Round-asynchronous amnesiac flooding

Oluwatobi Alafin', George B. Mertzios2*[0000—0001-7182=-585X] " anq Paul G.
Spirakis! **0000-0001-5396—3749]

! Department of Computer Science, University of Liverpool, UK
o.f.alafin@liverpool.ac.uk, p.spirakis@liverpool.ac.uk
2 Department of Computer Science, Durham University, UK
george.mertzios@durham.ac.uk

Abstract. We present a comprehensive analysis of Round-
Asynchronous Amnesiac Flooding (RAAF), a variant of Amnesiac
Flooding that introduces round-based asynchrony through adversarial
delays. We establish fundamental properties of RAAF, including
termination characteristics for different graph types and decidability
results under various adversarial models. Our key contributions include:
(1) a formal model of RAAF incorporating round-based asynchrony,
(2) a proof that flooding always terminates on acyclic graphs despite
adversarial delays, (3) a construction showing non-termination is
possible on any cyclic graph, (4) a demonstration that termination
is undecidable with arbitrary computable adversaries, and (5) the
introduction of Eventually Periodic Adversaries (EPA) under which ter-
mination becomes decidable. These results enhance our understanding
of flooding processes in asynchronous settings and provide insights for
designing robust distributed protocols.

Keywords: flooding protocol - amnesiac flooding - asynchronous pro-
tocol

1 Introduction

Flooding algorithms [2] serve as fundamental primitives in distributed comput-
ing for information dissemination, with applications ranging from network dis-
covery to emergency broadcast systems. While traditional flooding maintains
message histories to prevent redundant transmissions [3], such approaches be-
come impractical in resource-constrained environments like sensor networks, IoT
devices, or networks with high churn rates where maintaining consistent state is
challenging.

Amnesiac Flooding (AF) addresses these limitations by eliminating message
history, requiring nodes to make forwarding decisions based solely on current
information [6]. However, existing AF analyses assume perfect synchrony—an
unrealistic assumption in practical networks where delays, failures, and asyn-
chrony are the norm rather than the exception.

* Supported by the EPSRC grant EP/P020372/1.
** Supported by the EPSRC grant EP/P02002X/1.

2 Oluwatobi Alafin, George B. Mertzios, and Paul G. Spirakis

This paper introduces Round-Asynchronous Amnesiac Flooding (RAAF),
which bridges the gap between theoretical AF models and practical network con-
ditions. RAAF maintains the memory-efficiency of amnesiac approaches while
incorporating realistic asynchronous behaviour through adversarial delays; thus,
our model can be also termed Round-Delayed Amnesiac Flooding (RDAF). Our
key insight is that even with minimal state and adverse conditions, we can char-
acterise precise conditions under which flooding terminates, providing both pos-
itive results (guaranteed termination in acyclic networks) and fundamental lim-
itations (undecidability with arbitrary adversaries).

The significance of our results extends beyond flooding protocols. By estab-
lishing when termination analysis becomes undecidable and identifying restricted
adversary models (Eventually Periodic Adversaries) where it remains decidable,
we contribute to the broader understanding of computability limits in asyn-
chronous distributed systems.

While our model makes specific assumptions (such as nodes detecting blocked
edges), these capture realistic scenarios and enable rigorous analysis of funda-
mental limits. The dichotomy between acyclic and cyclic graphs, and between
arbitrary and periodic adversaries, reveals deep structural properties that inform
the design of practical flooding protocols.

1.1 Model Context and Novelty

RAAF occupies a unique position in the spectrum of distributed system models.
Unlike classical asynchronous models that allow arbitrary message delays and
reorderings [3|, or partially synchronous models that impose eventual bounds
on communication delays [5], RAAF maintains a synchronous round structure
while allowing adversarial edge-level asynchrony within rounds.

Adversarial Model Justification A key aspect of our model is that nodes
are aware of which outgoing edges are currently delayed by the adversary. While
this may initially seem like a strong assumption, it captures several practical
scenarios:

— Failed transmission detection: In many network protocols, nodes receive
acknowledgments or can detect transmission failures through timeout mech-
anisms or carrier sensing.

— Scheduled maintenance: In managed networks, nodes may be informed
of temporary link unavailability due to scheduled maintenance or known
congestion patterns.

— Visible network conditions: In wireless networks, nodes can often detect
poor channel conditions or interference that prevents successful transmission.

This modeling choice allows us to study the fundamental limits of flooding
under adversarial conditions while maintaining some feedback about the net-
work state. Alternative models where nodes lack this information would require
additional mechanisms (such as acknowledgments or timeouts) that would fun-
damentally change the nature of the flooding protocol.

Round-asynchronous amnesiac flooding 3

Memory Model and Amnesiac Nature The term “amnesiac” in our con-
text requires careful interpretation. Traditional amnesiac flooding assumes that
nodes retain no state between rounds. Our variant relaxes this to what we call
structured amnesia: nodes forget all message history but maintain a bounded
amount of state (destination sets) that is recomputed based on current round
information. Specifically:

— Nodes do not remember which nodes they have received messages from in
previous rounds.

— Nodes only maintain destination sets that are functionally determined by
the current round’s receipts and delays.

This structured amnesia is motivated by resource-constrained environments
where maintaining full message history is infeasible, but nodes can afford
O(|N(v)|) memory for immediate forwarding decisions, where N(v) denotes the
set of neighbours of node v. This represents a middle ground between full am-
nesia and traditional flooding.

1.2 Owur Contributions

This paper makes several significant contributions:

1. Formal Model: A comprehensive mathematical framework for RAAF, in-
cluding precise definitions for system state, adversarial delay functions, and
termination conditions.

2. Termination Analysis: Proof that RAAF always terminates on acyclic
graphs with provable bounds, and demonstration that any cyclic graph ad-
mits non-termination.

3. Decidability Results: Proof of undecidability for arbitrary computable
adversaries via reduction from the halting problem, and introduction of the
Eventually Periodic Adversary (EPA) model under which termination be-
comes decidable.

1.3 Organisation

Section [2] discusses related work. Section [3] presents our formal model and defines
key properties. Section [4] demonstrates non-termination in cyclic graphs. Section
develops the theory of periodic infinite schedules, providing a framework for
analysing recurrent behaviour. Section [6] proves undecidability for arbitrary com-
putable adversaries. Sectionmintroduces Eventually Periodic Adversaries (EPA),
establishes decidability and provides complexity bounds. In the full version of
the paper we show that all non-terminating schedules in the EPA model are
periodic infinite schedules.

4 Oluwatobi Alafin, George B. Mertzios, and Paul G. Spirakis

2 Related Work

Amnesiac Flooding originated with Hussak and Trehan’s work [7], establishing
fundamental properties in synchronous settings. Their analysis proved termina-
tion bounds—exactly e rounds for bipartite and between e and e + d + 1 rounds
for non-bipartite graphs (where e is source eccentricity, d is graph diameter)—
demonstrating AF’s asymptotic time optimality against the (2(d) broadcast
lower bound.

Turau [11] revealed deeper complexity aspects through the (k,c¢)-flooding
problem: finding k£ nodes to guarantee termination within ¢ rounds under concur-
rent flooding. Its NP-completeness highlighted inherent optimisation challenges.
Sharp bounds showed significant disparities between bipartite and non-bipartite
graphs, introducing a behaviour-preserving construction mapping between them.

Hussak and Trehan extended their analysis [8] to multi-source scenarios,
proving e(I)-round termination for I-bipartite graphs with source set I. Their
fixed-delay analysis showed termination by round 2d+7—1 for single-edge delays
of duration 7 in bipartite graphs and established termination for multiple-edge
fixed delays in cycles.

Bayramzadeh et al. [4] proved termination for multiple-message AF in the
unranked full-send case, previously conjectured non-terminating, showing D -
(2k—1) rounds for bipartite and (2D+1)-(2k—1) rounds for non-bipartite graphs
(k messages). Their introduction of graph diameter knowledge as a parameter
suggested new model variants.

Comparison with Asynchronous Flooding Models. Hussak and Tre-
han [7] briefly discuss an asynchronous variation of amnesiac flooding, and they
demonstrate with a small example that this variation does not guarantee termi-
nation, in contrast to their synchronous model. In this model of |7], the adversary
can decide a delay of message delivery on any link. Once a node sends a message,
this message will definitely be delivered at some future round. In contrast, in
our model, if a message from node u to node v is delayed by the adversary, the
initiator node u keeps a note of this and tries to re-send the message to v again
and again, until either (i) the message is delivered to v, or (ii) u receives the
message from v, in which case u stops trying to send the message to v.

The possibility of a message not being delivered, due to the last case, makes
non-termination in our model much less trivial, compared to |7]. We comprehen-
sively investigate this model and we provide a periodic-schedule normal form for
it: every infinite execution can be compressed into an ultimately periodic delay
pattern, which in turn enables decidability and undecidability results. Summa-
rizing, our model is complementary to the model of 7], and our work provides
a rigorous framework that delineates the exact boundary between terminating
and non-terminating behaviour.

Comparison with Stateless Flooding Approaches. The stateless flood-
ing algorithm by Adamek et al. [1] achieves statelessness through a different
mechanism than our structured amnesia. Their algorithm uses send queues
where messages are discarded upon encountering "mates"—pairs of messages
with swapped sender/receiver addresses. Crucially, their model assumes fair

Round-asynchronous amnesiac flooding 5

scheduling where every queued message is eventually transmitted or removed,
without adversarial interference. This synchronous assumption fundamentally
differs from our round-asynchronous model where an adversary controls edge
availability.

While Adamek et al. prove termination under fair scheduling, we establish
when termination remains decidable despite adversarial delays (EPA model) or
becomes undecidable (arbitrary computable adversaries). Our structured amne-
sia—recomputing destination sets based on current round information—provides
a framework for analysing flooding under hostile scheduling conditions that pre-
vious stateless approaches did not consider.

3 Model, Preliminaries and Notation

We first present the computational model for round-based asynchronous systems,
then describe the RAAF protocol that operates within this model.

3.1 Computational Model

Network Structure. We consider a simple, finite, connected graph G = (V, E)
with a distinguished source node gy € V possessing initial message mg. For every
node v we denote by N(v) the set of neighbours of v.

Round-Based Asynchrony. The system proceeds in synchronous rounds,
but an adversary can selectively make edges unavailable for message transmis-
sion. Formally:

Definition 1 (Adversarial Delay Function). A delay function d : N x V' x
E — {0,1} specifies for each round j, node v, and incident edge e = {v,u}
whether transmission from v along e is blocked (d(j,v,e) = 1) or allowed
(d(j,v,e) =0).

Definition 2 (Finite Delay Property). A delay function d satisfies the finite
delay property if for every node-edge pair (v,e), any sequence of consecutive
rounds where d(j,v,e) =1 is finite. Formally, for all v € V and incident edges
e, if d(j,v,e) =1 for j € [t1,ta], then ta — t1 is finite.

Key Model Assumption. Nodes are aware of which of their incident edges
are currently blocked. This models scenarios where transmission failures are
detectable (e.g., through carrier sensing, acknowledgments, or network manage-
ment protocols).

3.2 The RAAF Protocol

Within the above model, we define the Round-Asynchronous Amnesiac Flooding
protocol.
Node State. Each node v maintains:

6 Oluwatobi Alafin, George B. Mertzios, and Paul G. Spirakis

— M(j,v) € {0,1}: whether v possesses the message in round j
— s(j,v) C V: source set - neighbours that successfully delivered the message

to v in round j
— dest(j,v) C V: destination set - neighbours to which v intends to forward

the message
Structured Amnesia. The protocol is called “amnesiac” because:

— Nodes do not maintain history: i.e. nodes don’t remember which nodes they

received messages from (or sent messages to) in previous rounds
— The destination set is functionally determined by recent receptions and cur-

rent delays
— When destination sets empty and no delayed transmissions remain, nodes

return to their initial state
The key insight is that while nodes maintain destination sets across rounds
(not strictly amnesiac), this state is recomputed based on current information
rather than accumulated history. When a node receives the message from new
sources, it completely recomputes its forwarding strategy.
Protocol Operation. Each round j proceeds as follows:
1. Delay Phase: The adversary specifies d(j, v, e) for all node-edge pairs
2. Transmission Phase: Each node v with M (j—1,v) = 1 attempts to trans-
mit to all u € dest(j — 1,v) where d(j,v, {v,u}) =0
3. Reception Phase: Nodes receive messages from successful transmissions
4. State Update Phase: Nodes update their state according to the following

rules:

State Update Rules. For node u transitioning from round j to j + 1:
Message Possession:

1 if w has pending delayed transmissions from round j
M(j+1,u) =<1 if u receives the message in round j + 1

0 otherwise

Source Set:
s(j+1Lu) ={v eV :{vu} € E,u € dest(j,v),d(j + 1,v,{v,u}) =0}
Destination Set: The update rule for destination sets captures the “struc-
tured amnesia”:
{v € dest(j,u): d(j + 1,u,{u,v}) =1} if continuing delayed transmission
dest(j+1,u) = ¢ N(u) \ s(j +1,u) if newly receiving message
0 if no message possessed
Observation 1 (Persistence of Destination Sets (PDS)) Let {u,v} € E.

If u receives in round j from w # v and does not receive from v in the same
round, then v belongs to dest(u) until u delivers to v or receives from v.

A key property of the protocol is that when w receives the message from new
sources, it recomputes its destination set as all neighbours except those that just
delivered the message, effectively “forgetting” its previous forwarding intentions.

Round-asynchronous amnesiac flooding 7

3.3 System Evolution and Termination

State Function. The system state is captured by S : N x V' — StateRecord
where S(j,u) = (M(j, u), s(j, u), dest(j, u)).

Round Function. The transmission function r(j) records actual message
transmissions in round j:

r(j) = {(v,{v,w}) : v € V,w € dest(j — 1,v),d(j,v,{v,w}) =0}

State Update Function. The state update function defines how node states
evolve. For node v in round j, computing the next state requires:

— Current graph state S(j,-) : V' — StateRecord
— Current delay decisions d(j,-,-) : V x E — {0,1}
— Node’s local state S(j,v) and incident delays d(j,v,)

While updates depend on graph-wide state and delays, these parameters
remain fixed when computing individual node updates in a given round. Thus,
we can express the state update as:

S+ 1Lv) = u(v,S(j,v),d(j,v,"))

where u implicitly references the global state S(j,-) and delays d(j, -, -) fixed
for round j.

Initial Configuration. At round zero:

— Source: S(0,g0) = (1,0, N(g0))
— Others: S(0,u) = (0,0,0) for u # go

Termination. We say that flooding has terminated “by” (at or before) round
t € N if M(t,v) = 0 for every v € V, i.e. no node v has the message at round
t. Clearly, this is equivalent with saying that M (j,v) = 0 for every j > ¢ and
for every v € V, i.e. if flooding has terminated by round ¢ then no node has the
message in any round after round ¢.

Definition 3. The termination round t,,;, is defined as:
tmin = min{t € N: M (k,u) =0, for every u € V}

Observation 2 (Persistence of Empty Destination Sets (PEDS)) If «
node’s destination set is empty at round t, it remains empty in all subsequent
rounds until the node receives the message.

Lemma 1 (Empty Destination Sets and Termination). All destination
sets are empty at round t if and only if flooding has terminated by round t.

4 Termination Dichotomy

It is not hard to establish that RAAF always terminates on acyclic graphs, re-
gardless of the adversarial strategy. In the remainder of this section we focus on
graphs that contain at least one cycle, where we prove that every such graph ad-
mits a non-terminating strategy under RAAF by constructing a periodic infinite
schedule (Definition that maintains message circulation within the cycle.

3 When restricting schedule information only to the cycle.

8 Oluwatobi Alafin, George B. Mertzios, and Paul G. Spirakis

Let G = (V,E) be an arbitrary graph containing a cycle C = (V¢, E¢)
where Vo = {v1,...,v,} and Ec = {{vi,Vit1 modn} : 1 <@ < n}. Let ¢ be the
earliest round where a node in Vi receives the message. Among nodes receiving
the message in round c, designate one as v; and number remaining cycle nodes
sequentiallyﬂ We define the following delay function d:

d(j,u,e) =
(s €) 1 otherwise

{0 ifj—c=14 (modn)and e = {v;,Vi+1 modn}
Property 1 (Cyclic Propagation Pattern). 1If, for every i € Nt we have that
node v; mod n Of the cycle C' transmits to node v(;41) mod n Of the cycle C at
round round ¢ + ¢, then we say that the cyclic propagation pattern is satisfied
for cycle C.

Lemma 2. The delay function d ensures cyclic propagation.

Lemma 3 (Characterisation of Cyclic Pattern Disruption). The cyclic
propagation pattern (Property is disrupted if and only if for some k, node
Uk+1mod n 1ransmits t0 Vg mod n While Vg mod n has the message but before
Vk mod n 17ansmits 10 Vi1 mod n-

Lemma 4 (Non-disruption of Cyclic Pattern). The cyclic propagation
pattern cannot be disrupted by message flow in the reverse direction.

Lemma 5 (External Message Preservation). Receiving messages from
nodes outside the cycle does not disrupt cyclic propagation.

Theorem 1 (Cyclic Non-termination). For any graph G = (V,E) con-
taining a cycle, there exists a valid delay function d such that flooding does not
terminate.

5 Periodic Infinite Schedules

We introduce Periodic Infinite Schedules (PIS) as a framework for analysing cer-
tain non-terminating behaviours in RAAF systems, serving as a bridge between
finite state descriptions and infinite executions.

Definition 4 (Configuration). A configuration o(j) for round j is an ordered
pair (S(4,-),r(j)) where S and r are the state and round functions, capturing
complete system state and message transmissions.

Definition 5 (Schedule). A schedule o maps each round j € N to its con-
figuration. Given a wvalid delay function d, the schedule o4 induced by d is as
follows:

1 We require that va # go. This is because we assume that v2 ¢ s(c,v1), and this
condition would not be satisfied if v2 = go

Round-asynchronous amnesiac flooding 9

1. 04(0) = (S(0,")
2. Forj >0, 04(j

,7(0))
) =(S0:")
= S, v) = u(v, (S(j — 1,v),d(j — L,v,)))
- () = {(v,{v, })GVXE.M(j—l,v)zl/\wedest(j—l,v)/\
(jvva {va}) - 0}
In the above definition, the schedule is “induced” as states and transmissions

arise deterministically from applying the delay function according to our state
evolution rules.

,7(4)) where

Definition 6 (Eventually Periodic Delay Function). A delay function d is
eventually periodic with period p if, for some ¢ € N, we have that d(i,v,{v,u}) =
d(i+p,v,{v,u}), for every round i > ¢ and for every node v € V and every edge

{v,u}.

Definition 7 (Periodic Infinite Schedule). A schedule o is periodic infinite
if there exist natural numbers ¢ (stabilisation round) and l (cycle length) where:

1. o(j) =o0(j +1) for every j > c,
2. r(c+ k) #0 for at least one k € {0,1,...,1—1}.

In the above definition, the first condition establishes repeating behaviour
after the stabilisation round ¢, while the second guarantees genuine non-
termination through guaranteed transmissions. Now we establish three funda-
mental results characterising PIS behaviour:

Theorem 2 (IPIS: Identification of PIS). Given a graph G and delay func-
tion d, the induced schedule o4 is periodic infinite if:

1. d is eventually periodic (Deﬁm’tz’on@ with period p,
2. d¢,l € Nyg :Yu eV : S(c,u) = S(c+1,u),

8. lmodp=0,

4.3 €{0,...;0 =1} :r(c+34) #0.

Theorem 3 (NTPIS: Non-Termination of PIS). Any periodic infinite
schedule is non-terminating.

Theorem 4 (EPIS: Existence of PIS). If a graph admits a non-terminating
schedule, it admits a periodic infinite schedule.

Proof. Suppose that d induces a non-terminating schedule o4 on G. The config-
uration space is finite, as it has at most (2 - 2Vl 2|V‘)‘V| - 22IEl configurations.
Therefore, as o4 is a non-terminating schedule, there exists at least one config-
uration C' which repeats infinitely often.

As the adversary respects the finite delay property, it follows that for every
pair (v,{v,u}) there exists an infinite sequence of rounds, in which (v,{v,u})
is not delayed. Let j1 be the first round in o4 where configuration C appears.
Due to the finite delay property, there exists some round jo > j1 such that
(i) the configuration C appears also at round ja and (ii) every pair (v,{v,u})

10 Oluwatobi Alafin, George B. Mertzios, and Paul G. Spirakis

was allowed to transmit (i.e. it was not delayed by the adversary) at least once
between rounds ji1 and js.

We now define a new delay function d', which is periodic with period js — j1
after round jo, as follows:

- Zf.] < j2 then dl(ja u, 6) = d(j,u,e), fO’F every (ua 6)7
- ij > j2 then d/(ja Uu, 6) = d/(] 7‘7‘2 +j1),u,e), fOT every (uae)'

Then the schedule o4 induced by this new delay function d' is periodic after
round ja, with period jo — j1.

These results establish that PIS capture the fundamental structure of non-
termination in RAAF systems. While not all non-terminating schedules are pe-
riodic, any graph admitting non-termination must also admit a periodic infinite
schedule. This insight reduces termination analysis to the study of periodic be-
haviours, bridging finite state descriptions and infinite executions.

6 Undecidability with Arbitrary Computable Adversaries

We prove that determining flooding termination in RAAF is undecidable when
the adversary is an arbitrary computable function via reduction from the Halting
problem [9]. The decision problem for the termination of RAAF is defined as
follows:

RAAF-TERMINATION

— Input: A graph G = (V, E), source node gg € V, and computable delay
function d.
— Question: Does flooding terminate on G with source go under adversary d?

We first establish a basic non-terminating strategy on the triangle graph
G = (V, E) where:

— V ={Source, 4, B}
— E = {{Source, A}, {A, B},{B, Source}}

We now define the basic delay function dy:

1 if j mod 3 =0 and e # {Source, B}
1 if jmod 3 =1 and e # {Source, A}
1 if jmod 3=2ande# {A, B}
0

otherwise

dO(j7uve) =

Lemma 6 (Basic Strategy Nonterminating). The basic delay strategy dy
creates a periodic infinite schedule.

Proof. We demonstrate the basic strategy induces a periodic infinite schedule by
verifying the conditions of Theorem [3:

Round-asynchronous amnesiac flooding 11

1. The delay function d is eventually periodic with period p = 3. For alli > 1,
u€eV,eé€ E:d(i,u,e) = d(i+ 3,u,e). This follows from the three-round
delay pattern in the strategy definition.

Taking ¢ = 3 and | = 6, we observe from the state evolution in Table[1] that
S(3,u) = S(9,u) for all w € V. The complete state evolution demonstrating
this equality is shown below:

Table 1. State Evolution under Basic Strategy

Round 0 Round 1 Round 2 Round 3 Round 4
S:(1,0,{A,B})| S:(1,0,{B}) | S:(1,0,{B}) |S:(1,{B},{A})| S:(0,0,0)
A:(0,0,0) |A:(1,{S},{B}H| A:(0,0,0) A:(0,0,0) |A:(1,{S},{B}
B :(0,0,0) B:(0,0,0) |B:(1,{A}{S}H|B:(1,{S},{A})| B:(1,0,{A})
Round 5 Round 6 Round 7 Round 8 Round 9
S:(0,0,0) [S:(Q,{B},{AD|S: (1,{A},{B})| S:(1,0,{B}) |S:(1,{B},{A})
A:(1,{B}){SH| A:(1,0,{S}) |A:(1,{S}{B})| A:(0,0,0) A:(0,0,0)
B: (1,{A}{S}H)| B:(0,0,0) B:(0,0,0) |B:(@1,{A}{S}H|B:(1,{S},{A})
8. Ilmodp=20 as 6 mod 3 =0.
4. In each cycle [3,9), transmission occurs. For instance, at round 4, we have

r(4) # 0.

Therefore, by Theorem [3, the schedule is periodic infinite with ¢ = 3 and
l = 6. By Theorem[3, we conclude it is non-terminating.

Theorem 5 (Undecidability). RAAF-TERMINATION is undecidable.

Proof. Let M be an arbitrary Turing Machine M, and let x be an arbitrary
input to M. Then we construct the following delay function on the triangle graph
G=(V,E):

. 0

if M halts on x within j steps
otherwise

where dy is the basic delay function defined above. We will prove that M halts
on x if and only if flooding terminates under the delay function d.

(=) Suppose that M halts on x after exactly t steps. Then d(j,u,e) =0 for
every j >t and every u and e. Then flooding terminates by round t + 2.

(<) Suppose that flooding terminates at round t, and assume for the sake
of contradiction that M does not halt after any finite number of steps. Then
d(j,u,e) = do(j,u,e) for every j and every u and e, and thus d creates a periodic
infinite schedule by Lemma [6 Therefore flooding does not terminate after any
finite number of rounds, which is a contradiction.

This undecidability persists even under severe computational constraints:

Theorem 6 (Resilient Undecidability). For any unbounded computable f :
N — N with lim, ,« f(n) = oo, an adversary with O(f(n)) time and space in
round n can simulate | f(n)| Turing machine steps, preserving undecidability.

12 Oluwatobi Alafin, George B. Mertzios, and Paul G. Spirakis

Proof. Let the adversary in round n simulate | f(n)] Turing machine steps, ap-
plying no delays if halted, else dy. Then the Turing machine halts after k steps if
and only if flooding terminates after f~1(k) rounds. The theorem holds even for
extremely slow-growing f like inverse Ackermann a(n) = min{m : A(m,m) > n}
where A is the Ackermann function [10].

This fundamental limitation motivates restricting adversary behaviour rather
than computational power, leading to the EPA model.

7 Eventually Periodic Adversaries

To bridge the gap between undecidability and practical analysis, we introduce
Eventually Periodic Adversaries (EPA), which restrict adversaries to eventually
periodic behaviour while maintaining significant expressive power.

Definition 8 (Eventually Periodic Adversary). An Eventually Periodic
Adversary is a triple (d, c,l) where the delay function d is a computable function,
¢ € N is the stabilisation round, | € NT is the cycle length, and d(i,u,e) =
d(i+1,u,e) for everyi >c,ueV, ande € E.

Theorem 7 (EPA Decidability). The termination problem for EPA-RAAF
systems is decidable with time complezity O(22VI+21El(¢c 4 1)),

Theorem 8 (Lower Bound). Any decision procedure for EPA-RAAF termi-
nation has time complexity 2((c+1) - |E|).

The EPA model demonstrates that restricting adversary behaviour to even-
tual periodicity yields decidable termination while preserving significant expres-
sive power, bridging the gap between undecidability for arbitrary computable
adversaries and practical analysis needs. A non-trivial lower bound remains open.

8 Conclusions and Open Problems

We have established fundamental properties of Round-Asynchronous Amnesiac
Flooding through rigorous mathematical characterisation. Our analysis yields
a complete structural dichotomy: acyclic graphs guarantee termination with
O((B +1)-e(go)) bound for B-bounded delays, while cyclic graphs admit non-
terminating adversarial strategies. This extends to a sharp complexity separa-
tion - termination is undecidable for arbitrary computable adversaries, but it
becomes decidable for eventually periodic adversaries with time complexity at
least £2((c + 1)|E|) and at most O(22IVI* 2Bl (¢ 4 1)).

Several theoretical challenges remain open. The complexity landscape in-
vites tighter bounds for EPA-RAAF, while specific graph classes may admit
improved parameterisation by structural properties. Natural model extensions
include multiple messages and dynamic topologies with bounded modification
rates.

Round-asynchronous amnesiac flooding 13

Our dichotomy results establish fundamental limits on automated verifica-

tion of asynchronous flooding protocols: while acyclic networks allow termination
analysis, verification becomes undecidable in the presence of cycles unless the
adversary exhibits eventual periodicity. This framework precisely characterises
when efficient algorithmic analysis of asynchronous flooding behaviour is possi-

ble.

References

10.

11.

Adamek, J., Nesterenko, M., Robinson, J.S., Tixeuil, S.: Stateless Reliable Geo-
casting. In: Proceedings of SRDS 2017. IEEE Computer Society, Hong Kong, China
(Sep 2017), https://hal.sorbonne-universite.fr/hal-01549915

. Aspnes, J.: Flooding. Online (February 2019), http://www.cs.yale.edu/homes/

aspnes/pinewiki/Flooding.html

Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics. John Wiley & Sons (2004)

Bayramzadeh, Z., Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Weak amnesiac
flooding of multiple messages. In: Proceedings of the 9th International Conference
on Networked Systems (NETYS). vol. 12879, pp. 1-17 (2021)

Dwork, C., Lynch, N.A.: Consensus in the presence of partial synchrony. Journal
of the ACM 35(2), 288-323 (1988)

Hussak, W., Trehan, A.: On the termination of a flooding process. arXiv preprint
arXiv:1907.07078 (2019), https://arxiv.org/abs/1907.07078

Hussak, W., Trehan, A.: Terminating cases of flooding. arXiv preprint
arXiv:2009.05776 [cs.DC] (September 2020), https://arxiv.org/abs/2009.05776
Hussak, W., Trehan, A.: Termination of amnesiac flooding. Distributed Computing
36(2), 193-207 (May 2023). https://doi.org/10.1007/s00446-023-00448-y
Lucas, S.: The origins of the halting problem. Journal of Logical and Algebraic
Methods in Programming 121, 100687 (June 2021)

Matos, A.B.: Total recursive functions that are not primitive recursive.
Unpublished manuscript (June 21 2016), https://www.dcc.fc.up.pt/~acm/
definitions.pdf, accessed: Sep. 18, 2024

Turau, V.: Analysis of amnesiac flooding. CoRR abs/2002.10752 (2020), https:
//arxiv.org/abs/2002.10752

https://hal.sorbonne-universite.fr/hal-01549915
http://www.cs.yale.edu/homes/aspnes/pinewiki/Flooding.html
http://www.cs.yale.edu/homes/aspnes/pinewiki/Flooding.html
https://arxiv.org/abs/1907.07078
https://arxiv.org/abs/2009.05776
https://doi.org/10.1007/s00446-023-00448-y
https://doi.org/10.1007/s00446-023-00448-y
https://www.dcc.fc.up.pt/~acm/definitions.pdf
https://www.dcc.fc.up.pt/~acm/definitions.pdf
https://arxiv.org/abs/2002.10752
https://arxiv.org/abs/2002.10752

	Round-asynchronous amnesiac flooding

