
The Complexity of Temporal Vertex Cover in Small-Degree Graphs

Thekla Hamm1, Nina Klobas2, George B. Mertzios2∗, Paul G. Spirakis3†

1 Algorithms and Complexity Group, TU Wien, Austria
2 Department of Computer Science, Durham University, UK

3 Department of Computer Science, University of Liverpool, UK
3 Computer Engineering & Informatics Department, University of Patras, Greece

thamm@ac.tuwien.ac.at, {nina.klobas, george.mertzios}@durham.ac.uk, p.spirakis@liverpool.ac.uk

Abstract

Temporal graphs naturally model graphs whose un-
derlying topology changes over time. Recently, the
problems Temporal Vertex Cover (or TVC) and
Sliding-Window Temporal Vertex Cover (or ∆-
TVC for time-windows of a fixed-length ∆) have been
established as natural extensions of the classic Vertex
Cover problem on static graphs with connections to
areas such as surveillance in sensor networks.
In this paper we initiate a systematic study of the com-
plexity of TVC and ∆-TVC on sparse graphs. Our
main result shows that for every ∆ ≥ 2, ∆-TVC is NP-
hard even when the underlying topology is described by
a path or a cycle. This resolves an open problem from
literature and shows a surprising contrast between ∆-
TVC and TVC for which we provide a polynomial-
time algorithm in the same setting. To circumvent this
hardness, we present a number of exact and approxi-
mation algorithms for temporal graphs whose underly-
ing topologies are given by a path, that have bounded
vertex degree in every time step, or that admit a small-
sized temporal vertex cover.

1 Introduction
A great variety of modern, as well as of traditional net-
works, are dynamic in nature as their link availabil-
ity changes over time. Information and communication
networks, social networks, transportation networks, and
various physical systems are only a few indicative exam-
ples of such inherently dynamic networks (Holme and
Saramäki 2013; Michail and Spirakis 2018). All these
application areas share the common characteristic that
the network structure, i.e. the underlying graph topol-
ogy, is subject to discrete changes over time. In this pa-
per, embarking from the foundational work of Kempe
et al. (Kempe, Kleinberg, and Kumar 2002), we adopt
the following simple and natural model for time-varying
∗Supported by the EPSRC grant EP/P020372/1.
†Supported by the NeST initiative of the School of EEE

and CS at the University of Liverpool and by the EPSRC
grant EP/P02002X/1.
Copyright c© 2022, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

networks, which is given by a graph with sets of time-
labels associated with its edges, while the vertex set is
fixed.
Definition 1 (Temporal Graph). A temporal graph is a
pair (G,λ), where G = (V,E) is an underlying (static)
graph and λ : E → 2N is a time-labeling function which
assigns to every edge of G a set of discrete-time labels.

For an edge e ∈ E in the underlying graph G of a
temporal graph (G,λ), if t ∈ λ(e) then we also say
that e is active at time t in (G,λ). That is, for every
edge e ∈ E, λ(e) denotes the set of time slots at which
e is active. Due to their relevance and applicability in
many areas, temporal graphs have been studied from
various perspectives and under different names such
as dynamic (Giakkoupis, Sauerwald, and Stauffer 2014;
Casteigts et al. 2012), evolving (Bui-Xuan, Ferreira, and
Jarry 2003; Ferreira 2004; Clementi et al. 2010), time-
varying (Flocchini, Mans, and Santoro 2009; Tang et al.
2010; Aaron, Krizanc, and Meyerson 2014), and graphs
over time (Leskovec, Kleinberg, and Faloutsos 2007).
For a comprehensive overview on the existing mod-
els and results on temporal graphs from a distributed
computing perspective see the surveys (Casteigts et al.
2012; Casteigts and Flocchini 2013a,b).

Mainly motivated by the fact that, due to causal-
ity, information can be transfered in a temporal graph
along sequences of edges whose time-labels are increas-
ing, the most traditional research on temporal graphs
has focused on temporal paths and other “path-related”
notions, such as e.g. temporal analogues of distance,
reachability, exploration and centrality (Klobas et al.
2021; Heeger et al. 2021; Akrida et al. 2016; Erlebach,
Hoffmann, and Kammer 2021; Mertzios, Michail, and
Spirakis 2019; Michail and Spirakis 2016; Akrida et al.
2017; Enright et al. 2021; Zschoche et al. 2020; Casteigts
et al. 2021). To complement this direction, several at-
tempts have been recently made to define meaning-
ful “non-path” temporal graph problems which appro-
priately model specific applications. Motivated by the
contact patterns among high-school students, Viard et
al. (Viard, Latapy, and Magnien 2016), introduced ∆-
cliques, an extension of the concept of cliques to tempo-
ral graphs (see also (Himmel et al. 2017; Bentert et al.

1

2018)). Chen et al. (Chen et al. 2018) presented an
extension of the cluster editing problem to temporal
graphs, in which all vertices interact with each other
at least once every ∆ consecutive time steps within a
given time interval. Furthermore, Akrida et al. (Akrida
et al. 2020) introduced the notion of temporal vertex
cover (also with a sliding time window), motivated by
applications of covering problems in sensor networks.
Further examples of meaningful “non-path” temporal
graph problems include variations of temporal graph
coloring (Mertzios, Molter, and Zamaraev 2021; Yu
et al. 2013; Ghosal and Ghosh 2015) in the context
of planning and channel assignment in mobile sensor
networks, and the temporally transitive orientations of
temporal graphs (Mertzios et al. 2021).

The problems Temporal Vertex Cover (or
TVC) and Sliding-Window Temporal Vertex
Cover (or ∆-TVC for time-windows of a fixed-length
∆) have been established as natural extensions of
the well-known Vertex Cover problem on static
graphs (Akrida et al. 2020). Given a temporal graph G,
the aim of TVC is to cover every edge at least once dur-
ing the lifetime T of G, where an edge can be covered by
one of its endpoints, and only at a time step when it is
active. For any ∆ ∈ N, the aim of the more “pragmatic”
problem ∆-TVC is to cover every edge at least once at
every ∆ consecutive time steps. In both problems, we
try to minimize the number of “vertex appearances” in
the resulting cover, where a vertex appearance is a pair
(v, t) for some vertex v and t ∈ {1, 2, . . . , T}.

TVC and ∆-TVC naturally generalize the applica-
tions of the static problem Vertex Cover to more
dynamic inputs, especially in the areas of wireless ad
hoc networks, as well as network security and schedul-
ing. In the case of a static graph, the vertex cover can
contain trusted vertices which have the ability to mon-
itor/surveil all transmissions (Ileri et al. 2016; Richter,
Helmert, and Gretton 2007) or all link failures (Kavalci,
Ural, and Dagdeviren 2014) between any pair of vertices
through the edges of the graph. In the temporal set-
ting, it makes sense to monitor the transmissions and to
check for link failures within every sliding time window
of an appropriate length ∆ (which is exactly modeled
by ∆-TVC).

It is already known that both TVC and ∆-TVC are
NP-hard; for ∆-TVC this is even the case when ∆ = 2
and the minimum degree of the underlying graph G is
just 3 (Akrida et al. 2020). One of the most intriguing
questions left open (see Problem 1 in (Akrida et al.
2020)) is whether ∆-TVC (or, more generally, Sliding-
Window Temporal Vertex Cover) can be solved
in polynomial time.

Our Contribution. In this paper we initiate the study
of the complexity of TVC and ∆-TVC on sparse
graphs. Our main result (see Section 3.1) is that, for ev-
ery ∆ ≥ 2, ∆-TVC is NP-hard even when G is a path
or a cycle, while TVC can be solved in polynomial time
on paths and cycles. This resolves the first open ques-

tion (Problem 1) of (Akrida et al. 2020). In contrast, we
show that TVC (see Section 3.2) can be solved in poly-
nomial time on temporal paths and cycles. Moreover,
for any ∆ ≥ 2, we provide a Polynomial-Time Approxi-
mation Scheme (PTAS) for ∆-TVC on temporal paths
and cycles (see Section 3.2), which also complements
our hardness result for paths.

The NP-hardness of Section 3.1 signifies that an op-
timum solution for ∆-TVC is hard to compute, even
for ∆ = 2 and under severe degree restrictions of the
input instance. To counter this hardness for more gen-
eral temporal graphs than those with underlying paths
and cycles as in Section 3, in Section 4 we give three
algorithms for every ∆ ≥ 2: First we present an exact
algorithm for ∆-TVC with single exponential running
time dependency on the number of edges in the un-
derlying graph (see Section 4.1). Using this algorithm
we are able to devise for any d ≥ 3 a polynomial-
time (d − 1)-approximation (see Section 4.2), where
d is the maximum vertex degree in any time step,
i. e., in any part of the temporal graph that is active
at the same time. This improves the currently best
known d-approximation algorithm for ∆-TVC (Akrida
et al. 2020) and thus also answers another open ques-
tion (Problem 2 in (Akrida et al. 2020)). Finally, we
present a simple fixed-parameter tractable algorithm
with respect to the size of an optimum solution (see
Section 4.3).

2 Preliminaries
Given a (static) graph G = (V,E) with vertices in V
and edges in E, an edge between two vertices u and v
is denoted by uv, and in this case u and v are said to
be adjacent in G. For every i, j ∈ N, where i ≤ j, we let
[i, j] = {i, i+ 1, . . . , j} and [j] = [1, j]. Throughout the
paper we consider temporal graphs whose underlying
graphs are finite and whose time-labeling functions only
map to finite sets. This implies that there is some t ∈ N
such that, for every t′ > t, no edge of G is active at
t′ in (G,λ). We denote the smallest such t by T , i. e.,
T = max{t ∈ λ(e) | e ∈ E}, and call T the lifetime of
(G,λ). Unless otherwise specified, n denotes the number
of vertices in the underlying graph G, and T denotes
the lifetime of the temporal graph G. We refer to each
integer t ∈ [T] as a time slot of (G,λ). The instance
(or snapshot) of (G,λ) at time t is the static graph
Gt = (V,Et), where Et = {e ∈ E : t ∈ λ(e)}.

A temporal path of length k is a temporal graph
P = (P, λ), where the underlying graph P is the path
(v0, v1, v2, . . . , vk) on k + 1 vertices, with edges ei =
vi−1vi for i = 1, 2, . . . , k. In many places throughout the
paper, we visualize a temporal path as a 2-dimensional
array V (P) × [T], where two vertices (x, t), (y, t′) ∈
V (P) × [T] are connected in this array if and only if
t = t′ ∈ λ(xy) and xy ∈ E(P). For example see Fig-
ure 1.

For every t = 1, . . . , T −∆ + 1, let Wt = [t, t+ ∆− 1]
be the ∆-time window that starts at time t. For every
v ∈ V and every time slot t, we denote the appearance

2

⇒
v1 v2 v3 v4 v5

v1 v2 v3 v4 v5

t = 1

t = 2

t = 3

t = 4

t = 5

{1, 3, 5} {2, 4} {2, 3, 4} {1} {2, 3}

v0

v0

Figure 1: An example of visualizing a temporal path
graph G as a 2-dimensional array, in which every edge
corresponds to a time-edge of G.

of vertex v at time t by the pair (v, t) and the edge
appearance (or time-edge) of e at time t by (e, t).

A temporal vertex subset of (G,λ) is a set of ver-
tex appearances in (G,λ), i.e. a set of the form S ⊆
{(v, t) | v ∈ V, t ∈ [T]}. For a temporal vertex sub-
set S and some ∆-time window Wi within the lifetime
of (G,λ), we denote by S[Wi] = {(v, t) ∈ S | t ∈ Wi}
the subset of all vertex appearances in S in the ∆-
time window Wi. For a ∆-time window Wi within
the lifetime of a temporal graph (G,λ), we denote by
E[Wi] = {e ∈ E | λ(e) ∩Wi 6= ∅} the set of all edges
which appear at some time slot within Wi.

A temporal vertex subset C is a sliding ∆-time win-
dow temporal vertex cover, or ∆-TVC for short, of a
temporal graph (G,λ) if, for every ∆-time window Wi

within the lifetime of (G,λ) and for every edge in E[Wi],
there is some (v, t) ∈ C[Wi] such that v ∈ e, i.e. v is an
endpoint of e, and t ∈ λ(e). Here we also say (v, t) cov-
ers (e, t) in time window Wi.

3 Paths and Cycles
In Section 3.1 we provide our main NP-hardness result
for ∆-TVC, for any ∆ ≥ 2, on instances whose under-
lying graph is a path or a cycle (see Theorem 3 and
Corollary 4). In Section 3.2 we prove that TVC on un-
derlying paths and cycles is polynomially solvable, and
we also provide our PTAS for ∆-TVC on underlying
paths and cycles, for every ∆ ≥ 2.

3.1 Hardness on Temporal Paths and
Cycles

Our NP-hardness reduction of Theorem 3 is done from
the NP-hard problem planar monotone rectilinear 3 sat-
isfiability (or planar monotone rectilinear 3SAT), see
(de Berg and Khosravi 2010). This is a specialization of
the classical Boolean 3-satisfiability problem to a pla-
nar incidence graph. A Boolean satisfiability formula
φ in conjunctive normal form (CNF) is called mono-
tone, if each clause of φ consists of only positive or only
negative literals. We refer to these clauses as positive
and negative clauses, respectively. By possibly repeat-
ing literals, we may assume without loss of generality
that every clause contains exactly three (not necessarily
different) literals.

In an instance of planar monotone rectilinear 3SAT,

each variable and each clause is represented with a
horizontal line segment, as follows. The line segments
of all variables lie on the same horizontal line on the
plane, which we call the variable-axis. For every clause
C = (xi∨xj∨xk) (or C = (xi∨xj∨xk)), the line segment
of C is connected via straight vertical line segments to
the line segments of xi, xj and of xk, such that every
two (horizontal or vertical) line segments are pairwise
non-intersecting. Furthermore, every line segment of a
positive (resp. negative) clause lies above (resp. below)
the variable-axis. Finally, by possibly slightly moving
the clause line segments higher or lower, we can assume
without loss of generality that every clause line segment
lies on a different horizontal line on the plane.

Let φ be an arbitrary instance of planar monotone
rectilinear 3SAT, where X = {x1, . . . , xn} is its set of
Boolean variables and φ(X) = {C1, . . . , Cm} is its set
of clauses. We construct from φ a temporal path Gφ and
prove that there exists a truth assignment of X which
satisfies φ(X) if and only if the optimum value of 2-
TVC on Gφ is at most f(Gφ). The exact value of f(Gφ)
will be defined later.
High-Level Description Given a representation
(i.e. embedding) Rφ of an instance φ of planar mono-
tone rectilinear 3SAT, we construct a 2-dimensional ar-
ray of the temporal path Gφ, where:
• every vertical line segment in Rφ is associated with

an edge of Gφ that appears in consecutive time steps,
• every variable (horizontal) line segment in Rφ is as-

sociated with one or more segment blocks (to be for-
mally defined below) in Gφ, and
• every clause (horizontal) line segment in Rφ, corre-

sponding to the clause C = (xi∨xj ∨xk) (resp. C =
(xi ∨ xj ∨ xk)), is associated with a clause gadget in
Gφ, which consists of three segment blocks (one for
each of xi, xj , xk) together with a path connecting
them in the 2-dimensional array for G (we call this
path the clause gadget connector).

The exact description of the variables’ and clauses’
gadgets is given below; first we need to precisely define
the segment blocks.
Segment Blocks are used to represent variables. Ev-
ery segment block consists of a path of length 7 on
vertices (u0, u1, . . . , u7), where the first and last edges
(i. e., u0u1 and u6u7) appear at 9 consecutive time steps
starting at time t and ending at time t+8, with all other
edges appearing only two times, i. e., at times t+ 1 and
t+ 7.

Time-edges which correspond to the first and last
appearances of u0u1 and u6u7 in a segment block are
called dummy time-edges, all remaining time-edges form
two (bottom and top) horizontal paths, and two (left
and right) vertical sequences of time-edges (which we
call here vertical paths), . Using the next technical
lemma will allow us to model the two different truth
values of each variable xi (True, resp. False) via two dif-
ferent optimum solutions of 2-TVC on a segment block

3

(namely the “orange and green”, resp. “orange and red”
temporal vertex covers of the segment block, see Fig-
ure 2).
Lemma 2. There are exactly two different optimum
solutions for 2-TVC of a segment block, both of size 15.

Proof. Let C be a 2-TVC of a segment block on vertices
u0, . . . , u7 that starts at time t and finishes at time t+8.

In order to cover the dummy time-edges in time win-
dows Wt−1 and Wt+8 one of their endpoints has to be
in C. Now let us start with the covering of the first edge
(u0u1) at time t + 1. Since the dummy time-edges are
covered, the edge u0u1 is covered in the time window
Wt but it is not yet covered in the time window Wt+1.
We have two options, either cover it at time t + 1 or
t+ 2.

• Suppose that we cover the edge u0u1 at t+1, then the
next time step it has to be covered is t+ 3, the next
one t+5 and the last one t+7. Now that the left ver-
tical path is covered we proceed to cover the bottom
and top horizontal paths. The middle 5 edges, from
u1 to u6, appear only at time steps t + 1 and t + 7.
Since we covered the edge u0u1 at time t+ 1, we can
argue that the optimum solution includes the tem-
poral vertex (u1, t + 1) and therefore the edge u1u2
is also covered. Extending this covering optimally to
the whole path we need to add every second vertex to
C, i. e., vertex appearances (u3, t+ 1) and (u5, t+ 1).
Similarly it holds for the vertex appearances of ver-
tices u1, . . . , u6 at time t+ 7. The last thing we need
to cover is the right vertical path. Since the edge
u6u7 is covered at time t, the next time step we have
to cover it is t+ 2, which forces the next cover to be
at t+ 4 and last one at t+ 6. In total C consists of 4
endpoints of the dummy time-edges, 4 vertices of the
left and 3 of the right vertical path, 2 vertices of the
bottom and 2 of the top horizontal path. All together
we used 11 vertices to cover vertical and horizontal
paths and 4 for dummy time-edges. The above de-
scribed 2-TVC corresponds to the red coloring of the
odd segment block depicted in the Figure 2 (left).
Let us also emphasize that, with the exception of
times t+ 1 and t+ 7, we do not distinguish between
the solutions that uses a different endpoint to cover
the first and last edge. For example if a solution cov-
ers the edge u0u1 at time t+ 2 then we do not care
which of (u0, t+ 2) or (u1, t+ 2) is in the TVC.
• Covering the edge u0u1 at time t+2 produces the 2-

TVC that is a mirror version of the previous one on
the vertical and horizontal paths. More precisely, in
this case the covering consists of 3 vertices of the left
and 4 of the right vertical path and again 2 vertices of
the bottom and 2 of the top horizontal path, together
with 4 vertices covering the dummy time-edges.
This 2-TVC corresponds to the green coloring of the
odd segment block depicted in the Figure 2.

Starting with vertex appearances from one optimum
solution adding vertex appearances from the other op-

timum solution either creates a 2-TVC of bigger size or
leaves some edges uncovered.

Figure 2: An example of two optimum covers (red and
green) of a segment block, where the orange vertices are
always included in the solution.

For each variable xi we create multiple copies of seg-
ment blocks, and some specific pairs of these segment
blocks are connected to each other via the so-called
“horizontal bridges” or “vertical bridges”. Two segment
blocks, which are connected via a horizontal bridge,
start at the same time t but are built on different sets
of vertices (i. e., one is to the left of the other in the 2-
dimensional array) Similarly, two segment blocks, which
are connected via a vertical bridge, are built on the same
set of vertices but in different time steps (i. e., one is
above the other in the 2-dimensional array).

All the copies have to be created in such a way, that
their optimum 2-TVCs depend on each other. In the
following we describe two ways to connect two differ-
ent segment blocks (both for the same variable xi). As
we prove, there are two ways to optimally cover these
constructions: one using the “orange and green”, and
one using the “orange and red” temporal vertex appear-
ances (thus modeling the truth values True and False
of variable xi in our reduction).

As, for every ∆ ≥ 2, there is a known polynomial-
time reduction from ∆-TVC to (∆ + 1)-TVC (Akrida
et al. 2020), we obtain the following.
Theorem 3. For every ∆ ≥ 2, ∆-TVC on instances
on an underlying path is NP-hard.

With a slight modification to the Gφ we can create
the temporal cycle from Rφ and therefore the following
holds.
Corollary 4. For every ∆ ≥ 2, ∆-TVC on instances
on an underlying cycle is NP-hard.

Proof. We follow the same procedure as above where
we add one extra vertex w, to the underlying graph P
of Gφ. We add also two time-edges connecting the first
and the last vertex of the temporal path graph Gφ at
time 1. This increases the size of the 2-TVC by 1 (as
we need to include the vertex appearance (w, 1)) and it
transforms the underlying path P into a cycle.

4

x1 x2 x3 x4 x5

(x2 ∨ x3 ∨ x4)

(x1 ∨ x2 ∨ x4)

(x1 ∨ x4 ∨ x5)

(x2 ∨ x3 ∨ x5)

(x1 ∨ x2 ∨ x5)

x3 x3x2 x2x1x1 x1 x2 x2 x5 x5 x5x4 x4 x4

Figure 3: An example of the construction of temporal
graph from a planar rectilinear embedding of monotone
3SAT.

3.2 Algorithmic Results
To complement the hardness presented in Section 3.1,
we present two polynomial-time algorithms: Firstly, a
dynamic program for solving TVC on instances with
underlying paths and cycles shows that the hardness is
inherently linked to the sliding time windows. Secondly,
we give a PTAS for ∆-TVC on instances with underly-
ing paths. This approximation scheme can be obtained
using a powerful general purpose result commonly used
for approximating geometric problems (Mustafa and
Ray 2010).
Theorem 5. TVC can be solved in polynomial time on
instances with a path/cycle as their underlying graph.

Next we turn to approximating ∆-TVC on under-
lying paths. The Geometric Hitting Set problem
takes as instance a set of geometric objects, e.g. shapes
in the plane, and a set of points. The task is to find the
smallest set of points, that hit all of the objects. In the
paper by Mustafa and Ray (Mustafa and Ray 2010) the
authors present a PTAS for the problem, when the geo-
metrical objects are r-admissible set regions. We trans-
form an arbitrary temporal path to the setting of the
geometric hitting set. As a result, we obtain a PTAS for
the ∆-TVC problem.
Theorem 6. For every ε > 0, there exists an (1 + ε)-
approximation algorithm for ∆-TVC on instances with
a path as their underlying graph, which runs in time

O
(
n(T −∆ + 1) · (T (n+ 1))O(ε−2)

)
=

O
(

(T (n+ 1))O(ε−2)
)
,

i. e., the problem admits a PTAS.

Proof. Let G = (G,λ) be a temporal path, on vertices
{v1, v2, . . . , vn}, with lifetime T . We first have to create
the range space R = (P,D), where P ⊆ V × [T] is a

set of vertex appearances and D is a set of 2-admissible
regions.

Set P of time vertices consist of vertex appearances
(vi, t) for which t ∈ λ(ei)∪ λ(ei+1). Intuitively, if edges
incident to v do not appear at time t, then (v, t) is not in
P . Set D of 2-admissible regions consists of rectangles
of 2 different sizes. For every edge ei that appears in
the time window Wt we create one rectangle Rti, that
includes all vertex appearances incident to ei in Wt. For
example, if edge ei appears in the time window Wt at
times t1 and t2, then the corresponding rectangle Rti
contains vertex appearances (vi−1, t1), (vi, t1), (vi−1, t2)
and (vi, t2).

It is not hard to see that |P | ≤ |V | · T = (n + 1)T
and |D| ≤ |E|(T −∆ + 1) = n(T −∆ + 1).

Formal Construction. Since D will be defined to
be a set of 2-admissible regions, the boundary of any
two rectangles we construct should intersect at most 2
times. For this purpose we use rectangles, of two dif-
ferent sizes. Let us denote with A the rectangle of size
a1 × a2 and with B be the rectangle of size b1 × b2,
where a1 > b1 > b2 > a2.

As we said, for every edge ei that appears in the time
window Wt we construct exactly one rectangle. These
are the rules we use to correctly construct them.

1. For a fixed time window Wt we construct the rect-
angles in such a way, that they intersect only in the
case when their corresponding edges ei, ej share the
same endpoint in the underlying graph G. Since G
is a path, the intersection happens only in the case
when j = i+ 1. We can observe also, that there are
no three (or more) edges sharing the same endpoint
and therefore no three rectangles intersect.
We require also, that the rectangles corresponding to
a pair of the adjacent edges are not the same, i. e.,
they alternate between form A and B.

2. For any edge ei, rectangles corresponding to two con-
secutive time windows Wt,Wt+1 are not the same,
i. e., they alternate between the form A and B. For
an example see Figure 4a.
When the time windows are of size ∆, there are at
most ∆ rectangles intersecting at every time step t.
This holds, because if the edge ei appears at time t it
is a part of the time windows Wt∆+1,Wt∆+2, . . . ,Wt.
Since the constructed rectangles are of two sizes, if
∆ ≥ 3 we create intersections with infinite num-
ber of points between the boundary of some rect-
angles, if we just “stack” the rectangles upon each
other. Therefore, we need to shift (in the horizon-
tal direction) rectangles of the same form in one ∆
time window. Since the time window Wt never in-
tersects with Wt+∆, we can shift the time windows
Wt+1, . . . ,Wt+∆−1 and fix the Wt+∆ at the same
horizontal position as Wt . For an example see Fig-
ure 4b.

Combining both of the above rules we get a grid of
rectangles. Moving along the x axis corresponds to mov-

5

(a) Alternating regions for
an edge.

(b) Regions for an edge with
shift, when ∆ = 4. Each re-
gion Wi starts at same hor-
izontal position as Wi−4.

Figure 4: Creating regions for one edge.

ing through the edges of the path and moving along the
y axis corresponds to moving through the time steps.

By construction, rectangles alternate between the
form A and B in both dimensions. If an edge ei does
not appear in the time window Wt, then we do not con-
struct the corresponding rectangle Rti. The absence of
a rectangle from a grid does not change the pattern of
others rectangles. To determine of what form a rectan-
gle corresponding to edge ei at time-window Wt is, we
use the following condition:

Rti =
{
A if i+ t ≡ 0 (mod 2),
B else.

Now we define where the points are placed. We use
the following conditions.

a. If an edge ei = vi−1vi appears at time t we add
vertex appearances (vi−1, t), (vi, t) to all of the rect-
angles Rt′i , where t−∆ + 1 ≤ t′ ≤ t, if they exist.
Equivalently, we add the vertex appearances
(vi−1, t), (vi, t) in the intersection of the rectangles
corresponding to the edge ei in the time windows
Wt−∆+1, . . . ,Wt. For an example see Figure 5a.

b. If an edge ei does not appear at time t, then the
time vertices (vi−1, t), (vi, t) are not included in the
rectangles Rt′i (t−∆ + 1 ≤ t′ ≤ t), if they exist.

c. If two adjacent edges ei, ei+1 appear at the same
time t, we add to the intersection of the rectangles
Rt
′

i , R
t′

i+1 the vertex (vi, t), where t−∆ + 1 ≤ t′ ≤ t.
For an example see Figure 5b.

It is straightforward to verify that finding the min-
imum hitting set of the range space is equivalent to
finding the minimum ∆-TVC for G. On the constructed
range space we use the local search algorithm from
(Mustafa and Ray 2010) which proves our result.

(a) Edge ei appearing at
time 5 and the corresponding
placement of vertex appear-
ances to the rectangles, when
∆ = 4.

(b) Edges ei and ei+1 appear-
ing at time 5 and the corre-
sponding vertex appearances
placement in the rectangles,
when ∆ = 4.

Figure 5: Example of placement of the vertices into the
rectangles when ∆ = 4.

4 Algorithms for Bounded Degree
Temporal Graphs

In this section we extend our focus from temporal
graphs with underlying paths or cycles to instances of
∆-TVC with more general degree restrictions.

In particular we present an algorithm for solving ∆-
TVC exactly in time that is single exponential in the
number of edges of the underlying graph, then use this
algorithm to give a (d − 1)-factor approximation algo-
rithm (where d is the maximum vertex degree in any
time step) and finally give an FPT-algorithm parame-
terized by the size of a solution. For the approximation
algorithm in particular the following generalized notion
(sub)instances will be useful, already when formulating
the exact exponential time algorithm.
Definition 7 (Partial ∆-TVC). Let (G,λ) be a
temporal graph. An instance of Partial ∆-TVC is
given by (G,λ, `, h, α, β) where ` : E(G) → [T] and
h : E(G) → [T] map each edge to the starting time
of its lowest uncovered window and highest uncovered
window respectively, and α, β ∈ [T] are the covering
start and end respectively. The task is to find a car-
dinality minimal temporal vertex subset C such that
for every edge e ∈ E(G) and every time window Wi

with `(e) ≤ i ≤ h(e) if e ∈ E[Wi] then there is some
(v, t) ∈ C[Wi] such that v ∈ e, t ∈ λ(e), and additionally
for all (v, t) ∈ C, α ≤ t ≤ β.

Obviously Partial ∆-TVC generalizes ∆-TVC by
letting `(e) = 0 and h(e) = T −∆ + 1 for all e ∈ E(G),
and α = 0 and β = T .

4.1 Exact Algorithm
In the following we denote by dG the degree of the un-
derlying graph of the considered instances of Partial
∆-TVC. We can give a dynamic programming algo-
rithm with running time O(T∆O(|E(G)|)) as the next
theorem states.
Theorem 8. For every ∆ ≥ 2, a solution to Par-
tial ∆-TVC can be computed in time complexity
O(TcO(|E(G)|)) where c = min{2dG ,∆} and T is the
life time of the temporal graph in the instance.

6

In fact the same algorithm and analysis gives a run-
ning time bound which is single exponential in the max-
imum ∆-window vertex degree d∆ which is the maxi-
mum vertex degree in any part of G that appears to-
gether in an arbitrary ∆-time window. Observe that
d∆ ≤ dG but there are also instances in which dG is
much larger than d∆:

Remark: The above algorithm solves Partial ∆-
TVC in O(TcO(|E(G)|)) where c = min{2d∆ ,∆}.

Note that this algorithm also has implications for the
parameterized complexity (Cygan et al. 2015; Downey
and Fellows 2013; Niedermeier 2006) of ∆-TVC.
Corollary 9. For every ∆ ≥ 2, ∆-TVC can be solved
in time in O(Tc|E(G)|) where c = min{2O(|E(G)|),∆},
and thus ∆-TVC is in FPT parameterized by |E(G)|.

4.2 Approximation Ratio Better Than d

Next we turn to our approximation algorithms; recall
that a d-factor approximation is known (Akrida et al.
2020). The idea of this algorithm is simple; solve each
subinstance induced by an edge independently and opti-
mally and then combine these solutions. At each tempo-
ral vertex at most d time-edges which were considered
separately in subinstances by the approximation algo-
rithm occur. To cover each of these edges we might have
chosen the ‘wrong’ endpoint in a subinstance rather
than the shared endpoint.

Now our new exact algorithm for solving instances
can be used to mitigate the error we can make at high
degree vertices. For instance, if we build our subin-
stances by iteratively covering paths with two edges
(P3) instead of single edges we will incur an error of
at most d − 1 at vertices which are centers of at least
one P3 which was chosen as a subinstance.

Based on this idea we can formulate a (d − 1)-
approximation.
Description of the Algorithm We iteratively ex-
tend an initially empty set X to a sliding ∆-window
TVC in the following way: While there is some e ∈
E(G) with an occurrence that is not covered in some
time window in the lifetime of G we have to extend
X ; otherwise X is a ∆-TVC which we can return. We
proceed in two phases:
Phase 1: While we find two such edges e1, e2 that
are adjacent and appear at the same time step and
both appearances are not covered in some time win-
dow Wi then we consider the following subinstances
of Partial ∆-TVC: Let S be the set of all time
steps in which e1 and e2 appear together and are
both not covered by X in some time window Wi with
i ∈ [minS −∆ + 1,maxS −∆ + 1]. We can subdivide
S into subsets S1, . . . , Sk with k ≤ T such that S1 con-
tains the smallest elements of S such that there is no
gap of at least 2∆−1 between its elements, S2 contains
the smallest elements of S between the first and second
gap of at least 2∆− 1, and so on. Now we consider the
subinstances given by (G[e1, e2], λ′, `, h,minSi,maxSi)
with λ′ defined as the restriction of λ to {e1, e2} ∩

λ−1([minSi − ∆ + 1,maxSi − ∆ + 1]), `(e1) = `(e2)
is the smallest time step t such that (e1,minSi) and
(e2,minSi) are not covered in time window Wt by X ,
and h(e1) = h(e2) is the largest time step t such that
(e1,maxSi) and (e2,maxSi) are not covered in time
windowWt by X . We use the algorithm from Section 4.1
to solve these subinstances and extend X by the union
of the solutions.
Phase 2: If no such edges are adjacent and appear
at the same time step and both appearances are not
covered in some time window Wi let F be the set of
edges e ∈ E(G) with occurrences which is not covered
in some time window in the lifetime of G by X . We con-
sider the following subinstances of Partial ∆-TVC:
For e ∈ F , let Se be the set of all time steps in which
e appears and is not covered by X in some time win-
dow Wi with i ∈ [minSe −∆ + 1,maxSe −∆ + 1] and
t ∈ Se. We can subdivide Se into subsets Se1 , . . . Sek with
k ≤ T such that Se1 contains the smallest elements of
Se such that there is no gap of at least 2∆− 1 between
its elements, Se2 contains the smallest elements of Se
between the first and second gap of at least 2∆ − 1,
and so on. Now we consider the subinstances given by
(G[e], λ′, `, h,minSei ,maxSei) with λ′ defined as the re-
striction of λ to {e}∩λ−1([minSei −∆+1,maxSei +∆]),
`(e) is the smallest time step t such that (e,minSei) is
not covered in time window Wt by X , and h(e) is the
largest time step t such that (e,maxSei) is not covered
in time window Wt by X . We use the algorithm from
Section 4.1 to solve these subinstances and extend X
by the union of the solutions.

It follows from the above construction that the pro-
duced set X of vertex appearances is a ∆-TVC of G.
Furthermore, using a double counting argument, we can
show that the approximation ratio is at most d− 1.
Running Time The number of subinstances consid-
ered in Phase 1 is easily bounded by the number of com-
binations of two edges in E(G) multiplied by T . Sim-
ilarly the number of subinstances considered in Phase
2 is bounded by the number of edges in E(G) multi-
plied by T . The subinstances require a running time
of O(T) to solve. Thus the overall running time lies in
O(|E(G)|2T 2).

Overall this shows the desired approximation result.
Theorem 10. For every ∆ ≥ 2 and d ≥ 3, ∆-TVC
can be (d− 1)-approximated in time O(|E(G)|2T 2).

4.3 An FPT algorithm with respect to the
solution size

Our final result settles the complexity of ∆-TVC from
the viewpoint of parameterized complexity theory (Cy-
gan et al. 2015; Downey and Fellows 2013; Niedermeier
2006) with respect to the standard parameterization of
the size of an optimum solution.
Theorem 11. For every ∆ ≥ 2, ∆-TVC can be solved
in O((2∆)kTn2) time, where k is the size of an opti-
mum solution. In particular ∆-TVC is in FPT param-
eterized by k.

7

References
Aaron, E.; Krizanc, D.; and Meyerson, E. 2014. DMVP:
Foremost waypoint coverage of time-varying graphs.
In Proceedings of the 40th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG),
29–41.
Akrida, E. C.; Gasieniec, L.; Mertzios, G. B.; and Spi-
rakis, P. G. 2016. Ephemeral networks with random
availability of links: The case of fast networks. Journal
of Parallel and Distributed Computing, 87: 109–120.
Akrida, E. C.; Gasieniec, L.; Mertzios, G. B.; and Spi-
rakis, P. G. 2017. The complexity of optimal design
of temporally connected graphs. Theory of Computing
Systems, 61(3): 907–944.
Akrida, E. C.; Mertzios, G. B.; Spirakis, P. G.; and Za-
maraev, V. 2020. Temporal vertex cover with a sliding
time window. Journal of Computer and System Sci-
ences, 107: 108–123.
Bentert, M.; Himmel, A.-S.; Molter, H.; Morik, M.;
Niedermeier, R.; and Saitenmacher, R. 2018. Listing
all maximal k-plexes in temporal graphs. In Proceed-
ings of the 2018 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining
(ASONAM), 41–46.
Bui-Xuan, B.-M.; Ferreira, A.; and Jarry, A. 2003.
Computing shortest, fastest, and foremost journeys in
dynamic networks. International Journal of Founda-
tions of Computer Science, 14(2): 267–285.
Casteigts, A.; and Flocchini, P. 2013a. Deterministic
algorithms in dynamic networks: Formal models and
metrics. Technical report, Defence R&D Canada.
Casteigts, A.; and Flocchini, P. 2013b. Deterministic
algorithms in dynamic networks: Problems, analysis,
and algorithmic tools. Technical report, Defence R&D
Canada.
Casteigts, A.; Flocchini, P.; Quattrociocchi, W.; and
Santoro, N. 2012. Time-varying graphs and dynamic
networks. International Journal of Parallel, Emergent
and Distributed Systems, 27(5): 387–408.
Casteigts, A.; Himmel, A.; Molter, H.; and Zschoche,
P. 2021. Finding temporal paths under waiting time
constraints. Algorithmica, 83(9): 2754–2802.
Chen, J.; Molter, H.; Sorge, M.; and Suchý, O. 2018.
Cluster editing in multi-layer and temporal graphs. In
Hsu, W.; Lee, D.; and Liao, C., eds., Proceedings of
the 29th International Symposium on Algorithms and
Computation (ISAAC), volume 123, 24:1–24:13.
Clementi, A. E. F.; Macci, C.; Monti, A.; Pasquale, F.;
and Silvestri, R. 2010. Flooding time of edge-markovian
evolving graphs. SIAM Journal on Discrete Mathemat-
ics, 24(4): 1694–1712.
Cygan, M.; Fomin, F. V.; Kowalik, L.; Lokshtanov, D.;
Marx, D.; Pilipczuk, M.; Pilipczuk, M.; and Saurabh,
S. 2015. Parameterized Algorithms. Springer. ISBN
978-3-319-21274-6.

de Berg, M.; and Khosravi, A. 2010. Optimal binary
space partitions in the plane. In Computing and com-
binatorics, volume 6196 of Lecture Notes in Computer
Science, 216–225. Springer, Berlin.
Downey, R. G.; and Fellows, M. R. 2013. Fundamen-
tals of Parameterized Complexity. Texts in Computer
Science. London: Springer. ISBN 978-1-4471-5558-4.
Enright, J. A.; Meeks, K.; Mertzios, G. B.; and Zama-
raev, V. 2021. Deleting edges to restrict the size of an
epidemic in temporal networks. Journal of Computer
and System Sciences, 119: 60–77.
Erlebach, T.; Hoffmann, M.; and Kammer, F. 2021. On
temporal graph exploration. Journal of Computer and
System Sciences, 119: 1–18.
Ferreira, A. 2004. Building a reference combinatorial
model for MANETs. IEEE Network, 18(5): 24–29.
Flocchini, P.; Mans, B.; and Santoro, N. 2009. Explo-
ration of periodically varying graphs. In Proceedings of
the 20th International Symposium on Algorithms and
Computation (ISAAC), 534–543.
Ghosal, S.; and Ghosh, S. C. 2015. Channel assignment
in mobile networks based on geometric prediction and
random coloring. In Proceedings of the 40th IEEE Con-
ference on Local Computer Networks (LCN), 237–240.
Giakkoupis, G.; Sauerwald, T.; and Stauffer, A. 2014.
Randomized rumor spreading in dynamic graphs. In
Proceedings of the 41st International Colloquium on
Automata, Languages and Programming (ICALP), 495–
507.
Heeger, K.; Hermelin, D.; Mertzios, G. B.; Molter,
H.; Niedermeier, R.; and Shabtay, D. 2021. Equi-
table scheduling on a single machine. In Proceedings
of the 35th AAAI Conference on Artificial Intelligence
(AAAI), 11818–11825. AAAI Press.
Himmel, A.; Molter, H.; Niedermeier, R.; and Sorge, M.
2017. Adapting the Bron-Kerbosch algorithm for enu-
merating maximal cliques in temporal graphs. Social
Network Analysis and Mining, 7(1): 35:1–35:16.
Holme, P.; and Saramäki, J., eds. 2013. Temporal net-
works. Springer.
Ileri, C. U.; Ural, C. A.; Dagdeviren, O.; and Kavalci, V.
2016. On vertex cover problems in distributed systems.
In Advanced Methods for Complex Network Analysis,
1–29. IGI Global.
Kavalci, V.; Ural, A.; and Dagdeviren, O. 2014. Dis-
tributed vertex cover algorithms for wireless sensor net-
works. International Journal of Computer Networks &
Communications, 6(1): 95–110.
Kempe, D.; Kleinberg, J.; and Kumar, A. 2002. Con-
nectivity and inference problems for temporal networks.
Journal of Computer and System Sciences, 64(4): 820–
842.
Klobas, N.; Mertzios, G. B.; Molter, H.; Niedermeier,
R.; and Zschoche, P. 2021. Interference-free walks in
time: Temporally disjoint paths. In Zhou, Z., ed., Pro-
ceedings of the 30th International Joint Conference on
Artificial Intelligence (IJCAI), 4090–4096.

8

Leskovec, J.; Kleinberg, J. M.; and Faloutsos, C. 2007.
Graph evolution: Densification and shrinking diame-
ters. ACM Transactions on Knowledge Discovery from
Data, 1(1).
Mertzios, G. B.; Michail, O.; and Spirakis, P. G. 2019.
Temporal network optimization subject to connectivity
constraints. Algorithmica, 81(4): 1416–1449.
Mertzios, G. B.; Molter, H.; Renken, M.; Spirakis, P. G.;
and Zschoche, P. 2021. The complexity of transitively
orienting temporal graphs. In Proceedings of the 46th
International Symposium on Mathematical Foundations
of Computer Science (MFCS), 75:1–75:18.
Mertzios, G. B.; Molter, H.; and Zamaraev, V. 2021.
Sliding window temporal graph coloring. Journal of
Computer and System Sciences, 120: 97–115.
Michail, O.; and Spirakis, P. G. 2016. Traveling sales-
man problems in temporal graphs. Theoretical Com-
puter Science, 634: 1–23.
Michail, O.; and Spirakis, P. G. 2018. Elements of the
theory of dynamic networks. Communications of the
ACM, 61(2): 72–72.
Mustafa, N. H.; and Ray, S. 2010. Improved results on
geometric hitting set problems. Discrete and Computa-
tional Geometry, 44(4): 883–895.
Niedermeier, R. 2006. Invitation to Fixed-Parameter
Algorithms. Oxford Lecture Series in Mathematics
and its Applications. Oxford: Oxford University Press.
ISBN 978-0-19-856607-6.
Richter, S.; Helmert, M.; and Gretton, C. 2007. A
Stochastic Local Search Approach to Vertex Cover. In
Proceedings of the 30th Annual German Conference on
Artificial Intelligence (KI), 412–426.
Tang, J. K.; Musolesi, M.; Mascolo, C.; and Latora,
V. 2010. Characterising temporal distance and reacha-
bility in mobile and online social networks. Computer
Communication Review, 40(1): 118–124.
Viard, T.; Latapy, M.; and Magnien, C. 2016. Comput-
ing maximal cliques in link streams. Theoretical Com-
puter Science, 609: 245–252.
Yu, F.; Bar-Noy, A.; Basu, P.; and Ramanathan, R.
2013. Algorithms for channel assignment in mobile
wireless networks using temporal coloring. In Proceed-
ings of the 16th ACM international conference on Mod-
eling, analysis & simulation of wireless and mobile sys-
tems (MSWiM), 49–58.
Zschoche, P.; Fluschnik, T.; Molter, H.; and Nieder-
meier, R. 2020. The complexity of finding small sep-
arators in temporal graphs. Journal of Computer and
System Sciences, 107: 72–92.

9

