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Abstract. In this paper, we study the complexity of the periodic tempo-
ral graph realization problem with respect to upper bounds on the fastest
path durations among its vertices. This constraint with respect to upper
bounds appears naturally in transportation network design applications
where, for example, a transportation network is given, and the goal is to
appropriately schedule periodic travel routes, while not exceeding some
desired upper bounds on the travel times. In our work, we focus only on
underlying tree topologies, which are fundamental in many transportation
network applications.
As it turns out, the periodic upper-bounded temporal tree realization
problem (TTR) has a very different computational complexity behavior
than both (i) the classic graph realization problem with respect to short-
est path distances in static graphs and (ii) the periodic temporal graph
realization problem with exact given fastest travel times (which was re-
cently introduced). First, we prove that, surprisingly, TTR is NP-hard,
even for a constant period ∆ and when the input tree G satisfies at least
one of the following conditions: (a) G is a star, or (b) G has constant max-
imum degree. Second, we prove that TTR is fixed-parameter tractable
(FPT) with respect to the number of leaves in the input tree G, via
a novel combination of techniques for totally unimodular matrices and
mixed integer linear programming.
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1 Introduction

A temporal (or dynamic) graph is a graph whose topology is subject to discrete
changes over time. This paradigm reflects the structure and operation of a great
variety of modern networks; social networks, wired or wireless networks whose
links change dynamically, transportation networks, and several physical systems
are only a few examples of networks that change over time [33, 41, 44]. Inspired
by the foundational work of Kempe et al. [34], we adopt here a simple model for
temporal graphs, in which the vertex set remains unchanged while each edge is
equipped with a set of integer time labels.

Definition 1 (temporal graph [34]). A temporal graph is a pair (G,λ),
where G = (V,E) is an underlying (static) graph and λ : E → 2N is a labeling
function which assigns to every edge of G a set of discrete time labels.

Here, whenever t ∈ λ(e), we say that the edge e is active or available at
time t. In the context of temporal graphs, where the notion of vertex adjacency
is time-dependent, the notions of path and distance also need to be redefined.
The most natural temporal analogue of a path is that of a temporal (or time-
dependent) path, which is a path of the underlying static graph whose time labels
strictly increase along the edges of the path. The duration of a temporal path
is the number of discrete time steps needed to traverse it. Finally, a temporal
path from vertex u to vertex v is fastest if it has the smallest duration among
all temporal paths from u to v, see Figure 1 for an illustration.

The graph realization problem with respect to some graph property P is to
compute a graph that satisfies P, or to decide that no such graph exists. The main
motivation for graph realization problems stems both from network design and
from “verification” applications in engineering. In network design applications,
the goal is to design network topologies having a desired property [2, 29]. On
the other hand, in verification applications, given the outcomes of some exact
experimental measurements, the aim is to (re)construct an input network that
complies with them. If such a reconstruction is not possible, this proves that the
measurements are incorrect or implausible (resp. that the algorithm making the
computations is incorrectly implemented).

One example of a graph realization problem is the recognition of probe
interval graphs, in the context of the physical mapping of DNA, see [38, 39]
and [27, Chapter 4]. Analyzing the computational complexity of the graph re-
alization problems for various natural and fundamental graph properties P re-
quires a deep understanding of these properties. Among the most studied pa-
rameters for graph realization are constraints on the distances between ver-
tices [6, 7, 10, 15, 16, 31, 45, 46, 48], on the vertex degrees [5, 18, 26, 28, 30], on
the eccentricities [4, 9, 32, 37], and on connectivity [14, 22–25,28], among others.
Although the majority of studies of graph realization problems concern static
graphs, the temporal (periodic) graph realization problem with respect to given
(exact) delays of the fastest temporal paths among vertices has been recently
studied in [20, 35], motivated by verification applications where exact measure-
ments are given.
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v1 v2 v3 v4 v5
5i+ 3 5i+ 3 5i+ 4 5i+ 1

Fig. 1: Visualization of a∆-periodic temporal graph (G,λ,∆) with∆ = 5 and the
following ∆-periodic labeling λ : E → {1, 2, . . . , 5}: λ({v1, v2}) = λ({v2, v3}) =
3, λ({v3, v4}) = 4, and λ({v4, v5}) = 1. A fastest temporal path from v1 to v5
first traverses {v1, v2} at time 3, then {v2, v3} a time 8, then {v3, v4} at time 9,
and then {v4, v5} at time 11, and has duration 9.

In this paper, we consider the (periodic) temporal graph realization problem
with respect to the durations of the fastest temporal paths from a network design
perspective, i. e., where only upper bounds on the durations of fastest temporal
paths are given. One important application domain of network design problems
is that of transportation network design where, for example, a road network is
given, and the goal is to appropriately schedule periodic travel routes while not
exceeding some desired upper bounds on travel times. Our work is motivated by
the fact that in many transportation network applications the underlying graph
has a tree structure [3,8,11]. For example, many airlines or railway transportation
networks are even star graphs (having a big hub at the center of the network,
e.g. in the capital city). The formal definition of our problem is as follows (see
Section 2 for formal definitions of all used terminology).

Periodic Upper-Bounded Temporal Tree Realization (TTR)

Input: A tree G = (V,E) with V = {v1, v2, . . . , vn}, an n×n matrix D
of positive integers, and a positive integer ∆.

Question: Does there exist a ∆-periodic labeling λ : E → {1, 2, . . . ,∆}
such that, for every i, j, the duration of the fastest temporal
path from vi to vj in the ∆-periodic temporal graph (G,λ,∆)
is at most Di,j .

Many natural and technological systems exhibit a periodic temporal behav-
ior. This is true even more on transportation networks [1], where the goal is to
build periodic schedules of transportation units (e.g. trains, buses, or airplanes).
The most natural constraint, while designing such periodic transportation sched-
ules, is that the fastest travel time (i. e., the duration of the fastest temporal
path) between a specific pair of vertices does not exceed a specific desired upper
bound. That is, if the travel time between u and v in the resulting schedule
is shorter than this upper bound, the schedule is even better (and thus, still
feasible). Periodic temporal graphs have also been studied in various different
contexts (see [12, Class 8] and [1, 19,21,42,43]).

We focus on the most fundamental case of periodic temporal graphs, where
every edge has the same period∆ and it appears exactly once within each period.
As it turns out, TTR has a very different computational complexity behavior
than both (i) the classic graph realization problem with respect to shortest path
distances in static graphs [31] and (ii) the periodic temporal graph realization
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problem with exact given fastest travel times [35], both of which are polynomial-
time solvable on trees. We remark that recently, the case where every edge can
appear multiple times in each ∆ period has been studied [20]. We defer the
discussion of additional related work to the full version [40].

Our contribution. Our results in this paper are given in two main directions.
First, we prove that TTR is NP-hard, even for a constant period∆ and when the
input tree G satisfies at least one of the following conditions: (a) G is a star (for
any ∆ ≥ 3), or (b) G has diameter at most 6 and constant pathwidth (even for
∆ = 2), or (c) G has maximum degree at most 8 and constant pathwidth (even
for ∆ = 2). Note that, for ∆ = 1, TTR becomes trivial (as in this case fastest
paths coincide with shortest paths in the underlying tree). On the one hand, our
hardness results come in wide contrast to the classic (static) graph realization
problem with respect to shortest path distances. Indeed, this static analogue
is easily solvable in polynomial time in two steps [31]. On the other hand, the
complexity of TTR is also surprisingly different than the periodic temporal
graph realization problem with exact given fastest travel times. More specifically,
when the input integer matrix D gives the exact fastest travel times, the problem
becomes solvable in polynomial time on trees [35]. Note that our hardness results
rule out the existence of FPT-algorithms for TTR for all reasonable parameters
on trees besides the number of leaves (assuming P ̸= NP).

Second, we prove that TTR is fixed-parameter tractable (FPT) with respect
to the number of leaves in the input tree G. That is, long chains of vertices
of degree 2 do not affect the complexity of the problem. To provide our FPT
algorithm, we reduce TTR to a number Mixed Integer Linear Program
(MILP) instances that is upper-bounded by a function of the number of leaves
in the input tree. Furthermore, the number of integer variables in each MILP
instance is also upper-bounded by a function of the number of leaves in the input
tree. This allows us to use a known FPT algorithm for MILP parameterized by
the number of integer variables [17, 36] to solve all MILP instances in FPT-
time with respect to the number of leaves of the input tree. We prove that the
TTR instance is a yes-instance if and only if at least one of the MILP instances
admits a feasible solution. To this end, we use a novel combination of techniques
for totally unimodular matrices and mixed integer linear programming to design
the MILP instances in a way that if they admit a feasible solution, then we can
assume that all variables are set to integer values.

Proofs of results marked with ⋆ are (partially) deferred to the full version of
the paper [40].

2 Preliminaries and Notation

An undirected graph G = (V,E) consists of a set V of vertices and a set E ⊆
(
V
2

)
of edges. We denote by V (G) and E(G) the vertex and edge set of G, respectively.

Let G = (V,E) and ∆ ∈ N, and let λ : E → {1, 2, . . . ,∆} be an edge-
labeling function that assigns to every edge of G exactly one of the labels from
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{1, . . . ,∆}. Then we denote by (G,λ,∆) the ∆-periodic temporal graph (G,L),
where for every edge e ∈ E we have L(e) = {λ(e) + i∆ | i ≥ 0}. In this case, we
call λ a ∆-periodic labeling of G. When it is clear from the context, we drop ∆
and denote the (∆-periodic) temporal graph by (G,λ).

A temporal (s, z)-walk (or temporal walk) of length k from vertex s = v0
to vertex z = vk in a ∆-periodic temporal graph (G,L) is a sequence P =

((vi−1, vi, ti))
k
i=1 of triples (where, for every i, {vi−1, vi} is an edge of G) which

we call transitions, such that for all i ∈ [k] we have that ti ∈ L({vi−1, vi}) and for
all i ∈ [k − 1] we have that ti < ti+1. Moreover, we call P a temporal (s, z)-path
(or temporal path) of length k if vi ̸= vj for all i, j ∈ {0, . . . , k} with i ̸= j. Given

a temporal path P = ((vi−1, vi, ti))
k
i=1, we denote the set of vertices of P by

V (P ) = {v0, v1, . . . , vk}. A temporal (s, z)-path P = ((vi−1, vi, ti))
k
i=1 is fastest if

for all temporal (s, z)-path P ′ =
((
v′i−1, v

′
i, t

′
i

))k′

i=1
we have that tk−t0 ≤ t′k′ −t′0.

We say that the duration of P is d(P ) = tk − t0 + 1. Furthermore, the concept
of travel delays is very important for our proofs.

Definition 2 (travel delays). Let (G,λ) be a ∆-periodic temporal graph. Let
e1 = {u, v} and e2 = {v, w} be two incident edges in G with e1 ∩ e2 = {v}. We
define the travel delay from u to w at vertex v, denoted with τu,wv , as follows.

τu,wv =

{
λ(e2)− λ(e1), if λ(e2) > λ(e1),

λ(e2)− λ(e1) +∆, otherwise.

From Definition 2 we immediately get the following observation.

Observation 1. Let (G,λ) be a ∆-periodic temporal graph. Let e1 = {u, v} and
e2 = {v, w} be two incident edges in G with e1 ∩ e2 = {v}. Then we have that
τu,wv = ∆− τw,u

v if λ(e1) ̸= λ(e2), and τu,wv = τw,u
v = ∆ if λ(e1) = λ(e2).

Intuitively, the value of τu,wv quantifies how long a fastest temporal path waits
at vertex v when first traversing edge {u, v} and then edge {v, w}. Formally, we
have the following.

Lemma 1 (⋆). Let P = ((vi−1, vi, ti))
k
i=1 be a fastest temporal (s, z)-path. Then

we have d(P ) = 1 +
∑

i∈[k−1] τ
vi−1,vi+1
vi .

3 The Classical Complexity on Restricted Instances

In this section, we prove that TTR is NP-hard even in quite restrictive settings:
when the input tree is a star and ∆ ≥ 3, or when the input tree has constant
diameter or constant maximum degree, and in addition ∆ = 2. We remark that
the diameter can be seen as a measure of how “star-like” a tree is. In particular,
on trees, the diameter upper bounds the treedepth.

Theorem 1 (⋆). TTR is NP-hard even if the input matrix is symmetric and

– ∆ ≥ 3 and G is a star,
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– ∆ = 2 and G has constant diameter and a constant pathwidth, or
– ∆ = 2 and G has constant maximum degree and a constant pathwidth.

As we now show, the hardness reduction on stars for ∆ ≥ 3 is tight in the
sense that for ∆ = 2, the problem is polynomial-time solvable on stars. More
generally, we show the following.

Theorem 2 (⋆). For ∆ = 2, TTR can be solved in 4vc · nO(1) time, where vc
denotes the vertex cover number of the input tree.

4 Main FPT-algorithm for TTR Based on MILPs

Our hardness results from the previous section exclude FPT-algorithms for gen-
eral ∆ for nearly all reasonable parameters on trees like maximum degree or
vertex cover number. In this section, we consider the essentially only remaining
parameter on trees: the number of leaves of the tree. This parameter is larger
than the maximum degree and incomparable to the vertex cover number.

Theorem 3. TTR is fixed-parameter tractable when parameterized by the num-
ber ℓ of leaves of the input tree G.

To show Theorem 3 we present a Turing-reduction from TTR to Mixed
Integer Linear Program (MILP).

Mixed Integer Linear Program (MILP)

Input: A vector x of n variables of which some are considered integer vari-
ables, a constraint matrix A ∈ Rm×n, and two vectors b ∈ Rm,
c ∈ Rn.

Task: Compute an assignment to the variables (if one exists) such that all
integer variables are set to integer values, Ax ≤ b, x ≥ 0, and c⊺x
is maximized.

Given an instance (G,D,∆) of TTR, we will produce several MILP in-
stances. We will prove that (G,D,∆) is a yes-instance if and only if at least
one of the MILP instances admits a feasible solution. The number of produced
instances is upper-bounded by a function of the number ℓ of leaves in G. Each
of the produced MILP instances will have a small number of integer variables.
More precisely, the number of integer variables will be upper-bounded by a func-
tion of the number ℓ of leaves in G. This will allow us to upper-bound the running
time necessary to solve the MILP instances using the following known result.

Theorem 4 ([17,36]). MILP is fixed-parameter tractable when parameterized
by the number of integer variables.

Furthermore, we build our MILP formulations in a specific way that ensures
that there always exist optimal solutions where all variables are set to integer
values. Informally, we ensure that the constraint matrix for the rational variables
is totally unimodular. This allows us to use the following result.
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Lemma 2 ([13]). Let Afrac ∈ Rm×n2 be totally unimodular. Then
for any Aint ∈ Rm×n1 , b ∈ Rm, and c ∈ Rn1+n2 , the MILP
max c⊺x subject to (Aint Afrac)x ≤ b, x ≥ 0, where x = (xint xfrac)

⊺ with the
first n1 variables (i.e., xint) being the integer variables, has an optimal solution
where all variables are integer.

The main idea for the reduction is the following. Given an instance (G,D,∆)
of TTR, we create variables for the travel delays at the vertices of G. A labeling
can easily be computed from the travel delays. We use the constraints to ensure
that the durations of the fastest paths respect the upper bounds given in D.

Before describing the reduction, we make a straightforward observation.

Observation 2. Let G be a tree with ℓ leaves. Let V>2 be the set of vertices in
G with degree larger than two. We have that |V>2| ≤ ℓ. Furthermore, we have
for every v ∈ V>2 that the degree of v is at most ℓ.

Furthermore, we show that there always exist solutions to yes-instances of
TTR, where the two edges incident with degree-2 vertices have different labels.

Lemma 3 (⋆). Let (G,D,∆) be a yes-instance of TTR. Let V2 be the set of
vertices in G with degree two. Then there exists a solution λ for (G,D,∆) such
that for all v ∈ V2 we have the following. Let u,w denote the two neighbors of v
in G, then λ({u, v}) ̸= λ({v, w}).

From now on assume that we are given an instance (G,D,∆) of TTR. As-
sume the vertices in G are ordered in an arbitrary but fixed way. Each MILP
instance we create will use the same set of variables. For each vertex v in G, we
create the following variables:

– If v has degree two, we create a fractional variable xv. This variable will
correspond to the travel delay τu,wv , where u,w are the two neighbors of v
in G and u is ordered before w.

– If v has degree larger than two, then for every pair u,w of neighbors of v in
G, we create an integer variable yu,wv . This variable will correspond to the
travel delay τu,wv .
Furthermore, we create an integer variable ze for every edge e that is incident
with v. This variable will correspond to the label λ(e) of e.

With Observation 2 we can upper-bound the number of created integer variables.

Observation 3. Each MILP instance has O(ℓ3) integer variables.

Now we consider all possibilities of how the labels of edges incident with
vertices of degree larger than two can relate to each other. Formally, let v be a
vertex in G that has degree larger than two and let Ev be the set of edges incident
with v. By Observation 2 we have that |Ev| ≤ ℓ. Any labeling λ partitions Ev

into at most min(ℓ,∆) sets of edges with equal labels, and the values of the
labels define an ordering of those sets. We call a partitioning of Ev into at most
min(ℓ,∆) sets together with the ordering for those sets a label configuration for v.
A set of label configurations for all vertices v in G that have degree larger than
two is called a global label configuration. By Observation 2 we get the following.
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Observation 4. There are O(ℓℓ
2

) global label configurations.

For each global label configuration, we create an MILP instance. From now
on fix a global label configuration σ. We describe how to construct an MILP
instance Iσ. Consider a vertex v in G that has degree larger than two. Let u,w
be a pair of neighbors of v in G. Let e = {u, v} and e′ = {v, w}. If according to
the global label configuration, we have that e and e′ are in different parts of Ev

and the part of e is ordered before the part of e′ (that is, e has a smaller label
than e′), then we add the following constraint.

yu,wv = ze′ − ze (1)

If the part of e is ordered after the part of e′ (that is, e has a larger label than e′),
then we add the following constraint.

yu,wv = ze′ − ze +∆ (2)

In both above cases, we additionally add the following constraint.

1 ≤ yu,wv ≤ ∆− 1 (3)

If according to the global label configuration, we have that e and e′ are in the
same part of Ev (that is, they have the same label), then we add the following
constraints.

ze = ze′ (4) yu,wv = ∆ (5) 1 ≤ ze ≤ ∆ (6) 1 ≤ ze′ ≤ ∆ (7)

Now we consider all vertex pairs s, t in G that have distance at least two in G,
that is, the (unique) path from s to t in G has at least one internal vertex. Let

Ps,t denote the path from s to t in G. Then V
(s,t)
int = V (Ps,t) \ {s, t} is the set of

internal vertices of Ps,t. We partition V
(s,t)
int into two sets. Let V

(s,t)
int,deg2 ⊆ V

(s,t)
int

be the internal vertices of Ps,t with degree two and let V
(s,t)
int,deg>2 ⊆ V

(s,t)
int be the

internal vertices with degree larger than two. Now we further partition the two
sets of vertices.

We define V
(s,t)
int,deg2,f ⊆ V

(s,t)
int,deg2 such that for all v ∈ V

(s,t)
int,deg2,f, the neighbor

of v that is closer to s is ordered before the neighbor of v that is closer to t.

Analogously, we define V
(s,t)
int,deg2,b ⊆ V

(s,t)
int,deg2 such that for all v ∈ V

(s,t)
int,deg2,b, the

neighbor of v that is closer to t is ordered before the neighbor of v that is closer
to s.

For the vertices in V
(s,t)
int,deg>2 we additionally define the following. For v ∈

V
(s,t)
int,deg>2 denote by u(s,t)(v) the neighbor of v that is on the path from v to s,

and denote by w(s,t)(v) the neighbor of v that is on the path from v to t.
We add the following constraint for the vertex pair s, t. Recall here that Ds,t

comes from the input matrix, and thus acts as as a non-variable in the MILP.∑
v∈V

(s,t)
int,deg2,f

xv +
∑

v∈V
(s,t)
int,deg2,b

(∆−xv) +
∑

v∈V
(s,t)
int,deg>2

yu
(s,t)(v),w(s,t)(v)

v ≤ Ds,t−1 (8)
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Finally, for all fractional variables xv we add the following constraint.

1 ≤ xv ≤ ∆− 1 (9)

This finishes the description of the constraints. Since we only want to check
whether a feasible solution exists, we arbitrarily choose the vector c for the
objective function to be the all-one vector. This finishes the description of the
MILP instance Iσ. Clearly, for a given global label configuration, the MILP
instance can be constructed in polynomial time.

Observation 5. Given a global label configuration σ, the MILP instance Iσ
can be computed in polynomial time.

In the following, we prove the correctness of the algorithm. We first show
that if the given instance of TTR is a yes-instance, then at least one of the
created MILP instances has a feasible solution.

Lemma 4 (⋆). Given a yes-instance (G,D,∆) of TTR, there exists a global
label configuration σ such that the MILP instance Iσ admits a feasible solution.

Next, we show that if one of the produced MILP instances admits a feasible
solution, then we are facing a yes-instance of TTR. To this end, we first show
that the constraint matrix for the fractional variables of the produced MILP
instances is totally unimodular. Then by Lemma 2 we have that if one of the
MILP instances admits a feasible solution, then there also is a feasible solution
for that instance where all fractional variables are set to integer values. To do
this, we use a sufficient condition for matrices to be totally unimodular. Precisely,
we use that every so-called network matrix is totally unimodular.

Definition 3 (network matrix). Let T = (V,A) be a directed tree, that is, a
tree where each arc has an arbitrary orientation and let A′ be a set of directed
arcs on V , the same vertex set as T . Let M be a matrix with |A| rows and |A′|
columns. Then M is a network matrix if the following holds. For all i, j let
ei = (a, b) ∈ A and e′j = (s, t) ∈ A′.

– Mi,j = 1 if arc (a, b) appears forwards in the path in T from s to t.
– Mi,j = −1 if arc (a, b) appears backwards in the path in T from s to t.
– Mi,j = 0 if arc (a, b) does not appear in the path in T from s to t.

Lemma 5 ([47]). Network matrices are totally unimodular.

We show that the produced MILP instances have the following property.

Lemma 6. Let σ be a global label configuration and let Iσ be the corresponding
MILP instance. Let M be the constraint matrix for the fractional variables, that
is, the constraint matrix obtained by treating the integer variables yu,wv and ze in
all constraints of Iσ as arbitrary constants, deleting all constraints that do not
involve any fractional variables, and deleting all duplicate rows. Then M is a
network matrix.
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Fig. 2: Illustration of the construction of the directed tree T in Lemma 6. On
the left an example tree G, where the vertices are ordered by their indices. In
the middle the line graph L(G) of G, where the gray vertices form a maximal
clique with more than two vertices. On the right the constructed directed tree T ,
where the vertices of the maximal clique are merged into one vertex (gray) and
the directed arcs correspond to the degree-2 vertices of G.

Proof. First, notice that Constraints (1), (2), (3), (4), (5), (6), and (7) do not
involve fractional variables. Hence, from now on we only consider Constraints (8)
and (9), where in Constraint (8) we treat the integer variables as constants. Let
M be the resulting constraint matrix where also all duplicate rows are deleted.
We show that M is a network matrix.

To this end, we define a directed tree T = (V,A) (see Definition 3) as follows.
We give an illustration in Figure 2. Let L(G) be the line graph of the input tree
G of the TTR instance. Now we exhaustively merge all maximal cliques in L(G)
with more than two vertices to a single vertex. Here, the new vertex is adjacent
to all remaining neighbors of the originally merged vertices. Let this graph be
called G′. It is easy to see that G′ is a tree, and every edge in G′ corresponds to
a degree-2 vertex in G, and vice versa. Furthermore, we have that every vertex v
in G′ that has degree larger than two corresponds to a subtree Gv (which may
be the degenerate tree consisting only of one vertex) in G such that all vertices
in V (Gv) have degree larger than two in G. Now we transform G′ into T by
replacing each edge of G′ with an oriented arc. Consider a degree-2 vertex v of
G and the corresponding edge ev in G′. Let u and w be the two neighbors of v
in G, where u is ordered before w. We distinguish four cases.

– Vertex u has degree two in G. Let eu be the edge in G′ corresponding to u.
Then we orient ev such that the resulting arc points away from the common
endpoint of ev and eu.

– The degree of vertex u does not equal two and w has degree two in G. Let
ew be the edge in G′ corresponding to w. Then we orient ev such that the
resulting arc points towards the common endpoint of ev and ew.
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– Neither u nor w have degree two. Then we can assume that at least one of
u and w has degree larger than two, otherwise G only has three vertices and
we can solve the instance in constant time.
• Vertex u has degree larger than two in G. Then let Gu denote the max-

imal subtree of G that contains u such that all vertices in V (Gu) have
degree larger than two in G. Then by construction of G′, there is a vertex
u′ in G′ corresponding to Gu that is incident with ev. We orient ev such
that the resulting arc points away from u′.

• Vertex u has degree one and vertex w has degree larger than two in G.
Then let Gw denote the maximal subtree of G that contains w such that
all vertices in V (Gw) have degree larger than two in G. Then there is
a vertex w′ in G′ corresponding to Gw that has degree larger than two
and is incident with ev. We orient ev such that the resulting arc points
towards w′.

This finishes the description of the directed tree T .
Next, we make the following observation: Each Constraint (9) produces the

same coefficients for the rational variables in the constraint matrix as one of
Constraint (8). To see this, note that each Constraint (9) has exactly one non-
zero coefficient for one rational variable xv, which is either 1 or −1. Variable
xv corresponds to a degree-2 vertex v in G. Let u and w be the two neighbors
of v in G, where u is ordered before w. Then, since u and w have distance at
least two in G, we have a Constraint (8) corresponding to the pair of vertices s, t
with s = u and t = w. This constraint has exactly one non-zero coefficient for a
rational variable, which is xv and the coefficient is 1. In the case where s = w
and t = u we have the same situation, except that the coefficient is −1. Hence,
since M has no duplicate rows, we can assume that each row of M corresponds
to a Constraint (8).

Now consider a row of M corresponding to Constraint (8), which in turn
corresponds to vertex pair s, t in G, where s and t have distance at least two in

G. Let Ps,t denote the (unique) path from s to t in G. Let V
(s,t)
int,deg2,f ⊆ V (Ps,t)

and V
(s,t)
int,deg2,b ⊆ V (Ps,t) be defined as in the description of Constraint (8).

Then we have that V
(s,t)
int,deg2,f ∪ V

(s,t)
int,deg2,b are all internal vertices of Ps,t that

have degree two in G. Furthermore, in Constraint (8) corresponding to vertex
pair s, t we have that the fractional variable xv has a non-zero coefficient if and

only if v ∈ V
(s,t)
int,deg2,f ∪ V

(s,t)
int,deg2,b. More specifically, the coefficient of xv is 1 if

v ∈ V
(s,t)
int,deg2,f and the coefficient of xv is −1 if v ∈ V

(s,t)
int,deg2,b.

Furthermore, by construction we have that each vertex in V
(s,t)
int,deg2,f ∪

V
(s,t)
int,deg2,b corresponds to an arc of T . It remains to show that there is a path P ′ in

T that visits exactly the arcs corresponding to the vertices in V
(s,t)
int,deg2,f∪V

(s,t)
int,deg2,b

such that the arcs corresponding to vertices in V
(s,t)
int,deg2,f appear forwards in the

path and the arcs corresponding to the vertices in V
(s,t)
int,deg2,b appear backwards in

the path. To this end, we order the vertices in V
(s,t)
int,deg2,f∪V

(s,t)
int,deg2,b in the order in
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which they are visited by Ps,t, that is, let V
(s,t)
int,deg2,f∪V

(s,t)
int,deg2,b = {v1, v2, . . . , vk}.

Now we show by induction on k that P ′ exists and that its last arc corresponds
to vk. If k = 1 then P ′ only consists of the arc ev1 corresponding to v1. If

v1 ∈ V
(s,t)
int,deg2,f, then we consider P ′ to be the path in which ev1 appears forwards.

Otherwise, we consider P ′ to be the path in which ev1 appears backwards. Now
assume k > 1. Let P ′′ be the path in T that visits the arcs corresponding to
vertices {v1, . . . , vk−1} such that for all i ∈ [k − 1] the arc corresponding to vi
appears forwards if vi ∈ V

(s,t)
int,deg2,f and backwards otherwise. Furthermore, we

have that P ′′ ends with the arc corresponding to vk−1. Now we show that we
can append the arc corresponding to vk to P ′′. We distinguish two cases.

– In the first case, vk is visited directly after vk−1 by Ps,t. Then the arcs evk−1

and evk in T share a common endpoint which is a degree-2 vertex. It follows
that we can append the arc evk to P ′′ to create a new path that ends in evk

.
We still need to show that evk is appended in the correct direction. Consider
the two neighbors of vk in G. One of the neighbors is vk−1. Let the second

neighbor be w. Now assume that vk ∈ V
(s,t)
int,deg2,f. This implies that vk−1 is

ordered before w. In this case the arc evk in T points away from the common
endpoint of evk−1

and evk
, and hence it appears forwards in the P ′′ appended

with evk . The case where vk ∈ V
(s,t)
int,deg2,b is analogous.

– In the second case, there is a non-empty set of vertices V̂ with degree larger
than two, that are visited by Ps,t between vk−1 and vk. Let Ĝ denote the
maximal tree in G that only contains vertices that have degree larger than
two in G and that contains V̂ . By construction, there is vertex v̂ in T that
corresponds to Ĝ and both evk−1

and evk in T have v̂ as one of their end-
points. First, we argue that we can append evk

to P ′′ and thereby create a
path in T that ends with evk . To this end, notice that the vertex visited by

Ps,t before vk−1 cannot be part of Ĝ, otherwise G would contain a cycle. It
follows that the common endpoint of evk−2

and evk−1
is not v̂ and appending

evk to P ′′ indeed produces a path in T that ends with evk . It remains to show
that evk is appended in the correct direction. Consider the two neighbors u

and w of vk in G. We have that one neighbor is contained in Ĝ, assume
w.l.o.g. that it is u. Then u is visited by Ps,t before vk. Now assume that

vk ∈ V
(s,t)
int,deg2,f. This implies that u is ordered before w. In this case the arc

evk in T points away from u, and hence it appears forwards in the path P ′′

appended with evk . The case where vk ∈ V
(s,t)
int,deg2,b is analogous.

It follows that for every row in M , there is a path in T such that the conditions
in Definition 3 are met. We can conclude that M is a network matrix. □

Now we are ready to show that if one of the producedMILP instances admits
a feasible solution, then we are facing a yes-instance of TTR.

Lemma 7 (⋆). Given an instance (G,D,∆) of TTR, if there exists a global
label configuration σ such that the MILP instance Iσ admits a feasible solution,
then (G,D,∆) is a yes-instance of TTR.

12



Theorem 3 follows from the shown results. A formal proof is given in the full
version [40].

5 Conclusion

We have initiated the investigation of the natural temporal tree realization prob-
lem TTR and shown that it is NP-hard in quite restrictive cases. On the positive
side, we provided an FPT-algorithm for the number of leaves in the input tree
as a parameter, essentially the only reasonable parameter on trees that is not a
constant in at least one of our hardness reductions. A canonical future research
direction is to investigate TTR on general graphs. For example, can our FPT-
algorithm for number of leaves be transferred to general graphs with respect
to the parameter max-leaf number? Further interesting parameters for general
graphs include the distance to a clique (or distance to other dense graphs), max-
imum independent set, clique cover, or even various parameters of the input
matrix D.
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