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Abstract14

In a temporal network with discrete time-labels on its edges, entities and information can only “flow”15

along sequences of edges whose time-labels are non-decreasing (resp. increasing), i.e. along temporal16

(resp. strict temporal) paths. Nevertheless, in the model for temporal networks of [Kempe, Kleinberg,17

Kumar, JCSS, 2002], the individual time-labeled edges remain undirected: an edge e = {u, v} with18

time-label t specifies that “u communicates with v at time t”. This is a symmetric relation between19

u and v, and it can be interpreted that the information can flow in either direction. In this paper20

we make a first attempt to understand how the direction of information flow on one edge can impact21

the direction of information flow on other edges. More specifically, naturally extending the classical22

notion of a transitive orientation in static graphs, we introduce the fundamental notion of a temporal23

transitive orientation and we systematically investigate its algorithmic behavior in various situations.24

An orientation of a temporal graph is called temporally transitive if, whenever u has a directed edge25

towards v with time-label t1 and v has a directed edge towards w with time-label t2 ≥ t1, then u also26

has a directed edge towards w with some time-label t3 ≥ t2. If we just demand that this implication27

holds whenever t2 > t1, the orientation is called strictly temporally transitive, as it is based on the28

fact that there is a strict directed temporal path from u to w. Our main result is a conceptually29

simple, yet technically quite involved, polynomial-time algorithm for recognizing whether a given30

temporal graph G is transitively orientable. In wide contrast we prove that, surprisingly, it is31

NP-hard to recognize whether G is strictly transitively orientable. Additionally we introduce and32

investigate further related problems to temporal transitivity, notably among them the temporal33

transitive completion problem, for which we prove both algorithmic and hardness results.34

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathem-35

atics of computing → Discrete mathematics36

Keywords and phrases Temporal graph, transitive orientation, transitive closure, polynomial-time37

algorithm, NP-hardness, satisfiability.38

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.5039

Related Version A full version of the paper is available at [36]: https://arxiv.org/abs/2102.40

0678341

Funding George B. Mertzios: Supported by the EPSRC grant EP/P020372/1.42

Hendrik Molter : Supported by the German Research Foundation (DFG), project MATE (NI 369/17),43

and by the Israeli Science Foundation (ISF), grant No. 1070/20.44

Malte Renken: Supported by the German Research Foundation (DFG), project MATE (NI 369/17).45

© G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 50; pp. 50:1–50:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:george.mertzios@durham.ac.uk
https://orcid.org/0000-0001-7182-585X
mailto:molterh@post.bgu.ac.il
https://orcid.org/0000-0002-4590-798X
mailto:m.renken@tu-berlin.de
http://orcid.org/0000-0002-1450-1901
mailto:p.spirakis@liverpool.ac.uk
https://orcid.org/0000-0001-5396-3749
mailto:zschoche@tu-berlin.de
https://orcid.org/0000-0001-9846-0600
https://doi.org/10.4230/LIPIcs.MFCS.2021.50
https://arxiv.org/abs/2102.06783
https://arxiv.org/abs/2102.06783
https://arxiv.org/abs/2102.06783
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


50:2 The Complexity of Transitively Orienting Temporal Graphs

Paul G. Spirakis: Supported by the NeST initiative of the School of EEE and CS at the University46

of Liverpool and by the EPSRC grant EP/P02002X/1.47

1 Introduction48

A temporal (or dynamic) network is, roughly speaking, a network whose underlying topology49

changes over time. This notion concerns a great variety of both modern and traditional50

networks; information and communication networks, social networks, and several physical51

systems are only few examples of networks which change over time [26,38,41]. Due to its vast52

applicability in many areas, the notion of temporal graphs has been studied from different53

perspectives under several different names such as time-varying, evolving, dynamic, and54

graphs over time (see [13–15] and the references therein). In this paper we adopt a simple55

and natural model for temporal networks which is given with discrete time-labels on the56

edges of a graph, while the vertex set remains unchanged. This formalism originates in the57

foundational work of Kempe et al. [27].58

I Definition 1 (Temporal Graph [27]). A temporal graph is a pair G = (G, λ), where59

G = (V, E) is an underlying (static) graph and λ : E → N is a time-labeling function which60

assigns to every edge of G a discrete-time label.61

Mainly motivated by the fact that, due to causality, entities and information in temporal62

graphs can only “flow” along sequences of edges whose time-labels are non-decreasing63

(resp. increasing), Kempe et al. introduced the notion of a (strict) temporal path, or (strict)64

time-respecting path, in a temporal graph (G, λ) as a path in G with edges e1, e2, . . . , ek65

such that λ(e1) ≤ . . . ≤ λ(ek) (resp. λ(e1) < . . . < λ(ek)). This notion of a temporal path66

naturally resembles the notion of a directed path in the classical static graphs, where the67

direction is from smaller to larger time-labels along the path. Nevertheless, in temporal paths68

the individual time-labeled edges remain undirected: an edge e = {u, v} with time-label69

λ(e) = t can be abstractly interpreted as “u communicates with v at time t”. Here the70

relation “communicates” is symmetric between u and v, i.e. it can be interpreted that the71

information can flow in either direction.72

In this paper we make a first attempt to understand how the direction of information flow73

on one edge can impact the direction of information flow on other edges. More specifically,74

naturally extending the classical notion of a transitive orientation in static graphs [23], we75

introduce the fundamental notion of a temporal transitive orientation and we thoroughly76

investigate its algorithmic behavior in various situations. Imagine that v receives information77

from u at time t1, while w receives information from v at time t2 ≥ t1. Then w indirectly78

receives information from u through the intermediate vertex v. Now, if the temporal graph79

correctly records the transitive closure of information passing, the directed edge from u to w80

must exist and must have a time label t3 ≥ t2. In such a transitively oriented temporal graph,81

whenever an edge is oriented from a vertex u to a vertex w with time-label t, we have that82

every temporal path from u to w arrives no later than t, and that there is no temporal path83

from w to u. Different notions of temporal transitivity have also been used for automated84

temporal data mining [40] in medical applications [39], text processing [45]. Furthermore, in85

behavioral ecology, researchers have used a notion of orderly (transitive) triads A-B-C to86

quantify dominance among species. In particular, animal groups usually form dominance87

hierarchies in which dominance relations are transitive and can also change with time [32].88

One natural motivation for our temporal transitivity notion may come from applications89

where confirmation and verification of information is vital, where vertices may represent90
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entities such as investigative journalists or police detectives who gather sensitive information.91

Suppose that v queried some important information from u (the information source) at92

time t1, and afterwards, at time t2 ≥ t1, w queried the important information from v (the93

intermediary). Then, in order to ensure the validity of the information received, w might94

want to verify it by subsequently querying the information directly from u at some time95

t3 ≥ t2. Note that w might first receive the important information from u through various96

other intermediaries, and using several channels of different lengths. Then, to maximize97

confidence about the information, w should query u for verification only after receiving the98

information from the latest of these indirect channels.99

It is worth noting here that the model of temporal graphs given in Definition 1 has been100

also used in its extended form, in which the temporal graph may contain multiple time-labels101

per edge [34]. This extended temporal graph model has been used to investigate temporal102

paths [3, 9, 11,16, 34,47] and other temporal path-related notions such as temporal analogues103

of distance and diameter [1], reachability [2] and exploration [1,3,20,21], separation [22,27,48],104

and path-based centrality measures [12,28], as well as recently non-path problems too such as105

temporal variations of coloring [37], vertex cover [4], matching [35], cluster editing [18], and106

maximal cliques [8,25,46]. However, in order to better investigate and illustrate the inherent107

combinatorial structure of temporal transitivity orientations, in this paper we mostly follow108

the original definition of temporal graphs given by Kempe et al. [27] with one time-label per109

edge [7,17,19]. Throughout the paper, whenever we assume multiple time-labels per edge we110

will state it explicitly; in all other cases we consider a single label per edge.111

In static graphs, the transitive orientation problem has received extensive attention which112

resulted in numerous efficient algorithms. A graph is called transitively orientable (or a113

comparability graph) if it is possible to orient its edges such that, whenever we orient u114

towards v and v towards w, then the edge between u and w exists and is oriented towards w.115

The first polynomial-time algorithms for recognizing whether a given (static) graph G on n116

vertices and m edges is comparability (i.e. transitively orientable) were based on the notion117

of forcing an orientation and had running time O(n3) (see Golumbic [23] and the references118

therein). Faster algorithms for computing a transitive orientation of a given comparability119

graph have been later developed, having running times O(n2) [43] and O(n + m log n) [29],120

while the currently fastest algorithms run in linear O(n + m) time and are based on efficiently121

computing a modular decomposition of G [30, 31]; see also Spinrad [44]. It is fascinating122

that, although all the latter algorithms compute a valid transitive orientation if G is a123

comparability graph, they fail to recognize whether the input graph is a comparability graph;124

instead they produce an orientation which is non-transitive if G is not a comparability graph.125

The fastest known algorithm for determining whether a given orientation is transitive requires126

matrix multiplication, currently achieved in O(n2.37286) time [5].127

Our contribution. In this paper we introduce the notion of temporal transitive orientation128

and we thoroughly investigate its algorithmic behavior in various situations. An orientation129

of a temporal graph G = (G, λ) is called temporally transitive if, whenever u has a directed130

edge towards v with time-label t1 and v has a directed edge towards w with time-label t2 ≥ t1,131

then u also has a directed edge towards w with some time-label t3 ≥ t2. If we just demand132

that this implication holds whenever t2 > t1, the orientation is called strictly temporally133

transitive, as it is based on the fact that there is a strict directed temporal path from u to w.134

Similarly, if we demand that the transitive directed edge from u to w has time-label t3 > t2,135

the orientation is called strongly (resp. strongly strictly) temporally transitive.136

Although these four natural variations of a temporally transitive orientation seem super-137
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ficially similar to each other, it turns out that their computational complexity (and their138

underlying combinatorial structure) varies massively. Indeed we obtain a surprising result139

in Section 3: deciding whether a temporal graph G admits a temporally transitive orientation140

is solvable in polynomial time (Section 3.2), while it is NP-hard to decide whether it admits141

a strictly temporally transitive orientation (Section 3.1). On the other hand, it turns out that,142

deciding whether G admits a strongly or a strongly strictly temporal transitive orientation is143

(easily) solvable in polynomial time as they can both be reduced to 2SAT satisfiability.144

Our main result is that, given a temporal graph G = (G, λ), we can decide in polynomial145

time whether G is transitively orientable, and at the same time we can output a temporal146

transitive orientation if it exists. Although the analysis and correctness proof of our algorithm147

is technically quite involved, our algorithm is simple and easy to implement, as it is based on148

the notion of forcing an orientation.1 Our algorithm extends and generalizes the classical149

polynomial-time algorithm for computing a transitive orientation in static graphs described150

by Golumbic [23]. The main technical difficulty in extending the algorithm from the static to151

the temporal setting is that, in temporal graphs we cannot simply use orientation forcings to152

eliminate the condition that a triangle is not allowed to be cyclically oriented. To resolve this153

issue, we first express the recognition problem of temporally transitively orientable graphs as154

a Boolean satisfiability problem of a mixed Boolean formula φ3NAE ∧ φ2SAT. Here φ3NAE is155

a 3NAE (i.e. 3-Not-All-Equal) formula and φ2SAT is a 2SAT formula. Note that every156

clause NAE(ℓ1, ℓ2, ℓ3) of φ3NAE corresponds to the condition that a specific triangle in the157

temporal graph cannot be cyclically oriented. However, although deciding whether φ2SAT is158

satisfiable can be done in linear time with respect to the size of the formula [6], the problem159

Not-All-Equal-3-SAT is NP-complete [42].160

Our algorithm iteratively produces at iteration j a formula φ
(j)
3NAE ∧ φ

(j)
2SAT, which is161

computed from the previous formula φ
(j−1)
3NAE ∧ φ

(j−1)
2SAT by (almost) simulating the classical162

greedy algorithm that solves 2SAT [6]. The 2SAT-algorithm proceeds greedily as follows. For163

every variable xi, if setting xi = 1 (resp. xi = 0) leads to an immediate contradiction, the164

algorithm is forced to set xi = 0 (resp. xi = 1). Otherwise, if each of the truth assignments165

xi = 1 and xi = 0 does not lead to an immediate contradiction, the algorithm arbitrarily166

chooses to set xi = 1 or xi = 0, and thus some clauses are removed from the formula as167

they were satisfied. The argument for the correctness of the 2SAT-algorithm is that new168

clauses are never added to the formula at any step. The main technical difference between169

the 2SAT-algorithm and our algorithm is that, in our case, the formula φ
(j)
3NAE ∧ φ

(j)
2SAT is not170

necessarily a sub-formula of φ
(j−1)
3NAE∧φ

(j−1)
2SAT , as in some cases we need to also add clauses. Our171

main technical result is that, nevertheless, at every iteration j the formula φ
(j)
3NAE ∧ φ

(j)
2SAT is172

satisfiable if and only if φ
(j−1)
3NAE ∧φ

(j−1)
2SAT is satisfiable. The proof of this result (see Theorem 9)173

relies on a sequence of structural properties of temporal transitive orientations which we174

establish. This phenomenon of deducing a polynomial-time algorithm for an algorithmic175

graph problem by deciding satisfiability of a mixed Boolean formula (i.e. with both clauses of176

two and three literals) occurs rarely; this approach has been successfully used for the efficient177

recognition of simple-triangle (known also as “PI”) graphs [33].178

In the second part of our paper (Section 4) we consider a natural extension of the temporal179

orientability problem, namely the temporal transitive completion problem. In this problem we180

are given a (partially oriented) temporal graph G and a natural number k, and the question181

is whether it is possible to add at most k new edges (with the corresponding time-labels) to182

1 That is, orienting an edge from u to v forces us to orient another edge from a to b.
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G such that the resulting temporal graph is (strongly/strictly/strongly strictly) transitively183

orientable. We prove that all four versions of temporal transitive completion are NP-complete,184

even when the input temporal graph is completely unoriented. In contrast we show that, if185

the input temporal graph G is directed (i.e. if every time-labeled edge has a fixed orientation)186

then all versions of temporal transitive completion are solvable in polynomial time. As a187

corollary of our results it follows that all four versions of temporal transitive completion are188

fixed-parameter-tractable (FPT) with respect to the number q of unoriented time-labeled189

edges in G.190

In the third and last part of our paper (Section 5) we consider the multilayer transitive191

orientation problem. In this problem we are given an undirected temporal graph G = (G, λ),192

where G = (V, E), and we ask whether there exists an orientation F of its edges (i.e. with193

exactly one orientation for each edge of G) such that, for every ‘time-layer” t ≥ 1, the (static)194

oriented graph induced by the edges having time-label t is transitively oriented in F . Problem195

definitions of this type are commonly referred to as multilayer problems [10]. Observe that196

this problem trivially reduces to the static case if we assume that each edge has a single197

time-label, as then each layer can be treated independently of all others. However, if we198

allow G to have multiple time-labels on every edge of G, then we show that the problem199

becomes NP-complete, even when every edge has at most two labels.200

Due to space constraints, some of our results are deferred to a full version [36].201

2 Preliminaries and Notation202

Given a (static) undirected graph G = (V, E), an edge between two vertices u, v ∈ V is203

denoted by the unordered pair {u, v} ∈ E, and in this case the vertices u, v are said to204

be adjacent. If the graph is directed, we will use the ordered pair (u, v) (resp. (v, u)) to205

denote the oriented edge from u to v (resp. from v to u). For simplicity of the notation, we206

will usually drop the parentheses and the comma when denoting an oriented edge, i.e. we207

will denote (u, v) just by uv. Furthermore, ûv = {uv, vu} is used to denote the set of both208

oriented edges uv and vu between the vertices u and v.209

Let S ⊆ E be a subset of the edges of an undirected (static) graph G = (V, E), and let210

Ŝ = {uv, vu : {u, v} ∈ S} be the set of both possible orientations uv and vu of every edge211

{u, v} ∈ S. Let F ⊆ Ŝ. If F contains at least one of the two possible orientations uv and212

vu of each edge {u, v} ∈ S, then F is called an orientation of the edges of S. F is called213

a proper orientation if it contains exactly one of the orientations uv and vu of every edge214

{u, v} ∈ S. Note here that, in order to simplify some technical proofs, the above definition215

of an orientation allows F to be not proper, i.e. to contain both uv and vu for a specific edge216

{u, v}. However, whenever F is not proper, this means that F can be discarded as it cannot217

be used as a part of a (temporal) transitive orientation. For every orientation F denote by218

F −1 = {vu : uv ∈ F} the reversal of F . Note that F ∩ F −1 = ∅ if and only if F is proper.219

In a temporal graph G = (G, λ), where G = (V, E), whenever λ({v, w}) = t (or simply220

λ(v, w) = t), we refer to the tuple ({v, w}, t) as a time-edge of G. A triangle of (G, λ) on221

the vertices u, v, w is a synchronous triangle if λ(u, v) = λ(v, w) = λ(w, u). Let G = (V, E)222

and let F be a proper orientation of the whole edge set E. Then (G, F ), or (G, λ, F ), is a223

proper orientation of the temporal graph G. A partial proper orientation F of G = (G, λ) is224

an orientation of a subset of E. To indicate that the edge {u, v} of a time-edge ({u, v}, t) is225

oriented from u to v (that is, uv ∈ F in a (partial) proper orientation F ), we use the term226

((u, v), t), or simply (uv, t). For simplicity we may refer to a (partial) proper orientation just227

as a (partial) orientation, whenever the term “proper” is clear from the context.228
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A static graph G = (V, E) is a comparability graph if there exists a proper orientation F229

of E which is transitive, that is, if F ∩ F −1 = ∅ and F 2 ⊆ F , where F 2 = {uw : uv, vw ∈ F230

for some vertex v} [23]. Analogously, in a temporal graph G = (G, λ), where G = (V, E), we231

define a proper orientation F of E to be temporally transitive, if:232

whenever (uv, t1) and (vw, t2) are oriented time-edges in (G, F ) such that t2 ≥ t1, there
exists an oriented time-edge (wu, t3) in (G, F ), for some t3 ≥ t2.233

In the above definition of a temporally transitive orientation, if we replace the condition234

“t3 ≥ t2” with “t3 > t2”, then F is called strongly temporally transitive. If we instead replace235

the condition “t2 ≥ t1” with “t2 > t1”, then F is called strictly temporally transitive. If we236

do both of these replacements, then F is called strongly strictly temporally transitive. Note237

that strong (strict) temporal transitivity implies (strict) temporal transitivity, while (strong)238

temporal transitivity implies (strong) strict temporal transitivity. Furthermore, similarly to239

the established terminology for static graphs, we define a temporal graph G = (G, λ), where240

G = (V, E), to be a (strongly/strictly) temporal comparability graph if there exists a proper241

orientation F of E which is (strongly/strictly) temporally transitive.242

We are now ready to formally introduce the following decision problem of recognizing243

whether a given temporal graph is temporally transitively orientable or not.244

Temporal Transitive Orientation (TTO)

Input: A temporal graph G = (G, λ), where G = (V, E).
Question: Does G admit a temporally transitive orientation F of E?

245

In the above problem definition of TTO, if we ask for the existence of a strictly246

(resp. strongly, or strongly strictly) temporally transitive orientation F , we obtain the247

decision problem Strict (resp. Strong, or Strong Strict) Temporal Transitive248

Orientation (TTO).249

Let G = (G, λ) be a temporal graph, where G = (V, E). Let G′ = (V, E′) be a graph such250

that E ⊆ E′, and let λ′ : E′ → N be a time-labeling function such that λ′(u, v) = λ(u, v) for251

every {u, v} ∈ E. Then the temporal graph G′ = (G′, λ′) is called a temporal supergraph of G.252

We can now define our next problem definition regarding computing temporally orientable253

supergraphs of G.254

Temporal Transitive Completion (TTC)

Input: A temporal graph G = (G, λ), where G = (V, E), a (partial) orientation F of G,
and an integer k.

Question: Does there exist a temporal supergraph G′ = (G′, λ′) of (G, λ), where G′ = (V, E′),
and a transitive orientation F ′ ⊇ F of G′ such that |E′ \ E| ≤ k?

255

Similarly to TTO, if we ask in the problem definition of TTC for the existence of a256

strictly (resp. strongly, or strongly strictly) temporally transitive orientation F ′, we obtain257

the decision problem Strict (resp. Strong, or Strong Strict) Temporal Transitive258

Completion (TTC).259

Now we define our final problem which asks for an orientation F of a temporal graph260

G = (G, λ) (i.e. with exactly one orientation for each edge of G) such that, for every261

“time-layer” t ≥ 1, the (static) oriented graph defined by the edges having time-label t is262

transitively oriented in F . This problem does not make much sense if every edge has exactly263

one time-label in G, as in this case it can be easily solved by just repeatedly applying any264

known static transitive orientation algorithm. Therefore, in the next problem definition, we265

assume that in the input temporal graph G = (G, λ) every edge of G potentially has multiple266

time-labels, i.e. the time-labeling function is λ : E → 2N.267
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u w

v

t3

t2t1

u w

v

t1 t2

t1 = t2 = t3 t1 < t2 = t3 t1 ≤ t2 < t3 t1 = t2 t1 < t2

TTO non-cyclic wu = wv
vw =⇒ uw

vu =⇒ wu
uv = wv uv =⇒ wv

Strong TTO ⊥ wu ∧ wv
vw =⇒ uw

vu =⇒ wu
uv = wv uv =⇒ wv

Strict TTO ⊤ non-cyclic vw =⇒ uw

vu =⇒ wu
⊤ uv =⇒ wv

Str. Str. TTO ⊤ vu =⇒ wu

uv =⇒ wv

vw =⇒ uw

vu =⇒ wu
⊤ uv =⇒ wv

Table 1 Orientation conditions imposed by a triangle (left) and an induced path of length two
(right) in the underlying graph G for the decision problems (Strict/Strong/Strong Strict)
TTO. Here, ⊤ means that no restriction is imposed, ⊥ means that the graph is not orientable, and
in the case of triangles, “non-cyclic” means that all orientations except the ones that orient the
triangle cyclicly are allowed.

Multilayer Transitive Orientation (MTO)

Input: A temporal graph G = (G, λ), where G = (V, E) and λ : E → 2N.
Question: Is there an orientation F of the edges of G such that, for every t ≥ 1, the (static)

oriented graph induced by the edges having time-label t is transitively oriented?

268

3 The recognition of temporally transitively orientable graphs269

In this section we investigate the computational complexity of all variants of TTO. We270

show that TTO as well as the two variants Strong TTO and Strong Strict TTO, are271

solvable in polynomial time, whereas Strict TTO turns out to be NP-complete.272

The main idea of our approach to solve TTO and its variants is to create Boolean273

variables for each edge of the underlying graph G and interpret setting a variable to 1 or 0274

with the two possible ways of directing the corresponding edge.275

More formally, for every edge {u, v} we introduce a variable xuv and setting this variable276

to 1 corresponds to the orientation uv while setting this variable to 0 corresponds to the277

orientation vu. Now consider the example of Figure 1(a), i.e. an induced path of length278

two in the underlying graph G on three vertices u, v, w, and let λ(u, v) = 1 and λ(v, w) = 2.279

Then the orientation uv “forces” the orientation wv. Indeed, if we otherwise orient {v, w}280

as vw, then the edge {u, w} must exist and be oriented as uw in any temporal transitive281

orientation, which is a contradiction as there is no edge between u and w. We can express282

this “forcing” with the implication xuv =⇒ xwv. In this way we can deduce the constraints283

that all triangles or induced paths on three vertices impose on any (strong/strict/strong284

strict) temporal transitive orientation. We collect all these constraints in Table 1.285

When looking at the conditions imposed on temporal transitive orientations collected286
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50:8 The Complexity of Transitively Orienting Temporal Graphs

in Table 1, we can observe that all conditions except “non-cyclic” are expressible in 2SAT.287

Since 2SAT is solvable in linear time [6], it immediately follows that the strong variants of288

temporal transitivity are solvable in polynomial time, as the next theorem states.289

I Theorem 2. Strong TTO and Strong Strict TTO are solvable in polynomial time.290

In the variants TTO and Strict TTO, however, we can have triangles which impose291

a “non-cyclic” orientation of three edges (Table 1). This can be naturally modeled by a292

not-all-equal (NAE) clause.2 However, if we now naïvely model the conditions with a Boolean293

formula, we obtain a formula with 2SAT clauses and 3NAE clauses. Deciding whether such294

a formula is satisfiable is NP-complete in general [42]. Hence, we have to investigate these295

two variants more thoroughly.296

The only difference between the triangles that impose these “non-cyclic” orientations in297

these two problem variants is that, in TTO, the triangle is synchronous (i.e. all its three298

edges have the same time-label), while in Strict TTO two of the edges are synchronous299

and the third one has a smaller time-label than the other two. As it turns out, this difference300

of the two problem variants has important implications on their computational complexity.301

In fact, we obtain a surprising result: TTO is solvable in polynomial time while Strict302

TTO is NP-complete.303

3.1 Strict TTO is NP-Complete304

In this section we show that in contrast to the other variants, Strict TTO is NP-complete.305

I Theorem 3. Strict TTO is NP-complete even if the temporal input graph has only four306

different time labels.307

3.2 A polynomial-time algorithm for TTO308

Let G = (V, E) be a static undirected graph. There are various polynomial-time algorithms309

for deciding whether G admits a transitive orientation F . However our results in this section310

are inspired by the transitive orientation algorithm described by Golumbic [23], which is311

based on the crucial notion of forcing an orientation. The notion of forcing in static graphs312

is illustrated in Figure 1 (a): if we orient the edge {u, v} as uv (i.e., from u to v) then we313

are forced to orient the edge {v, w} as wv (i.e., from w to v) in any transitive orientation F314

of G. Indeed, if we otherwise orient {v, w} as vw (i.e. from v to w), then the edge {u, w}315

must exist and it must be oriented as uw in any transitive orientation F of G, which is a316

contradiction as {u, w} is not an edge of G. Similarly, if we orient the edge {u, v} as vu then317

we are forced to orient the edge {v, w} as vw. That is, in any transitive orientation F of318

G we have that uv ∈ F ⇔ wv ∈ F . This forcing operation can be captured by the binary319

forcing relation Γ which is defined on the edges of a static graph G as follows [23].320

uv Γ u′v′ if and only if
{

either u = u′ and {v, v′} /∈ E

or v = v′ and {u, u′} /∈ E
. (1)321

We now extend the definition of Γ in a natural way to the binary relation Λ on the edges322

of a temporal graph (G, λ), see Equation (2). For this, observe from Table 1 that the only323

cases, where we have uv ∈ F ⇔ wv ∈ F in any temporal transitive orientation of (G, λ), are324

2 A not all equal clause is a set of literals and it evaluates to true if and only if at least two literals in the
set evaluate to different truth values.
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u w

v

(a)

u w

v

(b)
3

55

Figure 1 The orientation uv forces the orientation wu and vice-versa in the examples of (a) a
static graph G where {u, v}, {v, w} ∈ E(G) and {u, w} /∈ E(G), and of (b) a temporal graph (G, λ)
where λ(u, w) = 3 < 5 = λ(u, v) = λ(v, w).

when (i) the vertices u, v, w induce a path of length 2 (see Figure 1 (a)) and λ(u, v) = λ(v, w),325

as well as when (ii) u, v, w induce a triangle and λ(u, w) < λ(u, v) = λ(v, w). The latter326

situation is illustrated in the example of Figure 1 (b). The binary forcing relation Λ is only327

defined on pairs of edges {u, v} and {u′, v′} where λ(u, v) = λ(u′, v′), as follows.328

uv Λ u′v′ if and only if λ(u, v) = λ(u′, v′) = t and


u = u′ and {v, v′} /∈ E, or
v = v′ and {u, u′} /∈ E, or
u = u′ and λ(v, v′) < t, or
v = v′ and λ(u, u′) < t.

(2)329

Note that, for every edge {u, v} ∈ E we have that uv Λ uv. The forcing relation Λ for temporal330

graphs shares some properties with the forcing relation Γ for static graphs. In particular,331

the reflexive transitive closure Λ∗ of Λ is an equivalence relation, which partitions the edges332

of each set Et = {{u, v} ∈ E : λ(u, v) = t} into its Λ-implication classes (or simply, into its333

implication classes). Two edges {a, b} and {c, d} are in the same Λ-implication class if and334

only ab Λ∗ cd, i.e. there exists a sequence ab = a0b0 Λ a1b1 Λ . . . Λ akbk = cd, with k ≥ 0.335

Note that, for this to happen, we must have λ(a0, b0) = λ(a1, b1) = . . . = λ(ak, bk) = t for336

some t ≥ 1. Such a sequence is called a Λ-chain from ab to cd, and we say that ab (eventually)337

Λ-forces cd. Furthermore note that ab Λ∗ cd if and only if ba Λ∗ dc. For the next lemma, we338

use the notation Â = {uv, vu : uv ∈ A}.339

I Lemma 4. Let A be a Λ-implication class of a temporal graph (G, λ). Then either340

A = A−1 = Â or A ∩A−1 = ∅.341

I Definition 5. Let F be a proper orientation and A be a Λ-implication class of a temporal342

graph (G, λ). If A ⊆ F , we say that F respects A.343

I Lemma 6. Let F be a proper orientation and A be a Λ-implication class of a temporal344

graph (G, λ). Then F respects either A or A−1 (i.e. either A ⊆ F or A−1 ⊆ F ), and in345

either case A ∩A−1 = ∅.346

The next lemma, which is crucial for proving the correctness of our algorithm, extends347

an important known property of the forcing relation Γ for static graphs [23, Lemma 5.3] to348

the temporal case.349

I Lemma 7 (Temporal Triangle Lemma). Let (G, λ) be a temporal graph and with a syn-350

chronous triangle on the vertices a, b, c, where λ(a, b) = λ(b, c) = λ(c, a) = t. Let A, B, C be351

three Λ-implication classes of (G, λ), where ab ∈ C, bc ∈ A, and ca ∈ B, where A ≠ B−1
352

and A ̸= C−1.353

1. If some b′c′ ∈ A, then ab′ ∈ C and c′a ∈ B.354

2. If some b′c′ ∈ A and a′b′ ∈ C, then c′a′ ∈ B.355

3. No edge of A touches vertex a.356
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Deciding temporal transitivity using Boolean satisfiability. Starting with any undirected357

edge {u, v} of the underlying graph G, we can clearly enumerate in polynomial time the358

whole Λ-implication class A to which the oriented edge uv belongs (cf. Equation (2)). If359

the reversely directed edge vu ∈ A then Lemma 4 implies that A = A−1 = Â. Otherwise, if360

vu /∈ A then vu ∈ A−1 and Lemma 4 implies that A ∩A−1 = ∅. Thus, we can also decide in361

polynomial time whether A ∩ A−1 = ∅. If we encounter a Λ-implication class A such that362

A∩A−1 ̸= ∅, then it follows by Lemma 6 that (G, λ) is not temporally transitively orientable.363

In the remainder of the section we will assume that A ∩A−1 = ∅ for every Λ-implication364

class A of (G, λ), which is a necessary condition for (G, λ) to be temporally transitive365

orientable. Moreover it follows by Lemma 6 that, if (G, λ) admits a temporally transitively366

orientation F , then either A ⊆ F or A−1 ⊆ F . This allows us to define a Boolean variable367

xA for every Λ-implication class A, where xA = xA−1 . Here xA = 1 (resp. xA−1 = 1) means368

that A ⊆ F (resp. A−1 ⊆ F ), where F is the temporally transitive orientation which we are369

looking for. Let {A1, A2, . . . , As} be a set of Λ-implication classes such that {Â1, Â2, . . . , Âs}370

is a partition of the edges of the underlying graph G.3 Then any truth assignment τ of the371

variables x1, x2, . . . , xs (where xi = xAi
for every i = 1, 2, . . . , s) corresponds bijectively to372

one possible orientation of the temporal graph (G, λ), in which every Λ-implication class is373

oriented consistently.374

Now we define two Boolean formulas φ3NAE and φ2SAT such that (G, λ) admits a temporal375

transitive orientation if and only if there is a truth assignment τ of the variables x1, x2, . . . , xs376

such that both φ3NAE and φ2SAT are simultaneously satisfied. Intuitively, φ3NAE captures377

the “non-cyclic” condition from Table 1 while φ2SAT captures the remaining conditions. Here378

φ3NAE is a 3NAE formula, i.e., the disjunction of clauses with three literals each, where379

every clause NAE(ℓ1, ℓ2, ℓ3) is satisfied if and only if at least one of the literals {ℓ1, ℓ2, ℓ3} is380

equal to 1 and at least one of them is equal to 0. Furthermore φ2SAT is a 2SAT formula,381

i.e., the disjunction of 2CNF clauses with two literals each, where every clause (ℓ1 ∨ ℓ2) is382

satisfied if and only if at least one of the literals {ℓ1, ℓ2} is equal to 1.383

For simplicity of the presentation we also define a variable xuv for every directed edge uv.384

More specifically, if uv ∈ Ai (resp. uv ∈ A−1
i ) then we set xuv = xi (resp. xuv = xi). That is,385

xuv = xvu for every undirected edge {u, v} ∈ E. Note that, although {xuv, xvu : {u, v} ∈ E}386

are defined as variables, they can equivalently be seen as literals in a Boolean formula over387

the variables x1, x2, . . . , xs. The process of building all Λ-implication classes and all variables388

{xuv, xvu : {u, v} ∈ E} is given by Algorithm 1.389

Description of the 3NAE formula φ3NAE. The formula φ3NAE captures the “non-cyclic”390

condition of the problem variant TTO (presented in Table 1). The formal description of391

φ3NAE is as follows. Consider a synchronous triangle of (G, λ) on the vertices u, v, w. Assume392

that xuv = xwv, i.e., xuv is the same variable as xwv. Then the pair {uv, wv} of oriented393

edges belongs to the same Λ-implication class Ai. This implies that the triangle on the394

vertices u, v, w is never cyclically oriented in any proper orientation F that respects Ai395

or A−1
i . Note that, by symmetry, the same happens if xvw = xuw or if xwu = xvu. Assume,396

on the contrary, that xuv ̸= xwv, xvw ̸= xuw, and xwu ̸= xvu. In this case we add to φ3NAE397

the clause NAE(xuv, xvw, xwu). Note that the triangle on u, v, w is transitively oriented if398

and only if NAE(xuv, xvw, xwu) is satisfied, i.e., at least one of the variables {xuv, xvw, xwu}399

receives the value 1 and at least one of them receives the value 0.400

3 Here we slightly abuse the notation by identifying the undirected edge {u, v} with the set of both its
orientations {uv, vu}.
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Algorithm 1 Building the Λ-implication classes and the edge-variables.

Input: A temporal graph (G, λ), where G = (V, E).
Output: The variables {xuv, xvu : {u, v} ∈ E}, or the announcement that (G, λ) is tempor-

ally not transitively orientable.

1: s← 0; E0 ← E

2: while E0 ̸= ∅ do
3: s← s + 1; Let {p, q} ∈ E0 be arbitrary
4: Build the Λ-implication class As of the oriented edge pq (by Equation (2))
5: if qp ∈ As then {As ∩A−1

s ̸= ∅}
6: return “NO”
7: else
8: xs is the variable corresponding to the directed edges of As

9: for every uv ∈ As do
10: xuv ← xs; xvu ← xs {xuv and xvu become aliases of xs and xs}
11: E0 ← E0 \ Âs

12: return Λ-implication classes {A1, A2, . . . , As} and variables {xuv, xvu : {u, v} ∈ E}

Description of the 2SAT formula φ2SAT. The formula φ2SAT captures all conditions apart401

from the “non-cyclic” condition of the problem variant TTO (presented in Table 1). The402

formal description of φ2SAT is as follows. Consider a triangle of (G, λ) on the vertices u, v, w,403

where λ(u, v) = t1, λ(v, w) = t2, λ(w, v) = t3, and t1 ≤ t2 ≤ t3. If t1 < t2 = t3 then we add404

to φ2SAT the clauses (xuw ∨ xwv) ∧ (xvw ∨ xwu); note that these clauses are equivalent to405

xwu = xwv. If t1 ≤ t2 < t3 then we add to φ2SAT the clauses (xwv ∨ xuw) ∧ (xuv ∨ xwu);406

note that these clauses are equivalent to (xvw ⇒ xuw) ∧ (xvu ⇒ xwu). Now consider a path407

of length 2 that is induced by the vertices u, v, w, where λ(u, v) = t1, λ(v, w) = t2, and408

t1 ≤ t2. If t1 = t2 then we add to φ2SAT the clauses (xvu ∨ xwv) ∧ (xvw ∨ xuv); note that409

these clauses are equivalent to (xuv = xwv). Finally, if t1 < t2 then we add to φ2SAT the410

clause (xvu ∨ xwv); note that this clause is equivalent to (xuv ⇒ xwv).411

Brief outline of the algorithm. In the initialization phase, we exhaustively check which412

truth values are forced in φ3NAE ∧ φ2SAT by using the subroutine Initial-Forcing. During413

the execution of Initial-Forcing, we either replace the formulas φ3NAE and φ2SAT by the414

equivalent formulas φ
(0)
3NAE and φ

(0)
2SAT, respectively, or we reach a contradiction by showing415

that φ3NAE ∧ φ2SAT is unsatisfiable.416

I Observation 8. The temporal graph (G, λ) is transitively orientable if and only if φ
(0)
3NAE ∧417

φ
(0)
2SAT is satisfiable.418

The main phase of the algorithm starts once the formulas φ
(0)
3NAE and φ

(0)
2SAT have been419

computed. Then we iteratively try assigning to each variable xi the truth value 1 or 0.420

Once we have set xi = 1 (resp. xi = 0) during the iteration j ≥ 1 of the algorithm, we call421

algorithm Boolean-Forcing (see Algorithm 3) as a subroutine to check which implications422

this value of xi has on the current formulas φ
(j−1)
3NAE and φ

(j−1)
2SAT and which other truth values423

of variables are forced. The correctness of Boolean-Forcing can be easily verified by424

checking all subcases of Boolean-Forcing. During the execution of Boolean-Forcing,425

we either replace the current formulas by φ
(j)
3NAE and φ

(j)
2SAT, or we reach a contradiction by426

showing that, setting xi = 1 (resp. xi = 0) makes φ
(j−1)
3NAE ∧ φ

(j−1)
2SAT unsatisfiable. If each of427

the truth assignments {xi = 1, xi = 0} leads to such a contradiction, we return that (G, λ)428
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Algorithm 2 Initial-Forcing

Input: A 2-SAT formula φ2SAT and a 3-NAE formula φ3NAE

Output: A 2-SAT formula φ
(0)
2SAT and a 3-NAE formula φ

(0)
3NAE such that φ

(0)
2SAT ∧ φ

(0)
3NAE

is satisfiable if and only if φ2SAT ∧ φ3NAE is satisfiable, or the announcement that
φ2SAT ∧ φ3NAE is not satisfiable.

1: φ
(0)
3NAE ← φ3NAE; φ

(0)
2SAT ← φ2SAT {initialization}

2: for every variable xi appearing in φ
(0)
3NAE ∧ φ

(0)
2SAT do

3: if Boolean-Forcing
(

φ
(0)
3NAE, φ

(0)
2SAT, xi, 1

)
= “NO” then

4: if Boolean-Forcing
(

φ
(0)
3NAE, φ

(0)
2SAT, xi, 0

)
= “NO” then

5: return “NO” {both xi = 1 and xi = 0 invalidate the formulas}

6: else

7:
(

φ
(0)
3NAE, φ

(0)
2SAT

)
← Boolean-Forcing

(
φ

(0)
3NAE, φ

(0)
2SAT, xi, 0

)
8: else

9: if Boolean-Forcing
(

φ
(0)
3NAE, φ

(0)
2SAT, xi, 0

)
= “NO” then

10:
(

φ
(0)
3NAE, φ

(0)
2SAT

)
← Boolean-Forcing

(
φ

(0)
3NAE, φ

(0)
2SAT, xi, 1

)
11: for every clause NAE(xuv, xvw, xwu) of φ

(0)
3NAE do

12: for every variable xab do

13: if xab
∗⇒

φ
(0)
2SAT

xuv and xab
∗⇒

φ
(0)
2SAT

xvw then {add (xab ⇒ xuw) to φ
(0)
2SAT}

14: φ
(0)
2SAT ← φ

(0)
2SAT ∧ (xba ∨ xuw)

15: Repeat lines 2 and 11 until no changes occur on φ
(0)
2SAT and φ

(0)
3NAE

16: return
(

φ
(0)
3NAE, φ

(0)
2SAT

)

is a no-instance. Otherwise, if at least one of the truth assignments {xi = 1, xi = 0} does429

not lead to such a contradiction, we follow this truth assignment and proceed with the next430

variable.431

As we prove in our main technical result of this section (Theorem 9), φ
(j−1)
3NAE ∧ φ

(j−1)
2SAT is432

satisfiable if and only if φ
(j)
3NAE ∧ φ

(j)
2SAT is satisfiable. Note that, during the execution of the433

algorithm, we can both add and remove clauses from φ
(j)
2SAT. On the other hand, we can only434

remove clauses from φ
(j)
3NAE. Thus, at some iteration j, we obtain φ

(j)
3NAE = ∅, and after that435

iteration we only need to decide satisfiability of φ
(j)
2SAT which can be done efficiently [6].436

We are now ready to present in the next theorem our main technical result of this section.437

I Theorem 9. For every iteration j ≥ 1 of the algorithm, φ
(j)
3NAE ∧ φ

(j)
2SAT is satisfiable if438

and only if φ
(j−1)
3NAE ∧ φ

(j−1)
2SAT is satisfiable.439

Using Theorem 9, we can now conclude this section with the next theorem.440

I Theorem 10. TTO can be solved in polynomial time.441
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Algorithm 3 Boolean-Forcing

Input: A 2-SAT formula φ2, a 3-NAE formula φ3, and a variable xi of φ2 ∧ φ3, and a truth
value Value ∈ {0, 1}

Output: A 2-SAT formula φ′
2 and a 3-NAE formula φ′

3, obtained from φ2 and φ3 by setting
xi = Value, or the announcement that xi = Value does not satisfy φ2 ∧ φ3.

1: φ′
2 ← φ2; φ′

3 ← φ3

2: while φ′
2 has a clause (xuv ∨ xpq) and xuv = 1 do

3: Remove the clause (xuv ∨ xpq) from φ′
2

4: while φ′
2 has a clause (xuv ∨ xpq) and xuv = 0 do

5: if xpq = 0 then return “NO”
6: Remove the clause (xuv ∨ xpq) from φ′

2; xpq ← 1

7: for every variable xuv that does not yet have a truth value do
8: if xuv

∗⇒φ′′
2

xvu, where φ′′
2 = φ′

2 \ φ2 then xuv ← 0

9: for every clause NAE(xuv, xvw, xwu) of φ′
3 do {synchronous triangle on vertices u, v, w}

10: if xuv
∗⇒φ′

2
xvw then {add (xuv ⇒ xuw) ∧ (xuw ⇒ xvw) to φ′

2}
11: φ′

2 ← φ′
2 ∧ (xvu ∨ xuw) ∧ (xwu ∨ xvw)

12: Remove the clause NAE(xuv, xvw, xwu) from φ′
3

13: if xuv already got the value 1 or 0 then
14: Remove the clause NAE(xuv, xvw, xwu) from φ′

3

15: if xvw and xwu do not have yet a truth value then

16: if xuv = 1 then {add (xvw ⇒ xuw) to φ′
2}

17: φ′
2 ← φ′

2 ∧ (xwv ∨ xuw)

18: else {xuv = 0; in this case add (xuw ⇒ xvw) to φ′
2}

19: φ′
2 ← φ′

2 ∧ (xwu ∨ xvw)

20: if xvw = xuv and xwu does not have yet a truth value then
21: xwu ← 1− xuv

22: if xvw = xwu = xuv then return “NO”

23: Repeat lines 2, 4, 7, and 9 until no changes occur on φ′
2 and φ′

3

24: if both xuv = 0 and xuv = 1 for some variable xuv then return “NO”

25: return (φ′
2, φ′

3)

Proof sketch. First recall by Observation 8 that the input temporal graph (G, λ) is transit-442

ively orientable if and only if φ
(0)
3NAE ∧ φ

(0)
2SAT is satisfiable.443

Let (G, λ) be a yes-instance. Then, by iteratively applying Theorem 9 it follows that444

φ
(j)
3NAE ∧ φ

(j)
2SAT is satisfiable, for every iteration j of the algorithm. Recall that, at the end of445

the last iteration k of the algorithm, φ
(k)
3NAE ∧ φ

(k)
2SAT is empty. Then the algorithm gives the446

arbitrary truth value xi = 1 to every variable xi which did not yet get any truth value yet.447

This is a correct decision as all these variables are not involved in any Boolean constraint448

of φ
(k)
3NAE ∧ φ

(k)
2SAT (which is empty). Finally, the algorithm orients all edges of G according449

to the corresponding truth assignment. The returned orientation F of (G, λ) is temporally450

transitive as every variable was assigned a truth value according to the Boolean constraints451
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Algorithm 4 Temporal transitive orientation.

Input: A temporal graph (G, λ), where G = (V, E).
Output: A temporal transitive orientation F of (G, λ), or the announcement that (G, λ) is

temporally not transitively orientable.

1: Execute Algorithm 1 to build the Λ-implication classes {A1, A2, . . . , As} and the Boolean
variables {xuv, xvu : {u, v} ∈ E}

2: if Algorithm 1 returns “NO” then return “NO”

3: Build the 3NAE formula φ3NAE and the 2SAT formula φ2SAT

4: if Initial-Forcing (φ3NAE, φ2SAT) ̸= “NO” then {Initialization phase}

5:
(

φ
(0)
3NAE, φ

(0)
2SAT

)
← Initial-Forcing (φ3NAE, φ2SAT)

6: else {φ3NAE ∧ φ2SAT leads to a contradiction}
7: return “NO”

8: j ← 1; F ← ∅ {Main phase}
9: while a variable xi appearing in φ

(j−1)
3NAE ∧ φ

(j−1)
2SAT did not yet receive a truth value do

10: if Boolean-Forcing
(

φ
(j−1)
3NAE, φ

(j−1)
2SAT , xi, 1

)
̸= “NO” then

11:
(

φ
(j)
3NAE, φ

(j)
2SAT

)
← Boolean-Forcing

(
φ

(j−1)
3NAE, φ

(j−1)
2SAT , xi, 1

)
12: else {xi = 1 leads to a contradiction}

13: if Boolean-Forcing
(

φ
(j−1)
3NAE, φ

(j−1)
2SAT , xi, 0

)
̸= “NO” then

14:
(

φ
(j)
3NAE, φ

(j)
2SAT

)
← Boolean-Forcing

(
φ

(j−1)
3NAE, φ

(j−1)
2SAT , xi, 0

)
15: else
16: return “NO”
17: j ← j + 1

18: for i = 1 to s do
19: if xi did not yet receive a truth value then xi ← 1
20: if xi = 1 then F ← F ∪Ai else F ← F ∪Ai

21: return the temporally transitive orientation F of (G, λ)

throughout the execution of the algorithm.452

Now let (G, λ) be a no-instance. We will prove that, at some iteration j ≤ 0, the453

algorithm will “NO”. Suppose otherwise that the algorithm instead returns an orientation454

F of (G, λ) after performing k iterations. Then clearly φ
(k)
3NAE ∧ φ

(k)
2SAT is empty, and thus455

clearly satisfiable. Therefore, iteratively applying Theorem 9 implies that φ
(0)
3NAE ∧ φ

(0)
2SAT is456

also satisfiable, and thus (G, λ) is temporally transitively orientable by Observation 8, which457

is a contradiction to the assumption that (G, λ) be a no-instance.458

Lastly, we prove that our algorithm runs in polynomial time. The Λ-implication classes459

of (G, λ) can be clearly computed in polynomial time. Our algorithm calls a subroutine460

Boolean-Forcing at most four times for every variable in φ
(0)
3NAE ∧ φ

(0)
2SAT. Boolean-461

Forcing iteratively adds and removes clauses from the 2SAT part of the formula, while it462

can only remove clauses from the 3NAE part. Whenever a clause is added to the 2SAT part,463
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a clause of the 3NAE part is removed. Therefore, as the initial 3NAE formula has at most464

polynomially-many clauses, we can add clauses to the 2SAT part only polynomially-many465

times. Hence, we have an overall polynomial running time. J466

4 Temporal Transitive Completion467

We now study the computational complexity of Temporal Transitive Completion468

(TTC). In the static case, the so-called minimum comparability completion problem,469

i.e. adding the smallest number of edges to a static graph to turn it into a comparabil-470

ity graph, is known to be NP-hard [24]. Note that minimum comparability completion471

on static graphs is a special case of TTC and thus it follows that TTC is NP-hard too.472

Our other variants, however, do not generalize static comparability completion in such a473

straightforward way. Note that for Strict TTC we have that the corresponding recognition474

problem Strict TTO is NP-complete (Theorem 3), hence it follows directly that Strict475

TTC is NP-hard. For the remaining two variants of our problem, we show in the following476

that they are also NP-hard, giving the result that all four variants of TTC are NP-hard.477

Furthermore, we present a polynomial-time algorithm for all four problem variants for the478

case that all edges of underlying graph are oriented, see Theorem 12. This allows directly to479

derive an FPT algorithm for the number of unoriented edges as a parameter.480

I Theorem 11. All four variants of TTC are NP-hard, even when the input temporal graph481

is completely unoriented.482

We now show that TTC can be solved in polynomial time, if all edges are already oriented,483

as the next theorem states.484

I Theorem 12. An instance (G, F, k) of TTC where G = (G, λ) and G = (V, E), can be485

solved in O(m2) time if F is an orientation of E, where m = |E|.486

Using Theorem 12 we can now prove that TTC is fixed-parameter tractable (FPT) with487

respect to the number of unoriented edges in the input temporal graph G.488

I Corollary 13. Let I = (G = (G, λ), F, k) be an instance of TTC, where G = (V, E). Then489

I can be solved in O(2q ·m2), where q = |E| − |F | and m the number of time edges.490

5 Deciding Multilayer Transitive Orientation491

In this section we prove that Multilayer Transitive Orientation (MTO) is NP-492

complete, even if every edge of the given temporal graph has at most two labels. Recall that493

this problem asks for an orientation F of a temporal graph G = (G, λ) (i.e. with exactly one494

orientation for each edge of G) such that, for every “time-layer” t ≥ 1, the (static) oriented495

graph defined by the edges having time-label t is transitively oriented in F . As we discussed496

in Section 2, this problem makes more sense when every edge of G potentially has multiple497

time-labels, therefore we assume here that the time-labeling function is λ : E → 2N.498

I Theorem 14. MTO is NP-complete, even on temporal graphs with at most two labels per499

edge.500
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