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Abstract

In this paper we introduce a new operation for Linear Programming (LP), called LP comple-
mentation, which resembles many properties of LP duality. Given a maximisation (resp. minimisa-
tion) LP P , we define its complement Q as a specific minimisation (resp. maximisation) LP which
has the same objective function as P . Our central result is the LP complementation theorem,
that relates the optimal value Opt(P ) of P and the optimal value Opt(Q) of its complement by

1
Opt(P ) + 1

Opt(Q) = 1. The LP complementation operation can be applied if and only if P has an

optimum value greater than 1.
To illustrate this, we first apply LP complementation to hypergraphs. For any hypergraph H,

we review the four classical LPs, namely covering K(H), packing P (H), matching M(H), and
transversal T (H). For every hypergraph H = (V,E), we call H = (V, {V \ e : e ∈ E}) the
complement of H. For each of the above four LPs, we relate the optimal values of the LP for the
dual hypergraph H∗ to that of the complement hypergraph H (e.g. 1

Opt(K(H∗)) + 1
Opt(K(H))

= 1).

We then apply LP complementation to fractional graph theory. We prove that the LP for the
fractional in-dominating number of a digraph D is the complement of the LP for the fractional total
out-dominating number of the digraph complement D of D. Furthermore we apply the hypergraph
complementation theorem to matroids. We establish that the fractional matching number of a
matroid coincide with its edge toughness.

As our last application of LP complementation, we introduce the natural problem Vertex
Cover with Budget (VCB): for a graph G = (V,E) and a positive integer b, what is the
maximum number tb of vertex covers S1, . . . , Stb of G, such that every vertex v ∈ V appears in
at most b vertex covers? The integer b can be viewed as a “budget” that we can spend on each
vertex and, given this budget, we aim to cover all edges for as long as possible. We relate VCB
with the LP QG for the fractional chromatic number χf of a graph G. More specifically, we prove
that, as b → ∞, the optimum for VCB satisfies tb ∼ tf · b, where tf is the optimal solution to the
complement LP of QG. Finally, our results imply that, for any finite budget b, it is NP-hard to
decide whether tb ≥ b + c for any 1 ≤ c ≤ b− 1.

1 Introduction

1.1 Background

Many optimisation problems can be expressed as, or reduced to, Linear Programs (LPs) or Integer
Programs (IPs) [11]. As such, the use of Linear Programming is ubiquitous [14], with applications in
combinatorial optimisation, combinatorics, industrial engineering, coding theory, etc. One of the key
aspects of Linear Programming is LP duality, and in particular the strong LP duality theorem which
states that the optimal value of an LP is equal to that of its dual [13].

Many classical problems from graph theory, e.g. maxmimum matching, minimum vertex cover,
chromatic number, independence number, clique number, minimum dominating set, domatic number,
etc. can be expressed as Integer Programs (IPs). Fractional graph theory then investigates these
problems with three main approaches (see the book by Scheinerman and Ullman [12] for a survey).
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First, it studies the Linear Programming (LP) relaxations of these IPs, some of which have found
applications of their own, e.g fractional chromatic number or fractional domatic number for scheduling
[1, 5]. Second, it applies LP techniques to either the original IP problems or their LP relaxations.
Amongst those, LP duality is one of the most powerful and ubiquitous [13]. Third, it generalises the
results to hypergraphs in order to get a clearer framework. In particular, hypergraph duality, where
the roles of vertices and edges are swapped, is common practice.

Motivating example. We illustrate the main contributions of this paper, namely LP and hyper-
graph complementations, via a simple example first. A vertex cover of a graph is a set of vertices that
includes at least one endpoint of every edge of the graph. A stable set of a graph is a set of pairwise
non-adjacent vertices. Consider the following problem Vertex Cover with Budget (VCB). Given
a graph G and a vertex budget b ≥ 1, find the largest collection S1, . . . , Stb of vertex covers such that
every vertex belongs to at most b of the Si’s. As b tends to infinity, the optimum satisfies tb ∼ tf · b,
where tf is defined as follows. Let A be the incidence matrix of vertex covers of G, where Ave = 1
if and only if v belongs to the vertex cover e. Then tf = max{1⊤x : Ax ≤ 1, x ≥ 0}. For instance,
the pentagon C5 has eleven vertex covers: all complements of non-edges and all sets of four or five
vertices. We obtain

A(C5) =



1 0 1 0 1 1 0 1 1 1 1

1 1 0 1 0 1 1 0 1 1 1

0 1 1 0 1 1 1 1 0 1 1

1 0 1 1 0 1 1 1 1 0 1

0 1 0 1 1 0 1 1 1 1 1


, tf(C5) = max{1⊤x : Ax ≤ 1, x ≥ 0} =

5

3
.

In general, the tf quantity has received very little attention. LP complementation then links it to the
much more well studied fractional chromatic number of graphs [12]. A c-multicolouring of G is the
smallest size of a collection of stable sets S1, . . . , Sχc , such that each vertex belongs to at least c of
the Si’s. As c tends to infinity, the optimum satisfies χc ∼ χf · c, where χf is the fractional chromatic
number of G. We have χf = min{1⊤x : (1 − A)x ≥ 1, x ≥ 0}, where 1 − A is the incidence matrix of
stable sets of G. For instance, for C5,

1−A(C5) =



0 1 0 1 0 0 1 0 0 0 0

0 0 1 0 1 0 0 1 0 0 0

1 0 0 1 0 0 0 0 1 0 0

0 1 0 0 1 0 0 0 0 1 0

1 0 1 0 0 1 0 0 0 0 0


, χf(C5) = min{1⊤x : (1−A)x ≥ 1, x ≥ 0} =

5

2
.

The relation between vertex covers and stable sets is an example of hypergraph complementation,
and accordingly, the tf and χf terms are examples of LP complementation. We shall prove that
these two values form a complement pair, i.e. 1

tf
+ 1

χf
= 1, which is easily verified for C5. Therefore,

computing the fractional chromatic number immediately yields the asymptotic behaviour of the vertex
cover with budget problem.

1.2 Our contributions

In this subsection, we give an overview of the contributions of this paper. Here, we provide a selected
number of definitions and simplified statements of results that shall be proved in the rest of the paper.
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1.2.1 Linear Programming Complementation

In this paper we introduce the notion of the complement of an LP R, which we denote by R, as follows.
Let c ∈ Rn, b ∈ Rm, A ∈ Rm×n, then for the following maximisation LP P , we have

P : max{c⊤x : Ax ≤ b},
P : min{c⊤x : (bc⊤ −A)x ≥ b}.

Similarly, let v ∈ Rn, u ∈ Rm, M ∈ Rm×n, then for the following minimisation LP Q, we have

Q : min{v⊤x : Mx ≥ u},
Q : max{v⊤x : (uv⊤ −M)x ≤ u}.

To simplify notation, in the remainder of the paper we use the notation P (resp. Q) to denote a
maximisation (resp. minimisation) LP, while we use R to denote an arbitrary LP which can be either
a maximisation or a minimisation LP. Furthermore, for any linear program R, adding the constraint
that the variables have to be integral yields an integer program, which we denote RZ.

LP complementation theorem. Our central result is a surprising relation between the optimal
values of an LP and its complement, given that one of these values is finite and larger than 1.

Theorem 1.1 (LP complementation theorem). For any LP R, 1 < Opt(R) < ∞ if and only if
1 < Opt(R) < ∞, in which case

1

Opt(R)
+

1

Opt(R)
= 1.

Alternatively, the theorem states that the harmonic mean of the optimal values of the LP and its
complement is 2. Consequently, the two values are separated by 2, and one value is equal to 2 if and
only if the other is equal to 2.

Natural interpretation of LP complementation. The links between two-player zero-sum (ma-
trix) games and LP are well established; see [4,15] for instance. We shall review these and then show
that LP complementation can be interpreted using two complementary games.

Given any m × n matrix A, the matrix game ΓA with payoff matrix A is played by two persons,
Rose and Colin, as follows. Rose selects a row of A, Colin a column. If the row i and the column j
are chosen, then Rose’s payoff is aij . In particular, if aij > 0, then Rose earns money; otherwise, Rose
loses money.

A strategy for Colin is then a probability distribution on the columns: c = (c1, . . . , cn)⊤ such that
c ≥ 0 and 1⊤c = 1. Rose’s expected payoff for a given strategy c for Colin is then vc = maxi{Aic},
where Ai is the i-th row of Ai; thus Ac ≤ vc · 1. Colin aims at minimising Rose’s expected payoff.
The value of the game, denoted as V , is the minimum expected of Rose’s payoff over all strategies for
Colin.

Without loss of generality, suppose that 0 ≤ A ≤ 1. Then the value V of the game is also between
0 and 1; let us omit the two extreme cases and suppose that 0 < V < 1. For any strategy c for Colin
with payoff vc, let x = 1

vc
c, then we have x ≥ 0, Ax ≤ 1, and 1⊤x = 1

vc
. Minimising Rose’s expected

payoff vc then corresponds to maximising 1⊤x. We can then express V = 1/Opt(P ), where

P : max{1⊤x : Ax ≤ 1, x ≥ 0}.

LP duality then corresponds to taking Rose’s point of view: V = 1/Opt(P ∗), with

P ∗ : min{1⊤y : A⊤y ≥ 1, y ≥ 0}.

LP complementation, on the other hand, corresponds to taking the complementary payoff. Con-
sider a second game, where the players change their roles (Rose chooses columns of the payoff matrix
and Colin chooses rows), and the payoff is equal to 1 minus the original payoff. Thus, the new payoff
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matrix is (1 − A⊤) and the value of the new game is V = 1 − V . But then, we have V = 1/Opt(Q),
where

Q = P : min{1⊤y : (1 −A)y ≥ 1, y ≥ 0}.

We then have Opt(P ) > 1 and Opt(P ) > 1 and

1

Opt(P )
+

1

Opt(P )
= 1.

Consequence for integer programming & Bounds. Let P be a maximisation LP. LP duality
can be naturally used to study P , as any feasible solution to the dual P ∗ gives an upper bound on
the optimal value of P . However, a feasible solution to the dual does not provide much information
about feasible solutions of the primal. LP complementation works differently, as a feasible solution to
the complement immediately yields a feasible solution to the primal by simple scaling. However, it
only gives a lower bound on the optimal value. The primal and its complement then “work together”
towards their optimal solutions and values.

The relationship between feasible solutions to the primal and the complement has some important

consequences for IPs. Firstly, from P and P , we obtain four programs Ps, Ps
Z, (P )t, and (P )t

Z
(where

s and t come from an optimal solution of P and its value), which have a common optimal solution–see
Corollary 2.4.

Secondly, we introduce the bounds α(PZ) and β(P
Z

) on the optimal values of P and P , respectively.

These bounds are based on feasible solutions of PZ and P
Z

, respectively. We then prove that these
bounds are “mutually tight” for the primal-complement pair (they are actually tight for the vertex
cover with budget problem on C5).

Theorem 1.2. Let P : max{c⊤x : Ax ≤ b}, where b > 0 and A ̸= 0, such that 1 < Opt(PZ) ≤
Opt(P

Z
) < ∞. Then Opt(PZ) ≤ α(PZ) ≤ Opt(P ), Opt(P ) ≤ β(P

Z
) ≤ Opt(P

Z
) and

Opt(P ) = α(PZ) ⇐⇒ Opt(P ) = β(P
Z

).

Hypergraph complementation. For a hypergraph H = (V,E) with n vertices and m edges, its
incidence matrix is denoted by MH ∈ Rn×m. The dual of the hypergraph H is H∗ = (E, V ∗), where
V ∗ = {Ev : v ∈ V } and Ev = {e ∈ E : v ∈ e}. We then have MH∗ = (MH)⊤ and (H∗)∗ ∼= H.

Now we define the complement of H as H = (V, {V \e : e ∈ E}); note that MH = 1−MH . Hyper-

graph complementation is an involution that commutes with duality, i.e. H = H and (H∗) =
(
H
)∗.

A covering of a hypergraph H is a set of edges whose union is equal to its set of vertices V . The
covering number k(H) of H is the minimum size of a covering of H; this can be formulated as the
optimum of an integer program. The fractional covering number kf(H) of H is the optimal value of
the LP K(H) that is obtained by removing the integrality constraints.

It can be easily shown that K(H∗) = K(H)∗. By applying the LP complementation theorem to
K(H), we obtain the hypergraph complementation theorem, as follows.

Theorem 1.3 (Hypergraph complementation theorem). For any hypergraph H,

1

kf(H∗)
+

1

kf(H)
= 1.

Applying LP duality and hypergraph duality to K(H) yields four standard LPs
K(H), P (H), T (H),M(H) for hypergraphs, given in Table 1 and related in Figure 1 [12]. By applying
LP complementation to these four LPs, we obtain the four new LPs K(H), P (H), T (H),M(H). The
new notions of LP complementation and hypergraph complementation allow us to establish a formal
relation of these four LPs with the four original LPs; see Figure 2 for an illustration.
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Covering number, kf(H)
min # edges to cover all vertices

K(H) : min{1⊤x : MHx ≥ 1, x ≥ 0}

Packing number, pf(H)
max # vertices, no two in the same edge

P (H) : max{1⊤x : M⊤
Hx ≤ 1, x ≥ 0}

Transversal number, τf(H)
min # vertices to touch all edges

T (H) : min{1⊤x : M⊤
Hx ≥ 1, x ≥ 0}

Matching number, µf(H)
max # pairwise disjoint edges

M(H) : max{1⊤x : MHx ≤ 1, x ≥ 0}

Table 1: Four standard LPs for hypergraphs: covering, packing, transversal, and matching numbers
of a hypergraph.

K(H) P (H) = K(H)∗

T (H) = K(H∗) M(H) = K(H∗)∗

•

•

•

•

LP duality Hypergraph duality

Figure 1: The four initial Linear Programs related to a hypergraph.

K(H) P (H)

T (H) M(H)

K(H) = M(H) P (H) = T (H)

T (H) = P (H) M(H) = K(H)

•

•

•

•

•

•

•

•

LP duality LP complementation Hypergraph duality Hypergraph complementation

Figure 2: The eight Linear Programs related to a hypergraph.

The hypergraph complementation theorem then holds for all four parameters in Table 1.

Corollary 1.4. For any hypergraph H, we have

1

kf(H∗)
+

1

kf(H)
=

1

pf(H∗)
+

1

pf(H)
=

1

µf(H∗)
+

1

µf(H)
=

1

τf(H∗)
+

1

τf(H)
= 1.

1.2.2 The impact of LP complementation to related problems

Here we give a brief overview of the implications that LP Complementation has in the following two
case studies. Full details are given in Sections 4 and 5, respectively.

Case study 1: Fractional graph theory. We give two applications of the hypergraph comple-
mentation theorem to graph theory.
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Firstly, fractional domination in digraphs provides a setting where LP complementation and hy-
pergraph complementation naturally arise. An in-dominating set of a digraph D is a set S of vertices
such that for any vertex v ∈ V (D), either v ∈ S or there exists s ∈ S such that (s, v) ∈ E(D);
similarly a total in-dominating set is a set T of vertices such that for any vertex v, there exists t ∈ T
such that (t, v) ∈ E(D). Out-dominating and total out-dominating sets are defined similarly. The
in-dominating number is the smallest cardinality of an in-dominating number; as expected, the total
out-dominating number is the smallest cardinality of a total out-dominating set. We relate the frac-
tional in-dominating number of a digraph D and the fractional total out-dominating number of its
digraph complement D as follows.

Theorem 1.5 (Domination complementation theorem). For any digraph D, we have that 1
γin

f(D)
+

1
Γout

f(D)
= 1.

This theorem is very general, as it holds for all digraphs, and provides more specific relations
about domination numbers for graphs, tournaments, and regular digraphs. The last one is itself a
generalisation of the result in [12, Theorem 7.4.1], which only applies to regular graphs.

Secondly, we apply the hypergraph complementation theorem to matroids. We establish that the
fractional matching number of a matroid coincides with its edge toughness. This result can then be
applied to graphic matroids, yielding a formula for the edge toughness of a graph. Moreover, we derive
an alternative proof of the relationship between the edge toughness of a matroid and the fractional
covering number of its dual matroid.

Case study 2: Vertex cover with budget. We further investigate the Vertex Cover with
Budget problem. First, using our LP complementation results we relate the “time per budget” ratio
tf to the fractional chromatic number χf of the graph by 1

tf
+ 1

χf
= 1. Second, we show that, surprisingly,

for any finite budget we can also relate the optimal time with multicolourings of the graph. Finally,
we prove that, computing an optimum solution, where the budget is finite, is NP-complete.

The rest of the paper is organised as follows. Section 2 first gives the LP complementation theorem.
It then investigates its consequences to IP and derives the α and β bounds. In Section 3, we introduce
the complement of a hypergraph and apply the LP complementation theorem to obtain the hypergraph
complementation theorem. In Section 4, we apply the hypergraph complementation theorem to obtain
general results on the fractional dominating number of digraphs and to obtain a new proof of a result
on the edge toughness of matroids. Finally, Section 5 applies our results from Sections 2 and 3 to the
VCB problem.

2 Linear Programming complementation

2.1 The LP complementation theorem

For any linear program (LP) R which is feasible and bounded, we denote its optimal value as Opt(R).
If P is a maximisation problem, then we denote Opt(P ) = −∞ if P is infeasible and Opt(P ) = ∞
if P is unbounded. Similarly, if Q is a minimisation problem, then we denote Opt(Q) = ∞ if Q
is infeasible and Opt(Q) = −∞ if Q is unbounded. We denote the all-zero vector or matrix as 0,
regardless its dimension; similarly, the all-ones vector or matrix is denoted as 1.

We define the complement of an LP R, which we denote R, as follows. Let c ∈ Rn, b ∈ Rm,
A ∈ Rm×n, then for the following maximisation LP P , we have

P : max{c⊤x : Ax ≤ b},
P : min{c⊤x : (bc⊤ −A)x ≥ b}.

Similarly, let v ∈ Rn, u ∈ Rm, M ∈ Rm×n, then for the following minimisation LP Q, we have

Q : min{v⊤x : Mx ≥ u},
Q : max{v⊤x : (uv⊤ −M)x ≤ u}.
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The definition above is extended to general LPs in Table 2.

Primal R Complement R

max c⊤x min c⊤x

Alx ≤ bl (blc
⊤ −Al)x ≥ bl

Aex = be (bec
⊤ −Ae)x = be

Agx ≥ bg (bgc
⊤ −Ag)x ≤ bg

xl ≤ 0 xl ≤ 0

xg ≥ 0 xg ≥ 0

xf free xf free

Table 2: General definition of LP complement.

Complementation is an involution, i.e. R = R. Moreover, complementation commutes with duality:
indeed, if R∗ denotes the dual of R, then we have (R∗) =

(
R
)∗.

Say two real numbers x, y > 1 are a complement pair if 1
x + 1

y = 1. The main result is that, provided

1 < Opt(R) < ∞ or 1 < Opt(R) < ∞, then the optimal values of R and R form a complement pair.

Theorem 2.1 (LP complementation theorem). For any LP R, 1 < Opt(R) < ∞ if and only if
1 < Opt(R) < ∞, in which case

1

Opt(R)
+

1

Opt(R)
= 1.

Proof. Without loss of generality, let P : max{c⊤x : Ax ≤ b}. Suppose 1 < Opt(P ) < ∞, say
Opt(P ) = 1 + a for some a > 0. Let x be an optimal solution of P , and let x = 1

ax. We then have

(bc⊤ −A)x =
1 + a

a
b− 1

a
Ax ≥ b,

and hence x is a feasible solution of P , with value 1 + 1
a .

We have just shown that P has a feasible solution of value greater than one. We now prove that
Opt(P ) > 1. For the sake of contradiction, suppose that P has a feasible solution with value at most
1, then for any ϵ > 0, P has a feasible solution y with value 1 + ϵ. Let y = 1

ϵy, then by the same
reasoning as above, y is a feasible solution of P with value 1 + 1

ϵ ; we conclude that P is unbounded,
which is the desired contradiction.

Having established that 1 < Opt(P ) < ∞, we find that the first paragraph showed that

1

Opt(P )
+

1

Opt(P )
≥ 1

a + 1
+

a

a + 1
= 1.

We now prove the reverse inequality. Let Opt(P ) = 1 + ā with a > 0 and x be an optimal solution
of P . Then x = 1

ax is a feasible solution of P with value 1 + 1
a , and we obtain

1

Opt(P )
+

1

Opt(P )
≤ a

a + 1
+

1

a + 1
= 1.

The case where we suppose 1 < Opt(P ) < ∞ instead is similar and hence omitted.

Observation 2.2. If (a, b) form a complement pair, with a ≤ b, then a ≤ 2 ≤ b. Moreover, the
following are equivalent: a = 2; b = 2; a = b.

The LP complementation theorem then has this immediate consequence.

Corollary 2.3. Suppose 1 < Opt(P ) ≤ Opt(P ) < ∞. Then

Opt(P ) ≤ 2 ≤ Opt(P ).

Moreover, the following are equivalent: Opt(P ) = 2; Opt(P ) = 2; Opt(P ) = Opt(P ).
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2.2 Feasibility and boundedness

The strong duality theorem not only states that the optimal values of a primal LP and that of its dual
are equal whenever they are finite, but it also considers the case of infeasibility and unboundedness:
if an LP is unbounded, then its dual is infeasible; if the dual is unbounded, then the LP is infeasible;
it is also possible that both the LP and its dual are infeasible. Duality hence considers three possible
scenarios for a maximisation LP P : Opt(P ) = −∞, −∞ < Opt(P ) < ∞, and Opt(P ) = ∞; then
only four scenarios are possible for the primal-dual pair (P, P ∗).

Complementation, on the other hand, considers four possible scenarios for P : Opt(P ) = −∞,
−∞ < Opt(P ) ≤ 1, 1 < Opt(P ) < ∞ and Opt(P ) = ∞. So this could make up to sixteen
scenarios for the primal-complement pair (P, P ). The LP complementation theorem implies that if
1 < Opt(P ) < ∞, then so does Opt(P ) and vice versa. The proof of Theorem 2.1 also shows that
if Opt(P ) > 1, then P is feasible, i.e. Opt(P ) < ∞. Therefore, if Opt(P ) = ∞, then Opt(P ) ≤ 1.
This leaves nine possible scenarios; for each of those we give an example in Table 3 below.

P P Opt(P ) Opt(P )

max{x : x ≤ b} min{x : (b− 1)x ≥ b} b > 1 b
b−1 > 1

max{x : x ≤ 0, x ≥ 1} min{x : x ≤ 0} −∞ −∞

max{−x : x ≥ 1, x ≤ 0} min{−x : −2x ≤ 1, x ≤ 0} −∞ 0

max{x : x ≤ 1, x ≥ 2} min{x : 0 ≥ 1} −∞ ∞

max{−x : x ≥ 0} min{−x : x ≥ 0} 0 −∞

max{x : x = 0} min{x : x = 0} 0 0

max{x : x ≤ 1} min{x : 0 ≥ 1} 1 ∞

max{x : x ≥ 2} min{x : x ≤ 2} ∞ −∞

max{x : x ≥ 0} min{x : x ≥ 0} ∞ 0

Table 3: Examples of the nine possible scenarios for (Opt(P ),Opt(P )). Here x is a single variable.

2.3 Consequence for integer programming

The proof of Theorem 2.1 actually shows that, whenever Opt(P ) > 1, x is an optimal solution of P if
and only if 1

Opt(P )−1x is an optimal solution of P . This has a consequence for integer programming.
For any linear program R, adding the constraint that the variables be integral yields an integer

program, which we denote RZ. We consider the LPs in the following form P : max{c⊤x : Ax ≤ b}
and Q : min{v⊤x : Mx ≥ u}. For any s, t ∈ N, we then introduce

Ps : max{c⊤x : Ax ≤ sb},
Qt : min{v⊤x : Mx ≥ tu}.

Clearly, Opt(Ps) = sOpt(P ) and Opt(Qt) = tOpt(Q).
The LP complementation theorem has two consequences for IPs of the form Ps

Z or Qt
Z. We give

these for Ps
Z below; their counterparts for Qt

Z are analogous and hence omitted.

Corollary 2.4. Suppose P : max{c⊤x : Ax ≤ b}, where A, b, and c are all rational. Let s, t ∈ N such
that x̃ ∈ (Z/s)n is an optimal solution of P with value 1 + t

s > 1. Then

1. The four optimisation problems Ps, Ps
Z, (P )t, and (P )t

Z
all have a common integral optimal

solution x̂ = sx̃ of value s + t.
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2. We have Opt(Pst
Z) = Opt(Pst) and Opt((P )st

Z
) = Opt((P )st), thus

1

Opt(Pst
Z)

+
1

Opt((P )st
Z

)
=

1

st
.

Proof. 1. By definition, x̂ is an optimal solution of Ps with value s + t. Since x̂ = t 1
Opt(P )−1 x̃, we

obtain that x̂ is also an optimal solution of (P )t. Moreover, x̂ is integral, therefore it is also an

optimal solution of Ps
Z and (P )t

Z
.

2. It is easily seen that for any LP R and any a ∈ N, if Ra has an integral optimal solution, then
so does Rab for any b ∈ N. By item 1, Ps and (P )t both have integral optimal solutions, thus so
do Pst and (P )st. Applying the LP complementation theorem then finishes the proof.

2.4 Bounds

Let P : max{c⊤x : Ax ≤ b}, where b > 0 and A ̸= 0. Let Q : min{v⊤x : Mx ≥ u} with u > 0 and
M ̸= 0. We remark that x = 0 is a feasible solution of both P and Q. Let Ai and Mi denote the i-th
rows of A and M , respectively. We define the rank function of P and Q, respectively by

ρP (x) = max

{
Aix

bi
: 1 ≤ i ≤ m

}
σQ(x) = min

{
Mix

ui
: 1 ≤ i ≤ m

}
.

Then x is a feasible solution of P (of Q, respectively) if and only if ρP (x) ≤ 1 (σQ(x) ≥ 1, respectively).
We now introduce

α(P ) = sup

{
c⊤x

ρP (x)
: ρP (x) < c⊤x

}
,

β(Q) = inf

{
v⊤x

σQ(x)
: 0 < σQ(x)

}
.

We also introduce the counterparts for the IPs as

α(PZ) = sup

{
c⊤x

ρP (x)
: ρP (x) < c⊤x, x ∈ Zn

}
,

β(QZ) = inf

{
v⊤x

σQ(x)
: 0 < σQ(x), x ∈ Zn

}
.

Suppose that 1 < Opt(PZ) < ∞ and 1 < Opt(P
Z

) < ∞. We prove that α(PZ) and β(P
Z

) are
complement pairs. (The same is true for α(P ) and β(P ), as we shall prove later.)

Lemma 2.5. If 1 < Opt(PZ) < ∞ and 1 < Opt(P
Z

) < ∞, then we have

1

α(PZ)
+

1

β(P
Z

)
= 1.

Proof. By definition, we have ρP (x) + σP (x) = c⊤x. Therefore,

1 − 1

α(PZ)
= 1 − inf

{
ρP (x)

c⊤x
: ρP (x) < c⊤x, x ∈ Zn

}
= sup

{
c⊤x− ρP (x)

c⊤x
: ρP (x) < c⊤x, x ∈ Zn

}
=

1

inf
{

c⊤x
σP (x) : 0 < σP (x), x ∈ Zn

}
=

1

β(P
Z

)
.

9



We obtain the more complete version of Theorem 1.2 as follows.

Theorem 2.6. Let P : max{c⊤x : Ax ≤ b}, where b > 0 and A ̸= 0. Let Q : min{v⊤x : Mx ≥ u}
with u > 0 and M ̸= 0.

1. If Opt(PZ) > 1, then 1 < Opt(PZ) ≤ α(PZ) ≤ α(P ) = Opt(P ).

2. If Opt(QZ) > 1, then Opt(Q) = β(Q) ≤ β(QZ) ≤ Opt(QZ).

3. If 1 < Opt(PZ) ≤ Opt(P
Z

) < ∞, then Opt(P ) = α(PZ) ⇐⇒ Opt(P ) = β(P
Z

).

Proof. 1. We prove the bounds on α.

(a) Opt(PZ) ≤ α(PZ). Let x′ be an optimal solution of PZ. Then 0 < ρP (x′) ≤ 1 < c⊤x′,
thus

α(PZ) ≥ c⊤x′

ρP (x′)
≥ c⊤x′ = Opt(PZ).

(b) α(PZ) ≤ α(P ). By definition.

(c) α(P ) ≤ Opt(P ). Let x′′ be such that α(P ) = c⊤x′′

ρP (x′′) , then let y = 1
ρP (x′′)x

′′. We have

Ay =
1

ρP (x′′)
Ax′′ ≤ 1

ρP (x′′)
(ρP (x′′)b) = b,

hence y is a feasible solution of P ; its value is c⊤y = α(P ).

(d) Opt(P ) ≤ α(P ). Same proof as item 1a above.

2. Similar and hence omitted.

3. The pair (Opt(P ),Opt(P )) is a complement pair by the LP complementation theorem, while

(α(PZ), β(P
Z

)) is a complement pair by Lemma 2.5. Therefore, Opt(P ) = α(PZ) if and only if

Opt(P ) = β(P
Z

).

3 Fractional hypergraph theory

3.1 Fractional hypergraph parameters

Many important graph parameters, such as the clique number, chromatic number, matching number,
etc. can be viewed as the optimal values of IPs defined on hypergraphs related to the original graph.
Fractional hypergraph theory then lifts the integrality constraint and focuses on the fractional ana-
logues of those parameters, which are the optimal values of the corresponding LP relaxations. In this
section, we review four important fractional hypergraph parameters, and how they are related. A
comprehensive account of those parameters can be found in [12].

A (finite) hypergraph is a pair H = (V,E), where V is a set of n vertices and E is a multiset of m
edges, each being a subset of vertices. Recall the following concepts for a hypergraph H. Its incidence
matrix is M = MH ∈ Rn×m such that, for all v ∈ V and e ∈ E,

Mve =

{
1 if v ∈ e

0 otherwise.

A vertex is universal if it belongs to all edges of H. On the other hand, a vertex is isolated if it does
not belong to any edge of H. Say an edge e is complete if e = V and that it is empty if e = ∅. For a
vertex v ∈ V , we denote by Ev the multiset of edges of H that contain v, i.e. Ev = {e ∈ E : v ∈ e}.

We now introduce four LPs related to a hypergraph H; we shall then apply the LP complementation
theorem to them. All those LPs have an optimal value in [1,∞]. Technically, if the optimal value is

10



either 1 or ∞, then the LP complementation theorem does not apply. However, we highlight these
degenerate cases, which can easily be handled separately. By using the convention that 1 and ∞ form
a complement pair, we can then include these degenerate cases in our hypergraph complementation
theorem.

A covering of H is a set of edges whose union is equal to V . The covering number k(H) of H is
the minimum size of a covering of H. The fractional covering number kf(H) of H is the optimal value
of the following LP, which we give in two forms: a concise matrix form and a more explicit form.

K(H) : min{1⊤x : MHx ≥ 1, x ≥ 0}

= min

{∑
e∈E

xe :
∑
e∈Ev

xe ≥ 1 ∀v ∈ V, xe ≥ 0 ∀e ∈ E

}
.

It is easily seen that the covering number is actually the optimal value of K(H)Z. We remark that
K(H) is feasible if and only if H has no isolated vertices. Clearly, if K(H) is feasible, then it has an
optimal solution. In that case, kf(H) = Opt(K(H)) ≥ 1, with strict inequality if and only if H has
no complete edges.

A packing of H is a set of vertices such that every edge contains at most one of those vertices. The
packing number p(H) of H is the maximum size of a packing of H. The fractional packing number
pf(H) of H is the optimal value of the LP dual to K(H):

P (H) = K(H)∗ : max{1⊤y : M⊤
Hy ≤ 1, y ≥ 0}

= max

{∑
v∈V

yv :
∑
v∈e

yv ≤ 1 ∀e ∈ E, yv ≥ 0 ∀v ∈ V

}
.

Again, the maximum size of a packing of H corresponds to the optimal value of the analogous IP. We
remark that P (H) is always feasible. However, P (H) is bounded if and and only if H has no isolated
vertices. In that case, pf(H) = Opt(P (H)) > 1 if and only if it has no complete edges. LP duality
then yields pf(H) = kf(H).

For any hypergraph H = (V,E), its dual is H∗ = (E, V ∗), where V ∗ = {Ev : v ∈ V }. We then
have MH∗ = (MH)⊤ and (H∗)∗ ∼= H. We note that H has no empty edge if and only if H∗ has no
isolated vertex, and vice versa.

A matching of H is a set of disjoint edges; it corresponds to a packing of H∗. The fractional
matching number is then µf(H) = pf(H

∗), i.e. the optimal value of:

M(H) = P (H∗) : max{1⊤y : MHy ≤ 1, y ≥ 0}

= max

{∑
e∈E

ye :
∑
e∈Ev

ye ≤ 1 ∀v ∈ V, ye ≥ 0 ∀e ∈ E

}
.

A transversal of H is a set of vertices such that every edge contains a vertex from that set; it
corresponds to a covering of H∗. The fractional transversal number is then τf(H) = kf(H

∗), i.e. the
optimal value of:

T (H) = K(H∗) : min{1⊤x : M⊤
Hx ≥ 1, x ≥ 0}

= min

{∑
v∈V

xv :
∑
v∈e

xv ≥ 1 ∀e ∈ E, xv ≥ 0 ∀v ∈ V

}
.

Again, LP duality yields µf(H) = τf(H).

Observation 3.1. In summary, for any H we have τf(H) = kf(H
∗) = pf(H

∗) = µf(H).
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3.2 Hypergraph complementation

We define the complement of H as H = (V, {V \e : e ∈ E}). We then have MH = 1−MH . Hypergraph

complementation is an involution that commutes with duality: H = H and (H∗) =
(
H
)∗.

It can be easily shown that
K(H∗) = K(H)∗.

Therefore, we obtain eight LPs, which are related in Figure 2.
For any S ⊆ V , let

ρH(S) = max {|S ∩ e| : e ∈ E} ,

α(H) = max

{
|S|

ρH(S)
: S ⊆ V, ρH(S) > 0

}
.

We similarly define for any Z ⊆ E

σH(Z) = min {|{e ∈ Z : v ∈ e}| : v ∈ V } ,

β(H) = min

{
|Z|

σH(Z)
: Z ⊆ E, σH(Z) > 0

}
.

We immediately recognise that α(H) = α(P (H)Z) and β(H) = β(K(H)Z). Denoting the maximum
size of an edge in H as ϵ(H) = max{|e| : e ∈ E} and the minimum degree of a vertex in H as
δ(H) = min{|Ev| : v ∈ V }, we have

α(H) ≥ |V |
ϵ(H)

, β(H) ≤ |E|
δ(H)

.

The next theorem is a more complete version of Theorem 1.3.

Theorem 3.2 (Hypergraph complementation theorem). For any hypergraph H,

1

kf(H∗)
+

1

kf(H)
= 1.

Moreover, we have the bounds

p(H) ≤ α(H) ≤ kf(H) ≤ β(H) ≤ k(H),

with equalities reached as follows:

kf(H) = α(H) ⇐⇒ kf(H
∗) = β(H∗).

Proof. We have P (H∗) = K(H). Theorem 2.1 then shows that pf(H
∗) = kf(H

∗) and kf(H) are
complement pairs. Theorem 2.6 then gives the other two equations.

Obviously, the hypergraph complementation theorem holds for all four parameters reviewed in
Section 3.1.

Corollary 3.3. For any hypergraph H,

1

kf(H∗)
+

1

kf(H)
=

1

pf(H∗)
+

1

pf(H)
=

1

µf(H∗)
+

1

µf(H)
=

1

τf(H∗)
+

1

τf(H)
= 1.
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4 Applications to fractional graph theory

4.1 Fractional domination in graphs and digraphs

All the digraphs we consider are simple (no parallel arcs) and irreflexive (no loops). Thus, a digraph is a
pair D = (V (D), E(D)), where E(D) ⊆ V (D)2\{(v, v) : v ∈ V (D)}. The adjacency matrix of D is the
{0, 1}-matrix AD = (aij : i, j ∈ V (D)), where aij = 1 if and only if (i, j) ∈ E(D). We define digraph
complement of D, denoted D, with V (D) = V (D) and E(D) = (V (D)2 \ {(v, v) : v ∈ V (D)}) \E(D).

For any v ∈ V (D), the open in-neighbourhood of v is N in
o (v) = {u : (u, v) ∈ E(D)}; the closed

in-neighbourhood of v is N in
c (v) = N in

o (v)∪{v}. We thus define two hypergraphs H in
o (D) and H in

c (D),
both with vertex set V (D), and where the edges of H in

o (D) are the open in-neighbourhoods of all
vertices and the edges of H in

c (D) are the closed in-neighbourhoods instead. Open and closed out-
neighbourhoods are defined similarly, and hence we define Hout

o (D) and Hout
c (D) similarly as well. We

note that MHin
o (D) = AD and MHin

c (D) = In + AD, where n is the number of vertices in D and In is
the identity matrix of size n. We then have

H in
o (D)∗ ∼= Hout

o (D), H in
c (D)∗ ∼= Hout

c (D), Hout
o (D) = Hout

c (D), Hout
c (D) = Hout

o (D).

An in-dominating set of D is a set S of vertices such that for any v ∈ V (D), there exists s ∈ S∩N in
c (v);

in other words, it is a transversal of H in
c (D). Similarly, a total in-dominating set of D is a transversal

of H in
o (D). We note that D always has an in-dominating set (V (D) itself), while D has a total

in-dominating set if and only if it has no sources (vertices with empty in-neighbourhoods). Out-
dominating and total out-dominating sets are defined similarly. See the book by Haynes, Hedetniemi,
and Slater for a comprehensive survey of domination problems [7].

The fractional in-dominating number of D and the fractional total out-dominating number of D
are then, respectively:

γinf(D) = τf(H
in
c (D)) = τf(H

out
c (D)∗),

Γout
f(D) = τf(H

out
o (D)) = τf(Hout

c (D)).

Let us call a vertex v in-universal in D if v ∈ N in
c (u) for all u ∈ V , i.e. v is a universal vertex of

H in
c (D). We note that γinf(D) > 1 if and only if D has no in-universal vertices; the latter is also

equivalent to Γout
f(D) < ∞. We obtain the following; again the degenerate case of an in-universal

vertex is handled by the (1,∞) complement pair.

Theorem 4.1 (Domination complementation theorem). For any digraph D,

1

γinf(D)
+

1

Γout
f(D)

= 1.

We focus on three special cases of Theorem 4.1. Firstly, a graph G is a symmetric digraph,
i.e. AG = A⊤

G. For a graph G, in-neighbourhoods and out-neighbourhoods coincide. We then refer to
γf(G) = γinf(G) = γoutf(G) as the fractional dominating number of G; the fractional total dominating
number of G is defined and denoted similarly.

Corollary 4.2. For any graph G,
1

γf(G)
+

1

Γf(G)
= 1.

Secondly, a tournament T is a digraph where (i, j) ∈ E(T ) if and only if (j, i) /∈ E(T ). If T is a
tournament, then T is obtained by reversing the direction of every arc in T . Thus, Hout

o (T ) = H in
o (T )

and we obtain the following corollary, where the final conclusion follows from Observation 2.2.

Corollary 4.3. For any tournament T ,

1

γinf(T )
+

1

Γin
f(T )

= 1.

In particular, γinf(T ) ≤ 2 ≤ Γin
f(T ).
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Thirdly, D is k-regular if for every vertex v ∈ V (D), |N in
o (v)| = |Nout

o (v)| = k. Clearly, if D
has n vertices, then D is k-regular if and only if D is (n − 1 − k)-regular. The following result is a
generalisation of the result in [12, Theorem 7.4.1], which only applies to regular graphs.

Corollary 4.4. For any k-regular digraph D on n vertices,

γinf(D) =
n

k + 1
, Γout

f(D) =
n

k
.

Proof. The value n/(k + 1) is an obvious upper bound for γinf(D) (assign 1/(k + 1) to each vertex);
similarly, n/(n − k − 1) is an upper bound for Γout

f(D). By Theorem 4.1, these bounds must be
tight.

4.2 Application to edge toughness of matroids

Let M = (V, I) be a matroid [10], where I is the collection of independent sets of M . A basis of
M is a maximal independent set. We then denote the set of bases of M as B(M) and we construct
the hypergraph HB(M) = (V,B(M)). The rank function of M is then ρM = ρHB(M), i.e. ρM (S) =

max{|S ∩ e| : e ∈ B(M)}. The dual matroid M is then defined as HB(M) = HB(M), hence its rank
function satisfies ρM (S) = |S|−ρM (V ) +ρM (V \S). We note that the dual of a matroid is commonly
denoted as M∗, but in this paper, denoting it as M better reflects that its definition is in terms of
hypergraph complementation, instead of hypergraph duality.

The edge toughness (or strength) of M is [12]

σ′(M) = min

{
|V \ S|

ρM (V ) − ρM (S)
: S ⊆ V, ρM (V ) > ρM (S)

}
.

The edge toughness is well defined unless ρM (V ) = 0. Moreover, σ′(M) = 1 if and only if M has a
coloop, i.e. an element v that belongs to all bases. Say that M is nontrivial if it falls in neither case
mentioned above; then its edge toughness satisfies σ′(M) > 1.

Next, we use the hypergraph complementation theorem to show that the fractional transversal
number and fractional matching number of a matroid coincide with its edge toughness.

Theorem 4.5. For any nontrivial matroid M , we have

µf(HB(M)) = τf(HB(M)) = σ′(M).

The proof of Theorem 4.5 is based on the following lemma. For any hypergraph H, let

γ(H) = min

{
|T |

|T | − ρH(T )
: T ⊆ V, |T | > ρH(T )

}
.

In particular, we can easily check that γ(HB(M)) = σ′(M).

Lemma 4.6. For any hypergraph H, β(H∗) = γ(H).

Proof. We denote the set of edges of H as E, and the set of edges of H as E. For any T ⊆ V , we have

σH∗(T ) = min{|T ∩ e| : e ∈ E} = |T | − max{|T ∩ e| : e ∈ E} = |T | − ρH(T ),

and hence

β(H∗) = min

{
|T |

σH∗(T )
: T ⊆ V, σH∗(T ) > 0

}
= min

{
|T |

|T | − ρH(T )
: T ⊆ V, |T | > ρH(T )

}
= γ(H).
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Proof of Theorem 4.5. Firstly, by the matroid base covering theorem (see [12, Theorem 5.4.1] or [14,
Corollary 42.1c]), the fractional covering number of a matroid reaches the α bound in Theorem 3.2.
For the dual matroid, we obtain

kf(HB(M)) = α(HB(M)).

Moreover, thanks to Lemma 4.6, we recognise that

σ′(M) = γ(HB(M)) = β(HB(M)∗).

Applying Observation 3.1 and Theorem 3.2 then yields

µf(HB(M)) = kf(HB(M)∗) = β(HB(M)∗) = σ′(M).

Applying the hypergraph complementation theorem, we obtain the following corollary, already
given in [12].

Corollary 4.7 (Theorem 5.6.8 in [12]). For any nontrivial matroid, we have

1

σ′(M)
+

1

kf(HB(M))
= 1.

In particular, if MG is the cycle matroid of a graph G, where the elements of MG are the edges of
G and the bases of MG are all spanning forests of G [10], then the edge toughness of MG reduces to
the edge toughness (a.k.a strength) of G, defined as follows. For any Z ⊆ E(G), let G−Z denote the
graph obtained by removing the edges from Z, and let c(G− Z) denote the number of its connected
components. Then

σ′(G) = min

{
|Z|

c(G− Z) − c(G)
: Z ⊆ E(G), c(G− Z) > c(G)

}
.

We remark that σ′(G) is well defined if and only if E(G) is nonempty. Moreover, σ′(G) = 1 if and
only if G has a cut edge, i.e. G has a connected component that is not 2-edge connected.

Denote HSF (G) = HB(MG). The matching number of HSF (G) is the maximum number of edge-
disjoint spanning forests in G. On the other hand, the transversal number of HSF (G) is the smallest
size of an edge cut set of G. In particular, these two quantities are equal to 1 whenever G has a cut
edge. When there is no cut edge, by Theorem 4.5, their fractional analogues are equal to the edge
toughness of G.

Corollary 4.8. For any graph G whose connected components are all 2-edge connected,

µf(HSF (G)) = τf(HSF (G)) = σ′(G).

5 Vertex cover with budget

5.1 The vertex cover hypergraph

Let G be a graph. A vertex cover of G can be defined as a set S of vertices such that V \ S is a
stable set. We define HV C(G) as the hypergraph whose edges are all the vertex covers of G. Then its
complement is HV C(G) = HIS(G), whose edges are the stable sets of G. It immediately follows that
kf(HV C(G)) is equal to χf(G), the fractional chromatic number of G. We then denote

tf(G) = µf(HV C(G)),

and thanks to Observation 3.1, we have tf(G) = kf(HV C(G)∗). We have χf(G) = 1 if and only if G is
empty, in which case tf(G) = ∞. If G is nonempty, then χf(G) ≥ 2, with equality if and only if G is
bipartite. The hypergraph complementation theorem then yields

1

tf(G)
+

1

χf(G)
= 1.

Let us give some properties of the tf(G) = χf(G)
χf(G)−1 quantity.
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Bounds Let α(G) denote the independence number of G, ω(G) denote its clique number and χ(G)
denote its chromatic number. Then the bounds on χf(G) in [12, Chapter 3] and [9], given on
the left hand side below, immediately translate to bounds on tf(G), given on the right hand side
below.

χf(G) ≥ n

α(G)
−→ tf(G) ≤ n

n− α(G)
,

χf(G) ≥ χ(G)

1 + lnα(G)
−→ tf(G) ≤ χ(G)

χ(G) − 1 − lnα(G)
,

χf(G) ≥ ω(G) −→ tf(G) ≤ ω(G)

ω(G) − 1
,

χf(G) ≤ χ(G) −→ tf(G) ≥ χ(G)

χ(G) − 1
.

Possible values If G is non-empty, then tf(G) is a rational number in (1, 2]. Conversely, for any
rational number q ∈ (1, 2], there is G with tf(G) = q (since χf(K(n, r)) = n/r for the Kneser
graph with n ≥ 2r (see e.g. [12])).

Complexity Again, complexity results for χf(G) can be converted into complexity results for tf(G).
Thus, for any 1 < s < 2, determining whether tf(G) ≥ s is NP-complete (an immediate conse-
quence of [6]). On the other hand, tf(G) can be computed in polynomial time if G is a line graph
(see [12, Section 4.5]), or if G is perfect (since the chromatic and fractional chromatic numbers
coincide in that case).

5.2 Vertex cover with finite budget

The Vertex Cover with Budget (VCB) problem is defined as follows. Let G be a graph and b a
positive integer. For any family of t vertex covers S = {S1, . . . , St} of G, we refer to the budget of S
as the maximum number of times a particular vertex appears in S:

max{|{i : v ∈ Si}| : v ∈ V }.

For any b ≥ 1, we denote the cardinality of the largest family of vertex covers with budget at most b
as tb(G). The problem is, given G and b, to determine tb(G).

We note that VCB differs from the so-called Budgeted Maximum Vertex Cover Problem (see [2]
and references therein).

A b-fold matching of a hypergraph H is a set of edges of H such that every vertex is contained in
at most b edges (so that a matching is a 1-fold matching). The maximum size of a b-fold matching is
denoted as µb(H). We immediately obtain that tb(G) = µb(HV C(G)). Similarly, a c-fold covering is a
set of edges of H such that every vertex is contained in at least c edges. The smallest size of a c-fold
covering of H is denoted as kc(H). We then have [12, Theorem 1.2.1]

µf(H) = lim
b→∞

µb(H)

b
= max

b∈N

µb(H)

b
,

kf(H) = lim
c→∞

kc(H)

c
= max

c∈N

kc(H)

c
.

Moreover, there exist β and γ such that µlβ = lβµf(H) and klγ = lγkf(H) for all l ∈ N. Therefore,
tf(G) is the limit of the time-per-budget ratio tb(G)/b.

Proposition 5.1. For any G,

tf(G) = lim
b→∞

tb(G)

b
= max

b→∞

tb(G)

b
.

Moreover, there exists β ∈ N such that tlβ(G) = tf(G) · lβ for all l ∈ N.

We now obtain more precise results about tb(G).

16



Proposition 5.2. For any G and any b, we have⌊
χ(G)

χ(G) − 1
· b
⌋
≤ tb(G) ≤

⌊
ω(G)

ω(G) − 1
· b
⌋

Proof. If there is a homomorphism from G′ to G, which we denote as G′ → G, then tb(G) ≤ tb(G
′).

Since Kω(G) → G → Kχ(G), we obtain tb(Kχ(G)) ≤ tb(G) ≤ tb(Kω(G)). It is then easy to verify that

tb(Kn) =
⌊

n
n−1 · b

⌋
for all n ≥ 1. Hence the result.

Since the chromatic number of a perfect graph can be computed in polynomial time [6], we obtain
the following

Corollary 5.3. If G is a perfect graph, then for any b, tb(G) =
⌊

χ(G)
χ(G)−1 · b

⌋
can be computed in

polynomial time.

The highest time tb(G) is only achieved for bipartite graphs, as seen below.

Proposition 5.4. The following are equivalent.

(a) tf(G) = 2.

(b) tb(G) = 2b for some b ≥ 1.

(c) tb(G) = 2b for all b ≥ 1.

(d) G is bipartite.

Proof. We have (d) =⇒ (c) =⇒ (b) =⇒ (a). Conversely, tf(G) = 2 if and only if χf(G) = 2, which
in turn is equivalent to G being bipartite.

We obtain a final result on the computational complexity of decision problems related to tb(G).

Theorem 5.5. For any b, c ≥ 1 and any hypergraph H,

µb(H) ≥ b + c ⇐⇒ kc(H) ≤ b + c.

Proof. It is easy to verify that each statement is equivalent to the next, in the following sequence:

• µb(H) ≥ b + c.

• There exist b + c edges of H, say e1, . . . , eb+c, such that for any v ∈ V , |{i : v ∈ ei}| ≤ b.

• There exist b + c edges of H, say f1, . . . , fb+c, such that for any v ∈ V , |{i : v ∈ fi}| ≥ c.

• kc(H) ≤ b + c.

A c-multicolouring of a graph G is a colouring of its vertices, such that each vertex is assigned a
set of c distinct colours, and where the sets of colours of any two adjacent vertices are disjoint [3].
For H = HV C(G), we have µb(H) = tb(G) and kc(H) = χc(G), the smallest number of colours in a
c-multicolouring of G. It follows from Theorem 5.5 that for any b ≥ 1 and c ≥ 1, tb(G) ≥ b + c if
and only if χc(G) ≤ b + c. For c = b, as proved in Proposition 5.4, deciding whether tb(G) = 2b can
be done in polynomial time. On the other hand, since for any c and any a > 2c, deciding whether a
graph G satisfies χc(G) ≤ a is NP-complete (see [12, Section 3.9]), we obtain the following corollary.

Corollary 5.6. For any b ≥ 2 and any 1 ≤ c ≤ b−1, it is NP-complete to decide whether tb(G) ≥ b+c.
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6 Conclusion and future work

In this paper, we introduced LP complementation, and established the LP complementation theorem.
We then illustrated the potential applications of LP complementation to Integer Linear Programming,
graph and hypergraph theory, and algorithmic problems on graphs.

We believe that LP complementation has an interesting potential that needs to be uncovered. We
can highlight several ways in which LP complementation could be applied further:

• LP and hypergraph complementation for structural hypergraph theory. The hypergraph com-
plementation operation is very natural, and yet it does not seem to have been studied yet.

• Application of LP complementation in graph theory and combinatorics. Any 0/1 matrix can
be interpreted as the bipartite adjacency matrix of a bipartite graph G. The complementation
operation then corresponds to the bipartite adjacency matrix of the bipartite complement of G.
Can LP complementation be used to establish relationships between the properties of a bipartite
graph and its bipartite complement?

• Further applications to combinatorial problems “with budget.” Including the budget b and
considering the limit of a particular quantity as b tends to infinity naturally involves optimal
values of LPs.

• Algorithmic applications of LP complementation. It is well-known that LP duality can be used
to create efficient primal-dual algorithms for LP. Can LP complementation be used in a similar
way?
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