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Abstract

In this paper we investigate the splittable routing
game in a series-parallel network with two selfish play-
ers. Every player wishes to route optimally, i.e. at min-
imum cost, an individual flow demand from the source
to the destination, giving rise to a non-cooperative
game. We allow a player to split his flow along any
number of paths. One of the fundamental questions
in this model is the convergence of the best response
dynamics to a Nash equilibrium, as well as the time
of convergence. We prove that this game converges
indeed to a Nash equilibrium in a logarithmic number
of steps. Our results hold for increasing and convex
player-specific latency functions. Finally, we prove
that our analysis on the convergence time is tight for
affine latency functions.

1. Introduction

We investigate in this paper the splittable routing
game in a network with two selfish players. The aim
of each player is to route a flow demand from a source
to a destination at minimum cost. This gives rise to
a non-cooperative game. The players have possibly
different demands (weighted flow). At each step of
the game, one of the players reallocates his flow, such
that his individual cost is minimized, assuming that the
flow allocation of the other player remains unchanged
(best response dynamics). The players are allowed to
split their flow arbitrarily along any number of paths
from the source to the destination (splittable flow).

This model was introduced in [11], where it is noted
that the existence of Nash equilibrium points (NEP)
follows from a classical result about convex games
[13]. In [11] the uniqueness of NEP is investigated
mainly. In particular, it has been proved that in a
network with two nodes and multiple parallel links the
NEP is unique under reasonable convexity assumptions

on the latency functions. Recently, it has been proved
that only the class of nearly parallel networks ensures
uniqueness of NEP for any set of players and latency
functions [12]. This model has been considered also
from the perspective of the efficiency of equilibria,
i.e. the social optimality [2], [3], [15], [16]. For the
special case of symmetric players in a network the
unique NEP is characterized as the minimum of a
convex optimization problem [2]. This implies that
the game with symmetric players is an exact potential
game and thus the best response dynamics converge
to a NEP [9]. For a survey on finite (weighted)
congestion games, we refer to [10].

The stability of NEP is a fundamental question in
game theory and has been stated as a major issue
for further research in the model under consideration
[11]. The only result until now about this issue is
that the two player game on a restricted network with
only two nodes and two parallel links converges to
the unique NEP [11]. To the best of our knowledge,
nothing is known about the time of convergence in this
model. The convergence issue in the closely related
model of unsplittable flows has been investigated in
the literature as well. Two main results in this context
are the existence of exponentially long best response
paths to NEP [5] and fast convergence to constant
factor solutions on random best response paths [8].
Furthermore, the number of steps required to reach
a NEP has been investigated for a variety of load
balancing models using a potential-based argument in
[4].

Another related model is that of a cost sharing
mechanism. In contrast to our model, this mechanism
is non-increasing in the number of players using an
edge. This crucial property has been used for the
multicast game with selfish players, in order to obtain
a potential function for both splittable and unsplittable
versions [1]. The splittable version of this model is
similar to ours. Though, the existence of this potential



function, which extends that of Rosenthal [14], seems
not to be extensible to non-decreasing cost functions,
as it is in our case.

In this article we prove that the game with two self-
ish players on a series-parallel network G converges
in a logarithmic number of steps to a NEP, starting
at an arbitrary initial configuration. Here, we use the
notion of convergence to a NEP in the sense of [11],
i.e. that the strategy configuration, which in the present
case is a point in a Eucledian space, is close to a NEP.
Throughout this article we make the assumption that
the latency functions are increasing and convex, which
complies with the convexity assumptions of [11].

The proof of convergence relies on a potential-based
argument. In particular, we define for every step
t ∈ N a non-negative function (potential) ΦG(t), which
equals the amount of flow that is reallocated in the
network G during step t. We prove that for every
ε > 0 the value of this function is at most ε after
a number of steps that is logarithmic in ε−1. In a
series-parallel network with m edges, the asymptotic
convergence time is given in the main Theorem 1:

Theorem 1: The game converges to a Nash equilib-
rium in a logarithmic number of steps. In particular,
after

t(ε) = O(log(m�ε))

steps, the potential ΦG(t(ε)) is at most ε, for every
ε > 0.

Note that this potential is not a function defined
over the strategy configurations, but a measure of the
distance between two consecutive steps in the best-
response path. Thus, the existence of this function
does not imply that the game under consideration is a
potential game.

Furthermore, a lower bound on the convergence time
is presented. Our analysis is tight in the case of affine
latency functions. We remind that the routing problem
in a network with a single convex objective can be
solved in a standard way using convex programming
techniques [6], [7]. Thus, we assume that exact
minimization is achieved at each step. Hence, we are
interested only in the number of steps, in order to study
the convergence time to a NEP.

The article is organized as follows. In Section 2
we investigate a network with two nodes and multiple
parallel links as a special case of a series-parallel net-
work. For this class of networks we provide a potential
function that decreases strictly at every step after the
second one. In Section 3 we generalize our analysis
to arbitrary series-parallel networks. In particular, we
provide a potential function that generalizes that of

Section 2. In Section 3.3 this potential is used to prove
Theorem 1. In Section 3.4 we obtain a lower bound
on the convergence time, which is tight in the case of
affine latency functions. Finally, some conclusions and
open problems are discussed in Section 4.

2. A network of parallel links

2.1. Notation and terminology

We consider a network G with source u, destination
v and a set of m parallel links E = {1, 2, ...,m},
where the selfish players j ∈ {1, 2} wish to route an
individual flow demand dj from u to v at minimum
cost each. W.l.o.g. we assume that the demands dj are
scaled in the interval (0, 1]. Let fe and xe,j denote
the total flow and the flow of player j, respectively
on link e. Player j has on link e an increasing and
convex player-specific latency function `e,j(fe), which
denotes the cost per unit of flow of player j on this
edge. This latency implies that the cost function of
player j on edge e is ce,j(xe,j , fe) = xe,j`e,j(fe). The
marginal cost function ge,j(xe,j , fe) equals the first
derivative of the cost function ce,j with respect to xe,j ,
i.e. ge,j(xe,j , fe) = `e,j (fe) + xe,j`

′
e,j (fe).

Suppose that the players play alternating and let
a step of the game denote the best response of the
corresponding player. Denote by j(t) the player
moving at step t, as well as by f

(t)
e and x

(t)
e,j the

quantities fe and xe,j , respectively after the exe-
cution of this step. Let furthermore f

(0)
e be the

flow on link e in the initial allocation of the net-
work. For every step t ∈ N let ∆

(t)
e = f

(t)
e − f (t−1)e

and define the sets E(t)+ := {e ∈ E : ∆
(t)
e > 0} and

E(t)− := {e ∈ E : ∆
(t)
e < 0}.

Denote by g
(s)
e,j(t) = ge,j(t)(x

(s)
e,j(t), f

(s)
e ) the

marginal cost of player j(t) on link e after the
execution of step s. Denote furthermore by S(t)

j ⊆ E
the support of player j after the execution of step
t, i.e. the set of the network links on which player
j allocates a positive amount of flow. Recall that,
since the cost of player j(t) is minimized at step t,
his marginal cost g(t)e,j(t) is equal to a quantity g(t) on

every link e ∈ S(t)
j(t), while the marginal cost on every

of the remaining links is at least g(t).

2.2. The potential function

The potential at step t ∈ N is defined by

Φ(t) :=
∑
e∈E
|∆(t)

e | ≥ 0 (1)



For every step t ∈ N, the potential Φ(t) equals the
sum of the amounts of flow that are reallocated on all
links during step t. Since the demands of the players
remain constant, it holds that

Φ(t) = 2
∑

e∈E(t)+

|∆(t)
e | = 2

∑
e∈E(t)−

|∆(t)
e | (2)

Define now

λ := min
j∈{1,2}
e∈E


inf

0≤x≤d1+d2

{`′e,j(x)}

sup
0≤x≤d1
0≤y≤d2

{[x`e,j(x+ y)]′′}

 (3)

which is a constant that depends only on the latency
functions of the network. This constant λ will be used
in the sequel to indicate the rate, by which the potential
Φ(t) decreases at every step. Due to the monotonicity
and convexity of the latency functions, it holds that

sup
0≤x≤d1
0≤y≤d2

{[x`e,j(x+ y)]
′′} ≥

≥ [xe,j`e,j(fe)]
′′

= 2` ′e,j(fe) + xe,j`
′′
e,j(fe)

≥ 2`′e,j(fe) ≥ 2 inf
0≤x≤d1+d2

{`′e,j(x)} > 0

for all values of xe,j and fe. It follows that

0 < λ ≤ 1

2
(4)

The following lemma proves that Φ(t) decreases
strictly at every step t ≥ 3 of the game.

Lemma 2: For every t ≥ 3, it holds that Φ(t) ≤
(1− λ)Φ(t− 1).

Proof: We denote for the purposes of the proof
the quantities f (t−2)e , x(t−2)e,j(t) and j(t) by fe, xe,j and
j, respectively. For the marginal cost of player j on
an arbitrary link e ∈ E after the execution of step t, it
holds that

g
(t)
e,j = `e,j

(
fe+∆

(t−1)
e + ∆

(t)
e

)
+
(
xe,j + ∆

(t)
e

)
`′e,j

(
fe+∆

(t−1)
e + ∆

(t)
e

) (5)

We distinguish the following cases.

Case 1. Suppose that g(t) ≥ g(t−2). Consider
an arbitrary e ∈ E(t)−. Due to the monotonicity
and convexity of `e,j(fe), the marginal cost function
ge,j(xe,j , fe) is non-decreasing in fe. Since ∆

(t)
e < 0,

player j allocated a positive amount of flow on e after
step t− 2, i.e. e ∈ S(t−2)

j . It follows that his marginal
cost on e after step t − 2 was equal to g(t−2). On
the other side, since ∆

(t)
e < 0, his marginal cost on e

after the execution of step t− 1 was greater than g(t)

and therefore greater that g(t−2), due to the assumption
that g(t) ≥ g(t−2). It follows that the total flow fe has
been increased during step t − 1 by the other player,
i.e. e ∈ E(t−1)+. Thus, E(t)− ⊆ E(t−1)+ ∩ S(t−2)

j .
Since g(t)e,j ≥ g(t) holds for any link e ∈ E and due

to the assumption that g(t) ≥ g(t−2), it follows that
g
(t)
e,j ≥ g(t−2) for every e ∈ E. Suppose now that
|∆(t)

e | ≥ |∆(t−1)
e | for some link e ∈ E(t)−. Then,

since ∆
(t)
e < 0 and ∆

(t−1)
e > 0, it holds that xe,j +

∆
(t)
e < xe,j + ∆

(t−1)
e + ∆

(t)
e ≤ xe,j . Therefore, (5)

implies, due to the monotonicity and convexity of `e,j ,
that g(t)e,j < `e,j(fe) + xe,j`

′
e,j(fe). Since e ∈ S(t−2)

j ,
the right hand side of the latter quantity equals g(t−2)

and therefore, g(t)e,j < g(t−2). This is a contradiction,
since g(t)e,j ≥ g(t−2) for every e ∈ E.

It follows that for every e ∈ E(t)− it holds
|∆(t)

e | < |∆(t−1)
e |, i.e. |∆(t)

e | = (1− λe) |∆(t−1)
e |,

where λe ∈ (0, 1]. By substituting this in the
inequality g

(t)
e,j ≥ g(t−2) = `e,j(fe) + xe,j`

′
e,j(fe),

we obtain from (5), since ∆
(t)
e = −|∆(t)

e | and
∆

(t−1)
e = |∆(t−1)

e |, that

`e,j(fe + λe|∆
(t−1)
e |)

+ (xe,j + (λe − 1)|∆(t−1)
e |)`′e,j(fe + λe|∆(t−1)

e |)

≥ `e,j (fe) + xe,j`
′
e,j (fe)

from which it follows that

[(xe,j + λe|∆(t−1)
e |)`e,j(fe + λe|∆(t−1)

e |)]′

−[xe,j`e,j(fe)]
′ ≥ |∆(t−1)

e |`′e,j(fe + λe|∆(t−1)
e |)

≥ |∆(t−1)
e | inf

0≤x≤d1+d2

{`′e,j(x)}

The left hand side of the latter inequality is at most as

λe|∆(t−1)
e | sup

0≤x≤d1
0≤y≤d2

{[x`e,j(x+ y)]′′}

from which it follows due to (3) that λe ≥ λ.
Thus, since |∆(t)

e | = (1− λe)|∆(t−1)
e | holds for every

e ∈ E(t)− and since E(t)− ⊆ E(t−1)+, it holds that∑
e∈E(t)−

|∆(t)
e | ≤ (1− λ)

∑
E(t−1)+

|∆(t−1)
e | (6)

Now, the lemma follows from (2) and (6).

Case 2. Suppose that g(t) < g(t−2). Consider
an arbitrary e ∈ E(t)+. Similarly, since ∆

(t)
e > 0,

player j allocates on e a positive amount of flow
after the execution of step t, i.e. e ∈ S(t)

j . It follows
that his marginal cost on e after step t is equal to
g(t). On the other side, since ∆

(t)
e > 0, his marginal

cost on e after the execution of step t − 1 was less



than g(t) and therefore less that g(t−2), due to the
assumption that g(t) < g(t−2). It follows that the
total flow fe has been decreased during step t − 1
by the other player, i.e. e ∈ E(t−1)−. It follows that
E(t)+ ⊆ E(t−1)− ∩ S(t)

j .
Since e ∈ S(t)

j , it holds that g
(t)
e,j = g(t). Fur-

thermore, since g(t−2) ≤ g(t−2)e,j holds for every
e ∈ E and due to the assumption that g(t) < g(t−2),
we obtain that g

(t)
e,j < g

(t−2)
e,j . Suppose now that

|∆(t)
e | ≥ |∆(t−1)

e | for some link e ∈ E(t)+. Then,
since ∆

(t)
e > 0 and ∆

(t−1)
e < 0, it holds that

xe,j + ∆
(t)
e > xe,j + ∆

(t−1)
e + ∆

(t)
e ≥ xe,j . There-

fore, (5) implies, due to the monotonicity and convex-
ity of `e,j , that g(t)e,j > `e,j(fe) + xe,j`

′
e,j(fe) = g

(t−2)
e,j .

This is a contradiction, since g(t)e,j < g
(t−2)
e,j for every

e ∈ E(t)+.
It follows that for every e ∈ E(t)+ it holds
|∆(t)

e | < |∆(t−1)
e |, i.e. |∆(t)

e | = (1− λe) |∆(t−1)
e |,

where λe ∈ (0, 1]. By substituting this in the
inequality g

(t)
e,j < g

(t−2)
e,j = `e,j(fe) + xe,j`

′
e,j(fe),

we obtain from (5), since ∆
(t)
e = |∆(t)

e | and
∆

(t−1)
e = −|∆(t−1)

e |, that

`e,j(fe − λe|∆
(t−1)
e |)

+ (xe,j + (1− λe)|∆(t−1)
e |)`′e,j(fe − λe|∆

(t−1)
e |)

< `e,j (fe) + xe,j`
′
e,j (fe)

from which it follows that
[xe,j`e,j (fe)]

′

−[(xe,j−λe|∆(t−1)
e |)`′e,j(fe−λe|∆

(t−1)
e |)]′

> |∆(t−1)
e |`′e,j(fe − λe|∆

(t−1)
e |)

≥ |∆(t−1)
e | inf

0≤x≤d1+d2

{`′e,j(x)}

The left hand side of the latter inequality is at most as

λe|∆(t−1)
e | sup

0≤x≤d1
0≤y≤d2

{[x`e,j(x+ y)]′′}

from which it follows due to (3) that λe > λ. Thus,
since |∆(t)

e | = (1 − λe)|∆(t−1)
e | holds for every

e ∈ E(t)+ and since E(t)+ ⊆ E(t−1)−, it holds that∑
e∈E(t)+

|∆(t)
e | < (1− λ)

∑
E(t−1)−

|∆(t−1)
e | (7)

Now, the lemma follows from (2) and (7).

3. Series-parallel networks

3.1. Notation and terminology

In this section we extent our model to a series-
parallel network G with source u, destination v and

m edges, which is a generalization of the network
presented in Section 2. We remind here the definition
of such a network.

Definition 3 (Series-parallel network): A series-
parallel network G is a directed network with a source
u and a destination v that is defined recursively as
follows:

1) The primitive series-parallel network consists of
a source u, a destination v and a single directed
edge from u to v.

2) The parallel composition P = P (G1, G2) of
the series-parallel networks G1 and G2 is the
network created from the disjoint union of G1

and G2 by merging the sources and destinations
of them to create the source and the destination
of P , respectively.

3) The series composition S = S(G1, G2) of the
series-parallel networks G1 and G2 is the net-
work created from the disjoint union of G1 and
G2 by merging the destination of G1 and the
source of G2. The source of S is then the source
of G1 and its destination is the destination of G2.

Similarly to Section 2, we use here the following
notation for a series-parallel network G with a set
E of m edges. Denote by PG the set of directed
paths from u to v and by S

(t)
j ⊆ PG the support of

player j after the execution of step t, i.e. the set of
paths on which player j allocates a positive amount
of flow. The marginal cost of player j(t) on a path
P ∈ PG after the execution of step s is denoted
by g

(s)
P,j(t) =

∑
e∈P g

(s)
e,j(t), where g

(s)
e,j(t) denotes his

marginal cost on edge e ∈ E after step s, as in Section
2. Since the cost of player j(t) is minimized at step
t, it follows that his marginal cost g(t)P,j(t) is equal

to a quantity g
(t)
G on every path P ∈ S(t)

j(t), while the
marginal cost on every of the remaining paths is at
least g(t)G .

3.2. The potential function

Denote now by ∆G(t) the difference of the flows
on G between steps t and t− 1. This is a flow
with value ∆

(t)
e on edge e ∈ E. Let furthermore

P(t)
G = {P (t)

i }i∈I(t)
G

be a path decomposition of the

flow ∆G(t) in directed paths from u to v, where I(t)G is
an appropriate index set. Denote the flow on P (t)

i by
f
(t)
i . W.l.o.g. suppose that

∑
i∈I(t)

G

|f (t)i | is minimum

among all path decompositions of ∆G(t). Then, the



potential at step t is defined as

ΦG(t) :=
∑
i∈I(t)

G

|f (t)i | ≥ 0 (8)

which equals the amount of flow that is
reallocated in G during step t. Define now
the subsets I

(t)+
G := {i ∈ I(t)G : f

(t)
i > 0} and

I
(t)−
G := {i ∈ I(t)G : f

(t)
i < 0} of the index set

I
(t)
G . In the case where G is a network of parallel

links, the paths correspond to the links. Thus, the
potential function of (8) degenerates to that of (1)
and the sets I(t)+G and I

(t)−
G correspond to the sets

E(t)+ and E(t)− of Section 2, respectively. Since
the demands of the players remain constant, it holds
similarly to (2) that

ΦG(t) = 2
∑

i∈I(t)+
G

|f (t)i | = 2
∑

i∈I(t)−
G

|f (t)i | (9)

for every t ∈ N. The following lemma shows that also
in this case the potential ΦG(t) decreases strictly at
every step t ≥ 3.

Lemma 4: It holds that ΦG(t) ≤ (1−λ) ΦG(t− 1)
for every t ≥ 3.

Proof: The proof will be done by induction on
the structure of G. If G is a network of parallel links,
then the lemma follows from Lemma 2.

Suppose first that G = S(G1, G2) for some series-
parallel networks G1, G2. The paths of P(t)

G1
and P(t)

G2

cover the whole flow in ∆G
(t)
1 and ∆G

(t)
2 , while

ΦG1
(t),ΦG2

(t) denote the sum of the absolute flows
on the paths of P(t)

G1
and P(t)

G2
, respectively. Due to the

definition, the values ΦG1
(t) and ΦG2

(t) are minimum
among all path decompositions of ∆G

(t)
1 and ∆G

(t)
2 ,

respectively. W.l.o.g. it holds that ΦG1
(t) ≥ ΦG2

(t).
Then, extend every path P of P(t)

G2
by some paths of

P(t)
G1

of the same total flow with P . We cover this way
the whole ∆G

(t)
2 and a part of ∆G

(t)
1 with paths, such

that their absolute flows sum up to ΦG2(t). The sum
of the absolute flows on the remaining paths of ∆G

(t)
1

equals ΦG1
(t)−ΦG2

(t). We extend all these paths of
∆G

(t)
1 by a single path P0 of G2, covering thus the

whole ∆G(t) with paths of total absolute value ΦG1
(t).

It follows that

ΦG(t) = max{ΦG1
(t),ΦG2

(t)} (10)

for every t ∈ N. Now, the induction hypothesis implies
that

ΦG1
(t) ≤ (1− λ)ΦG1

(t− 1) (11)

and
ΦG2(t) ≤ (1− λ)ΦG2(t− 1) (12)

The lemma follows from (10), (11) and (12).
Suppose now that G = P (G1, G2). The networks

G1 and G2 do not share any common edges or paths.
Thus, since the cost of player j(t) is minimized at step
t, it holds that g(t)G1

= g
(t)
G2

= g
(t)
G . We distinguish the

following cases.

Case 1. Suppose that g(t)G ≥ g
(t−2)
G . Due to Case

1 in the proof of Lemma 2, the induction hypothesis
implies for both components G1, G2 of G that∑
i∈I(t)−

Gk

|f (t)i | ≤ (1− λ)
∑

i∈I(t−1)+
Gk

|f (t−1)i |, k ∈ {1, 2}

(13)
since g(t)G1

≥ g
(t−2)
G1

and g(t)G2
≥ g

(t−2)
G2

. By adding the
inequalities of (13) for both k ∈ {1, 2}, we obtain∑

i∈I(t)−
G

|f (t)i | ≤ (1− λ)
∑

i∈I(t−1)+
G

|f (t−1)i | (14)

The lemma follows from (9) and (14).

Case 2. Suppose that g(t)G < g
(t−2)
G . Similarly, due

to Case 2 in the proof of Lemma 2, the induction
hypothesis implies for both components G1, G2 of G
that∑
i∈I(t)+

Gk

|f (t)i | < (1− λ)
∑

i∈I(t−1)−
Gk

|f (t−1)i |, k ∈ {1, 2}

(15)
since g(t)G1

≤ g
(t−2)
G1

and g(t)G2
≤ g

(t−2)
G2

. By adding the
inequalities of (15) for both k ∈ {1, 2}, we obtain∑

i∈I(t)+
G

|f (t)i | < (1− λ)
∑

i∈I(t−1)−
G

|f (t−1)i | (16)

Now, the lemma follows from (9) and (16).

3.3. Proof of Theorem 1

Proof: Recall first that the demands d1, d2 are
scaled in the interval (0, 1]. Denote now λ0 = 1 −
λ. The flow ∆G(t) can be decomposed in at most
m paths in P(t)

G with non-zero flow. Since player 2
moves at the second step of the game, it holds that
|f (2)i | ≤ d2 ≤ 1 for every path P (2)

i of P(2)
G . It follows

that ΦG (2) ≤ m. Due to Lemma 4, it holds that
ΦG(t) ≤ λt−20 ΦG (2) ≤ λt−20 m for every t ≥ 3. Now,
suppose that λt−20 m ≤ ε, for some ε > 0. It follows
then that λ−t+2

0 ≥ m�ε. Therefore, after

t(ε) := dlog−1(λ−10 ) · log(m�ε)e+ 2 (17)

steps the potential ΦG is at most ε, for any given ε >
0. Thus, since λ0 < 1 is a constant and since the
potential equals the 1-norm of the difference between



the configurgation vectors in two consecutive steps, the
game converges in a logarithmic number of steps to a
NEP and the theorem follows.

3.4. Tight bounds

Due to (4) it holds that λ0 = 1 − λ ∈ [ 12 , 1) in the
proof of Theorem 1. Thus, log−1(λ−10 ) ≥ 1 and for
the convergence time in (17) it holds that

t(ε) ≥ dlog(m�ε)e+ 2 (18)

Consider now the special case that the player-
specific latency functions are affine, i.e. for
every e ∈ E and j ∈ {1, 2} it holds that
`e,j (x) = αe,jx+ βe,j , with αe,j > 0 and βe,j ≥ 0.
Then, directly substitution in (3) implies that

λ = min
j∈{1,2},e∈E

{
αe,j

2αe,j

}
=

1

2
(19)

Therefore, λ0 = 1
2 and log−1(λ−10 ) = 1. It follows

that in this case equality holds in (18), which shows
that our analysis is tight.

4. Concluding remarks

This paper investigates the selfish routing of two
players in a series-parallel network. Each player
controls a demand of flow, which can be splitted
arbitrarily on the available paths between the source
and the destination. The main result is the convergence
of the best response dynamics to a Nash equilibrium in
a logarithmic number of steps, starting at an arbitrary
initial configuration. The generalization of this result
to the case of an arbitrary network, as well as to the
atomic game with several players activated in a round
robin fashion, remains an important open question for
further research.
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