
Temporal graph realization from fastest paths1

Nina Klobas #2

Department of Computer Science, Durham University, UK3

George B. Mertzios #4

Department of Computer Science, Durham University, UK5

Hendrik Molter #6

Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel7

Paul G. Spirakis #8

Department of Computer Science, University of Liverpool, UK9

Abstract10

In this paper we initiate the study of the temporal graph realization problem with respect to the11

fastest path durations among its vertices, while we focus on periodic temporal graphs. Given an12

n × n matrix D and a ∆ ∈ N, the goal is to construct a ∆-periodic temporal graph with n vertices13

such that the duration of a fastest path from vi to vj is equal to Di,j , or to decide that such a14

temporal graph does not exist. The variations of the problem on static graphs has been well studied15

and understood since the 1960’s (e.g. [Erdős and Gallai, 1960], [Hakimi and Yau, 1965]).16

As it turns out, the periodic temporal graph realization problem has a very different computational17

complexity behavior than its static (i. e., non-temporal) counterpart. First we show that the problem18

is NP-hard in general, but polynomial-time solvable if the so-called underlying graph is a tree.19

Building upon those results, we investigate its parameterized computational complexity with respect20

to structural parameters of the underlying static graph which measure the “tree-likeness”. We prove21

a tight classification between such parameters that allow fixed-parameter tractability (FPT) and22

those which imply W[1]-hardness. We show that our problem is W[1]-hard when parameterized by23

the feedback vertex number (and therefore also any smaller parameter such as treewidth, degeneracy,24

and cliquewidth) of the underlying graph, while we show that it is in FPT when parameterized by25

the feedback edge number (and therefore also any larger parameter such as maximum leaf number)26

of the underlying graph.27

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathematics28

of computing → Discrete mathematics29

Keywords and phrases Temporal graph, periodic temporal labeling, fastest temporal path, graph30

realization, temporal connectivity, parameterized complexity.31

Digital Object Identifier 10.4230/LIPIcs.SAND.2024.332

Related Version Full Version: https://arxiv.org/abs/2302.0886033

Funding George B. Mertzios: Supported by the EPSRC grant EP/P020372/1.34

Hendrik Molter : Supported by the ISF, grant nr. 1456/18, and by the European Union’s Horizon35

Europe research and innovation programme under grant agreement 949707.36

Paul G. Spirakis: Supported by the EPSRC grant EP/P02002X/1.37

1 Introduction38

The (static) graph realization problem with respect to a graph property P is to find a graph39

that satisfies property P, or to decide that no such graph exists. The motivation for graph40

realization problems stems both from “verification” and from network design applications41

in engineering. In verification applications, given the outcomes of some experimental42

measurements (resp. some computations) on a network, the aim is to (re)construct an43

input network which complies with them. If such a reconstruction is not possible, this44

© Nina Klobas, George B. Mertzios, Hendrik Molter, and Paul G. Spirakis;
licensed under Creative Commons License CC-BY 4.0

3rd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2024).
Editors: Arnaud Casteigts and Fabian Kuhn; Article No. 3; pp. 3:1–3:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nina.klobas@durham.ac.uk
 https://orcid.org/0000-0002-8024-5782
mailto:george.mertzios@durham.ac.uk
https://orcid.org/0000-0001-7182-585X
mailto:molterh@post.bgu.ac.il
https://orcid.org/0000-0002-4590-798X
mailto:p.spirakis@liverpool.ac.uk
https://orcid.org/0000-0001-5396-3749
https://doi.org/10.4230/LIPIcs.SAND.2024.3
https://arxiv.org/abs/2302.08860
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Temporal graph realization from fastest paths

proves that the measurements are incorrect or implausible (resp. that the algorithm which45

made the computations is incorrectly implemented). One example of a graph realization46

(or reconstruction) problem is the recognition of probe interval graphs, in the context47

of the physical mapping of DNA, see [52, 53] and [36, Chapter 4]. In network design48

applications, the goal is to design network topologies having a desired property [4, 38].49

Analyzing the computational complexity of the graph realization problems for various natural50

and fundamental graph properties P requires a deep understanding of these properties.51

Among the most studied such parameters for graph realization are constraints on the52

distances between vertices [7, 8, 10,16,17,41], on the vertex degrees [6, 22,35,37,40], on the53

eccentricities [5, 9, 42,51], and on connectivity [15,29–31,34,37], among others.54

In the simplest version of a (static) graph realization problem with respect to vertex55

distances, we are given a symmetric n × n matrix D and we are looking for an n-vertex56

undirected and unweighted graph G such that Di,j equals the distance between vertices vi57

and vj in G. This problem can be trivially solved in polynomial time in two steps [41]: First,58

we build the graph G = (V, E) such that vivj ∈ E if and only if Di,j = 1. Second, from this59

graph G we compute the matrix DG which captures the shortest distances for all pairs of60

vertices. If DG = D then G is the desired graph, otherwise there is no graph having D as its61

distance matrix. Non-trivial variations of this problem have been extensively studied, such62

as for weighted graphs [41,60], as well as for cases where the realizing graph has to belong to63

a specific graph family [7, 41]. Other variations of the problem include the cases where every64

entry of the input matrix D may contain a range of consecutive permissible values [7, 61, 63],65

or even an arbitrary set of acceptable values [8] for the distance between the corresponding66

two vertices.67

In this paper we make the first attempt to understand the complexity of the graph68

realization problem with respect to vertex distances in the context of temporal graphs, i. e.,69

of graphs whose topology changes over time.70

▶ Definition 1 (temporal graph [43]). A temporal graph is a pair (G, λ), where G = (V, E)71

is an underlying (static) graph and λ : E → 2N is a time-labeling function which assigns to72

every edge of G a set of discrete time-labels.73

Here, whenever t ∈ λ(e), we say that the edge e is active or available at time t. In the74

context of temporal graphs, where the notion of vertex adjacency is time-dependent, the75

notions of path and distance also need to be redefined. The most natural temporal analogue76

of a path is that of a temporal (or time-dependent) path, which is motivated by the fact that,77

due to causality, entities and information in temporal graphs can “flow” only along sequences78

of edges whose time-labels are strictly increasing.79

▶ Definition 2 (fastest temporal path). Let (G, λ) be a temporal graph. A temporal path80

in (G, λ) is a sequence (e1, t1), (e2, t2), . . . , (ek, tk), where P = (e1, . . . , ek) is a path in the81

underlying static graph G, ti ∈ λ(ei) for every i = 1, . . . , k, and t1 < t2 < . . . < tk. The82

duration of this temporal path is tk − t1 + 1. A fastest temporal path from a vertex u to a83

vertex v in (G, λ) is a temporal path from u to v with the smallest duration. The duration of84

the fastest temporal path from u to v is denoted by d(u, v).85

In this paper we consider periodic temporal graphs, i. e., temporal graphs in which the86

temporal availability of each edge of the underlying graph is periodic. Many natural and87

technological systems exhibit a periodic temporal behavior. For example, in railway networks88

an edge is present at a time step t if and only if a train is scheduled to run on the respective rail89

segment at time t [3]. Similarly, a satellite, which makes pre-determined periodic movements,90

Nina Klobas, George B. Mertzios, Hendrik Molter, and Paul G. Spirakis 3:3

v1 v2 v3 v4 v5

10t + 7 10t + 3 10t + 5 10t + 1

Figure 1 An example of a ∆-periodic temporal graph (G, λ, ∆), where ∆ = 10 and the 10-periodic
labeling λ : E → {1, 2, . . . , 10} is as follows: λ(v1v2) = 7, λ(v2v3) = 3, λ(v3v4) = 5, and λ(v4v5) = 1.
Here, the fastest temporal path from v1 to v2 traverses the first edge v1v2 at time 7, second edge
v2v3 a time 13, third edge v3v4 at time 15 and the last edge v4v5 at time 21. This results in the
total duration of 21 − 7 + 1 = 15 for the fastest temporal path from v1 to v5.

can establish a communication link (i. e., a temporal edge) with another satellite whenever91

they are sufficiently close to each other; the existence of these communication links is also92

periodic. In a railway (resp. satellite) network, a fastest temporal path from u to v represents93

the fastest railway connection between two stations (resp. the quickest communication delay94

between two moving satellites). Furthermore, periodicity appears also in (the otherwise quite95

complex) social networks which describe the dynamics of people meeting [50,62], as every96

person individually follows mostly a weekly routine.97

Expanding the work on periodic temporal graphs (see [13, Class 8] and [3, 25, 58, 59]),98

our study represents the first attempt to understand the complexity of a graph realization99

problem in the context of temporal graphs. Therefore, we focus in this paper on the most100

fundamental case, where all edges have the same period ∆ (while in the more general case,101

each edge e in the underlying graph has a period ∆e). As it turns out, the periodic temporal102

graph realization problem with respect to a given n×n matrix D of the fastest duration times103

has a very different computational complexity behavior than the classic graph realization104

problem with respect to shortest path distances in static graphs.105

Formally, let G = (V, E) and ∆ ∈ N, and let λ : E → {1, 2, . . . , ∆} be an edge-labeling106

function that assigns to every edge of G exactly one of the labels from {1, . . . , ∆}. Then we107

denote by (G, λ, ∆) the ∆-periodic temporal graph (G, L), where for every edge e ∈ E we108

have L(e) = {i∆ + x : i ≥ 0, x ∈ λ(e)}. In this case we call λ a ∆-periodic labeling of G; see109

Figure 1 for an illustration. When it is clear from the context, we drop ∆ from the notation110

and we denote the (∆-periodic) temporal graph by (G, λ). Given a duration matrix D, it is111

easy to observe that, similarly to the static case, if Di,j = 1 then vi and vj must be connected112

by an edge. We call the graph defined by these edges the underlying graph of D.113

Our contribution. We initiate the study of naturally motivated graph realization problems114

in the temporal setting. Our target is not to model unreliable communication, but instead to115

verify that particular measurements regarding fastest temporal paths in a periodic temporal116

graph are plausible (i. e., “realizable”). To this end, we introduce and investigate the following117

problem, capturing the setting described above:118

Simple periodic Temporal Graph Realization (Simple TGR)

Input: An integer n × n matrix D, a positive integer ∆.
Question: Does there exist a graph G = (V, E) with vertices {v1, . . . , vn} and a ∆-periodic

labeling λ : E → {1, 2, . . . , ∆} such that, for every i, j, the duration of the fastest
temporal path from vi to vj in the ∆-periodic temporal graph (G, λ, ∆) is Di,j?

119

We focus on exact algorithms. We start by showing NP-hardness of the problem (The-120

orem 3), even if ∆ is a small constant. To establish a baseline for tractability, we show that121

Simple TGR is polynomial-time solvable if the underlying graph is a tree (Theorem 5).122

SAND 2024

3:4 Temporal graph realization from fastest paths

Building upon these initial results, we explore the possibilities to generalize our polynomial-123

time algorithm using the distance-from-triviality parameterization paradigm [27,39]. That is,124

we investigate the parameterized computational complexity of Simple TGR with respect to125

structural parameters of the underlying graph that measure its “tree-likeness”.126

We obtain the following results. We show that Simple TGR is W[1]-hard when para-127

meterized by the feedback vertex number of the underlying graph (Theorem 4). To this128

end, we first give a reduction from Multicolored Clique parameterized by the number129

of colors [26] to a variant of Simple TGR where the period ∆ is infinite, that is, when130

the labeling is non-periodic. Then we use a special gadget (the “infinity” gadget) which131

allows us to transfer the result to a finite period ∆. The latter construction is independent132

from the particular reduction we use, and can hence be treated as a reduction from the133

non-periodic to the periodic setting. Note that our parameterized hardness result with respect134

to the feedback vertex number also implies W[1]-hardness for any smaller parameter, such as135

treewidth, degeneracy, cliquewidth, distance to chordal graphs, and distance to outerplanar136

graphs.137

We complement this hardness result by showing that Simple TGR is fixed-parameter138

tractable (FPT) with respect to the feedback edge number k of the underlying graph (The-139

orem 6). This result also implies an FPT algorithm for any larger parameter, such as the140

maximum leaf number. A similar phenomenon of getting W[1]-hardness with respect to the141

feedback vertex number, while getting an FPT algorithm with respect to the feedback edge142

number, has been observed only in a few other temporal graph problems related to the143

connectivity between two vertices [14,21,32].144

Our FPT algorithm works as follows on a high level. First we distinguish O(k2) vertices145

which we call “important vertices”. Then, we guess the fastest temporal paths for each pair146

of these important vertices; as we prove, the number of choices we have for all these guesses147

is upper bounded by a function of k. Then we also need to make several further guesses148

(again using a bounded number of choices), which altogether leads us to specify a small (i. e.,149

bounded by a function of k) number of different configurations for the fastest paths between150

all pairs of vertices. For each of these configurations, we must then make sure that the labels151

of our solution will not allow any other temporal path from a vertex vi to a vertex vj have152

a strictly smaller duration than Di,j . This naturally leads us to build one Integer Linear153

Program (ILP) for each of these configurations. We manage to formulate all these ILPs154

by having a number of variables that is upper-bounded by a function of k. Finally we use155

Lenstra’s Theorem [49] to solve each of these ILPs in FPT time. At the end, our initial156

instance is a Yes-instance if and only if at least one of these ILPs is feasible.157

The above results provide a fairly complete picture of the parameterized computational158

complexity of Simple TGR with respect to structural parameters of the underlying graph159

which measure “tree-likeness”. To obtain our results, we prove several properties of fastest160

temporal paths, which may be of independent interest. Due to space constraints, proofs of161

results marked with ⋆ are (partially) deferred to the full version on arXiv [46].162

Related work. Graph realization problems on static graphs have been studied since the 1960s.163

We provide an overview of the literature in the introduction. To the best of our knowledge,164

we are the first to consider graph realization problems in the temporal setting. Very recently,165

Erlebach et al. [24] have built upon our results and, among others, studied the case where166

edges might appear more than once in each period. Many other connectivity-related problems167

have been studied in the temporal setting [2,12,18,19,23,28,33,44,48,55,57,65], most of which168

are much more complex and computationally harder than their non-temporal counterparts,169

Nina Klobas, George B. Mertzios, Hendrik Molter, and Paul G. Spirakis 3:5

and some of which do not even have a non-temporal counterpart.170

Several problems have been studied where the goal is to assign labels to (sets of) edges of171

a given static graph in order to achieve certain connectivity-related properties [1, 20,45, 54].172

The main difference to our problem setting is that in the mentioned works, the input is a173

graph and the sought labeling is not periodic. Furthermore, the investigated properties are174

temporal connectivity among all vertices [1, 45, 54], temporal connectivity among a subset of175

vertices [45], or reducing reachability among the vertices [20]. In all these cases, the duration176

of the temporal paths has not been considered.177

Finally, there are many models for dynamic networks in the context of distributed178

computing [47]. These models have some similarity to temporal graphs, in the sense that in179

both cases the edges appear and disappear over time. However, there are notable differences.180

For example, one important assumption in the distributed setting can be that the edge181

changes are adversarial or random (while obeying some constraints such as connectivity),182

and therefore they are not necessarily known in advance [47].183

Preliminaries and notation. We already introduced the most central notion and concepts.184

There are some additional definitions we need, to present our proofs and results which we185

give in the following.186

An interval in N from a to b is denoted by [a, b] = {i ∈ N : a ≤ i ≤ b}; similarly, [a] = [1, a].187

An undirected graph G = (V, E) consists of a set V of vertices and a set E ⊆ V × V of188

edges. For a graph G, we also denote by V (G) and E(G) the vertex and edge set of G,189

respectively. We denote an edge e ∈ E between vertices u, v ∈ V as a set e = {u, v}.190

For the sake of simplicity of the representation, an edge e is sometimes also denoted by191

uv. A path P in G is a subgraph of G with vertex set V (P) = {v1, . . . , vk} and edge192

set E(P) = {{vi, vi+1} : 1 ≤ i < k} (we often represent path P by the tuple (v1, v2, . . . , vk)).193

Let v1, v2, . . . , vn be the n vertices of the graph G. For simplicity of the presentation194

(and with a slight abuse of notation) we refer during the paper to the entry Di,j of the195

matrix D as Da,b, where a = vi and b = vj . That is, we put as indices of the matrix D the196

corresponding vertices of G whenever it is clear from the context.197

Let P = (u = v1, v2, . . . , vp = v) be a path from u to v in G. Recall that, in our paper,198

every edge has exactly one time label in every period of ∆ consecutive time steps. Therefore,199

as we are only interested in the fastest duration of temporal paths, many times we refer200

to (P, λ, ∆) as any of the temporal paths from u = v1 to v = vp along the edges of P ,201

which starts at the edge v1v2 at time λ(v1v2) + c∆, for some c ∈ N, and then sequentially202

visits the rest of the edges of P as early as possible. We denote by d(P, λ, ∆), or simply203

by d(P, λ) when ∆ is clear from the context, the duration of any of the temporal paths204

(P, λ, ∆); note that they all have the same duration. Many times we also refer to a path205

P = (u = v1, v2, . . . , vp = v) from u to v in G, as a temporal path in (G, λ, ∆), where we206

actually mean that (P, λ, ∆) is a temporal path with P as its underlying (static) path.207

We remark that a fastest path between two vertices in a temporal graph can be computed208

in polynomial time [11, 64]. Hence, given a ∆-periodic temporal graph (G, λ, ∆), we can209

compute in polynomial-time the matrix D which consists of durations of fastest temporal210

paths among all pairs of vertices in (G, λ, ∆).211

2 Hardness results for Simple TGR212

In this section we present our main computational hardness results. We first show that213

Simple TGR is NP-hard even for constant ∆.214

SAND 2024

3:6 Temporal graph realization from fastest paths

▶ Theorem 3 (⋆). Simple TGR is NP-hard for all ∆ ≥ 3.215

Next, we investigate the parameterized hardness of Simple TGR with respect to struc-216

tural parameters of the underlying graph. We show that the problem is W[1]-hard when217

parameterized by the feedback vertex number of the underlying graph. The feedback vertex218

number of a graph G is the cardinality of a minimum vertex set X ⊆ V (G) such that G − X219

is a forest. The set X is called a feedback vertex set. Note that, in contrast to the previous220

result (Theorem 3), the reduction we use to obtain the following result does not produce221

instances with a constant ∆.222

▶ Theorem 4 (⋆). Simple TGR is W[1]-hard when parameterized by the feedback vertex223

number of the underlying graph.224

Proof. We present a parameterized reduction from the W[1]-hard problem Multicolored225

Clique parameterized by the number of colors [26]. Here, given a k-partite graph H =226

(W1 ⊎ W2 ⊎ . . . ⊎ Wk, F), we are asked whether H contains a clique of size k. If w ∈ Wi,227

then we say that w has color i. W.l.o.g. we assume that |W1| = |W2| = . . . = |Wk| = n.228

Furthermore, for all i ∈ [k], we assume the vertices in Wi are ordered in some arbitrary but229

fixed way, that is, Wi = {wi
1, wi

2, . . . , wi
n}. Let Fi,j with i < j denote the set of all edges230

between vertices from Wi and Wj . We assume w.l.o.g. that |Fi,j | = m for all i < j (if not we231

can add k maxi,j |Fi,j | vertices to each Wi and use those to add up to maxi,j |Fi,j | additional232

isolated edges to each Fi,j). Furthermore, for all i < j we assume that the edges in Fi,j are233

ordered in some arbitrary but fixed way, that is, Fi,j = {ei,j
1 , ei,j

2 , . . . , ei,j
m }.234

We give a reduction to a variant of Simple TGR where the period ∆ is infinite (that235

is, the sought temporal graph is not periodic and the labeling function λ : E → N maps236

to the natural numbers) and we allow D to have infinity entries, meaning that the two237

respective vertices are not temporally connected. Note that, given the matrix D, we can238

easily compute the underlying graph G, as follows. Two vertices v, v′ are adjacent in G if239

and only if Dv,v′ = 1, as having an edge between v and v′ is the only way that there exists240

a temporal path from v to v′ with duration 1. For simplicity of the presentation of the241

reduction, we describe the underlying graph G (which directly implies the entries of D where242

Dv,v′ = 1) and then we provide the remaining entries of D. At the end of the proof, we show243

how to obtain the result for a finite ∆ (by introducing a so-called “infinity gadget”) and a244

matrix D of durations of fastest paths which only has finite entries.245

In the following, we give an informal description of the main ideas of the reduction. The246

construction uses several gadgets, where the main ones are an “edge selection gadget” and a247

“verification gadget”.248

Every edge selection gadget is associated with a color combination i, j in the Multi-249

colored Clique instance, and its main purpose is to “select” an edge connecting a vertex250

from color i with a vertex from color j. Roughly speaking, the edge selection gadget consists251

of m paths, one for every edge in Fi,j (see Figure 2 for reference). The distance matrix252

D will enforce that the labels on those paths effectively order them temporally, that is, in253

particular, the labels on one of the paths will be smaller than the labels on all other paths.254

The edge corresponding to this path is selected.255

We have a verification gadget for every color i. They interact with the edge selection256

gadgets as follows. The verification gadget for color i is connected to all edge selection257

gadgets that involve color i. More specifically, this is connected to every path corresponding258

to an edge at a position in the path that encodes the endpoint of color i of that edge (again,259

see Figure 2 for reference). Intuitively, the distances in the verification gadget are only260

Nina Klobas, George B. Mertzios, Hendrik Molter, and Paul G. Spirakis 3:7

alignment gadget

c
o
n
n
e
c
to

r
g
a
d
g
e
t

edge selection gadget for i, j

v
e
rifi

c
a
tio

n
g
a
d
g
e
t
fo
r
j

w⋆

v̂0v̂′
0

v̂1

v̂2

v̂3v̂′
3

v̂0v̂′
0

v̂1

v̂2

v̂3v̂′
3

v̂0 v̂′
0

v̂1

v̂2

v̂3 v̂′
3

v̂0 v̂′
0

v̂1

v̂2

v̂3 v̂′
3

x1 x2 x3

. . .

xm

v⋆
i,j

u1
0 u2

0 u3
0

. . . um
0

u1
1 u2

1 u3
1

. . . um
1

u1
2 u2

2 u3
2

. . . um
2

.

.

.
.
.
.

.

.

.
.
.
.

u1
n u2

n u3
n

. . . um
n

u1
n+1 u2

n+1 u3
n+1

. . . um
n+1

.

.

.
.
.
.

.

.

.
.
.
.

u1
4n u2

4n u3
4n

. . . um
4n

v⋆⋆
i,j

yj

vj
0

vj
1

.

.

.

vj
i−1

vj
i

.

.

.

vj
j−1

ûj
1

ûj
2

.

.

.

vj
j

.

.

.

vj
k

Figure 2 Illustration of part of the underlying graph G and a possible labeling. Edges incident
with vertices v̂1, v̂2 of connector gadgets are omitted. Gray vertices form a feedback vertex set.
The double line connections, between a vertex vj

i−1 in the verification gadget, and u3
1 in the edge

selection gadget, and, between a vertex u3
2 in the edge selection gadget, and vj

i in the verification
gadget, consist of 5n vertices aj,i,3

1 , aj,i,3
2 , . . . , aj,i,3

5n and bj,i,3
1 , bj,i,3

2 , . . . , bj,i,3
5n , respectively.

SAND 2024

3:8 Temporal graph realization from fastest paths

realizable if the selected edges all have the same endpoint of color i. Hence, the distances of261

all verification gadgets can be realized if and only if the selected edges form a clique.262

Furthermore, we use an alignment gadget which, intuitively, ensures that the labelings263

of all gadgets use the same range of time labels. Finally, we use connector gadgets which264

create shortcuts between all vertex pairs that are irrelevant for the functionality of the other265

gadgets. This allows us to easily fill in the distance matrix with the corresponding values.266

We ensure that all our gadgets have a constant feedback vertex number, hence the overall267

feedback vertex number is quadratic in the number of colors of the Multicolored Clique268

instance and we get the parameterized hardness result.269

In the following, for every gadget, we give a formal description of the underlying graph270

of this gadget (i. e., not the complete distance sub-matrix of the gadget). Due to space271

constraints, we defer the description of the distance matrix D and the formal proof of272

correctness for the reduction to [46].273

Given an instance H of Multicolored Clique, we construct an instance D of Simple274

TGR (with infinity entries and no periods) as follows.275

Edge selection gadget. We first introduce an edge selection gadget Gi,j for color combina-276

tion i, j with i < j. We start with describing the vertex set of the gadget.277

A set Xi,j of vertices x1, x2, . . . , xm.278

Vertex sets U1, U2, . . . , Um with 4n + 1 vertices each, that is, Uℓ = {uℓ
0, uℓ

1, uℓ
2, . . . , uℓ

4n}279

for all ℓ ∈ [m].280

Two special vertices v⋆
i,j , v⋆⋆

i,j .281

The gadget has the following edges.282

For all ℓ ∈ [m] we have edge {xℓ, v⋆
i,j}, {v⋆

i,j , uℓ
0}, and {uℓ

4n, v⋆⋆
i,j}.283

For all ℓ ∈ [m] and ℓ′ ∈ [4n], we have edge {uℓ
ℓ′−1, uℓ

ℓ′}.284

Verification gadget. For each color i, we introduce the following vertices. What we285

describe in the following will be used as a verification gadget for color i.286

We have one vertex yi and k + 1 vertices vi
ℓ for 0 ≤ ℓ ≤ k.287

For every ℓ ∈ [m] and every j ∈ [k] \ {i} we have 5n vertices ai,j,ℓ
1 , ai,j,ℓ

2 , . . . , ai,j,ℓ
5n and 5n288

vertices bi,j,ℓ
1 , bi,j,ℓ

2 , . . . , bi,j,ℓ
5n .289

We have a set Ûi of 13n + 1 vertices ûi
1, ûi

2, . . . , ûi
13n+1.290

We add the following edges. We add edge {yi, vi
0}. For every ℓ ∈ [m], every j ∈ [k] \ {i}, and291

every ℓ′ ∈ [5n − 1] we add edge {ai,j,ℓ
ℓ′ , ai,j,ℓ

ℓ′+1} and we add edge {bi,j,ℓ
ℓ′ , bi,j,ℓ

ℓ′+1}.292

Let 1 ≤ j < i (skip if i = 1), let ej,i
ℓ ∈ Fj,i, and let wi

ℓ′ ∈ Wi be incident with ej,i
ℓ . Then293

we add edge {vi
j−1, ai,j,ℓ

1 } and we add edge {ai,j,ℓ
5n , uℓ

ℓ′−1} between ai,j,ℓ
5n and the vertex uℓ

ℓ′−1294

of the edge selection gadget of color combination j, i. Furthermore, we add edge {vi
j , bi,j,ℓ

1 }295

and edge {bi,j,ℓ
5n , uℓ

ℓ′} between bi,j,ℓ
5n and the vertex uℓ

ℓ′ of the edge selection gadget of color296

combination j, i.297

We add edge {vi
i−1, ûi

1} and for all ℓ′′ ∈ [13n] we add edge {ûi
ℓ′′ , ûi

ℓ′′+1}. Furthermore,298

we add edge {ûi
13n+1, vi

i}.299

Let i < j ≤ k (skip if i = k), let ei,j
ℓ ∈ Fi,j , and let wi

ℓ′ ∈ Wi be incident with ei,j
ℓ . Then300

we add edge {vi
j−1, ai,j,ℓ

1 } and edge {ai,j,ℓ
5n , uℓ

3n+ℓ′−1} between ai,j,ℓ
5n and the vertex uℓ

3n+ℓ′−1301

of the edge selection gadget of color combination i, j. Furthermore, we add edge {vi
j , bi,j,ℓ

1 }302

and edge {bi,j,ℓ
5n , uℓ

3n+ℓ′} between bi,j,ℓ
5n and the vertex uℓ

3n+ℓ′ of the edge selection gadget of303

color combination i, j.304

Furthermore, we use connector gadgets, two for each edge selection gadget, and two for305

every verification gadget. They consist of six vertices v̂0, v̂′
0, v̂1, v̂2, v̂3, v̂′

3 and, intuitively, are306

used to connect many vertex pairs by fast paths, which will make arguing about possible307

Nina Klobas, George B. Mertzios, Hendrik Molter, and Paul G. Spirakis 3:9

V

z1

z2 z3

z4

v v′

t

t+ 2

t+ n10 − 1

t+ 1 t+ n10 t+ 1 t+ n10

Figure 3 Illustration of the infinity gadget. Gray vertices need to be added to the feedback vertex
set.

labelings in Yes-instances much easier. Finally, we have an alignment gadget, which is a star308

with a center vertex w⋆ and a leaf for every other gadget. Intuitively, this gadget is used to309

relate labels of different gadgets to each other. A formal description of these two gadgets is310

given in [46].311

This finishes the description of the underlying graph G. For an illustration see Figure 2.312

We can observe that the vertex set containing vertices v⋆
i,j and v⋆⋆

i,j of each edge selection313

gadget, vertices vi
ℓ with 0 ≤ ℓ ≤ k of each verification gadget, vertices v̂1 and v̂2 of each314

connector gadget, and vertex w⋆ of the alignment gadget forms a feedback vertex set in G315

with size O(k2).316

As mentioned before, due to space constraints, we defer the description of the distance317

matrix D and a formal correctness proof of the reduction to [46].318

Infinity gadget. Finally, we show how to get rid of the infinity entries in D and how319

to allow a finite ∆. To this end, we introduce the infinity gadget. We add four vertices320

z1, z2, z3, z4 to the graph and we set ∆ = n11. Let V denote the set of all remaining vertices.321

We set the following durations.322

For all v ∈ V we set d(z1, v) = 2, d(z2, v) = d(v, z2) = 1, d(z3, v) = d(v, z3) = 1, and323

d(z4, v) = 2. Furthermore, we set d(v, z1) = n11 and d(v, z4) = n10 − 1.324

We set d(z1, z2) = d(z2, z1) = 1, d(z2, z3) = d(z3, z2) = 1, and d(z3, z4) = d(z4, z3) = 1.325

We set d(z1, z3) = 3, d(z3, z1) = n11 − 1, d(z2, z4) = n10 − 2, and d(z4, z2) = n11 − n10 + 4.326

We set d(z1, z4) = n10 and d(z4, z1) = 2n11 − n10 + 2.327

For every pair of vertices v, v′ ∈ V where previously the duration of a fastest path from v328

to v′ was specified to be infinite, we set d(v, v′) = n10.329

Now we analyse which implications we get for the labels on the newly introduced edges.330

Assume λ({z1, z2}) = t, then we get the following. For all v ∈ V we have that d(z1, v) = 2 and331

hence we get that λ({z2, v}) = t+1. Since d(z1, z4) = n10, we have that λ(z3, z4) = t+n10 −1.332

From this follows that for all v ∈ V , since d(z4, v) = 2, that λ({z3, v}) = t + n10. Finally,333

since d(z1, z3) = 3, we have that λ({z2, z3}) = t+2. For an illustration see Figure 3. It is easy334

to check that all duration requirements between vertex pairs in {z1, z2, z3, z4} are met and335

that all duration requirements between each vertex v ∈ V and each vertex in {z1, z2, z3, z4}336

are met. Furthermore, it is easy to check that the gadget increases the feedback vertex set337

by two (z2 and z3 need to be added).338

SAND 2024

3:10 Temporal graph realization from fastest paths

u w v
Pu,v

Pu,w

1 3 5 7

9

Figure 4 An example of a temporal graph (with ∆ ≥ 9), where the fastest temporal path Pu,v

(in blue) from u to v is of duration 7, while the fastest temporal path Pu,w (in red) from u to a
vertex w, that is on a path Pu,v, is of duration 1 and is not a subpath of Pu,v.

Lastly, consider two vertices v, v′ ∈ V . Note that before the addition of the infinity339

gadget, by construction of G we have that d(v, v′) ≤ n9 + 2 or d(v, v′) = ∞. Furthermore,340

if D is a Yes-instance, we have shown in the correctness proof of the reduction that the341

difference between the smallest label and the largest label is at most n9 + 1. This implies342

that for a vertex pair v, v′ ∈ V with d(v, v′) = ∞ we have in the periodic case with ∆ = n11,343

that d(v, v′) ≥ n11 − n9 > n10. Which means, after adding the vertices and edges of the344

infinity gadget, we indeed have that d(v, v′) = n10. For all vertex pairs v, v′ where in the345

original construction we have d(v, v′) ̸= ∞, we can also see that adding the infinity gadget346

and setting ∆ = n11 does not change the duration of a fastest path from v to v′, since all347

newly added temporal paths have duration at least n10. We can conclude that the originally348

constructed instance D is a Yes-instance if and only if it remains a Yes-instance after adding349

the infinity gadget and setting ∆ = n11. ◀350

3 Algorithms for Simple TGR351

In this section, to complement the discussed hardness aspects of Simple TGR, we present352

some algorithmic results. We start by restricting the underlying graph G of the input353

matrix D of Simple TGR to be a tree and get the following.354

▶ Theorem 5 (⋆). Simple TGR can be solved in polynomial time on trees.355

The main reason, for which Simple TGR is straightforward to solve on trees, is twofold:356

between any pair of vertices vi and vj in the tree T , there is a unique path P in T from357

vi to vj , and358

in any periodic temporal graph (T, λ, ∆) and any fastest temporal path P =359

((e1, t1), . . . , (ei, ti), . . . , (ej , tj), . . . , (eℓ−1, tℓ−1)) from v1 to vℓ we have that the sub-path360

P ′ = ((ei, ti), . . . , (ej−1, tj−1)) is also a fastest temporal path from vi to vj .361

However, these two nice properties do not hold when the underlying graph is not a tree. For362

example, in Figure 4, the fastest temporal path from u to v is Pu,v (depicted in blue) goes363

through w, however the sub-path of Pu,v that stops at w is not the fastest temporal path364

from u to w. The fastest temporal path from u to w consists only of the single edge uw365

(with label 9 and duration 1, depicted in red).366

Nevertheless, we prove that we can still solve Simple TGR efficiently if the underlying367

graph is similar to a tree; more specifically we show the following result, which turns out to368

be non-trivial.369

▶ Theorem 6 (⋆). Simple TGR is in FPT when parameterized by the feedback edge number370

of the underlying graph.371

From Theorem 4 and Theorem 6 we immediately get the following, which is the main372

result of the paper.373

Nina Klobas, George B. Mertzios, Hendrik Molter, and Paul G. Spirakis 3:11

Figure 5 An example of a graph with its important vertices: U (in blue), U∗ (in green) and Z∗

(in orange). Corresponding feedback edges are marked with a thick red line, while dashed edges
represent the edges (and vertices) “removed” from G′ at the initial step.

▶ Corollary 7. Simple TGR is:374

in FPT when parameterized by the feedback edge number or any larger parameter, such375

as the maximum leaf number.376

W[1]-hard when parameterized by the feedback vertex number or any smaller parameter,377

such as: treewidth, degeneracy, cliquewidth, distance to chordal graphs, and distance to378

outerplanar graphs.379

Before presenting the structure of our algorithm for Theorem 6, observe that, in a static380

graph, the number of paths between two vertices can be upper-bounded by a function f(k)381

of the feedback edge number k of the graph [14]. Therefore, for any fixed pair of vertices u382

and v, we can “guess” the edges of the fastest temporal path from u to v (by guess we mean383

enumerate and test all possibilities). However, for an FPT algorithm with respect to k, we384

cannot afford to guess the edges of the fastest temporal path for each of the O(n2) pairs of385

vertices. To overcome this difficulty, our algorithm follows this high-level strategy:386

We identify a small number f(k) of “important vertices”.387

For each pair u, v of important vertices, we guess the edges of the fastest temporal path388

from u to v (and from v to u).389

From these guesses we can still not deduce the edges of the fastest temporal paths between390

many pairs of non-important vertices. However, as we prove, it suffices to guess only a391

small number of specific auxiliary structures (to be defined later).392

From these guesses we deduce fixed relationships between the labels of most of the edges393

of the graph.394

For all the edges, for which we have not deduced a label yet, we introduce a variable. With395

all these variables, we build an Integer Linear Program (ILP). Among the constraints396

in this ILP we have that, for each of the O(n2) pairs of vertices u, v in the graph, the397

duration of one specific temporal path from u to v (according to our guesses) is equal to398

the desired duration Du,v, while the duration of each of the other temporal path from u399

to v is at least Du,v.400

By making each of the above combinations of guesses, we essentially enumerate all possible401

ways that our instance of Simple TGR has a solution, and for each of these possible402

ways we create an ILP. That is, our instance of Simple TGR has a solution if and only if403

at least one of these ILPs has a feasible solution. As each ILP can be solved in FPT time404

with respect to k by Lenstra’s Theorem [49] (the number of variables is upper bounded405

by a function of k), we obtain our FPT algorithm for Simple TGR with respect to k.406

We now present the first part of our FPT algorithm, that is, identifying important407

vertices and guessing information about the fastest temporal paths. A full description of the408

algorithm is deferred to [46].409

Important vertices. Let D be the input matrix of Simple TGR, and let G be its underlying410

graph, on n vertices and m edges. From the underlying graph G of D we first create a graph411

SAND 2024

3:12 Temporal graph realization from fastest paths

G′ by iteratively removing vertices of degree one from G, and denote with Z = V (G) \ V (G′),412

the set of removed vertices. Then we determine the set U (the “vertices of interest”), and413

the set U∗ (the neighbors of the vertices of interest), as follows. Let T be a spanning tree of414

G′, with F being the corresponding feedback edge set of G′. Let V1 ⊆ V (G′) be the set of415

leaves in the spanning tree T , V2 ⊆ V (G′) be the set of vertices of degree two in T which416

are incident to at least one edge in F , and let V3 ⊆ V (G′) be the set of vertices of degree at417

least 3 in T . Then |V1| + |V2| ≤ 2k, since every leaf in T and every vertex in V2 is incident418

to at least one edge in F , and |V3| ≤ |V1| by the properties of trees. We denote with419

U = V1 ∪ V2 ∪ V3420

the set of vertices of interest. It follows that |U | ≤ 4k. We set U∗ to be the set of vertices in421

V (G′) \ U that are neighbors of vertices in U , i. e.,422

U∗ = {v ∈ V (G′) \ U : u ∈ U, v ∈ N(u)}.423

Again, using the tree structure, we get that for any u ∈ U its neighborhood is of size424

|N(u)| ∈ O(k), since every neighbor of u is the first vertex of a (unique) path to another425

vertex in U . It follows that |U∗| ∈ O(k2). From the construction of Z (i. e., by exhaustively426

removing vertices of degree one from G), it follows that G[Z] (the graph induced in G by Z)427

is a forest, i. e., consists of disjoint trees. Each of these trees has a unique neighbor v in G′.428

Denote by Tv the tree obtained by considering such a vertex v and all the trees from G[Z]429

that are incident to v in G. We then refer to v as the clip vertex of the tree Tv. In the case430

where v is a vertex of interest we define also the set Z∗
v of representative vertices of Tv, as431

follows. We first create an empty set Cw for every vertex w that is a neighbor of v in G′. We432

then iterate through every vertex r that is in the first layer of the tree Tv (i. e., vertex that is a433

child of the root v in the tree Tv), check the matrix D and find the vertex w ∈ NG′(v) that is434

on the smallest duration from r. In other words, for an r ∈ NTv
(v) we find w ∈ NG′(v) such435

that Dr,w ≤ Dr,w′ for all w′ ∈ NG′(v). We add vertex r to Cw. In the case when there exists436

also another vertex w′ ∈ NG′(v) for which Dr,w′ = Dr,w, we add r also to the set Cw′ . In fact,437

in this case Cw′ = Cw. At the end we create |NG′(v)| ∈ O(k) sets Cw, whose union contains438

all children of v in Tv. For every two sets Cw and Cw′ , where w, w′ ∈ NG′(v), we have that439

either Cw = Cw′ , or Cw ∩ Cw′ = ∅. We interpret each of these sets {Cw : w ∈ NG′(v)} as an440

equivalence class of the neighbors of v in the tree Tv. Now, from each equivalence class Cw441

we choose an arbitrary vertex rw ∈ Cw and put it into the set Z∗
v . We repeat the above442

procedure for all trees Tu with the clip vertex u from U , and define Z∗ as443

Z∗ =
⋃

v∈U

Z∗
v . (1)444

Since |U | ∈ O(k) and for each u ∈ U it holds |NG′(u)| ∈ O(k), we get that |Z∗| ∈ O(k2).445

Finally, the set of important vertices is defined as the set U ∪ U∗ ∪ Z∗. For an illustration446

see Figure 5.447

Guesses. For every pair of important vertices u, v ∈ U ∪ U∗ ∪ Z∗, we guess the sequence of448

edges in the fastest temporal path from u to v. Since U ∪ U∗ ∪ Z∗ ∈ O(k2) and there are449

kO(k) possibilities for a sequence of edges between a fixed vertex pair, we have kO(k5) overall450

possible guesses. We defer further details to [46] (see guesses G-1 to G-6).451

With the information provided by the described guesses we are still not able to determine452

all fastest paths. For example consider the case depicted in Figure 6. Therefore we introduce453

additional guesses that provide us with sufficient information to determine all fastest paths.454

To do this we have to first define the following.455

Nina Klobas, George B. Mertzios, Hendrik Molter, and Paul G. Spirakis 3:13

v1
3

v2

5

v3

6

v4

7

v5

11

v6

17

v7

14

v8

10

v9

9

v10

8
v11

5

w
P Q

Figure 6 In the above graph vertices v1, v11, w are in U , while v2, v10 are in U∗. Numbers above
all vi represent the values of the fastest temporal paths from w to each of them (i. e., the entries
in the w-th row of matrix D). From the basic guesses we know the fastest temporal path P from
w to v2 (depicted in blue) and the fastest temporal path Q from w to v10. From the values of
durations from w to each vi we cannot determine the fastest paths from w to all vi. More precisely,
we know that w reaches v2, v3, v4, v5 (resp. v10, v9, v9, v7) by first using the path P (resp. Q) and
then proceeding through the vertices, but we do not know how w reaches v6 the fastest. Therefore
we have to introduce some more guesses.

▶ Definition 8. Let U ⊆ V (G′) be a set of vertices of interest and let u, v ∈ U . A path456

P = (u = v1, v2, . . . , vp = v) of length at least 2 in graph G′, where all inner vertices are not457

in U , i. e., vi /∈ U for all i ∈ {2, 3, . . . , p − 1}, is called a segment from u to v. We denote it458

as Su,v.459

Note by Definition 8 that Su,v ̸= Sv,u. Observe that a temporal path in G′ between460

two vertices of interest is either a segment, or it consists of a sequence of some segments.461

Furthermore, since we have at most 4k interesting vertices in G′, we can deduce the following462

important result.463

▶ Corollary 9. There are O(k2) segments in G′.464

To describe the next guesses, we introduce the following notation. Let u, v, x be three vertices465

in G′. We write u⇝ x → v to denote a temporal path from u to v that passes through x,466

and then goes to v (via one edge). We guess the following structures.467

G-7. Inner segment guess I. Let Su,v = (u = v1, v2, . . . , vp = v) and Sw,z = (w =468

z1, z2, . . . , zr = z) be two segments in G′. We want to guess the fastest temporal path469

v2 → u⇝ w → z2. We repeat this procedure for all pairs of segments. Since there are470

O(k2) segments in G′, there are kO(k5) possible paths of this form.471

Recall that Su,v ̸= Sv,u for every u, v ∈ U . Furthermore note that we did not assume472

that {u, v} ∩ {w, z} = ∅. Therefore, by repeatedly making the above guesses, we also473

guess the following fastest temporal paths: v2 → u⇝ z → zr−1, v2 → u⇝ v → vp−1,474

vp−1 → v ⇝ w → z2, vp−1 → v ⇝ z → zr−1, and vp−1 → v ⇝ u → v2. For an example475

see Figure 7a.476

G-8. Inner segment guess II. Let Su,v = (u = v1, v2, . . . , vp = v) be a segment in G′, and477

let w ∈ U ∪ Z∗. We want to guess the following fastest temporal paths w ⇝ u → v2,478

w ⇝ v → vp−1 → · · · → v2, and v2 → u⇝ w, v2 → v3 → · · · v ⇝ w.479

For fixed Su,v and w ∈ U ∪ Z∗ we have kO(k) different possible such paths, therefore480

we make kO(k5) guesses for these paths. For an example see Figure 7b.481

G-9. Split vertex guess I. Let Su,v = (u = v1, v2, . . . , vp = v) be a segment in G′, and482

let us fix a vertex vi ∈ Su,v \ {u, v}. In the case when Su,v is of length 4, the fixed483

vertex vi is the middle vertex, else we fix an arbitrary vertex vi ∈ Su,v \ {u, v}. Let484

Sw,z = (w = z1, z2, . . . , zr = z) be another segment in G′. We want to determine the485

fastest paths from vi to all inner vertices of Sw,z. We do this by inspecting the values486

in matrix D from vi to inner vertices of Sw,z. We split the analysis into two cases.487

SAND 2024

3:14 Temporal graph realization from fastest paths

a. There is a single vertex zj ∈ Sw,z for which the duration from vi is the biggest.488

More specifically, zj ∈ Sw,z \ {w, z} is the vertex with the biggest value Dvi,zj
.489

We call this vertex a split vertex of vi in the segment Swz. Then it holds that490

Dvi,z2 < Dvi,z3 < · · · < Dvi,zj and Dvi,zr−1 < Dvi,zr−2 < · · · < Dvi,zj . From this491

it follows that the fastest temporal paths from vi to z2, z3, . . . , zj−1 go through w,492

and the fastest temporal paths from vi to zr−1, zr−2, . . . , zj+1 go through z. We493

now want to guess which vertex w or z is on a fastest temporal path from vi to zj .494

Similarly, all fastest temporal paths starting at vi have to go either through u or495

through v, which also gives us two extra guesses for the fastest temporal path from496

vi to zj . Therefore, all together we have 4 possibilities on how the fastest temporal497

path from vi to zj starts and ends. Besides that we want to guess also how the fastest498

temporal paths from vi to zj−1, zj+1 start and end. Note that one of these is the499

subpath of the fastest temporal path from vi to zj , and the ending part is uniquely500

determined for both of them, i. e., to reach zj−1 the fastest temporal path travels501

through w, and to reach zj+1 the fastest temporal path travels through z. Therefore502

we have to determine only how the path starts, namely if it travels through u or v.503

This introduces two extra guesses. For a fixed Su,v, vi and Sw,z we find the vertex zj504

in polynomial time, or determine that zj does not exist. We then make four guesses505

where we determine how the fastest temporal path from vi to zj passes through506

vertices u, v and w, z and for each of them two extra guesses to determine the fastest507

temporal path from vi to zj−1 and from vi to zj+1. We repeat this procedure for all508

pairs of segments, which results in producing kO(k5) new guesses. Note, vi ∈ Su,v is509

fixed when calculating the split vertex for all other segments Sw,z.510

b. There are two vertices zj , zj+1 ∈ Sw,z for which the duration from vi is the biggest.511

More specifically, zj , zj+1 ∈ Sw,z \ {w, z} are the vertices with the biggest value512

Dvi,zj
= Dvi,zj+1 . Then it holds that Dvi,z2 < Dvi,z3 < · · · < Dvi,zj

= Dvi,zj+1 >513

Dvi,zj+2 > · · · > Dvi,zr−1 . From this it follows that the fastest temporal paths514

from vi to z2, z3, . . . , zj go through w, and the fastest temporal paths from vi to515

zr−1, zr−2, . . . , zj+1 go through z. In this case we only need to guess the following516

two fastest temporal paths vi ⇝ w → z2 and vi ⇝ z → zr−1. Each of these paths we517

then uniquely extend along the segment Sw,z up to the vertex zj , resp. zj+1, which518

give us fastest temporal paths from vi to zj and from vi to zj+1. In this case we519

introduce only two more guesses. We repeat this procedure for all pairs of segments.520

which results in creating kO(k5) new guesses.521

For an example see Figure 7b.522

G-10. Split vertex guess II. Let w ∈ U ∪ Z∗ and let Su,v = (u = v1, v2, . . . , vp = v). We523

want to guess a split vertex of w in Su,v, and the fastest temporal path that reaches it.524

We again have two cases, first one where vi is a unique vertex in Su,v that is furthest525

away from w, and the second one where vi, vi+1 are two incident vertices in Su,v, that526

are furthest away from w. All together we make two guesses for each pair w, Su,v. We527

repeat this for all vertices in U ∪ Z∗, and all segments, which produces kO(k5) new528

guesses. For an example see Figure 7c. Detailed analysis follows arguing from above529

(as in G-9) and is deferred to [46].530

There are two more guesses G-11 and G-12 that are deferred to [46]. We prove in [46]531

that, for all guesses G-1 to G-12, there are in total at most f(k) possible choices, and for532

each one of them we create an ILP with at most f(k) variables and at most f(k) · |D|O(1)
533

constraints. Each of these ILPs can be solved in FPT time by Lenstra’s Theorem [49]. For534

detailed explanation and proofs of this part see [46].535

Nina Klobas, George B. Mertzios, Hendrik Molter, and Paul G. Spirakis 3:15

u=v1 v2 vp−1 vp=v

w=z1 z2 zr−1 zr=z

(a) Example of an Inner segment guess I (G-7),
where we guessed the fastest temporal paths of the
form v2 → u ⇝ w → z2 (in blue) and v2 → u ⇝
z → zr−1 (in red).

u=v1 v2 vp−1 vp=v

w

(b) Example of an Inner segment guess II (G-8),
where we guessed the fastest temporal paths of the
form w ⇝ u → v2 (in blue) and w ⇝ v → vp−1 (in
red).

u=v1 v2 vi vp−1 vp=v

w=z1 z2 zj−1 zj zj+1 zr−1 zr=z

(c) Example of a Split vertex guess I (G-9), where,
for a fixed vertex vi ∈ Su,v, we calculated its cor-
responding split vertex zj ∈ Sw,z , and guessed the
fastest paths of the form vi → vi−1 → · · · → u ⇝
z → zr−1 · · · → zj (in blue) and vi → vi+1 →
· · · → v ⇝ w → z2 → · · · → zj−1 (in red).

u=v1 v2 vi vi+1 vp−1 vp=v

w

(d) Example of a Split vertex guess II (G-10), where,
for a vertex of interest w, we calculated its corres-
ponding split vertex vi ∈ Su,v, and guessed the
fastest paths of the form w ⇝ u → v2 → · · · → vi

(in blue) and w ⇝ v → vp−1 → · · · → vi+1 (in red).

Figure 7 Illustration of the guesses G-7, G-8, G-9, and G-10.

4 Conclusion536

We believe that our work spawns several interesting future research directions and builds a537

base upon which further temporal graph realization problems can be investigated.538

There are several structural parameters which can be considered to obtain tractability539

which are either larger than or incomparable to the feedback vertex number. We believe that540

the vertex cover number or the tree depth are promising candidates. Furthermore, we can541

consider combining a structural parameter such as the treewidth with ∆.542

There are many natural variants of our problem that are well-motivated and warrant543

consideration. We believe that one of the most natural generalizations of our problem is to544

allow more than one label per edge in every ∆-period. A well-motivated variant (especially545

from the network design perspective) of our problem is to consider the entries of the duration546

matrix D as upper-bounds on the duration of fastest paths rather than exact durations. This547

problem variant has very recently been studied by Mertzios et al. [56].548

References549

1 Eleni C Akrida, Leszek Gąsieniec, George B. Mertzios, and Paul G Spirakis. The complexity550

of optimal design of temporally connected graphs. Theory of Computing Systems, 61:907–944,551

2017.552

SAND 2024

3:16 Temporal graph realization from fastest paths

2 Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Christoforos Raptopoulos. The553

temporal explorer who returns to the base. Journal of Computer and System Sciences,554

120:179–193, 2021.555

3 Emmanuel Arrighi, Niels Grüttemeier, Nils Morawietz, Frank Sommer, and Petra Wolf. Multi-556

parameter analysis of finding minors and subgraphs in edge-periodic temporal graphs. In557

Proceedings of the 48th International Conference on Current Trends in Theory and Practice of558

Computer Science (SOFSEM), pages 283–297, 2023.559

4 John Augustine, Keerti Choudhary, Avi Cohen, David Peleg, Sumathi Sivasubramaniam, and560

Suman Sourav. Distributed graph realizations. IEEE Transactions on Parallel and Distributed561

Systems, 33(6):1321–1337, 2022.562

5 Amotz Bar-Noy, Keerti Choudhary, David Peleg, and Dror Rawitz. Efficiently realizing interval563

sequences. SIAM Journal on Discrete Mathematics, 34(4):2318–2337, 2020.564

6 Amotz Bar-Noy, Keerti Choudhary, David Peleg, and Dror Rawitz. Graph realizations:565

Maximum degree in vertex neighborhoods. In Proceedings of the 17th Scandinavian Symposium566

and Workshops on Algorithm Theory (SWAT), pages 10:1–10:17, 2020.567

7 Amotz Bar-Noy, David Peleg, Mor Perry, and Dror Rawitz. Composed degree-distance568

realizations of graphs. In Proceedings of the 32nd International Workshop on Combinatorial569

Algorithms (IWOCA), pages 63–77, 2021.570

8 Amotz Bar-Noy, David Peleg, Mor Perry, and Dror Rawitz. Graph realization of distance571

sets. In Proceedings of the 47th International Symposium on Mathematical Foundations of572

Computer Science (MFCS), pages 13:1–13:14, 2022.573

9 Mehdi Behzad and James E Simpson. Eccentric sequences and eccentric sets in graphs. Discrete574

Mathematics, 16(3):187–193, 1976.575

10 Robert E Bixby and Donald K Wagner. An almost linear-time algorithm for graph realization.576

Mathematics of Operations Research, 13(1):99–123, 1988.577

11 Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and578

foremost journeys in dynamic networks. International Journal of Foundations of Computer579

Science, 14(02):267–285, 2003.580

12 Arnaud Casteigts, Timothée Corsini, and Writika Sarkar. Invited paper: Simple, strict, proper,581

happy: A study of reachability in temporal graphs. In Proceedings of the 24th International582

Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), pages 3–18,583

2022.584

13 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying585

graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed586

Systems, 27(5):387–408, 2012.587

14 Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding588

temporal paths under waiting time constraints. Algorithmica, 83(9):2754–2802, 2021.589

15 Wai-Kai Chen. On the realization of a (p, s)-digraph with prescribed degrees. Journal of the590

Franklin Institute, 281(5):406–422, 1966.591

16 Fan Chung, Mark Garrett, Ronald Graham, and David Shallcross. Distance realization592

problems with applications to internet tomography. Journal of Computer and System Sciences,593

63(3):432–448, 2001.594

17 Joseph C. Culberson and Piotr Rudnicki. A fast algorithm for constructing trees from distance595

matrices. Information Processing Letters, 30(4):215–220, 1989.596

18 Argyrios Deligkas and Igor Potapov. Optimizing reachability sets in temporal graphs by597

delaying. Information and Computation, 285:104890, 2022.598

19 Jessica Enright, Kitty Meeks, George B. Mertzios, and Viktor Zamaraev. Deleting edges599

to restrict the size of an epidemic in temporal networks. Journal of Computer and System600

Sciences, 119:60–77, 2021.601

20 Jessica Enright, Kitty Meeks, and Fiona Skerman. Assigning times to minimise reachability in602

temporal graphs. Journal of Computer and System Sciences, 115:169–186, 2021.603

Nina Klobas, George B. Mertzios, Hendrik Molter, and Paul G. Spirakis 3:17

21 Jessica A. Enright, Kitty Meeks, and Hendrik Molter. Counting temporal paths. In Proceedings604

of the 40th International Symposium on Theoretical Aspects of Computer Science (STACS),605

volume 254, pages 30:1–30:19, 2023.606

22 Paul Erdős and Tibor Gallai. Graphs with prescribed degrees of vertices. Mat. Lapok,607

11:264–274, 1960.608

23 Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph exploration.609

Journal of Computer and System Sciences, 119:1–18, 2021.610

24 Thomas Erlebach, Nils Morawietz, and Petra Wolf. Parameterized algorithms for multi-label611

periodic temporal graph realization. In Proceedings of the 3rd Symposium on Algorithmic612

Foundations of Dynamic Networks (SAND), pages 14:1–14:16, 2024. doi:10.4230/LIPIcs.613

SAND.2024.14.614

25 Thomas Erlebach and Jakob T. Spooner. A game of cops and robbers on graphs with periodic615

edge-connectivity. In Proceedings of the 46th International Conference on Current Trends in616

Theory and Practice of Informatics (SOFSEM), pages 64–75, 2020.617

26 Michael R. Fellows, Danny Hermelin, Frances Rosamond, and Stéphane Vialette. On the618

parameterized complexity of multiple-interval graph problems. Theoretical Computer Science,619

410(1):53–61, 2009.620

27 Michael R. Fellows, Bart M. P. Jansen, and Frances A. Rosamond. Towards fully multivariate621

algorithmics: Parameter ecology and the deconstruction of computational complexity. European622

Journal of Combinatorics, 34(3):541–566, 2013.623

28 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche.624

Temporal graph classes: A view through temporal separators. Theoretical Computer Science,625

806:197–218, 2020.626

29 András Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM Journal on627

Discrete Mathematics, 5(1):25–53, 1992.628

30 András Frank. Connectivity augmentation problems in network design. Mathematical Pro-629

gramming: State of the Art 1994, 1994.630

31 H. Frank and Wushow Chou. Connectivity considerations in the design of survivable networks.631

IEEE Transactions on Circuit Theory, 17(4):486–490, 1970.632

32 Eugen Füchsle, Hendrik Molter, Rolf Niedermeier, and Malte Renken. Delay-robust routes in633

temporal graphs. In Proceedings of the 39th International Symposium on Theoretical Aspects634

of Computer Science (STACS), pages 30:1–30:15, 2022.635

33 Eugen Füchsle, Hendrik Molter, Rolf Niedermeier, and Malte Renken. Temporal connectivity:636

Coping with foreseen and unforeseen delays. In Proceedings of the 1st Symposium on Algorithmic637

Foundations of Dynamic Networks (SAND), pages 17:1–17:17, 2022.638

34 D.R. Fulkerson. Zero-one matrices with zero trace. Pacific Journal of Mathematics, 10(3):831–639

836, 1960.640

35 Petr A. Golovach and George B. Mertzios. Graph editing to a given degree sequence. Theoretical641

Computer Science, 665:1–12, 2017.642

36 Martin Charles Golumbic and Ann N. Trenk. Tolerance Graphs. Cambridge Studies in643

Advanced Mathematics. Cambridge University Press, 2004.644

37 Ralph E Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the Society645

for Industrial and Applied Mathematics, 9(4):551–570, 1961.646

38 Martin Grötschel, Clyde L Monma, and Mechthild Stoer. Design of survivable networks.647

Handbooks in Operations Research and Management Science, 7:617–672, 1995.648

39 Jiong Guo, Falk Hüffner, and Rolf Niedermeier. A structural view on parameterizing problems:649

Distance from triviality. In Proceedings of the 1st International Workshop on Parameterized650

and Exact Computation (IWPEC), pages 162–173, 2004.651

40 S. Louis Hakimi. On realizability of a set of integers as degrees of the vertices of a linear652

graph. I. Journal of the Society for Industrial and Applied Mathematics, 10(3):496–506, 1962.653

41 S. Louis Hakimi and Stephen S. Yau. Distance matrix of a graph and its realizability. Quarterly654

of applied mathematics, 22(4):305–317, 1965.655

SAND 2024

https://doi.org/10.4230/LIPIcs.SAND.2024.14
https://doi.org/10.4230/LIPIcs.SAND.2024.14
https://doi.org/10.4230/LIPIcs.SAND.2024.14

3:18 Temporal graph realization from fastest paths

42 Pavol Hell and David Kirkpatrick. Linear-time certifying algorithms for near-graphical656

sequences. Discrete Mathematics, 309(18):5703–5713, 2009.657

43 David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference problems for658

temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002.659

44 Nina Klobas, George B. Mertzios, Hendrik Molter, Rolf Niedermeier, and Philipp Zschoche.660

Interference-free walks in time: Temporally disjoint paths. Autonomous Agents and Multi-Agent661

Systems, 37(1):1, 2023.662

45 Nina Klobas, George B. Mertzios, Hendrik Molter, and Paul G. Spirakis. The complexity of663

computing optimum labelings for temporal connectivity. In Proceedings of the 47th International664

Symposium on Mathematical Foundations of Computer Science (MFCS), pages 62:1–62:15,665

2022.666

46 Nina Klobas, George B. Mertzios, Hendrik Molter, and Paul G. Spirakis. Realizing temporal667

graphs from fastest travel times. CoRR, abs/2302.08860, 2023. URL: https://doi.org/10.668

48550/arXiv.2302.08860, arXiv:2302.08860.669

47 Fabian Kuhn and Rotem Oshman. Dynamic networks: Models and algorithms. SIGACT670

News, 42(1):82–96, mar 2011.671

48 Pascal Kunz, Hendrik Molter, and Meirav Zehavi. In which graph structures can we efficiently672

find temporally disjoint paths and walks? In Proceedings of the 32nd International Joint673

Conference on Artificial Intelligence (IJCAI), pages 180–188, 2023.674

49 Hendrik W. Lenstra. Integer programming with a fixed number of variables. Mathematics of675

Operations Research, 8:538–548, 1983.676

50 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.677

http://snap.stanford.edu/data, June 2014.678

51 Linda Lesniak. Eccentric sequences in graphs. Periodica Mathematica Hungarica, 6:287–293,679

1975.680

52 Ross M. McConnell and Jeremy P. Spinrad. Construction of probe interval models. In681

Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages682

866–875, 2002.683

53 F.R. McMorris, Chi Wang, and Peisen Zhang. On probe interval graphs. Discrete Applied684

Mathematics, 88(1):315–324, 1998. Computational Molecular Biology DAM - CMB Series.685

54 George B. Mertzios, Othon Michail, and Paul G. Spirakis. Temporal network optimization686

subject to connectivity constraints. Algorithmica, 81(4):1416–1449, 2019.687

55 George B. Mertzios, Hendrik Molter, Malte Renken, Paul G. Spirakis, and Philipp Zschoche.688

The complexity of transitively orienting temporal graphs. In Proceedings of the 46th In-689

ternational Symposium on Mathematical Foundations of Computer Science (MFCS), pages690

75:1–75:18, 2021.691

56 George B. Mertzios, Hendrik Molter, and Paul G. Spirakis. Realizing temporal transportation692

trees. CoRR, abs/2403.18513, 2024. URL: https://doi.org/10.48550/arXiv.2403.18513,693

arXiv:2403.18513.694

57 Hendrik Molter, Malte Renken, and Philipp Zschoche. Temporal reachability minimization:695

Delaying vs. deleting. In Proceedings of the 46th International Symposium on Mathematical696

Foundations of Computer Science (MFCS), pages 76:1–76:15, 2021.697

58 Nils Morawietz, Carolin Rehs, and Mathias Weller. A timecop’s work is harder than you698

think. In Proceedings of the 45th International Symposium on Mathematical Foundations of699

Computer Science (MFCS), volume 170, pages 71–1, 2020.700

59 Nils Morawietz and Petra Wolf. A timecop’s chase around the table. In Proceedings of the 46th701

International Symposium on Mathematical Foundations of Computer Science (MFCS), 2021.702

60 A.N. Patrinos and S. Louis Hakimi. The distance matrix of a graph and its tree realization.703

Quarterly of Applied Mathematics, 30:255–269, 1972.704

61 Elena Rubei. Weighted graphs with distances in given ranges. Journal of Classification,705

33:282—-297, 2016.706

https://doi.org/10.48550/arXiv.2302.08860
https://doi.org/10.48550/arXiv.2302.08860
https://doi.org/10.48550/arXiv.2302.08860
http://arxiv.org/abs/2302.08860
http://snap.stanford.edu/data
https://doi.org/10.48550/arXiv.2403.18513
http://arxiv.org/abs/2403.18513

Nina Klobas, George B. Mertzios, Hendrik Molter, and Paul G. Spirakis 3:19

62 Piotr Sapiezynski, Arkadiusz Stopczynski, Radu Gatej, and Sune Lehmann. Tracking human707

mobility using wifi signals. PloS one, 10(7):e0130824, 2015.708

63 H. Tamura, M. Sengoku, S. Shinoda, and T. Abe. Realization of a network from the upper709

and lower bounds of the distances (or capacities) between vertices. In Proceedings of the 1993710

IEEE International Symposium on Circuits and Systems (ISCAS), pages 2545—-2548, 1993.711

64 Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, and Hejun Wu. Efficient712

algorithms for temporal path computation. IEEE Transactions on Knowledge and Data713

Engineering, 28(11):2927–2942, 2016.714

65 Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The complexity of715

finding separators in temporal graphs. Journal of Computer and System Sciences, 107:72–92,716

2020.717

SAND 2024

	1 Introduction
	2 Hardness results for Simple TGR
	3 Algorithms for Simple TGR
	4 Conclusion

