {xvw, xwv, xuw, xwu}.

Proof. Assume we have |{a, b} ∩ {u, v, w}| ≤ 1 and xab
∗⇒
φ
(0)
2SAT

xuv. Then

we make a case distinction on the last implication in the implication chain
xab

∗⇒
φ
(0)
2SAT

xuv.

1. The last implication is an implication from φ2SAT, i.e., xab
∗⇒
φ
(0)
2SAT

xpq⇒φ2SAT
xuv. If {p, q} ⊆ {u, v, w} then we are done, since we can assume

that {p, q} 6= {u, v} because no such implications are contained in φ2SAT.
Otherwise Lemma 12 implies that xpq also implies at least one of the four
variables in the set {xvw, xwv, xuw, xwu} in φ2SAT. If follows that xab also
implies at least one of the four variables in the set {xvw, xwv, xuw, xwu} in

φ
(0)
2SAT.

2. The last implication is not an implication from φ2SAT, i.e., xab
∗⇒
φ
(0)
2SAT

xpq⇒φINIT
xuv, there the implication xpq⇒φINIT

xuv was added to φ
(0)
2SAT

by Initial-Forcing. If xpq⇒φINIT
xuv was added in Line 7 or Line 10

of Initial-Forcing, then we have that {p, q} ⊆ {u, v, w} and {p, q} 6=
{u, v}, hence the u, v, w is not a φ

(0)
2SAT-uncorrelated triangle, a contradic-

tion. If xpq⇒φINIT
xuv was added in Line 14 of Initial-Forcing, then we

have that xpq⇒φINIT
xuw, hence we are done.

Detailed description of the algorithm. We are now ready to present
our polynomial-time algorithm (Algorithm 4) for deciding whether a given tem-
poral graph (G,λ) is temporally transitively orientable. The main idea of our
algorithm is as follows. First, the algorithm computes all Λ-implication classes
A1, . . . , As by calling Algorithm 1 as a subroutine. If there exists at least one
Λ-implication class Ai where uv, vu ∈ Ai for some edge {u, v} ∈ E, then we
announce that (G,λ) is a no-instance, due to Lemma 7. Otherwise we associate
to each Λ-implication class Ai a variable xi, and we build the 3NAE formula
φ3NAE and the 2SAT formula φ2SAT, as described in Section 3.2.

In the initialization phase of Algorithm 4, we call algorithm Initial-
Forcing (see Algorithm 2) as a subroutine. Starting from the formulas φ3NAE

and φ2SAT, in Initial-Forcing we build the formulas φ
(0)
3NAE and φ

(0)
2SAT by

both (i) checking which truth values are being forced in φ3NAE ∧φ2SAT (lines 2-
10), and (ii) adding to φ2SAT some clauses that are implicitly implied in
φ3NAE ∧ φ2SAT (lines 11-14). More specifically, Initial-Forcing proceeds as
follows: (i) whenever setting xi = 1 (resp. xi = 0) forces φ3NAE ∧ φ2SAT to
become unsatisfiable, we choose to set xi = 0 (resp. xi = 1); (ii) if x ⇒

φ
(0)
2SAT

a

and x ⇒
φ
(0)
2SAT

b, and if we also have that NAE(a, b, c) ∈ φ
(0)
3NAE, then we add

x ⇒
φ
(0)
2SAT

c to φ
(0)
2SAT, since clearly, if x = 1 then a = b = 1 and we have

20



to set c = 0 to satisfy the NAE clause NAE(a, b, c). The next observation fol-

lows easily by Observation 10 and by the construction of φ
(0)
3NAE and φ

(0)
2SAT in

Initial-Forcing.

Observation 14. The temporal graph (G,λ) is transitively orientable if and

only if φ
(0)
3NAE ∧ φ

(0)
2SAT is satisfiable.

The main phase of the algorithm starts once the formulas φ
(0)
3NAE and φ

(0)
2SAT

have been computed. As we prove in Lemma 19, if the algorithm does not
conclude at the initialization phase that the input instance is a no-instance, the
the instance is a yes-instance. During any iteration j ≥ 1 of the algorithm, we
pick an arbitrary variable xi and we assign it the truth value 1 (note that this is
an arbitrary choice; we could equally choose to assign to xi the value 0). Once
we have set xi = 1, we call algorithm Boolean-Forcing (see Algorithm 3)
as a subroutine to check which implications this value of xi has on the current

formulas φ
(j−1)
3NAE and φ

(j−1)
2SAT and which other truth values of variables are forced.

The correctness of Boolean-Forcing can be easily verified by checking all
subcases of Boolean-Forcing. During such a call of Boolean-Forcing
(i.e. during an iteration j ≥ 1 in the main phase of the algorithm), we replace

the current formulas by φ
(j)
3NAE and φ

(j)
2SAT, respectively. Summarizing, in its

initialization phase, the algorithm decides whether the input temporal graph
can be transitively oriented (i.e. solves the decision version of the problem),
while in its main phase it computes a temporally transitive orientation.

Correctness of the algorithm. We now formally prove that Algorithm 4
is correct. More specifically, we show that if Algorithm 4 gets a yes-instance
as input then it outputs a temporally transitive orientation, while if it gets
a no-instance as input then it outputs “NO”. The main result of this section
is Theorem 20, in which we prove that Temporal Transitive Orientation
(TTO) is correct and runs in polynomial time.

The next crucial observation follows immediately by the construction of
φ3NAE in Section 3.2, and by the fact that, at every iteration j, Algorithm 4

can only remove clauses from φ
(j−1)
3NAE.

Observation 15. When Boolean-Forcing (Algorithm 3) removes a clause

from φ
(j−1)
3NAE, then this clause is satisfied by all satisfying assignments of φ

(j)
2SAT.

Next, we prove a crucial and involved technical lemma about the Boolean
forcing steps of Algorithm 4. This lemma will allow us to deduce that, during
the main phase of Algorithm 4, whenever a new clause is added to the 2SAT
part of the formula, this happens only in lines 17 and 19 of Boolean-Forcing
(Algorithm 3). That is, whenever a new clause is added to the 2SAT part of the
formula in line 11 of Algorithm 3, this can only happen during the initialization
phase of Algorithm 4.

Lemma 16. Consider an execution of Boolean-Forcing (Algorithm 3) which
is called in an iteration j ≥ 1 (i.e. in the main phase) of Algorithm 4. Then
Lines 11 and 12 of Boolean-Forcing are not executed.
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Algorithm 2 Initial-Forcing
Input: A 2-SAT formula φ2SAT and a 3-NAE formula φ3NAE

Output: A 2-SAT formula φ
(0)
2SAT and a 3-NAE formula φ

(0)
3NAE such that φ

(0)
2SAT ∧ φ

(0)
3NAE is

satisfiable if and only if φ2SAT ∧φ3NAE is satisfiable, or the announcement that φ2SAT ∧
φ3NAE is not satisfiable.

1: φ
(0)
3NAE ← φ3NAE; φ

(0)
2SAT ← φ2SAT {initialization}

2: for every variable xi appearing in φ
(0)
3NAE ∧ φ

(0)
2SAT do

3: if Boolean-Forcing
(
φ
(0)
3NAE, φ

(0)
2SAT, xi, 1

)
= “NO” then

4: if Boolean-Forcing
(
φ
(0)
3NAE, φ

(0)
2SAT, xi, 0

)
= “NO” then

5: return “NO” {both xi = 1 and xi = 0 invalidate the formulas}

6: else

7:
(
φ
(0)
3NAE, φ

(0)
2SAT

)
← Boolean-Forcing

(
φ
(0)
3NAE, φ

(0)
2SAT, xi, 0

)
8: else

9: if Boolean-Forcing
(
φ
(0)
3NAE, φ

(0)
2SAT, xi, 0

)
= “NO” then

10:
(
φ
(0)
3NAE, φ

(0)
2SAT

)
← Boolean-Forcing

(
φ
(0)
3NAE, φ

(0)
2SAT, xi, 1

)
11: for every clause NAE(xuv , xvw, xwu) of φ

(0)
3NAE do

12: for every variable xab do

13: if xab
∗⇒
φ
(0)
2SAT

xuv and xab
∗⇒
φ
(0)
2SAT

xvw then {add (xab ⇒ xuw) to φ
(0)
2SAT}

14: φ
(0)
2SAT ← φ

(0)
2SAT ∧ (xba ∨ xuw)

15: Repeat Lines 2 and 11 until no changes occur on φ
(0)
2SAT and φ

(0)
3NAE

16: return
(
φ
(0)
3NAE, φ

(0)
2SAT

)

Proof. Assume for contradiction that Lines 11 and 12 of Algorithm 3 are exe-
cuted in iteration j of Algorithm 4. Let j ≥ 1 be the first iteration where this
happens. This means that there is a clause NAE(xuv, xvw, xwu) of φ′3 and an

implication xuv
∗⇒φ′2

xvw during the execution of Algorithm 3.

We first partition the implication chain xuv
∗⇒φ′2

xvw into “old” and “new”

implications, where “old” implications are contained in φ
(0)
2SAT and all other im-

plications (that were added in the previous iterations 1, 2, . . . , j− 1) are consid-
ered “new”. For simplicity of notation, we will refer to these “new” implications
using the symbol “⇒BF”. Recall here that, whenever xab ⇒BF xcd, we have that
λ(a, b) = λ(c, d) by Boolean-Forcing. If there are several NAE clauses and
implication chains that fulfill the condition in Line 10 of Algorithm 3, we assume
that xuv

∗⇒φ′2
xvw is one that contains a minimum number of “new” implica-

tions. Observe that, since we assume xuv
∗⇒φ′2

xvw is a condition for the first
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Algorithm 3 Boolean-Forcing
Input: A 2-SAT formula φ2, a 3-NAE formula φ3, and a variable xi of φ2 ∧ φ3, and a truth

value Value ∈ {0, 1}
Output: A 2-SAT formula φ′2 and a 3-NAE formula φ′3, obtained from φ2 and φ3 by setting

xi = Value, or the announcement that xi = Value does not satisfy φ2 ∧ φ3.

1: Let a and b be such that xab = xi; xab ← Value

2: φ′2 ← φ2; φ′3 ← φ3

3: while φ′2 has a clause (xuv ∨ xpq) and xuv = 1 do
4: Remove the clause (xuv ∨ xpq) from φ′2

5: while φ′2 has a clause (xuv ∨ xpq) and xuv = 0 do
6: if xpq = 0 then return “NO”
7: Remove the clause (xuv ∨ xpq) from φ′2
8: xpq ← 1; Repeat lines 3 and 5 until no changes occur in φ′2. {Implement all changes

to φ′2 that are implied by setting xpq = 1}

9: for every clause NAE(xuv , xvw, xwu) of φ′3 do {synchronous triangle on vertices u, v, w}
10: if xuv

∗⇒φ′2
xvw then {add (xuv ⇒ xuw) ∧ (xuw ⇒ xvw) to φ′2}

11: φ′2 ← φ′2 ∧ (xvu ∨ xuw) ∧ (xwu ∨ xvw)
12: Remove the clause NAE(xuv , xvw, xwu) from φ′3

13: if xuv already got the value 1 or 0 then
14: Remove the clause NAE(xuv , xvw, xwu) from φ′3

15: if xvw and xwu do not have yet a truth value then

16: if xuv = 1 then {add (xvw ⇒ xuw) to φ′2}
17: φ′2 ← φ′2 ∧ (xwv ∨ xuw)

18: else {xuv = 0; in this case add (xuw ⇒ xvw) to φ′2}
19: φ′2 ← φ′2 ∧ (xwu ∨ xvw)

20: if xvw = xuv and xwu does not have yet a truth value then
21: xwu ← 1−xuv ; Repeat lines 3 and 5 until no changes occur in φ′2. {Implement

all changes to φ′2 that are implied by setting xwu = 1− xuv}

22: if xvw = xwu = xuv then return “NO”

23: Repeat lines 3, 5, and 9 until no changes occur in φ′2 and φ′3.

24: return (φ′2, φ
′
3)

execution of Lines 11 and 12 of Algorithm 3, it follows that all “new” implica-
tions in xuv

∗⇒φ′2
xvw were added in Line 17 or Line 19 of Boolean-Forcing

(i.e. Algorithm 3) in previous iterations.

Assume that xuv
∗⇒φ′2

xvw contains only “old” implications. Then, this
execution of Lines 11 and 12 of Algorithm 3 happens during the initialization
phase of Algorithm 4. This is a contradiction to the assumption that this
execution of Lines 11 and 12 of Algorithm 3 happens at iteration j ≥ 1 of
Algorithm 4. Therefore xuv

∗⇒φ′2
xvw contains at least one “new” implication.

We now distinguish the cases where xuv
∗⇒φ′2

xvw contains “old” implications
or not.
Case I: xuv

∗⇒φ′2
xvw contains at least one “old” implication. We assume
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Algorithm 4 Temporal transitive orientation.
Input: A temporal graph (G,λ), where G = (V,E).
Output: A temporal transitive orientation F of (G,λ), or the announcement that (G,λ) is

temporally not transitively orientable.

1: Execute Algorithm 1 to build the Λ-implication classes {A1, A2, . . . , As} and the Boolean
variables {xuv , xvu : {u, v} ∈ E}

2: if Algorithm 1 returns “NO” then return “NO”

3: Build the 3NAE formula φ3NAE and the 2SAT formula φ2SAT

4: if Initial-Forcing (φ3NAE, φ2SAT) 6= “NO” then {Initialization phase}

5:
(
φ
(0)
3NAE, φ

(0)
2SAT

)
← Initial-Forcing (φ3NAE, φ2SAT)

6: else {φ3NAE ∧ φ2SAT leads to a contradiction}
7: return “NO”

8: j ← 1; F ← ∅ {Main phase}
9: while a variable xi appearing in φ

(j−1)
3NAE ∧ φ

(j−1)
2SAT did not yet receive a truth value do

{arbitrary choice of xi}

10:
(
φ
(j)
3NAE, φ

(j)
2SAT

)
← Boolean-Forcing

(
φ
(j−1)
3NAE, φ

(j−1)
2SAT , xi, 1

)
11: j ← j + 1

12: for i = 1 to s do
13: if xi did not yet receive a truth value then xi ← 1
14: if xi = 1 then F ← F ∪Ai else F ← F ∪Ai

15: return the temporally transitive orientation F of (G,λ)

without loss of generality that xuv
∗⇒φ′2

xvw contains an “old” implication that
is directly followed by a “new” implication (if this is not the case, then we can
consider the contraposition of the implication chain).

Note that, since the “new” implication was added in Line 17 or Line 19 of Al-
gorithm 3, we can assume without loss of generality that the “new” implication
is xab⇒BFxcb and that xca = 1 for some synchronous triangle on the vertices
a, b, c (this is the Line 17 case, Line 19 works analogously). That is, we have

NAE(xab, xbc, xca) ∈ φ(0)3NAE. Let xpq⇒φ
(0)
2SAT

xab be the “old” implication. Then

we have that xpq⇒φ
(0)
2SAT

xab⇒BFxcb is contained in xuv
∗⇒φ′2

xvw. Furthermore,

by definition of φ
(0)
2SAT, we have that |{p, q} ∩ {a, b, c}| ≤ 1, hence we can apply

Lemma 13 and obtain one of the following four scenarios:

1. xpq
∗⇒
φ
(0)
2SAT

xcb:

In this case we can replace xpq⇒φ
(0)
2SAT

xab⇒BFxcb with xpq⇒φ
(0)
2SAT

xcb in

the implication chain xuv
∗⇒
φ
(j)
2SAT

xvw to obtain an implication chain from

xuv to xvw with strictly fewer “new” implications, a contradiction.

2. xpq
∗⇒
φ
(0)
2SAT

xbc:

Now we have that xpq⇒φ
(0)
2SAT

xab and xpq
∗⇒
φ
(0)
2SAT

xbc. Then by definition

of φ
(0)
2SAT we also have that xpq⇒φ

(0)
2SAT

xac. Recall that we have set xca = 1,
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that is, xac = 0. Therefore, by Lines 8 and 21 of Boolean-Forcing, we
have already set xpq = 0, and therefore the implication xpq⇒φ

(0)
2SAT

xab does

not exist in φ′2 anymore, which is a contradiction.

3. xpq
∗⇒
φ
(0)
2SAT

xca:

Now we have that xpq⇒φ
(0)
2SAT

xab and xpq
∗⇒
φ
(0)
2SAT

xca. Then by definition

of φ
(0)
2SAT we also have that xpq⇒φ

(0)
2SAT

xcb. From here it is the same as

Case 1.

4. xpq
∗⇒
φ
(0)
2SAT

xac: Same as Case 2.

Hence, we have a contradiction in every case and can conclude that xuv
∗⇒φ′2

xvw
does not contain any “old” implications.

Case II: xuv
∗⇒φ′2

xvw contains only “new” implications. To analyze
this case, we first introduce the notion of alternating and non-alternating se-
quences of “new” implications, as follows. Whenever the sequence xuv

∗⇒BF

xvw contains at least one pair of consecutive direct implications of the form
xab⇒BFxac⇒BFxad (see Figure 4(a)), or of the form xba⇒BFxca⇒BFxda
(see Figure 4(b)), we call xuv

∗⇒BF xvw a non-alternating sequence of implica-

tions; otherwise we call it alternating (see Figure 4(c)). That is, if xuv
∗⇒BF xvw

is alternating, then it either has the form

xuv = xu1v1⇒BFxu2v1⇒BFxu2v2⇒BFxu3v2
∗⇒BF xujvi = xvw, (3)

or it has the form

xuv = xu1v1⇒BFxu1v2⇒BFxu2v2⇒BFxu2v3
∗⇒BF xuivj = xvw, (4)

where either j = i or j = i+1. Figure 4 illustrates some examples of alternating
and non-alternating sequences of implications.

We now distinguish the cases where xuv
∗⇒BF xvw is an alternating or a

non-alternating sequence of implications. Note that, as all these are “new”
implications, all edges which are involved in xuv

∗⇒BF xvw have the same label
t. That is, for every variable xab that appears in the sequence xuv

∗⇒BF xvw of
implications, we have that λ(a, b) = t.

Case II-A: xuv
∗⇒BF xvw is a non-alternating sequence of implications.

Without loss of generality, let this sequence xuv
∗⇒BF xvw contain the pair of

consecutive direct implications xab⇒BFxac⇒BFxad (the case where it contains
the implications xba⇒BFxca⇒BFxda can be treated in exactly the same way).

Let a, b, c be the vertices of the synchronous triangle that caused the implica-
tion xab⇒BFxac, and let a′, c′, d be the vertices of the synchronous triangle that
caused the implication xac⇒BFxad, where xac = xa′c′ and xad = xa′d. Then,
Lemma 9 (the temporal triangle lemma) implies that the edges {a, d} and {c, d}
exist in the graph and that ad (resp. cd) belongs to the same Λ-implication class
with a′d (resp. c′d). Therefore we can assume without loss of generality that
a = a′ and c = c′.
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Figure 4: Illustration of alternating and non-alternating sequences of implications that can
occur at the two synchronous triangles on the vertices {a, b, c} and {a, c, d}. The red di-
rected edges illustrate variables that have already been set to 1 by the algorithm Boolean-
Forcing. Figure (a): non-alternating implications xab⇒BFxac⇒BFxad, which occur when-
ever xbc = xcd = 1 (red edges). Figure (b): non-alternating implications xba⇒BFxca⇒BFxda,
which occur whenever xcb = xdc = 1 (red edges). Figure (c): alternating implications
xab⇒BFxac⇒BFxdc, which occur whenever xbc = xda = 1 (red edges). In all three fig-
ures, the green dash-dotted line indicates that edge {a, d} may exist (with some time label)
or may not exist.

Then, since xab⇒BFxac and xac⇒BFxad are direct “new” implications, it
follows that xbc = xcd = 1 (as these implications have only been added by
Lines 17 or 19 of Boolean-Forcing).

Let {b, d} /∈ E or λ(b, d) < t. Then φ
(0)
2SAT by definition contains

xab⇒φ
(0)
2SAT

xad. Thus, we can replace within xuv
∗⇒BF xvw the two “new” im-

plications xab⇒BFxac⇒BFxad by the “old” implication xab⇒φ
(0)
2SAT

xad, thus re-

sulting to a a sequence of implications from xuv to xvw that has fewer “new”
implications, a contradiction to our assumption.

Let λ(b, d) > t. Then φ
(0)
2SAT by definition contains xcd⇒φ

(0)
2SAT

xbd and

xbd⇒φ
(0)
2SAT

xba. Thus, since xcd = 1, it follows Boolean-Forcing sets xab = 0,

which is a contradiction to the assumption that the implication xab⇒BFxac
belongs to φ′2.

Let now λ(b, d) = t. Then NAE(xbc, xcd, xdb) ∈ φ
(0)
3NAE. If xbc is set to 1

before xcd is set to 1 (i.e. at an earlier iteration of Boolean-Forcing), then
Boolean-Forcing adds (in Line 17) to φ′2 the direct implication xcd⇒BFxbd.
In this case, when xcd is set to 1 at a subsequent iteration of Boolean-Forcing,
xbd is also set to 1. Similarly, if xcd is set to 1 before xbc is set to 1, then
Boolean-Forcing adds to φ′2 the direct implication xdb⇒BFxcb, which is
equivalent to xbc⇒BFxbd. In this case, when xbd is set to 1 at a subsequent
iteration of Boolean-Forcing, xbd is also set to 1. Finally, if both xbc and
xcd are set to 1 at the same iteration, Boolean-Forcing also sets xbd to 1 in
Line 21. Summarizing, in any case Boolean-Forcing always sets xbd = 1, and
thus it also adds to φ′2 the implication xab⇒BFxad. Thus, we can replace within
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xuv
∗⇒BF xvw the two implications xab⇒BFxac⇒BFxad by the single implication

xab⇒BFxad, thus resulting to a sequence of implications from xuv to xvw that
has fewer “new” implications, a contradiction to our assumption.

Case II-B: xuv
∗⇒BF xvw is an alternating sequence of implications. Let

this sequence be of the form of (3) where j = i (the cases where j = i + 1 or
where the sequence is of the form of (4) can be treated analogously), that is,

xuv = xu1v1⇒BFxu2v1⇒BFxu2v2⇒BFxu3v2
∗⇒BF xuivi = xvw, (5)

Similarly to Case II-A, by iteratively applying Lemma 9 (the temporal tri-
angle lemma), we may assume without loss of generality that all implications
of (5) are added to φ′2 by the synchronous triangles on the vertices {u1, v1, u2},
{v1, u2, v2}, {u2, v2, u3}, . . ., {vi−1, ui, vi}. Furthermore, as all the implica-
tions of (5) have been added to φ′2 by Boolean-Forcing, it follows that
xuiui−1

= xui−1ui−2
= . . . = xu2u1

= 1 and xv1v2 = xv2v3 = . . . = xvi−1vi = 1.
Now, since xuivi = xvw (i.e. uivi belongs to the same Λ-implication class

with vw), it follows by Lemma 9 (the temporal triangle lemma) that the edge
{u1, ui} exists in the graph and that u1ui belongs to the same Λ-implication
class with u1v = uv (and thus, in particular, λ(u1, ui) = λ(u1, v) = t).

Recall that λ(u1, u2) = t and xu2u1
= 1. We now prove by induction that,

for every j = 3, . . . , i, we have λ(u1, uj) ≥ t and xuju1
= 1.

For the induction basis, let j = 3. If {u1, u3} /∈ E or λ(u1, u3) < t, then

φ
(0)
2SAT by definition contains xu3u2⇒φ

(0)
2SAT

xu1u2 . This is a contradiction, as

xu3u2 = xu2u1 = 1. Therefore {u1, u3} ∈ E and λ(u1, u3) ≥ t. If λ(u1, u3) = t
then Boolean-Forcing sets xu3u1 = 1 (see Line 21 of Boolean-Forcing). If

λ(u1u3) > t then φ
(0)
2SAT contains xu2u1

⇒
φ
(0)
2SAT

xu3u1
. Therefore, since xu2u1

= 1,

it follows in this case as well that Boolean-Forcing sets xu3u1 = 1. This
completes the induction basis.

For the induction step, let 4 ≤ j ≤ i, and assume by the induction hypoth-
esis that t′ = λ(u1, uj−1) ≥ t and xuj−1u1

= 1. Recall that λ(uj−1, uj) = t and

xujuj−1
= 1. If {u1, uj} /∈ E or λ(u1, uj) < t′, then φ

(0)
2SAT by definition con-

tains xujuj−1
⇒
φ
(0)
2SAT

xu1uj−1
. This is a contradiction, as xujuj−1

= xuj−1u1
= 1.

Therefore {u1, uj} ∈ E and λ(u1, uj) ≥ t′. If λ(u1, uj) = t′ = t then Boolean-
Forcing sets xuju1

= 1 (see Line 21 of Boolean-Forcing). If λ(u1, uj) =

t′ > t or if λ(u1, uj) > t′ ≥ t then φ
(0)
2SAT contains xuj−1u1

⇒
φ
(0)
2SAT

xuju1
. There-

fore, since xuj−1u1 = 1, it follows in this case as well that Boolean-Forcing
sets xuju1 = 1. This completes the induction step.

Therefore, in particular, for j = i we have that xuiu1
= 1. Thus, since u1ui

belongs to the same Λ-implication class with u1v = uv, it follows that xuv = 1,
which is a contradiction to the assumption that xuv

∗⇒BF xvw is contained in
φ′2. This completes the proof.

In the next lemma we prove that, if Algorithm 4 does not return “NO” after

the initialization phase (in Line 7), then the 2SAT formula φ
(0)
2SAT is satisfiable.
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Furthermore, as we prove in Lemma 18, in this case also the 2SAT formulas

φ
(j)
2SAT are satisfiable for every j ≥ 1.

Lemma 17. Assume that Algorithm 4 does not return “NO” in the initialization

phase (i.e. in Line 7). Then there exists no variable xuv in φ
(0)
2SAT such that

xuv
∗⇒
φ
(0)
2SAT

xvu, and thus φ
(0)
2SAT is satisfiable.

Proof. Since Algorithm 4 does not return “NO” in Line 7, it follows that Line 5
of Initial-Forcing (Algorithm 2) is not executed, when Initial-Forcing is
called by Algorithm 4. Furthermore, before Initial-Forcing finishes, it checks

in Line 15 whether any of the formulas φ
(0)
3NAE or φ

(0)
2SAT have been changed since

the last iteration of Lines 2 and 11.
Let xuv be an arbitrary variable in φ

(0)
2SAT, i.e. in the 2SAT part of the for-

mula after Initial-Forcing has finished. Since xuv did not get a Boolean
value during the execution of Initial-Forcing, it follows that, when Initial-
Forcing stops, setting xuv to 1 (resp. to 0) does not cause a contradiction. In-
deed, otherwise Initial-Forcing would set xuv equal to 0 (resp. 1). Therefore,

once Initial-Forcing finishes, there cannot exist any variable xuv in φ
(0)
2SAT

such that xuv
∗⇒
φ
(0)
2SAT

xvu (as otherwise Initial-Forcing would set xuv = 0).

This completes the lemma.

Lemma 18. Assume that Algorithm 4 does not return “NO” in the initialization
phase (i.e. in Line 7). Then, at any point during an arbitrary call of Boolean-
Forcing at the iteration j ≥ 1 of Algorithm 4, there does not exist any variable
xuv in φ′2 such that xuv

∗⇒φ′2
xvu, and thus φ′2 is satisfiable.

Proof. Let j = 1. At the very beginning of iteration j = 1 (where no
changes have been made to φ′2 by Boolean-Forcing) it follows immediately

by Lemma 17 that there is no variable xuv in φ′2 = φ
(0)
2SAT such that xuv

∗⇒φ′2
xvu.

Now, let j ≥ 1. Assume that, at the very beginning of iteration j, there is no

variable xuv in φ′2 = φ
(j−1)
2SAT such that xuv

∗⇒φ′2
xvu. For the sake of contradic-

tion, assume that, at some point during the execution of this call of Boolean-
Forcing, there exists a variable xuv in φ′2 such that xuv

∗⇒φ′2
xvu. Assume that

this is the earliest point during the execution of this call of Boolean-Forcing
where such an implication chain xuv

∗⇒φ′2
xvu exists in φ′2. Furthermore, among

all implication chains xuv
∗⇒φ′2

xvu, consider one that has the smallest number
of “new” implications.

Similarly to the proof of Lemma 16, we partition the implication chain

xuv
∗⇒φ′2

xvu into “old” implications (which are also present in φ
(0)
2SAT) and

“new” implications (which were added by Boolean-Forcing during some it-
eration j′ ∈ {1, 2, . . . , j}). Similarly to Lemma 16, for simplicity of notation
we refer to these “new” implications using the symbol “⇒BF”. Recall that,
whenever xab ⇒BF xcd, we have that λ(a, b) = λ(c, d) by Boolean-Forcing.

Note that xuv
∗⇒φ′2

xvu contains at least one “new” implication, as otherwise

xuv
∗⇒
φ
(0)
2SAT

xvu which is a contradiction by Lemma 17.
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Case I: xuv
∗⇒φ′2

xvu contains at least one “old” implication. Consider

an “old” implication xpq⇒φ
(0)
2SAT

xab within the implication chain xuv
∗⇒φ′2

xvu,

which is followed by a “new” implication (if there is no such pair of consec-
utive implications, then there is one in the contraposition of the implication
chain). By Lemma 16, the “new” implication was added by Boolean-Forcing
in Line 17 or Line 19. We can assume without loss of generality that the
“new” implication is xab⇒BFxcb and that xca = 1 for some synchronous tri-
angle on the vertices a, b, c (this is the case of Line 17, Line 19 works analo-

gously). That is, we have NAE(xab, xbc, xca) ∈ φ
(0)
3NAE. Summarizing, we have

that xpq⇒φ
(0)
2SAT

xab⇒BFxcb is contained in xuv
∗⇒φ′2

xvu. Furthermore, by con-

struction of φ
(0)
2SAT, we have that |{p, q} ∩ {a, b, c}| ≤ 1, hence we can apply

Lemma 13 and obtain one of the following four scenarios:

1. xpq
∗⇒
φ
(0)
2SAT

xcb:

In this case we can replace xpq⇒φ
(0)
2SAT

xab⇒BFxcb with xpq⇒φ
(0)
2SAT

xcb in

the implication chain xuv
∗⇒φ′2

xvu to obtain an implication chain from
xuv to xvu in φ′2 with strictly fewer “new” implications, a contradiction.

2. xpq
∗⇒
φ
(0)
2SAT

xbc:

Now we have that xpq⇒φ
(0)
2SAT

xab and xpq
∗⇒
φ
(0)
2SAT

xbc. Then by definition

of φ
(0)
2SAT we also have that xpq⇒φ

(0)
2SAT

xac. Recall that we have set xca = 1

(which triggered the addition of the implication xab⇒BFxcb), that is, xac =
0. Therefore, by Lines 8 and 21 of Boolean-Forcing, we have already
set xqp = 1, i.e. xpq = 0, and therefore the implication xpq⇒φ

(0)
2SAT

xab does

not exist in φ′2 anymore, which is a contradiction.

3. xpq
∗⇒
φ
(0)
2SAT

xca:

Now we have that xpq⇒φ
(0)
2SAT

xab and xpq
∗⇒
φ
(0)
2SAT

xca. Then by definition

of φ
(0)
2SAT we also have that xpq⇒φ

(0)
2SAT

xcb. From here it is the same as

Case 1.
4. xpq

∗⇒
φ
(0)
2SAT

xac: Same as Case 2.

Case II: xuv
∗⇒φ′2

xvu contains only “new” implications. Similarly to
Case II of the proof of Lemma 16, we use the notion of alternating and non-
alternating sequences of “new” implications. In a nutshell, whenever the se-
quence xuv

∗⇒BF xvu contains at least one pair of consecutive direct implica-
tions of the form xab⇒BFxac⇒BFxad, or of the form xba⇒BFxca⇒BFxda, the
sequence of implications xuv

∗⇒BF xvu is called non-alternating ; otherwise it is
called alternating. That is, if xuv

∗⇒BF xvu is alternating, then it either has the
form

xuv = xu1v1⇒BFxu2v1⇒BFxu2v2
∗⇒BF xvu = xv1u1 , (6)

or it has the form

xuv = xu1v1⇒BFxu1v2⇒BFxu2v2
∗⇒BF xvu = xv1u1

. (7)
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We now distinguish the cases where xuv
∗⇒BF xvw is an alternating or a

non-alternating sequence of implications. Note that, as all these are “new”
implications, all edges which are involved in xuv

∗⇒BF xvu have the same label
t. That is, for every variable xab that appears in the sequence xuv

∗⇒BF xvu of
implications, we have that λ(a, b) = t.

Case II-A: xuv
∗⇒BF xvu is a non-alternating sequence of implications.

This case can be treated in exactly the same way as Case II-A in the proof
of Lemma 16, where we just replace “xvw” with “xvu”. The main idea of the
proof is that, if xuv

∗⇒BF xvu is non-alternating, then there exists an implication
sequence that contains fewer “new” implications, which is a contradiction.

Case II-B: xuv
∗⇒BF xvu is an alternating sequence of implications.

First let this sequence be of the form of (6). As the implication xu1v1⇒BFxu2v1

of (6) has been added to φ′2 by Boolean-Forcing, it follows that xu2u1
= 1

and λ(u1, u2) = t. That is, there is a synchronous triangle on the vertices

{u1, v1, u2}, and we have the implication sequence xu2v1
∗⇒BF xv1u1

. Therefore,
Lines 11 and 12 of Boolean-Forcing are executed during some iteration j ≥ 1
(i.e. in the main phase) of Algorithm 4, which is a contradiction by Lemma 16.

Now let the sequence xuv
∗⇒BF xvu be of the form of (7). Similarly to Case

II-A in the proof of Lemma 16, by iteratively applying Lemma 9 (the temporal
triangle lemma), we may assume without loss of generality that the first two
implications of (7) are added to φ′2 by the synchronous triangles on the vertices
{u1, v1, v2} and {u1, v2, u2}. Furthermore, as the implications xu1v1⇒BFxu1v2

and xu1v2⇒BFxu2v2 of (7) have been added to φ′2 by Boolean-Forcing, it
follows that xu2u1

= 1 and xv1v2 = 1.

Assume that {u2, v1} /∈ E or λ(u2, v1) < t. Then φ
(0)
2SAT by definition con-

tains xu2u1
⇒
φ
(0)
2SAT

xv1u1
. Thus, since xu2u1

= 1, it follows Boolean-Forcing

sets xv1u1
= 1, which is a contradiction to the assumption that the implication

xu1v1⇒BFxu1v2 belongs to φ′2.

Assume that λ(u2, v1) > t. Then φ
(0)
2SAT by definition con-

tains xu1v1⇒φ
(0)
2SAT

xu2v1 and xu2v1⇒φ
(0)
2SAT

xu2v2 , while both these implica-

tions are “old” (as these are implications that involve non-synchronous
edges). Therefore there exists the sequence of implications xuv =

xu1v1⇒φ
(0)
2SAT

xu2v1⇒φ
(0)
2SAT

xu2v2
∗⇒BF xvu = xv1u1

, which contains fewer “new”

implications, a contradiction.
Finally assume that λ(u2, v1) = t. Then, since xu2u1

= 1 and xv1v2 = 1
and the triangles on the vertices {u1, v1, u2} and {v1, u2, v2} are synchronous, it
follows that we also have the implications xu1v1⇒BFxu2v1⇒BFxu2v2 . Therefore,
additionally to (7), also (6) is a sequence of (equally many) “new” implications
from xuv to xvu, and thus a contradiction is implied as explained above. This
completes the proof.

In the next lemma we prove a strong structural property of our algorithm.
Given this property, we will be able to show that, if the algorithm does not

30



return “NO” during the initialization phase, then the instance is actually a yes-
instance. That is, during all the subsequent iterations j ≥ 1, the algorithm
only constructs a valid transitive orientation, while the decision variant of the
problem can simply be answered at the end of the initialization phase.

Lemma 19. For every iteration j ≥ 1 of Algorithm 4, every call of Boolean-
Forcing (in Line 10 of Algorithm 4) does not return “NO”.

Proof. Boolean-Forcing can possibly return “NO” either in Lines 5-7 or in
Line 22. First note that, for every call of Boolean-Forcing in Algorithm 4,
there is a variable xab which is set to 1 (in Line 10 of Algorithm 4).

Assume that Boolean-Forcing returns “NO” in Lines 5-7. Let (xuv∨xpq)
be the clause of φ′2 which is considered in Line 5 of Boolean-Forcing. As
all forcings during the execution of Boolean-Forcing are made by assuming
that a specific variable xab = 1, we have the following:

• xab
∗⇒φ′2

xvu (as xuv = 0 in Line 5 of Boolean-Forcing)

• xab
∗⇒φ′2

xqp (as xpq = 0 in Line 6 of Boolean-Forcing)

• xvu⇒φ′2
xpq (due to the existence of the clause (xuv ∨ xpq) in φ′2)

From the above implications we have that

xab
∗⇒φ′2

xvu⇒φ′2
xpq

∗⇒φ′2
xba,

which is a contradiction by Lemma 18.
Assume that Boolean-Forcing returns “NO” in Line 22. Then, there

exists a clause NAE(xuv, xvw, xwu) in φ
(0)
3NAE such that, during the execution of

iteration j of Algorithm 4, we are forced to set each of the variables xuv, xvw, xwu
to the same truth value, say without loss of generality, xuv = xvw = xwu = 1.
Furthermore assume without loss of generality that, among these three variables,
xuv is the first one that is set to 1 by Boolean-Forcing.

Let xuv be set to 1 at an earlier iteration of Boolean-Forcing than xvw and
xwu. Then Boolean-Forcing adds (in Line 17) to φ′2 the clause (xwv ∨ xuw).
In this case, when xvw (resp. xwu) is set to 1 at a subsequent iteration of
Boolean-Forcing, xuw (resp. xwv) is also set to 1 (in Lines 5-8 of Boolean-
Forcing). This is a contradiction to our assumption that Boolean-Forcing
sets xuv = xvw = xwu = 1.

Let xuv be set to 1 at the same iteration of Boolean-Forcing as one of
the variables xvw or xwu; say, without loss of generality, with xvw. Then, as
xuv = xvw = 1, Boolean-Forcing sets xwu = 0 (in Line 21). This is again
a contradiction to our assumption that Boolean-Forcing sets xuv = xvw =
xwu = 1.

We are now ready to combine all the above technical results to obtain the
main result of this section in the next theorem, regarding the correctness and
the running time of Algorithm 4.
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Theorem 20. Algorithm 4 correctly solves TTO in polynomial time.

Proof. First assume that Algorithm 4 returns “NO”. Due to Lemma 19, this
can only happen in Line 7 of Algorithm 4, which means that Initial-Forcing

has found a contradiction in φ
(0)
3NAE ∧φ

(0)
2SAT. Thus, clearly φ

(0)
3NAE ∧φ

(0)
2SAT is not

satisfiable, i.e. (G,λ) is not transitively orientable.
Now assume that Algorithm 4 does not return “NO”. Than, during its main

phase, Algorithm 4 repeatedly calls Boolean-Forcing, and it repeatedly re-

moves clauses from φ
(0)
3NAE, until they are all removed. By Observation 15,

whenever such a clause is removed during the iteration j ≥ 1 of Algorithm 4,

this clause is satisfied by all satisfying assignments of φ
(j)
2SAT, and thus it remains

satisfied by the truth assignment that is eventually computed by Algorithm 4.

Let j0 ≥ 1 be the iteration of Algorithm 4, after which all clauses of φ
(0)
3NAE have

been removed. Then φ
(j0)
2SAT is satisfiable by Lemma 18, and the subsequent

calls of Boolean-Forcing (in Line 10 of Algorithm 4) provide a satisfying

assignment of φ
(j0)
2SAT.

Let j1 ≥ j0 be the last iteration of Algorithm 4; note that φ
(j1)
3NAE ∧ φ

(j1)
2SAT is

empty. Then, in Line 13, the algorithm gives the arbitrary truth value xi = 1
to every variable xi which did not yet get any truth value yet. This is a correct
decision as all these variables are not involved in any Boolean constraint of

φ
(j1)
3NAE ∧ φ

(j1)
2SAT (which is empty). Finally, the algorithm orients in Line 14 all

edges of G according to the corresponding truth assignment. The returned
orientation F of (G,λ) is temporally transitive as every variable was assigned
a truth value according to the Boolean constraints throughout the execution of
the algorithm.

Summarizing, the truth assignment produced by Algorithm 4 satisfies

φ
(0)
3NAE ∧ φ

(0)
2SAT, and thus the algorithm returns a valid temporally transitive

orientation of the input temporal graph (G,λ). This completes the proof of
correctness of Algorithm 4.

Lastly, we prove that Algorithm 4 runs in polynomial time. The Λ-
implication classes of (G,λ) can be clearly computed by Algorithm 1 in polyno-
mial time. Boolean-Forcing iteratively adds and removes clauses from the
2SAT formula φ′2, while it can only remove clauses from the 3NAE formula φ′3.
Whenever a clause is added to φ′2, a clause of φ′3 is removed. Therefore, as the
initial 3NAE formula φ3 has at most polynomially-many clauses, we can add
clauses to φ′2 only polynomially-many times. In all remaining steps, Boolean-
Forcing just checks clauses of φ′2 and φ′3 and it forces certain truth values
to variables, and thus the total running time of Boolean-Forcing is polyno-
mial. Furthermore, in Initial-Forcing and Algorithm 4 (the main algorithm)
the Boolean-Forcing subroutine is only invoked at most four times for ev-

ery variable in φ
(0)
3NAE ∧ φ

(0)
2SAT. Hence, we have an overall polynomial running

time.
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Figure 5: Temporal graph constructed from the formula (x ⇒ y) ∧ (x ⇒ z) ∧ (y ⇒ z) for
k = 1 with orientation corresponding to the assignment x = true, y = false, z = true. Since
this assignment does not satisfy the third clause, the dashed blue edge is required to make
the graph temporally transitive.

4. Temporal Transitive Completion

We now study the computational complexity of Temporal Transitive
Completion (TTC). In the static case, the so-called minimum comparability
completion problem, i.e. adding the smallest number of edges to a static graph
to turn it into a comparability graph, is known to be NP-hard [26]. Note that
minimum comparability completion on static graphs is a special case of TTC
and thus it follows that TTC is NP-hard too. Our other variants, however, do
not generalize static comparability completion in such a straightforward way.
Note that for Strict TTC we have that the corresponding recognition problem
Strict TTO is NP-complete (Theorem 3), hence it follows directly that Strict
TTC is NP-hard. For the remaining two variants of our problem, we show in
the following that they are also NP-hard, giving the result that all four variants
of TTC are NP-hard. Furthermore, we present a polynomial-time algorithm
for all four problem variants for the case that all edges of underlying graph are
oriented, see Theorem 22. This allows directly to derive an FPT algorithm for
the number of unoriented edges as a parameter.

Theorem 21. All four variants of TTC are NP-hard, even when the input
temporal graph is completely unoriented.

Proof. We give a reduction from the NP-hard Max-2-Sat problem [24].
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Max-2-Sat

Input: A boolean formula φ in implicative normal form8 and an integer
k.

Question: Is there an assignment of the variables which satisfies at least
k clauses in φ?

We only describe the reduction from Max-2-Sat to TTC. However, the same
construction can be used to show NP-hardness of the other variants.

Let (φ, k) be an instance of Max-2-Sat with m clauses. We construct a
temporal graph G as follows. For each variable x of φ we add two vertices
denoted vx and vx, connected by an edge with label 1. Furthermore, for each
1 ≤ i ≤ m − k + 1 we add two vertices vix and vix connected by an edge
with label 1. We then connect vix with vx and vix with vx using two edges
labeled 4. Thus vx, vx, v

i
x, v

i
x is a 4-cycle whose edges alternating between 1

and 4. Afterwards, for each clause (a⇒ b) of φ with a, b being literals, we add
a new vertex wa,b. Then we connect wa,b to va by an edge labeled 2 and to vb
by an edge labeled 3. Consider Figure 5 for an illustration. Observe that G can
be computed in polynomial time.

We claim that (G = (G,λ), ∅,m− k) is a yes-instance of TTC if and only if
φ has a truth assignment satisfying k clauses.

For the proof, begin by observing that G does not contain any triangle. Thus
an orientation of G is (weakly) (strict) transitive if and only if it does not have
any oriented temporal 2-path, i.e. a temporal path of two edges with both edges
being directed forward. We call a vertex v of G happy about some orientation if
v is not the center vertex of an oriented temporal 2-path. Thus an orientation
of G is transitive if and only if all vertices are happy.

(⇐): Let α be a truth assignment to the variables (and thus literals) of φ
satisfying k clauses of φ. For each literal a with α(a) = true, orient all edges
such that they point away from va and via, 1 ≤ i ≤ m− k + 1. For each literal
a with α(a) = false, orient all edges such that they point towards va and via,
1 ≤ i ≤ m − k + 1. Note that this makes all vertices va and via happy. Now
observe that a vertex wa,b is happy unless its edge with va is oriented towards
wa,b and its edge with vb is oriented towards vb. In other words, wa,b is happy if
and only if α satisfies the clause (a⇒ b). Thus there are at most m−k unhappy
vertices. For each unhappy vertex wa,b, we add a new oriented edge from va to
vb with label 5. Note that this does not make va or vb unhappy as all adjacent
edges are directed away from va and towards vb. The resulting temporal graph
is transitively oriented.

(⇒): Now let a transitive orientation F ′ of G′ = (G′, λ′) be given, where G′
is obtained from G by adding at most m − k time edges. Clearly we may also
interpret F ′ as an orientation induced of G. Set α(x) = true if and only if the
edge between vx and vx is oriented towards vx. We claim that this assignment
α satisfies at least k clauses of φ.

8i.e. a conjunction of clauses of the form (a⇒ b) where a, b are literals.
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First observe that for each variable x and 1 ≤ i ≤ m − k + 1, F ′ is a
transitive orientation of the 4-cycle vx, vx, v

i
x, v

i
x if and only if the edges are

oriented alternatingly. Thus, for each variable, at least one of these k+1 4-cycles
is oriented alternatingly. In particular, for every literal a with α(a) = true,
there is an edge with label 4 that is oriented away from va. Conversely, if
α(b) = false, then there is an edge with label 1 oriented towards vb (this is
simply the edge from vb).

This implies that every edge with label 2 or 3 oriented from some vertex
wc,d (where either a = c or a = d) towards va with α(a) = true requires
E(G′) \E(G) to contain an edge from wc,d to some via. Analogously every edge
with label 2 or 3 oriented from va with α(a) = false to some wc,d requires
E(G′) \ E(G) to contain an edge from va to wc,d.

Now consider the alternative orientation F ′′ obtained from α as detailed in
the converse orientation of the proof. For each edge between va and wc,d where
F ′ and F ′′ disagree, F ′′ might potentially require E(G′) \ E(G) to contain the
edge vcvd (labeled 5, say), but in turn saves the need for some edge wc,dv

i
a or

vawc,d, respectively. Thus, overall, F ′′ requires at most as many edge additions
as F ′, which are at most m − k. As we have already seen in the converse
direction, F ′′ requires exactly one edge to be added for every clause of φ which
is not satisfied. Thus, α satisfies at least k clauses of φ.

We now show that TTC can be solved in polynomial time, if all edges
are already oriented, as the next theorem states. While we only discuss the
algorithm for TTC the algorithm only needs marginal changes to work for all
other variants.

Theorem 22. An instance (G, F, k) of TTC where G = (G,λ) and G = (V,E),
can be solved in O(m2) time if F is an orientation of E, where m = |E|.

The actual proof of Theorem 22 is deferred to the end of this section. The key
idea for the proof is based on the following definition. Assume a temporal graph
G and an orientation F of G to be given. Let G′ = (V, F ) be the underlying
graph of G with its edges directed according to F . We call a (directed) path P
in G′ tail-heavy if the time-label of its last edge is largest among all edges of P ,
and we define t(P ) to be the time-label of that last edge of P . For all u, v ∈ V ,
denote by Tu,v the maximum value t(P ) over all tail-heavy (u, v)-paths P of
length at least 2 in G′; if such a path does not exist then Tu,v = ⊥. If the
temporal graph G with orientation F can be completed to be transitive, then
adding the time edges of the set

X(G, F ) := {(uv, Tu,v) | Tu,v 6= ⊥} ,

which are not already present in G is an optimal way to do so. Consider Figure 6
for an example.

Lemma 23. The set X(G, F ) can be computed in O(m2) time, where G is a
temporal graph with m time-edges and F an orientation of G.

35



a
b c

d2 1 3
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Ta,d = 3

Figure 6: Example of a tail-heavy path.

Proof. For each edge vw, we can take G′ (defined above), remove w and all
arcs whose label is larger than λ(v, w), and do a depth-first-search from v to
find all vertices u which can reach v in the resulting graph. Each of these then
has Tu,w ≥ λ(v, w). By doing this for every edge vw, we obtain Tu,w for every
vertex pair u,w. The overall running time is clearly O(m2).

Until the end of this section we are only considering the instance (G, F, k) of
TTC, where G = (G,λ), G = (V,E), and F is an orientation of G. Hence, we can
say a set X of oriented time-edges is a solution to I if X ′ := {{u, v} | (uv, t) ∈
X} is disjoint from E, satisfies |X| = |X ′| ≤ k, and F ′ := F ∪{uv | (uv, t) ∈ X}
is a transitive orientation of the temporal graph G + X := ((V,E ∪ X ′), λ′),
where λ′(e) := λ(e) if e ∈ E and λ′(u, v) := t if X contains (uv, t) or (vu, t).

The algorithm we use to show Theorem 22 will use X(G, F ) to construct
a solution (if there is any) of a given instance (G, F, k) of TTC where F is a
orientation of E. To prove the correctness of this approach, we make use of the
following.

Lemma 24. Let I = (G = (G,λ), F, k) be an instance of TTC, where G =
(V,E) and F is an orientation of E and X an solution for I. Then, for any
(vu, Tv,u) ∈ X(G, F ) there is a (vu, t) in G +X with t ≥ Tv,u.

Proof. Let (v0v`, Tv0,v`) ∈ X(G, F ), and G′ = (V, F ). Hence, there is a tail-
heavy (v0, v`)-path P in G′ of length ` ≥ 2. If ` = 2, then clearly G + X
must contain the time edge (v1v`, t) such that t ≥ Tv1,v` . Now let ` > 2 and
V (P ) := {vi | i ∈ {0, 1, . . . , `}} and E(P ) = {vi−1vi | i ∈ [`]}. Since there is
a tail-heavy (v`−2, v`)-path in G′ of length 2, G + X must contain a time-edge
(v`−2v`, t) with t ≥ Tv0,v` . Therefore, the (directed) underlying graph of G +X
contains a tail-heavy (v0, v`)-path of length ` − 1. By induction, G + X must
contain the time edge (v1v`, t

′) such that t′ ≥ t ≥ Tv0,v` .

Form Lemma 24, it follows that we can use X(G, F ) to identify no-instances
in some cases.

Corollary 25. Let I = (G = (G,λ), F, k) be an instance of TTC, where G =
(V,E) and F is an orientation of E. Then, I is a no-instance, if for some
v, u ∈ V

1. there are time-edges (vu, t) ∈ X(G, F ) and (uv, t′) ∈ X(G, F ),

2. there is an edge uv ∈ F such that (vu, Tv,u) ∈ X(G, F ), or

3. there is an edge vu ∈ F such that (vu, Tv,u) ∈ X(G, F ) with λ(v, u) < Tv,u.
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We are now ready to prove Theorem 22.

Proof of Theorem 22. Let I = (G = (G,λ), F, k) be an instance of TTC, where
F is a orientation of E. First we compute X(G, F ) in polynomial time, see
Lemma 23. Let Y = {(vu, t) ∈ X(G, F ) | {v, u} 6∈ E} and report that I is
a no-instance if |Y | > k or one of the conditions of Corollary 25 holds true.
Otherwise report that I is a yes-instance. This gives an overall running time of
O(m2).

Clearly, if one of the conditions of Corollary 25 holds true, then I is a no-
instance. Moreover, by Lemma 24 any solution contains at least |Y | time edges.
Thus, if |Y | > k, then I is a no-instance.

If we report that I is a yes-instance, then we claim that Y is a solution for
I. Let F ′ ⊇ F be a orientation of G + Y . Assume towards a contradiction that
F ′ is not transitive. Then, there is a temporal path ((vu, t1), (uw, t2)) in G + Y
such that there is no time-edge (uw, t) in G + Y , with t ≥ t2. By definition
of X(G, F ), the directed graph G′ = (V, F ) contains a tail-heavy (v, u)-path
P1 with t1 = t(P1) and a tail-heavy (u,w)-path P2 with t2 = t(P2) ≥ t1. By
concatenation of P1 and P2, we obtain that the G′ contains a (v, w)-path P ′

of length at least two such that t2 = t(P ′). Thus, t2 ≤ Tv,w and (vw, Tv,w) ∈
X(G)—a contradiction.

Using Theorem 22 we can now prove that TTC is fixed-parameter tractable
(FPT) with respect to the number of unoriented edges in the input temporal
graph G.

Corollary 26. Let I = (G = (G,λ), F, k) be an instance of TTC, where G =
(V,E). Then I can be solved in O(2q · m2), where q = |E| − |F | and m the
number of time edges.

Proof. Note that there are 2q ways to orient the q unoriented edges. For each
of these 2q orientations of these q edges, we obtain a fully oriented temporal
graph. Then we can solve TTC on each of these fully oriented graphs in O(m2)
time by Theorem 22. Summarizing, we can solve TTC on I in 2q ·m2 rime.

5. Deciding Multilayer Transitive Orientation

In this section we prove that Multilayer Transitive Orientation
(MTO) is NP-complete, even if every edge of the given temporal graph has
at most two labels. Recall that this problem asks for an orientation F of a
temporal graph G = (G,λ) (i.e. with exactly one orientation for each edge of G)
such that, for every “time-layer” t ≥ 1, the (static) oriented graph defined by the
edges having time-label t is transitively oriented in F . As we discussed in Sec-
tion 2, this problem makes more sense when every edge of G potentially has
multiple time-labels, therefore we assume here that the time-labeling function
is λ : E → 2N.

Theorem 27. MTO is NP-complete, even on temporal graphs with at most
two labels per edge.
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Figure 7: Temporal graph constructed from the formula NAE(x1, x2, x2) ∧ NAE(x1, x2, x3) and
orientation corresponding to setting x1 = false, x2 = true, and x3 = false. Each attach-
ment vertex is at the clockwise end of its edge.

Proof. We give a reduction from monotone Not-All-Equal-3Sat, which is
known to be NP-hard [44]. So let φ =

∧m
i=1 NAE(yi,1, yi,2, yi,3) be a monotone

Not-All-Equal-3Sat instance and X := {x1, . . . , xn} :=
⋃m
i=1{yi,1, yi,2, yi,3}

be the set of variables.
Start with an empty temporal graph G. For every clause NAE(yi,1, yi,2, yi,3),

add to G a triangle on three new vertices and label its edges ai,1, ai,2, ai,3. Give
all these edges label n+1. For each of these edges, select one of its endpoints to
be its attachment vertex in such a way that no two edges share an attachment
vertex. Next, for each 1 ≤ i ≤ n, add a new vertex vi. Let Ai := {ai,j | yi,j =
xi}. Add the label i to every edge in Ai and connect its attachment vertex to
vi with an edge labeled i. See also Figure 7.

We claim that G is a yes-instance of MTO if and only if φ is satisfiable.

(⇐): Let α : X → {true, false} be an assignment satisfying ω. For every
xi ∈ X, orient all edges adjacent to vi away from vi if α(xi) = true and
towards vi otherwise. Then, orient every edge ai,j towards its attachment vertex
if α(yi,j) = true and away from it otherwise.

Note that in the layers 1 through n every vertex either has all adjacent edges
oriented towards it or away from it. Thus these layers are clearly transitive. It
remains to consider layer n + 1 which consists of a disjoint union of triangles.
Each such triangle ai,1, ai,2, ai,3 is oriented non-transitively (i.e. cyclically) if
and only if α(yi,1) = α(yi,2) = α(yi,3), which never happens if α satisfies φ.

(⇒): Let ω be an orientation of the underlying edges of G such that every layer
is transitive. Since they all share the same label i, the edges adjacent to vi must
be all oriented towards or all oriented away from vi. We set α(xi) = false

in the former and α(xi) = true in the latter case. This in turn forces each
edge ai,j to be oriented towards its attachment vertex if and only if α(ai,j) =
true. Therefore, every clause NAE(yi,1, yi,2, yi,3) is satisfied, since the three edges
ai,1, ai,2, ai,3 form a triangle in layer n+1 and can thus not be oriented cyclically
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(i.e. all towards or all away from their respective attachment vertices).

6. Conclusion

We introduced and studied four natural variants of temporal graph tran-
sitivity. Although these four variants look superficially similar, they turn out
to have massive differences in their computational complexity. Two variants
(Strong TTO and Strong Strict TTO) are solvable by straightforward re-
ductions to 2SAT. For TTO we provided a technically involved polynomial-time
algorithm which solves the problem by first reducing it to the satisfiability of a
mixed Boolean formula (having both clauses with three and with two literals)
and by then using a series of structural properties to devise a polynomial-time
algorithm. That is, we reduce TTO to the satisfiability problem of a special
subclass of mixed Boolean formulas which turns out to be efficiently solvable.
We leave it open for future research whether a compact set of conditions can be
given which define this subclass of mixed Boolean formulas, as this might be of
independent interest. The last variant Strict TTO turns out to be NP-hard.

We further studied the “completion”-problem corresponding to each of the
four temporal transitivity variants, that is, finding the minimum number of time
edges that need to be added to a given temporal graph to make it transitive.
We show for all four completion problem variants that they are NP-hard. How-
ever if the edges of the temporal input graph are already oriented, we obtain
polynomial-time solvability which we can easily generalize to an FPT-algorithm
for the number of unoriented edges as a parameter. Here, we in particular
leave the parameterized complexity with respect to the solution size or other
parameters open for future research. Lastly, we investigate a natural extension
of transitivity to multilayer graphs and show that deciding whether a given
multilayer graph is transitive is NP-hard.
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