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Abstract
A periodic temporal graph, in its simplest form, is a graph in which every edge appears exactly
once in the first ∆ time steps, and then it reappears recurrently every ∆ time steps, where ∆ is a
given period length. This model offers a natural abstraction of transportation networks where each
transportation link connects two destinations periodically. From a network design perspective, a
crucial task is to assign the time-labels on the edges in a way that optimizes some criterion. In this
paper we introduce a very natural optimality criterion that captures how the temporal distances
of all vertex pairs are “stretched”, compared to their physical distances, i.e. their distances in the
underlying static (non-temporal) graph. Given a static graph G, the task is to assign to each edge
one time-label between 1 and ∆ such that, in the resulting periodic temporal graph with period ∆,
the duration of the fastest temporal path from any vertex u to any other vertex v is at most α times
the distance between u and v in G. Here, the value of α measures how much the shortest paths are
allowed to be stretched once we assign the periodic time-labels.

Our results span three different directions: First, we provide a series of approximation and
NP-hardness results. Second, we provide approximation and fixed-parameter algorithms. Among
them, we provide a simple polynomial-time algorithm (the radius-algorithm) which always guarantees
an approximation strictly smaller than ∆, and which also computes the optimum stretch in some
cases. Third, we consider a parameterized local search extension of the problem where we are given
the temporal labeling of the graph, but we are allowed to change the time-labels of at most k edges;
for this problem we prove that it is W[2]-hard but admits an XP algorithm with respect to k.
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1 Introduction

Graph realization is a classical problem where one is asked to decide whether a graph
with a certain property, such as prescribed distances between vertex pairs or prescribed
degrees for vertices, exists [7, 20,28,29]. These types of problems have a natural analog in
the temporal graph setting1. Here we are given a static graph, and the task is to assign
time-labels to each edge in order to create a temporal graph with some desired property.
Temporal graph realization is an emerging topic in temporal graph algorithmics, and several
connectivity-related properties have been considered. Previous work considered the property
of temporal connectivity between every vertex pair or subsets thereof [3, 6, 32, 39], the size of
so-called reachability sets [19], exact reachability graphs [21], fastest temporal paths2 of a
prescribed (exact) duration between every vertex pair [23,33], and fastest temporal paths
with a prescribed upper bound on the duration for every vertex pair [40, 41]. The latter two
problems have been studied in the periodic setting, where every edge reappears after some
given period length ∆.

We focus on the last among the mentioned problem settings, where we assume that the
input consists of a graph and an upper bound for every (ordered) vertex pair that shall
be respected by a fastest temporal path connecting the vertices. This problem is naturally
motivated in the area of network design: we are given a transportation infrastructure and are
tasked to develop a (periodic) schedule that guarantees fast delivery. In previous work [40],
we showed that this problem is NP-hard even if the input graph is a star and the period
length ∆ is constant. This suggests that a lot of complexity is “hidden” in the prescribed
upper bounds. However, it is arguably unnatural to have arbitrary upper bounds in the
input that can be completely unrelated to the topology of the input graph. This leads us to
the following problem.

We investigate the setting where we wish that the durations of all fastest temporal paths
to be by at most some factor α times the distances of the respective vertex pairs in the (static)
input graph. We then say that the realization has a bounded (multiplicative) stretch. This is
a well-motivated and well-established concept in network design, especially in the context of
spanning trees [1, 2, 8, 16, 17] or temporal spanners [5]. It allows the duration of connections
between entities of the network to be related to the physical distance of those entities in a
natural way. We formally define the problem as follows. The required terminology is formally
defined in Section 2.

Stretched Temporal Graph Realization (STGR)

Input: A graph G (static, undirected), ∆ ∈ N, and a rational number α ≥ 1.
Question: Let DG be the distance matrix of G. Can we assign one label in {1, . . . , ∆} to every

edge such that in the resulting ∆-periodic temporal graph, for every vertex pair u, v

the duration of a fastest path from u to v is at most α · DG(u, v)?

Our Contribution. STGR is a natural and well-motivated special case of the problem that
we investigated in previous work [40], where the upper bounds can be arbitrary. In this work,
we show that STGR is NP-hard and hard to approximate, where we consider the goal of

1 A temporal graph is a graph where one or more time-labels are assigned to every edge, indicating at
which times this edge is active. We give a formal definition in Section 2.

2 A temporal path uses edges with strictly increasing time-labels. A fastest temporal path is a temporal
path that minimizes the difference between the arrival time and the starting time. We give a formal
definition in Section 2.
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the optimization version of the problem to minimize the stretch α. Formally, we prove the
following in Section 3.

For every 0 < ε < 1 and every c > 1, STGR is NP-hard to approximate within a factor
of ∆1−ε or within a factor of 2nc .

Note that a stretch of ∆ can trivially be achieved by assigning the same label to each edge.
To complement these results, we show that we can achieve a strictly better approximation
ratio than ∆, especially on graphs with small radius or diameter. Formally, we prove the
following in Section 4.

We can compute in polynomial time a solution for a STGR instance with stretch at
most ∆ − ∆−1

min(rad +1,diam) , where diam and rad denote the diameter and the radius of G,
respectively.

Next, we focus on the decision version of the problem. We show that STGR is NP-hard
even if ∆ and α are small constants and in cases where the input graphs have a constant
diameter. Formally, we prove the following in Section 5.

STGR is NP-hard if ∆ = 3, α = 1, and the input graph has diameter 2. This answers an
open question by Erlebach et al. [23].
STGR is NP-hard for each ∆ ≥ 3, even if the diameter is in O(∆).

Recall that we can assume that α is at most ∆. We also show that STGR is NP-hard for
each constant value of α ≥ 1. To complement these hardness results, we give the following
algorithmic results in Section 6. We use standard terminology from parameterized complexity
theory [11].

STGR is fixed-parameter tractable when parameterized by the neighborhood diversity of
the input graph and ∆.
STGR is fixed-parameter tractable when parameterized by the treewidth of the input
graph, the diameter of the input graph, and ∆.

These results are obtained by using extensions of monadic second order logic (MSO) [9,10,34]
to formulate STGR, and then applying extensions of Courcelle’s theorem [9,10,34].

Finally, we develop a local search algorithm for our problem. This algorithm, given a
labeling, checks whether the stretch can be improved by changing at most a given number k

of labels. We call k the search radius. We show the following in Section 7.
Given a periodic labeling for a graph G and some constant k, we can compute the best
possible stretch that can be obtained by changing at most k labels in polynomial time;
that is, we present an algorithm that is in XP with respect to the parameter k.
We show that the above-described local search problem is W[2]-hard when parameterized
by the search radius k.

Proofs of results marked with (⋆) are deferred to the full version of the paper [38].

Related Work. Since the 1960s, graph realization problems have been studied in many
different settings. A complete literature review is beyond the scope of this work. While in the
static setting, many different properties for realization have been studied, in particular, the
realization of degree sequences, the previous work in the temporal setting considers mostly
connectivity-related properties. We review the relevant work in the introduction.

The local search variant of our problem can also be seen as a temporal graph modification
problem: we may modify up to k labels to manipulate the graph’s connectivity properties.
Many problems in this setting have been studies, where the modifications are typically edge
removal, edge delay [14,18,37,42], or vertex removal [25,31,46]. Finally, periodic temporal
graphs also have been investigated in other problem settings, most prominently in the context
of cop and robber games [4, 12,13,22,44,45].

MFCS 2025
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2 Preliminaries

An undirected graph G = (V, E) consists of a set V of vertices and a set E ⊆
(

V
2
)

of edges.
We denote by V (G) and E(G) the vertex and edge set of G, respectively. Whenever no
confusion arises, we denote V (G) and E(G) by just V and E, respectively. We use standard
concepts and terminology from graph theory like diameter, radius, and eccentricity [15].

Let G = (V, E) and ∆ ∈ N, and let λ : E → {1, . . . , ∆} be an edge-labeling function
that assigns to every edge of G exactly one of the labels from {1, . . . , ∆}. Then we denote
by (G, λ, ∆) the ∆-periodic temporal graph (G, L), where for every edge e ∈ E we have
L(e) = {λ(e) + i∆ | i ≥ 0}. In this case, we call λ a ∆-periodic labeling of G. When it is
clear from the context, we drop ∆ and denote the (∆-periodic) temporal graph by (G, λ).
We assume that ∆ is encoded in binary in instances of STGR. Hence, the size of an instance
is linear in n, m, log ∆, and the encoding length of α.

A temporal (s, z)-walk (or temporal walk) of length k from vertex s = v0 to vertex z = vk

in a ∆-periodic temporal graph (G, L) is a sequence P = ((vi−1, vi, ti))k
i=1 of triples that we

call transitions, such that for all i ∈ [k] we have that ti ∈ L({vi−1, vi}) and for all i ∈ [k−1] we
have that ti < ti+1. Moreover, we call P a temporal (s, z)-path (or temporal path) of length k

if vi ̸= vj for all i, j ∈ {0, . . . , k} with i ̸= j. Given a temporal path P = ((vi−1, vi, ti))k
i=1,

we denote the set of vertices of P by V (P ) = {v0, v1, . . . , vk}. A temporal (s, z)-path
P = ((vi−1, vi, ti))k

i=1 is fastest if for all temporal (s, z)-path P ′ =
((

v′
i−1, v′

i, t′
i

))k′

i=1 we have
that tk − t0 ≤ t′

k′ − t′
0. We say that the duration of P is d(P ) = tk − t0 + 1.

Let P be a temporal path on the edges e1, . . . , ek in a ∆-periodic labeling λ of G. For
every i = 1, . . . , k − 1 let λ(ei) ∈ {1, . . . , ∆} be the label assigned to edge ei, and let vi be
the common vertex of the edges ei and ei+1. The waiting time wait(vi) of P on vertex vi

is λ(ei+1) − λ(ei) (if λ(ei+1) > λ(ei)), or ∆ + λ(ei+1) − λ(ei) (if λ(ei+1) < λ(ei)), or ∆ (if
λ(ei+1) = λ(ei)). Then, the duration of P is

∑k
i=1 wait(vi) + 1.

The next observation follows easily from the fact that, the worst-case for the stretch for
(u, v) is realized when all edges of the graph have the same time-label.

▶ Observation 2.1. Let λ be a ∆-labeling for a graph G. Then for any two vertices u and v,
the stretch for (u, v) under λ is at most ∆ − ∆−1

dist(u,v) .

Finally, we give a brief argument that we can use polynomially many calls to a decision
oracle for STGR so find the optimal stretch for a given input graph. Note that naïvely
trying out all possible values for α does not yield polynomial time.

▶ Lemma 2.2 (⋆). Given a graph G and ∆, one can compute the smallest α, s.t. (G, ∆, α)
is a yes-instance of STGR with O(diam(G) · log(∆)) calls to a decision oracle for STGR.

3 Approximation Hardness

In this section, we show that STGR is NP-hard to approximate. In particular, we rule
out constant factor approximations and even approximation algorithms with approximation
factors that are sublinear in ∆ or single exponential in n. Formally, we show the following.

▶ Theorem 3.1. Assume that P ̸= NP. Then, for all constants 0 < ε < 1 and c ≥ 1:
there is no polynomial-time ∆1−ε-approximation algorithm for STGR;
there is no polynomial-time 2nc-approximation algorithm for STGR.

Proof. We present a straightforward gap-introducing reduction from Gossiping [26].
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Gossiping
Input: A graph G = (V, E).
Question: Is there a labeling λ : E → N, such that for each pair (u, v) of vertices of V , there is

a temporal path in the temporal graph (G, λ)?

Given an instance G of Gossiping, we produce a STGR instance as follows. We use the
same graph G and specify how to set ∆ later to get the two approximation hardness results.

Intuitively, if G is a yes-instance of Gossiping, then there exists a labeling where it is not
necessary to use any label from the second ∆-period and hence the stretch is independent
from ∆. Whereas if G is a no-instance of the gossiping problem, then there exists no such
labeling. Then, informally speaking, there must be a path that crosses the period and has a
duration that depends on ∆ and hence also the stretch depends on ∆. Now we can set ∆ to
a very large value to create a gap.

Formally, assume that G is a yes-instance of Gossipingand let λ be a labeling such that
the non-periodic temporal graph (G, λ) is temporally connected. We can assume without
loss of generality that the largest label in λ is

(
n
2
)
. Now we use this labeling for our STGR

instance. A very naïve estimation yields that the stretch is at most 1
2 ·
(

n
2
)
: Consider a vertex

pair u, v of distance 2 in G. Then the temporal path from u to v in (G, λ) has duration at
most

(
n
2
)
.

Now assume that G is a no-instance of Gossipingand consider the instance (G, ∆) (for
some ∆ >

(
n
2
)

that we specify later) of STGR. Let λ be a ∆-periodic labeling for G that
minimizes the stretch. Note that we can obtain an equivalent labeling by adding a constant
(modulo ∆) to every label. Hence, assume that δ = ∆ − maxe∈E(G) λ(e) is maximized. Then
we have that δ ≥ ∆

(n
2) . Since G is a no-instance of the gossiping problem, there is a vertex

pair u, v in G such that the temporal path from u to v in the ∆-periodic temporal graph
(G, λ) uses labels from different periods and hence has duration at least δ and hence a stretch
of at least δ

n .
Let α⋆ denote the optimal stretch of (G, ∆). Summarizing, we have the following.
If G is a yes-instance of Gossiping, then we have that α⋆ ≤ 1

2 ·
(

n
2
)

= αyes.
If G is a no-instance of Gossiping, then we have that α⋆ ≥ ∆

n·(n
2) = αno.

If follows that if we set ∆ > n
2 ·
(

n
2
)2, then we create a gap that allows us to distinguish

yes-instance of Gossipingfrom no-instances.
In the remainder, we show how to set ∆ to obtain the approximation hardness results

in the theorem statement. Note that in particular, we can distinguish yes-instance from
no-instances whenever ∆ ≥ n5, since n5 > n

2 ·
(

n
2
)2. This will make the calculations easier.

For the first statement, let 0 < ε < 1 and let ε′ = 5(1−ε)
ε . Note that 1 − ε = ε′

5+ε′ . Now

we set ∆ = n5+ε′ . Then we have that ∆1−ε = ∆
ε′

5+ε′ = nε′ . It follows that ∆
∆1−ε = n5 and

hence ∆1−ε · αyes < αno. We can conclude that there is no ∆1−ε-approximation algorithm.
For the second statement, let c ≥ 1 and set ∆ = n52nc . Note that the encoding of ∆ is

polynomial in n, as log ∆ = nc + 5 log n. We have that ∆
2nc = n5 and hence 2nc · αyes < αno.

We can conclude that there is no 2nc-approximation algorithm. ◀

4 Approximation Algorithm

In this section, we give an approximation algorithm for STGR that runs in polynomial time
and achieves an approximation ratio of ∆ − ∆−1

min(rad +1,diam) , where diam and rad denote the
diameter and the radius of the input graph G, respectively. Formally, we show the following.

MFCS 2025
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vx

N(vx) N2(vx) N3(vx)

⌈∆
2 ⌉ ∆ ⌈∆

2 ⌉

Figure 1 Example of a graph G with radius 3, where vx ∈ V (G) is a vertex of eccentricity equal
to the radius. The gray areas depict the distance 1-3 neighborhoods of vx. The labels given by the
radius algorithm are illustrated. Edges between vertices in the same neighborhood are not depicted
and are given arbitrary labels by the algorithm.

▶ Theorem 4.1. A solution for STGR with stretch at most ∆ − ∆−1
min(rad +1,diam) can be

computed in polynomial time.

Note that this is strictly better than the “trivial” stretch obtained by Observation 2.1
if the radius and diameter differ. To show Theorem 4.1, we give the following algorithm,
which we will refer to as the radius algorithm. Assume we are given an instance (G, ∆) of
(the optimization version of) STGR. We perform the following steps.

Take an arbitrary root, that is, a vertex vx ∈ V (G) of eccentricity equal to the radius.
For each i ∈ [1, rad], label all edges of E(N i−1(vx), N i(vx)) with label ⌈ ∆

2 ⌉ if i is odd,
and with label ∆, otherwise.
All other edges are labeled arbitrarily.

For an illustration see Figure 1. We show that this algorithm achieves the following stretch.

▶ Lemma 4.2. Let (G = (V, E), ∆) be an instance of STGR. Then, the radius algorithm
computes a labeling with stretch at most ∆ − ∆−1

min(rad +1,diam) .

Proof. Let vx be an arbitrary vertex of eccentricity equal to rad and let λ be the ∆-labeling
produced by the radius algorithm for root vx. We give for each distance ℓ ∈ [2, diam] an
upper bound αℓ for the stretch of distance-ℓ vertex pairs.

For ℓ ≤ rad +1, let (u, v) be a pair of vertices of distance exactly ℓ in G. Due to Observa-
tion 2.1, αℓ := ∆ − ∆−1

ℓ is an upper bound for the stretch of distance-ℓ vertex pairs.
For ℓ ≥ rad +2, let (u, v) be a pair of vertices of distance exactly ℓ in G. Consider the

journey J that starts in u, goes over any shortest path Pu to vx and then goes over any
shortest path Pv to v. The edges of Pu (Pv) are alternatively labeled with ∆ and ⌈ ∆

2 ⌉ by
the algorithms. Moreover, both path each have a length of at most rad. Hence, in the worst
case, J traverses 2 rad edges. This implies that the duration of J is at most rad ·∆ + 1,
since J only waits a full period at vertex vx and otherwise alternates between waiting ⌊ ∆

2 ⌋
and ⌈ ∆

2 ⌉. Note that this also implies that there is a path of at most that duration from u

to v. Consequently, αℓ := rad ·∆+1
ℓ = ∆ + (rad −ℓ)·∆+1

ℓ = ∆ − ∆−1
ℓ − (ℓ−rad −1)·∆

ℓ is an upper
bound for the stretch of distance-ℓ vertex pairs.

Note that the stretch achieved by λ is thus at most max{αℓ | 2 ≤ ℓ ≤ diam}, if diam ≥ 2.
(For diam = 1, the stretch is always 1.) We show that the maximum is achieved for ℓ = rad +1
if rad < diam, and for ℓ = rad if rad = diam.
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▷ Claim 4.3 (⋆). Let ℓ∗ = rad +1 if rad < diam, and let ℓ∗ = rad if rad = diam. Then,
αℓ∗ ≥ max{αℓ | 2 ≤ ℓ ≤ diam}.

This thus proves that the stretch achieved by λ is at most ∆ − ∆−1
min(rad +1,diam) . ◀

Theorem 4.1 follows directly from Lemma 4.2 and the straightforward observation that
the radius algorithm runs in polynomial time. However, we can show that in several restricted
cases, the algorithm is guaranteed to achieve a better stretch.

▶ Lemma 4.4 (⋆). Let (G = (V, E), ∆) be an instance of STGR. If 2 ≤ rad < diam and there
is a root vx such that for each distance-(rad + 1) vertex pair (u, v), dist(vx, u) + dist(vx, v) <

2 rad, then the radius algorithm (for root vx) computes a labeling with stretch at most ∆− ∆−1
rad .

As we will show in Section 5, there are instances, where this stretch is achieved by the
radius algorithm and it is NP-hard to decide whether a better stretch is possible. This then
shows that this simple algorithm produces the best possible stretch for some instances in
polynomial time, unless P = NP.

Finally, we can show that the radius algorithm performs well if the input graph is a tree.

▶ Lemma 4.5. Let (G = (V, E), ∆) be an instance of STGR where G is a tree. Then the
radius algorithm computes a labeling with stretch at most ∆+1

2 .

Proof. Similar to the previous proofs, we give for each distance ℓ ∈ [2, diam] an upper
bound αℓ for the stretch of distance ℓ vertex pairs.

Let u, v be a vertex pair of distance-ℓ. We make the following case distinction. Consider
the case where u is an ancestor of v if the graph G is rooted at vx or v is an ancestor of u.
In both cases, the edges of the fastest paths from u to v are alternatively labeled with ∆
and ⌈ ∆

2 ⌉ by the algorithm. Hence, we have that the duration of the fastest path from u to v

is at most ℓ−2
2 · ∆ + ⌊ ∆

2 ⌋ + 1 if ℓ is even, and at most ℓ−1
2 · ∆ + 1 if ℓ is odd. Hence, the

stretch is α ≤ ∆
2 + 1

ℓ . Since ℓ ≥ 2, we have that α ≤ ∆+1
2 .

Now consider the case that neither u is an ancestor of v, nor is v an ancestor of u. Let w

be the closest common ancestor of v and u. Then we have that a fastest temporal path from
u to v can be decomposed into a fastest temporal path from u to w and a fastest temporal
path from w to v. Note that the waiting time at w is ∆, since all edges from w to its children
have the same label. All other waiting times are ⌊ ∆

2 ⌋ and ⌈ ∆
2 ⌉, alternatingly. It follows that

the duration of a fastest temporal path from u to v is at most ℓ−1
2 · ∆ + ⌊ ∆

2 ⌋ + 1 if ℓ is even,
and at most ℓ

2 · ∆ + 1 if ℓ is odd. Then, again, we have that the stretch is α = ∆
2 + 1

ℓ . Since
ℓ ≥ 2, we have that α ≤ ∆+1

2 . ◀

On trees with a large maximum degree, we can show that our algorithm is optimal.

▶ Lemma 4.6 (⋆). The radius algorithm computes the optimum stretch for trees with
maximum degree at least ∆ + 1 and it is a 2-approximation algorithm on general trees.

5 General Hardness Results

In this section, we present NP-hardness results for STGR for (i) all constant values of ∆ ≥ 3
and (ii) all constant values of α ≥ 1. All of our results are achieves by reductions from 3-
Coloring, which is NP-hard [30].

MFCS 2025
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3-Coloring
Input: A graph G = (V, E).
Question: Is there a proper 3-coloring χ of G, that is, a function χ : V → {1, 2, 3}, such that

for each edge {u, v} ∈ E, χ(u) ̸= χ(v)?

First, we will present two hardness results for ∆ = 3: one for α ∈ [1, 1.5) and one
for α ∈ [1.5, 2). The first reduction answers an open question by Erlebach et al. [23] and the
second reduction proves that our presented radius-algorithm is tight on some hard instances.
That is, we show that on the build instances, the radius-algorithm is guaranteed to achieve a
stretch of 2 and it is NP-hard to decide whether a better stretch is possible on these instances.
Afterwards, we present hardness results for all other constant values of ∆ ≥ 4 and α ≥ 2. To
this end, we will adapt the latter reduction for ∆ = 3 by replacing parts of the instance by
some gadgets that we define for each ∆ > 3.

Hardness for ∆ = 3. We now start by presenting our first hardness result.

▶ Lemma 5.1. For each α ∈ [1, 1.5), STGR is NP-hard even if ∆ = 3 and G has diameter 2.

Proof. We reduce from 3-Coloring. Let G = (V, E) be an instance of 3-Coloring
and assume that each vertex of V has at least one non-neighbor. Moreover, let α ∈
[1, 1.5). We obtain an instance I ′ := (G′ = (V ′, E′), ∆ = 3, α) of STGR as fol-
lows: We initialize the graph G′ := (V ′, E′) as the star with center vertex c and leaf
set V . Additionally, we add for each non-edge {u, v} of G the vertices xu,v and xv,u,
and the edges {u, xu,v}, {u, xv,u}, {v, xu,v}, {v, xv,u}, and {xu,v, xv,u} to G′. That is,
G′[{u, v, xu,v, xv,u}] is a diamond. Finally, we add another vertex c∗ to G′ and mak-
ing {c∗} ∪ (V ′ \ V ) into a clique in G′. This completes the construction of I ′. Note
that G′ has a diameter of 2, since both vertices c and c∗ are adjacent to all vertices. In the
following, let D be the distance matrix of G′ and let C := {c∗} ∪ (V ′ \ V ). The intuition of
this reduction is that for each edge {u, v} of G, (u, c, v) and (u, c∗, v) are the only paths of
length less than ∆ > 2 · α = α · Du,v. Hence, on both paths, the labels of both edges need to
be distinct in any labeling λ of stretch at most α. Next, we show that G is 3-colorable if and
only if I is a yes-instance of STGR.

(⇒) Let χ : V → {1, 2, 3} be a 3-coloring of G. We define a edge labeling λ of G′ of
stretch 1 as follows: For each vertex v ∈ V , we set λ({c, v}) := χ(v) and λ({c∗, v}) := 4−χ(v).
For each non-edge {u, v} of G, we set λ({u, xu,v}) := λ({v, xv,u}) := 1 and λ({u, xv,u}) :=
λ({v, xu,v}) := 3. For all other edges e of G′, we set λ(e) := 2. Note that these latter edges
are the edges of the clique V ′ \ V . We now show that λ has a stretch of 1, that is, for each
pair of vertices of distance 2 in G′, there are temporal paths of duration 2 between them.
Let (a, b) be a pair of vertices of distance two in G′. Since V ′ \ V is a clique in G′, at least
one of a and b is a vertex of V . Without loss of generality assume that a ∈ V . We distinguish
two cases.

First, assume that b /∈ V . By construction of G′ this implies that b = xu,v for some
non-edge u, v of G with a /∈ {u, v}. Since we assumes that each vertex of V has at least
one non-neighbor in G, there is a vertex w ∈ V such that the vertices xa,w and xw,a exist.
Hence, by definition of λ, the path (a, xa,w, xu,v = b) uses the labels 1 and 2, and the
path (b = xu,v, xw,a, a) uses the labels 2 and 3. Consequently, there are temporal paths
between a and b of durations 2.

Second, assume that b ∈ V . If {a, b} is a non-edge of G, then the vertices xa,b and xb,a

exist. Hence, by definition of λ, the paths (a, xb,a, b) and (b, xa,b, a) uses the labels 3 and 1.
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Figure 2 The sunglasses gadgets for ∆ = 3 with the sunglasses labeling. The black vertices are
the docking points and the white vertices are the central vertices.

Consequently, there are temporal paths between a and b of durations 2. Otherwise, that is,
if {a, b} is an edge of G, then χ(a) ̸= χ(b) since χ is a proper coloring of G. Since ∆ = 3,
this implies that χ(b) = χ(a) + 1 (modulo ∆) or that χ(a) = χ(b) + 1 (modulo ∆). Assume
without loss of generality that the first is the case. Hence, by definition of λ, the path (a, c, b)
uses consecutive time-labels (modulo ∆) and the path (b, c∗, a) uses consecutive lime labels
(modulo ∆). Consequently, there are temporal paths between a and b of durations 2.
Concluding, λ has a stretch of 1 ≤ α, which implies that I ′ is a yes-instance of STGR.

(⇐) Let λ : E′ → {1, 2, 3} be an edge labeling of G′ with stretch at most α. We define a 3-
coloring χ of the vertices of V as follows: For each vertex v ∈ V , we set χ(v) := λ({c, v}). Next,
we show that for each edge {u, v} ∈ E, u and v receive distinct colors under χ. Recall that for λ

to have a stretch of α for G′, at least one path of length at most α ·Du,v = α ·Dv,u = α ·2 < 3
from u to v in G′ has duration at most α ·2 < 3. Since {u, v} is an edge of E, the vertices xu,v

and xv,u do not exist, which implies that (u, c, v) and (u, c∗, v) are the only paths from u

to v in G′ of length less than 3 and that (v, c, u) and (v, c∗, u) are the only paths from v

to u in G′ of length less than 3. Assume towards a contradiction that χ(u) = χ(v). This
implies that λ({c, u}) = λ({c, v}). Hence, the paths (u, c, v) and (v, c, u) have a duration
of exactly ∆ + 1 = 4 > 2 · α = α · Du,v = α · Dv,u. Consequently, for λ to have a stretch
of α for G′, both paths (u, c∗, v) and (v, c∗, u) must have a duration of 2. Since ∆ = 3,
this is impossible. This contradicts the assumption that λ is an edge labeling of G′ with
stretch at most α. Thus, χ(u) = λ({c, u}) ̸= λ({c, v}) = χ(v), which implies that χ is a
proper 3-coloring for G′ ◀

Note that Lemma 5.1 answers (by setting α = 1) an open question by Erlebach et al. [23]
about the complexity of finding a periodic ∆-labeling for a diameter-2 graph G, such that
the fastest paths between any two vertices of G equals their distance.

Next, we show that for each ∆ ≥ 3, it is NP-hard to decide whether a stretch in [ ∆
2 , ∆+1

2 )
can be achieved. To this end, we define gadget graphs for each ∆ and some associated
labelings. First, we define this gadgets for ∆ = 3 and present the first reduction. Afterwards,
we define these gadgets for odd values of ∆ > 3 and even values of ∆ ≥ 4 and present similar
reductions.

▶ Definition 5.2 (Sunglasses gadgets for ∆ = 3). A 3-sunglasses gadget with docking points u

and v is the graph shown in Figure 2, where the black vertices indicate the docking points u

and v, and the white vertices are central vertices.

Figure 2 also shows what we call the sunglasses labeling.

▶ Definition 5.3. Let ∆ > 1, let G = (V, E) be a graph, and let λ : E → [1, ∆]. Moreover,
let u and v be vertices of distance exactly 2 in G. We call a vertex z of G a nice neighbor
of u and v, if (i) z is a common neighbor of u and v and (ii) λ({u, z}) ̸= λ({v, z}).
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▶ Observation 5.4. Let ∆ > 1, let G = (V, E) be a graph, and let λ : E → [1, ∆]. Moreover,
let u and v be vertices of distance exactly 2 in G. If u and v have a nice common neighbor z,
then (u, z, v) and (v, z, u) are paths of duration at most ∆ each.

We now show that there are graphs with diameter 3 and radius 2, for which it is NP-hard
to decide whether one can achieve a better stretch than the one achieved by the radius-
algorithm. This then shows that this simple and natural algorithm is tight on some hard
instances.

▶ Lemma 5.5. For ∆ = 3 and each α ∈ [1.5, 2), STGR is NP-hard even on graphs with
diameter 3, radius 2, and where the radius algorithm produces a labeling of stretch 2.

Proof. Let ∆ = 3 and let α ∈ [1.5, 2). We again reduce from 3-Coloring. Let G = (V, E)
be an instance of 3-Coloring. Again, assume that each vertex of V has at least one
non-neighbor, as otherwise we would know that this vertex receives a unique color in any 3-
coloring and the remaining vertices can only be colored in two colors, which can be checked in
polynomial time. We obtain an equivalent instance I := (G′, ∆, α) of STGR as follows: We
initialize the graph G′ := (V ′, E′) as the star with center vertex c and leaf set V . Additionally,
we add for each non-edge {u, v} of G a 3-sunglasses gadget S{u,v} with docking points u

and v to G′. Let X denote the set of the central vertices of all added sunglasses gadgets.
To complete the definition of G′, we add the vertices X̂ := {x̂ | x ∈ X} to G′ and making

each vertex of X̂ adjacent to each vertex of X ∪ X̂ ∪ {c} in G′.
This completes the construction of I. In the following, let D be the distance matrix of G′.

The intuitive idea is that for each edge {u, v} ∈ E, the path (u, c, v) ((v, c, u)) is the only
path of length less than ∆ + 1 = 4 > α · Du,v = 2 · α from u (v) to v (u) in G′. Hence,
each labeling λ of G′ of stretch at most α has to assign distinct labels to the edges {c, u}
and {c, v}. In other words, if labeling λ of G′ has stretch at most α, then the edges between c

and the vertices of V imply a 3-coloring for G.

Structural Properties. Note that radius of G′ is at most 2: The neighborhood of vertex c

is V ∩ X̂ and each vertex of X = V ′ \ (V ∪ X̂ ∪ {c}) is a neighbor of each vertex of X̂.
Moreover, G′ has a diameter of 3, since (i) each vertex of V has distance at most 2 to each
vertex of V ∪ X̂ by going over c and thus distance at most 3 to each vertex of X and (ii) each
vertex of X has distance at most 2 to each vertex of X ∪ {c} by going over some vertex of X̂

and thus distance at most 3 to each vertex of V . In particular, all vertex pairs of distance
exactly 3 in G′ contain one vertex of V and one vertex of X. Since c is a neighbor of all
vertices of V , G′ fulfills the property of Lemma 4.4, which implies that the radius algorithm
produces a labeling of stretch of at most ∆ − ∆−1

rad = 2.

Correctness. We now show that G is 3-colorable if and only if I is a yes-instance of STGR.
(⇐) Let λ : E′ → {1, 2, 3} be an edge labeling of G′ with stretch at most α. We define a

3-coloring χ : V → {1, 2, 3} as follows: For each vertex v ∈ V , we set χ(v) := λ({c, v}). Next,
we show that for each edge {u, v} ∈ E, u and v receive distinct colors under χ. Since {u, v} is
an edge of E, there is no sunglasses gadget with docking points u and v in G′. This implies that
(u, c, v) is the only path from u to v in G′ of length less than ∆+1 = 4 > α·Du,v = 2·α. Assume
towards a contradiction that χ(u) = χ(v). This would imply that λ({c, u}) = λ({c, v}).
Hence, the unique path (u, c, v) from u to v in G′ of length less than ∆+1 = 4 has a duration
of exactly 4 = ∆ + 1 > 2 · α = α · Du,v. This contradicts the assumption that λ is an edge
labeling of G′ with stretch at most α. Thus, χ(u) = λ({c, u}) ̸= λ({c, v}) = χ(v), which
implies that χ is a proper 3-coloring for G′.
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(⇒) Let χ : V → {1, 2, 3} be a 3-coloring of G. Assume without loss of generality that
each of the three colors is assigned at least once. We define an edge labeling λ of G′ of
stretch ∆

2 = 1.5 as follows: For each vertex v ∈ V , we set λ({c, v}) := χ(v). For each
non-edge {a, b} of G (that is, for each added sunglasses gadget), we label the edges of the
sunglasses gadget Sx,y according the sunglasses labeling (see Figure 2). To complete the
definition of λ, it remains to define the labels of the edges incident with the vertices of X̂.
For each vertex x̂ ∈ X̂, we set λ({x, x̂}) := 1. For each other edge e incident with at least
one vertex of X̂, we set λ(e) := 2.

This completes the definition of λ. Next, we show that λ has a stretch of 1.5 = ∆
2 ≤ α.

First, we consider vertex pairs {y, z} of distance 2 in G′. For these vertex pairs, we show
that there are paths of duration at most 3 = 1.5 · Dy,z between y and z.

If y = c, then by the initial argumentation, z ∈ X. Hence, ẑ is a nice neighbor of c and z,
which implies that the path (c, ẑ, z) has duration at most ∆ = 3 is both directions.
If y ∈ X̂, then by the initial argumentation, z ∈ V . Since z is the docking point of at
least one sunglasses gadget, there are at least two vertices x1 and x2 of X adjacent to z.
For at least one i ∈ {1, 2}, z ̸= x̂i. Hence, the edge {xi, z} receives label 2 under λ.
This implies that xi is a nice neighbor, since the edge {y, xi} receives label either 1 or 3
under λ. Consequently, the path (c, ẑ, z) has duration at most ∆ = 3 is both directions.
If y ∈ X, then z ∈ X ∪V ∪{c}. The case for z = c is covered by the above cases. If z ∈ X,
the path (y, ŷ, z) has labels (1, 2) and thus has duration at most ∆ = 3 in both directions.
Otherwise, if z ∈ V , then by construction, z is a docking point of the sunglasses gadget
that contains y. Hence, by the sunglasses labeling, there is a nice neighbor of y and z in
this sunglasses gadget which implies the existence of paths of duration at most 3 between
in y and z.
If y ∈ V , then z ∈ X ∪ X̂ ∪ V . The case for z ∈ X ∪ X̂ is covered by the above cases.
If z ∈ V , we consider two cases. If {y, z} is an edge of E, c is a nice neighbor of y and z,
since χ is a proper 3-coloring of G. Otherwise, if {y, z} is not an edge of G, there is a
sunglasses gadget with docking points y and z. By the sunglasses labeling, this gadget
contains a path with labels (1, 2, 3) from y to z and a path with labels (1, 2, 3) from z

to y. In both cases, there are paths of duration at most 3 between y and z.

Next, we consider vertex pairs {y, z} of distance 3 in G′. For these vertex pairs, we show
that there are paths of duration at most 4 < 4.5 = 1.5 · Dy,z between y and z. By the initial
argumentation about the structural properties of G′, we can assume without loss of generality
that y ∈ V and z ∈ X. Moreover, z is not part any sunglasses gadget attached to y, as
otherwise, the distance between y and z would be at most 2. Take an arbitrary sunglasses
gadget attached to y and let x1 and x3 be the neighbors of y in this sunglasses gadget. By the
sunglasses labeling, we can assume that the label of {y, xi} is equal to i for each i ∈ {1, 3}.
Since z ∈ X, ẑ is a vertex of X̂, λ({z, ẑ}) = 1, and λ({ẑ, x1}) = λ({ẑ, x3}) = 2. This implies
that the path (z, ẑ, x3, y) has labels (1, 2, 3) and thus a duration of 3. For the other direction,
the path (y, x1, ẑ, z) has labels (1, 2, 1) and thus a duration of 4. Hence, there are paths of
duration at most 4 between y and z.

This implies that the stretch of λ is at most ∆
2 = 1.5 ≤ α, which completes the proof. ◀

In combination with Lemma 5.1, this implies that for ∆ = 3, STGR is NP-hard for
each α ∈ [1, 2).

▶ Corollary 5.6. For ∆ = 3, STGR is NP-hard for each α ∈ [1, 2).
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Hardness for ∆ > 3. We now proceed by showing that also for each ∆ > 3, STGR is
NP-hard for each α ∈ [ ∆

2 , ∆+1
2 ). To obtain this result, we define for each ∆ > 4, ∆-sunglasses

gadgets and replace the 3-sunglasses gadgets in the reduction of the proof of Lemma 5.5 by
the larger ∆-sunglasses gadgets. The definition of these larger gadgets and the reduction is
deferred to the attached full version.

▶ Theorem 5.7 (⋆). For each ∆ ≥ 4 and each α ∈ [ ∆
2 , ∆+1

2 ), STGR is NP-hard on graphs
of diameter O(∆).

Recall that Lemma 5.1 shows that STGR is NP-hard for each α ∈ [1, 1.5). Moreover, since
for each constant α ≥ 1.5, there is a constant ∆ ≥ 3, such that α ∈ [ ∆

2 , ∆+1
2 ), Lemmas 5.1

and 5.5 and Theorem 5.7 imply the following.

▶ Theorem 5.8. For each constant ∆ ≥ 3, STGR is NP-hard. For each constant α ≥ 1,
STGR is NP-hard.

6 Fixed-parameter Algorithms through Monadic Second-Order Logic

In this section, we show that STGR is fixed-parameter tractable with respect to combinations
of ∆, the treewidth tw(G), the diameter diam(G), and the neighborhood diversity nd(G) of
the input graph G. Formally, we show the following two results.

▶ Theorem 6.1. STGR is in FPT when parameterized by nd(G) + ∆.

▶ Theorem 6.2 (⋆). STGR is in FPT when parameterized by tw(G) + diam(G) + ∆.

Note that Theorem 6.2 implies that for all graph classes that have locally bounded
treewidth (such as planar graphs), we get that STGR is in FPT when parameterized by
the diameter of the input graph and ∆. Furthermore, Theorem 6.2 implies that STGR
is in FPT when parameterized by the treedepth of the input graph and ∆, since both the
treewidth and the diameter of a graph can be upper bounded by a function of the treedepth.
We remark that the neighborhood diversity of a graph is unrelated to the combination of the
treewidth and the diameter of a graph. Finally, by Lemma 2.2, both theorem statements
also hold for the optimization version of STGR.

To show Theorems 6.1 and 6.2 we show that STGR is expressible in monadic second-order
(MSO) logic in certain specific ways that allows us to employ Courcelle’s famous theorem
(and extensions thereof) [9, 10]. Since we define the MSO formulas directly on the input
graph G, we do not give the formal definitions of treewidth and neighborhood diversity, since
they are not necessary to obtain the results. For more information on treewidth, we refer to
standard textbooks on graph theory, e.g. the one by Diestel [15], and for more information
on the neighborhood diversity, we refer to Lampis [35], who introduced this parameter.

Assume we are given a graph G = (V, E), an integer ∆, and a real number α ≥ 1. Let
n = |V |. A monadic second-order (MSO) formula ϕ over G is a formula that uses

the incidence relation of vertices and edges,
the logical operators ∧, ∨, ¬, =, and parentheses,
a finite set of variables, each of which is either taken as an element or a subset of V or E,
and the quantifiers ∀ and ∃.

Additionally we will use some folklore shortcuts such as ⇒, ̸=, ⊆, ∈, and \, which can
themselves be replaced by MSO formulas. For an edge set E′ we use V (E′) to denote the
set of vertices that are incident with the edges in E′. Furthermore, we use the formula
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partitioni(X1, X2, . . . , Xi, X) to express that sets X1, . . . , Xi form a partition of X. It is
well-known that this formula has size O(i2).

We use two different extensions of MSO. The first one is called CMSO and allows for
testing the cardinality of a set. We remark that this does not allow for comparing the
cardinalities of sets.

cardn,p(X) = true if and only if |X| ≡ n mod p.
This extension of MSO was already considered by Courcelle [9]. We have the following,
where |ϕ| denotes the length of the formula ϕ.

▶ Theorem 6.3 ([9,10]). CMSO model checking is in FPT when parameterized by tw(G)+ |ϕ|.

The second extension is stronger and allows for linear cardinality constraints, that is,
expressions of the type x1 ≤ x2, where x1 and x2 are linear expressions over cardinalities of
sets. This extension is called MSOGL

lin [34] and the following is known.

▶ Theorem 6.4 ([34]). MSOGL
lin model checking is in FPT when parameterized by nd(G)+ |ϕ|.

We now introduce some basic MSO formulas that we will use to compose the formulas
to express STGR. It is well-known that connectivity and various related concepts can be
expressed in MSO.

conngraph(X, E′) tests whether the subgraph (X, E′ ∩ X2) of G is connected.
conn(v, w, E′) tests whether the two vertices v, w ∈ V are connected by a path that only
uses edges from E′ ⊆ E.
path(v, w, E′) tests whether the two vertices v, w ∈ V are connected by a path that
exactly uses edges from E′ ⊆ E.

It is well-known that all these formulas have constant size. We provide the formulas in the
full version of the paper [38].

We first show Theorem 6.1. To this end, we introduce additional predicates that use
linear cardinality constraints and hence are MSOGL

lin formulas. Afterwards, we show how to
replace these predicates with equivalent (larger) CMSO formulas.

spath(v, w, E′) tests whether the two vertices v, w ∈ V are connected by a path that
exactly uses edges from E′ ⊆ E and whether this is a shortest path:

spath(v, w, E′) := path(v, w, E′) ∧ ∀E′′ : |E′′| < |E′| ⇒ ¬ conn(v, w, E′′)

Now we are ready to give an MSOGL
lin formula ϕG,∆,α that expresses STGR. We are looking

for a partition of E into E1, E2, . . . , E∆. We interpret e ∈ Ei with edge e receiving label i.

ϕG,∆,α = ∃E1, . . . , E∆ : partition∆(E1, . . . , E∆, E)∧ (1)

∀v, w ∃E⋆ :
(

path(v, w, E⋆)∧ (2)

∃X1, . . . , X∆ :
(

partition∆(X1, . . . , X∆, V (E⋆) \ {v, w})∧ (3)∧
1≤i≤∆

(
∀x ∈ Xi ∃e1, e2 ∈ E⋆ :

(
e1 ̸= e2 ∧ x ∈ e1 ∩ e2 ∧ conn(v, x, E⋆ \ {e1})∧

(4)∨
1≤i′≤∆

(e1 ∈ Ei′ ∧ e2 ∈ E(i′+i) mod ∆)
))

∧ (5)

∃E⋆⋆ : spath(v, w, E⋆⋆) ∧ (
∑

1≤i≤∆

i · |Xi|) + 1 ≤ α · |E⋆⋆|
))

(6)
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Observe that the size of the formula is in O(∆2) and that it can be computed in O(∆2)
time. Now we prove that ϕ expresses STGR.

▶ Lemma 6.5 (⋆). Given an instance I = (G, ∆, α) of STGR, we have that ϕG,∆,α is
satisfiable if and only if I is a yes-instance.

Now we have all the ingredients to prove Theorem 6.1.

Proof of Theorem 6.1. Theorem 6.1 follows directly from Lemma 6.5, Theorem 6.4, and
from the fact that ϕG,∆,α is an MSOGL

lin -formula with a size in O(∆2) that can be computed
in O(∆2) time. ◀

7 A Parameterized Local Search Approach

Based on our classical hardness and inapproximability results, it is natural to ask for good
polynomial-time heuristic approaches for our problem. From this standpoint, we now consider
a ‘parameterized local search’ version of our problem, that is, we try to improve the stretch
of a given labeling by changing the labels of just a few edges. In general, in parameterized
local search the goal is to improve a given solution by performing a modification that is
upper-bounded by k (according to some specified measurement between solutions). Here, k is
an additional parameter often referred to as the search radius [43]. Marx [36] first considered
parameterized local search for the Traveling Salesperson problem in 2008 and since
then, these kind of local search problems were considered for many optimization problems
(see [24,27,36,43] for some collections of problems).

The following problem we consider in this section generalizes the classical parameterized
local search version of STGR, as it does not only ask for any improvement but rather for an
improvement to some desired stretch α0. It is formally defined as follows.

Local Search STGR (LS STGR)

Input: A graph G = (V, E), ∆ ∈ N, a labeling λ : E → [1, ∆], k ∈ N, and a number α0 ≥ 1.
Question: Does there exist a labeling λ′ that disagrees with λ on at most k edges, such that

the stretch of λ′ is at most α0?

Note that this problem can also be seen as a generalization of STGR, as STGR is
obtained by setting k to the number of edges of the input graph. Generally, our goal is to
analyze the parameterized complexity of LS STGR with respect to the parameter k. We
present an XP-algorithm for k, showing that we can efficiently decide whether a stretch of α0
can be achieved from our current labeling by changing only a constant number of edge-labels.
Note that by Lemma 2.2, we can also find the optimal stretch in this search space with an
additional polynomial factor in the running time. A natural question is then to ask for an
FPT algorithm for k. As we show, such an algorithm presumably does not exist, as the
problem is W[2]-hard for k, even when asking for any improvement.

▶ Theorem 7.1. LS STGR admits an XP algorithm when parameterized with k.

Proof. Our algorithm iterates over all O(|E|k) subsets F ⊆ E of size at most k. For each
such subset F , we then ask the question, whether we can achieve a stretch of α0 by changing
only the labels of edges of F . That is, we iteratively solve the following intermediate problem.
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Fixed Edges Relabel STGR
Input: A graph G = (V, E), ∆ ∈ N, a set F ⊆ E, a labeling λ′ : E \ F → [1, ∆], and a

number α0 ≥ 1.
Question: Does there exist a labeling λF : F → [1, ∆], such that the stretch of λ′ ∪ λF is at

most α0?

Based on the |E|k · nO(1) time (which is XP time) for the iteration over all candidate
sets F , to present our XP algorithm, it suffices to show that Fixed Edges Relabel STGR
admits an XP algorithm for k.

Let e1, e2, . . . , ek be the edges of the given set F , enumerated arbitrarily, and assume
that k ≠ |E|, that is, there exists at least one edge of E that is not in F . For every
1 ≤ i ≤ k denote by ui and vi the endpoints of the edge ei; note that some edges of
F may have common endpoints. Denote the set of all endpoints of the edges of F by
VF = {ui, vi : 1 ≤ i ≤ k}. We now define the set NF =

⋃
v∈VF

{e ∈ E \ F : v ∈ e} of
all edges in G that are not in F but share at least one common endpoint with some edge
in F . Furthermore, we define the set L0 = {λ(e) : e ∈ NF } of all distinct time-labels that
appear in at least one edge of NF . Let ℓ1 < . . . < ℓt be the labels of L0 in increasing
order. For simplicity of the presentation, we assume without loss of generality that ℓ1 = 1;
this can be achieved by subtracting ℓ1 − 1 from the time-label of every edge. Note that
t = |L0| ≤ |NF | ≤

∑
v∈VF

|N(v)| − |F | ≤ k · degmax ∈ O(n2). Finally, we define the 2t

subsets Z1, . . . , Z2t of time-labels, called zones, as follows. For every j = 1, 2, . . . , t − 1, we
define Z2j−1 = {ℓj} and Z2j = {ℓj + 1, . . . , ℓj+1 − 1}. For j = t, we define Z2t−1 = {ℓt} and
Z2t = {ℓt + 1, . . . , ∆}.

For every edge ei ∈ F , we guess in which zone Zj the label λ(ei) lies. These are in total
(2t)k different cases, as we have k edges in F and 2t potential zones for the label of each edge.
Furthermore, for every allocation of the edges of F to the 2t different zones of time-labels, we
also guess a permutation of the time-labels of the edges of F which are allocated to the same
zone. These are in total k! different permutations. Each of these permutations corresponds to
a different relative order of the time-labels of the edges of F . For each of these permutations,
we also guess whether two consecutive time-labels within the same zone are equal or not;
these are 2k different choices. Summarizing, for every allocation of the edges of F to the 2t

different zones of time-labels, we guess the relative order of the time-labels of the edges of F

in each zone, by distinguishing which time-labels are equal and which are different. We call
each of these relative orders a time-label profile; there are at most 2kk! different profiles.

Let P be an arbitrary temporal path, and let e1, e2 be any two consecutive edges in P ,
with v being their common endpoint. Note that, once we have fixed an allocation of the
edges of F to the 2t different zones and a time-label profile, we know the relative order of
the time-labels ℓ1 and ℓ2 of the edges e1 and e2, respectively. More specifically, if ℓ2 > ℓ1,
then the waiting time at v is ℓ2 − ℓ1; if ℓ2 < ℓ1, then the waiting time at v is ∆ + ℓ2 − ℓ1; if
ℓ2 = ℓ1, then the waiting time at v is ∆.

Consider two arbitrary vertices z and w in G and an arbitrary edge ei = uivi of F . Let P

be a fastest temporal path P from z to w, and assume that P passes through ei. Without
loss of generality, let P first visit ui and then vi. Note that, given a fixed allocation of the
edges of F to the 2t different zones and a fixed time-label profile, if ei is neither the first
nor the last edge of P , then the duration of P is independent of the exact time-label of the
edge ei. The reason is that, in this case, the relative order of the time-label of ei, compared
to the time-labels of the previous and the next edge on P , is fixed in the given time-label
profile, regardless of the exact value of the time-label of ei.
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Now suppose that ei is the last (resp. first) edge of P , i.e. w = vi (resp. w = ui). Then,
the duration of P is smallest when the time-label of ei is the smallest (resp. largest) possible,
while still respecting the relative order of the time-labels in the given profile.

Note that, if we fix a specific time-label for each edge of F , we can trivially compute
the stretch α of this specific time-labeling. This can be done by just computing the fastest
temporal path from every vertex z to every other vertex w, dividing its duration by the
length of the shortest path between z and w in the underlying graph G, and returning the
largest of these ratios as the stretch α of this time-labeling.

Our algorithm proceeds as follows, while examining a fixed time-label profile. For each
edge ei ∈ F , we perform binary search for the time-label of ei in the zone Zj in which ei

is allocated (indepentently of any other edge ei′), until we find a time-labeling (if it exists)
that gives a stretch α that is at most the stretch threshold α0. During this procedure of
performing multiple binary searches on each edge of F independently, we only consider those
time-labelings that conform with the current time-label profile.

We iterate over all possible 2kk! different profiles and, for each of them, we perform the
above binary searches. If, during this procedure, we detect a time-labeling of the edges of F

that gives a stretch α ≤ α0, then we return this time-labeling; otherwise, we return that such
a labeling does not exist. The running time of this algorithm is

(2k · degmax · log ∆)k2kk! · (n + log ∆)O(1) = (2n2 log ∆)k2kk! · (n + log ∆)O(1),

as there are at most 2t = 2k · degmax ≤ 2n2 different allocations of each of the k edges of F

to a time-label zone, at most 2kk! different profiles, all independent binary searches on the
k edges can be performed in (log ∆)k time, which is XP time, since the input size includes
log ∆. Thus this is an XP algorithm for Fixed Edges Relabel STGR with respect to
the parameter k. By implementing the above algorithm iteratively for each of the O(|E|k)
subsets F ⊂ E of k edges, we obtain an XP algorithm for LS STGR with respect to k.

Finally note that, if k = |E|, that is, every edge of the graph is in the set F , then NF = ∅
and t = 0. In this case, we create just one time-label zone Z1 = {1, . . . , ∆} that contains all
possible ∆ time-labels, and then we perform exactly the same algorithm as above. ◀

We now show that there is presumably no FPT algorithm for LS STGR for parameter k;
recall that k is part of the input.

▶ Theorem 7.2 (⋆). LS STGR is W[2]-hard when parameterized by k.

8 Conclusion

In this paper, we investigated a natural temporal graph realization problem, where the
durations of the fastest connections in the produced (periodic) temporal graph shall be at
most a multiplicative factor times the corresponding distances in the static graph. Among
other results, showed that the problem is hard to solve exactly and also hard to approximate
within a constant factor on general instances. We also designed a polynomial time algorithm
for general graphs and that achieves a factor-2 approximation on trees, whereas there are
NP-hard instances for which the guaranteed stretch is tight. Our work leaves several natural
future work directions: Are there instances where the optimal stretch is strictly larger than
∆+1

2 ? What is the complexity of STGR for ∆ = 2? Can we identify larger graph classes than
trees, where we can achieve a constant-factor approximation? What is the parameterized
complexity of STGR with respect to structural parameters of the input graph (independent
of ∆, e.g. treewidth by itself)? What types of results can we achieve when we allow an
additive stretch, or if we want to minimize the average stretch?
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