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Abstract18

Temporal graphs are graphs whose topology is subject to discrete changes over time. Given a19

static underlying graph G, a temporal graph is represented by assigning a set of integer time-labels20

to every edge e of G, indicating the discrete time steps at which e is active. We introduce and21

study the complexity of a natural temporal extension of the classical graph problem Maximum22

Matching, taking into account the dynamic nature of temporal graphs. In our problem, Maximum23

Temporal Matching, we are looking for the largest possible number of time-labeled edges (simply24

time-edges) (e, t) such that no vertex is matched more than once within any time window of ∆25

consecutive time slots, where ∆ ∈ N is given. The requirement that a vertex cannot be matched26

twice in any ∆-window models some necessary “recovery” period that needs to pass for an entity27

(vertex) after being paired up for some activity with another entity. We prove strong computational28

hardness results for Maximum Temporal Matching, even for elementary cases. To cope with this29

computational hardness, we mainly focus on fixed-parameter algorithms with respect to natural30

parameters, as well as on polynomial-time approximation algorithms.31
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23:2 Computing Maximum Matchings in Temporal Graphs

1 Introduction42

Computing a maximum matching in an undirected graph (a maximum-cardinality set43

of “independent edges”, i.e., edges which do not share any endpoint) is one of the most44

fundamental graph-algorithmic primitives. In this work, we lift the study of the algorithmic45

complexity of computing maximum matchings from static graphs to the—recently strongly46

growing—field of temporal graphs [15, 18]. In a nutshell, a temporal graph is a graph whose47

topology is subject to discrete changes over time. We adopt a simple and natural model for48

temporal graphs which originates in the foundational work of Kempe et al. [16]. According49

to this model, every edge of a static graph is given along with a set of time labels, while the50

vertex set remains unchanged.51

I Definition 1 (Temporal Graph). A temporal graph G = (G,λ) is a pair (G,λ), where52

G = (V,E) is an underlying (static) graph and λ : E → 2N \ {∅} is a time-labeling function53

that specifies which edge is active at what time.54

An alternative way to view a temporal graph is to see it as an ordered set (according to55

the discrete time slots) of graph instances (called snapshots) on a fixed vertex set. Due to56

their vast applicability in many areas, temporal graphs have been studied from different57

perspectives under various names such as time-varying, evolving, dynamic, and graphs over58

time.59

In this paper we introduce and study the complexity of a natural temporal extension of60

the classical problem Maximum Matching, which takes into account the dynamic nature of61

temporal graphs. To this end, we extend the notion of “edge independence” to the temporal62

setting: two time-labeled edges (simply time-edges) (e, t) and (e′, t′) are ∆-independent63

whenever (i) the edges e, e′ do not share an endpoint or (ii) their time labels t, t′ are at64

least ∆ time units apart from each other.1 Then, for any given ∆, the problem Maximum65

Temporal Matching asks for the largest possible set of pairwise ∆-independent edges66

in a temporal graph. That is, in a feasible solution, no vertex can be matched more than67

once within any time window of length ∆. The concept of ∆-windows has been employed68

in many different temporal graph problem settings [1, 7, 14,19]. It is particularly important69

to understand the complexity of the problem in the case where ∆ is a constant, since this70

models short “recovery” periods.71

Our main motivation for studying Maximum Temporal Matching is of theoretical72

nature, namely to lift one of the most classical optimization problems, Maximum Matching,73

to the temporal setting. As it turns out, Maximum Temporal Matching is computationally74

hard to approximate: we prove that the problem is APX-hard, even when ∆ = 2 and the75

lifetime T of the temporal graph (i.e., the maximum edge label) is 3 (see Section 3.1). That76

is, unless P=NP, there is no Polynomial-Time Approximation Scheme (PTAS) for any ∆ ≥ 277

and T ≥ 3. In addition, we show that the problem remains NP-hard even if the underlying78

graph G is just a path (see Section 3.2). Consequently, we mainly turn our attention to79

approximation and to fixed-parameter algorithms (see Section 4).80

In order to prove our hardness results (see Section 3), we introduce the notion of a81

temporal line graph2 which is a class of (static) graphs of independent interest and may82

prove useful in other contexts, too. This notion enables us to reduce Maximum Temporal83

1 Throughout the paper, ∆ always refers to that number, and never to the maximum degree of a static
graph (which is another common use of ∆).

2 We remark that a different notion of temporal line graphs was introduced in a survey by Latapy et
al. [18], which is somewhat similar to our definition for the case of ∆ = 1.
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Matching to the problem of computing a large independent set in a static graph (i.e., in84

the temporal line graph that is defined from the input temporal graph). Moreover, as an85

intermediate result, we show (see Theorem 11) that the classic problem Independent Set86

(on static graphs) remains NP-hard on induced subgraphs of diagonal grid graphs, thus87

strengthening an old result of Clark et al. [9] for unit disk graphs.88

During the last few decades it has been repeatedly observed that for many variations89

of Maximum Matching it is straightforward to obtain online (resp. greedy offline approx-90

imation) algorithms which achieve a competitive (resp. an approximation) ratio of 1
2 , while91

great research efforts have been made to increase the ratio to 1
2 + ε, for any constant ε > 0.92

It is well known that an arbitrary greedy algorithm for matching gives approximation ratio93

at least 1
2 [13,17], while it remains a long-standing open problem to determine how well a94

randomized greedy algorithm can perform. Aronson et al. [3] provided the so-called Modified95

Randomized Greedy (MRG) algorithm which approximates the maximum matching within96

a factor of at least 1
2 + 1

400,000 . Recently, Poloczek and Szegedy [20] proved that MRG97

actually provides an approximation ratio of 1
2 + 1

256 . Similarly to the above problems, it98

is straightforward3 to approximate Maximum Temporal Matching in polynomial time99

within a factor of 1
2 . However, we manage to provide a simple approximation algorithm100

which, for any constant ∆, achieves an approximation ratio 1
2 + ε for a constant ε. For101

∆ = 2 this ratio is 2
3 , while for an arbitrary constant ∆ it becomes ∆

2∆−1 = 1
2 + 1

2(2∆−1) (see102

Section 4.1).103

Given that Maximum Temporal Matching is NP-hard, we show fixed-parameter104

tractability with respect to the desired solution size parameter. From a parameterized105

classification standpoint, this improves a result of Baste et al. [6] who needed additionally ∆106

as a second parameter for fixed-parameter tractability.107

Finally, we show fixed-parameter tractability with respect to the combined parameter108

∆ and size of a maximum matching of the underlying graph (which may be significantly109

smaller than the cardinality of a maximum temporal matching of the temporal graph).110

Our algorithmic techniques are essentially based on kernelization and matroid theory (see111

Section 4).112

It is worth mentioning that another temporal variation of Maximum Matching, which113

is related to ours, was recently proposed by Baste et al. [6]. The main difference is that114

their model requires edges to exist in at least ∆ consecutive snapshots in order for them115

to be eligible for a matching. Thus, their matchings need to consist of time-consecutive116

edge blocks, which requires some data cleaning on real-word instances in order to perform117

meaningful experiments [6].118

It turns out that the model of Baste et al. is a special case of our model, as there is an119

easy reduction from their model to ours, and thus their positive results are also implied by120

ours. Baste et al. [6] showed that solving (using their definition) Maximum Temporal121

Matching is NP-hard for ∆ ≥ 2. In terms of parameterized complexity, they provided a122

polynomial-sized kernel for the combined parameter (k,∆), where k is the size of the desired123

solution.124

We see the concept of multistage (perfect) matchings, introduced by Gupta et al. [12], as125

the main alternative model for temporal matchings in temporal graphs. This model, which126

is inspired by reconfiguration or reoptimization problems, is not directly related to ours:127

3 To achieve the straightforward 1
2 -approximation it suffices to just greedily compute at every time slot a

maximal matching among the edges that are ∆-independent with the edges that were matched in the
previous time slots.

STACS 2020



23:4 Computing Maximum Matchings in Temporal Graphs

roughly speaking, their goal is to find perfect matchings for every snapshot of a temporal128

graph such that the matchings only slowly change over time. In this setting one mostly129

encounters computational intractability, which leads to several results on approximation130

hardness and algorithms [5, 12].131

Several details and proofs (marked with ?) are omitted due to space constraints.132

2 Preliminaries133

We use standard mathematical and graph-theoretic notation. In the full version of this paper134

there is an overview of the most important classical notation and terminology we use.135

Temporal graphs. Throughout the paper we consider temporal graphs G with finite life-136

time T (G) = max{t ∈ λ(e) | e ∈ E}, that is, there is a maximum label assigned by λ137

to an edge of G. When it is clear from the context, we denote the lifetime of G simply138

by T . The snapshot (or instance) of G at time t is the static graph Gt = (V,Et), where139

Et = {e ∈ E | t ∈ λ(e)}. We refer to each integer t ∈ [T ] as a time slot of G. For every140

e ∈ E and every time slot t ∈ λ(e), we denote the appearance of edge e at time t by the141

pair (e, t), which we also call a time-edge. We denote the set of edge appearances of a142

temporal graph G = (G = (V,E), λ) by E(G) := {(e, t) | e ∈ E and t ∈ λ(e)}. For every143

v ∈ V and every time slot t, we denote the appearance of vertex v at time t by the pair144

(v, t). That is, every vertex v has T different appearances (one for each time slot) during145

the lifetime of G. For every time slot t ∈ [T ], we denote by Vt = {(v, t) : v ∈ V } the set146

of all vertex appearances of G at time slot t. Note that the set of all vertex appearances147

in G is V × [T ] =
⋃

1≤t≤T Vt. Two vertex appearances (v, t) and (w, t) are adjacent if the148

temporal graph has the time-edge ({v, w}, t). For a temporal graph G = (G,λ) and a set of149

time-edges M , we denote by G \M := (G′, λ′) the temporal graph G without the time-edges150

in M , where G′ := (V,E′) with E′ := {e ∈ E | λ(e) \ {t | (e, t) ∈M} 6= ∅} and for all e ∈ E′,151

λ′(e) := λ(e) \ {t | (e, t) ∈ M}. For a subset S ⊆ [T ] of time slots and a time-edge set M ,152

we denote by M |S := {(e, t) ∈M | t ∈ S} the set of time-edges in M with a label in S. For153

a temporal graph G, we denote by G|S := G \ (E(G)|[T ]\S) the temporal graph where only154

time-edges with label in S are present.155

In the remainder of the paper we denote by n and m the number of vertices and edges of156

the underlying graph G, respectively, unless otherwise stated. We assume that there is no157

compact representation of the labeling λ, that is, G is given with an explicit list of labels for158

every edge, and hence the size of a temporal graph G is |G| := |V |+
∑T
t=1 |Et| ∈ O(n+mT ).159

Furthermore, in accordance with the literature [23, 24] we assume that the lists of labels are160

given in ascending order.161

Temporal matchings. A matching in a (static) graph G = (V,E) is a set M ⊆ E of edges162

such that for all e, e′ ∈M we have that e ∩ e′ = ∅. In the following, we transfer this concept163

to temporal graphs.164

For a natural number ∆, two time-edges (e, t), (e′, t′) are ∆-independent if e ∩ e′ = ∅165

or |t− t′| ≥ ∆. If two time-edges are not ∆-independent, then we say that they are in conflict.166

A time-edge (e, t) ∆-blocks a vertex appearance (v, t′) (or (v, t′) is ∆-blocked by (e, t)) if167

v ∈ e and |t − t′| ≤ ∆ − 1. A ∆-temporal matching M of a temporal graph G is a set of168

time-edges of G which are pairwise ∆-independent. Formally, it is defined as follows.169

I Definition 2 (∆-Temporal Matching). A ∆-temporal matching of a temporal graph G is a170

set M of time-edges of G such that for every pair of distinct time-edges (e, t), (e′, t′) in M we171

have that e ∩ e′ = ∅ or |t− t′| ≥ ∆.172
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We remark that this definition is similar to the definition of γ-matchings by Baste et al. [6].173

A ∆-temporal matching is called maximal if it is not properly contained in any other174

∆-temporal matching. A ∆-temporal matching is called maximum if there is no ∆-temporal175

matching of larger cardinality. We denote by µ∆(G) the size of a maximum ∆-temporal176

matching in G.177

Having defined temporal matchings, we naturally arrive at the following central problem.178

Maximum Temporal Matching
Input: A temporal graph G = (G,λ) and an integer ∆ ∈ N.
Output: A ∆-temporal matching in G of maximum cardinality.

179

We refer to the problem of deciding whether a given temporal graph admits a ∆-temporal180

matching of given size k by Temporal Matching.181

For some basic observations about our problem settings and more details about the182

relation between our model and the model of Baste et al. [6] we refer to the full version of183

this paper.184

Temporal line graphs. In the following, we transfer the concept of line graphs to temporal185

graphs and temporal matchings. In particular, we make use of temporal line graphs in the186

NP-hardness result of Section 3.2.187

The ∆-temporal line graph of a temporal graph G is a static graph that has a vertex188

for every time-edge of G and two vertices are connected by an edge if the corresponding189

time-edges are in conflict, i.e., they cannot be both part of a ∆-temporal matching of G. We190

say that a graph H is a temporal line graph if there exist a ∆ and a temporal graph G such191

that H is isomorphic to the ∆-temporal line graph of G. Formally, temporal line graphs and192

∆-temporal line graphs are defined as follows.193

I Definition 3 (Temporal Line Graph). Given a temporal graph G = (G = (V,E), λ) and a194

natural number ∆, the ∆-temporal line graph L∆(G) of G has vertex set V (L∆(G)) = {et |195

e ∈ E ∧ t ∈ λ(e)} and edge set E(L∆(G)) = {{et, e′t′} | e∩ e′ 6= ∅∧ |t− t′| < ∆}. We say that196

a graph H is a temporal line graph if there is a temporal graph G and an integer ∆ such that197

H = L∆(G).198

By definition, ∆-temporal line graphs have the following property.199

I Observation 4. Let G be a temporal graph and let L∆(G) be its ∆-temporal line graph. The200

cardinality of a maximum independent set in L∆(G) equals the size of a maximum ∆-temporal201

matching of G.202

It follows that solving Temporal Matching on a temporal graph G is equivalent to solving203

Independent Set on L∆(G).204

3 Hardness Results205

In this section we show that Maximum Temporal Matching is APX-hard and that206

Temporal Matching is NP-complete when the underlying graph is a path.207

3.1 APX-completeness of Maximum Temporal Matching208

In this subsection, we look at Maximum Temporal Matching where we want to maximize209

the cardinality of the temporal matching. We prove that Maximum Temporal Matching210

is APX-complete even if ∆ = 2 and T = 3. For this we provide a so-called L-reduction [4] from211

STACS 2020



23:6 Computing Maximum Matchings in Temporal Graphs

the APX-complete Maximum Independent Set problem on cubic graphs [2] to Maximum212

Temporal Matching. Together with the constant-factor approximation algorithm that we213

present in Section 4.1 this implies APX-completeness for Maximum Temporal Matching.214

The reduction also implies NP-completeness of Temporal Matching. Formally, we show215

the following result.216

I Theorem 5 (?). Temporal Matching is NP-complete and Maximum Temporal217

Matching is APX-complete even if ∆ = 2, T = 3, and every edge of the underlying graph218

appears only once. Furthermore, for any δ ≥ 664
665 , there is no polynomial-time δ-approximation219

algorithm for Maximum Temporal Matching, unless P = NP, and Temporal Matching220

does not admit a 2o(k) · |G|f(T )-time algorithm for any function f , unless the Exponential221

Time Hypothesis fails.222

We provide the following construction for a reduction from Maximum Independent223

Set on cubic graphs. It is easy to check that it uses only three time steps and every edge224

appears in exactly one time step.225

I Construction 1. Let G = (V,E) be an n-vertex cubic graph. We construct in polynomial226

time a corresponding temporal graph (H,λ) of lifetime three as follows. First, we find a227

proper 4-edge coloring c : E → {1, 2, 3, 4} of G. Such a coloring exists by Vizing’s theorem228

and can be found in O(|E|) time [21]. Now the underlying graph H = (U,F ) contains two229

vertices v0 and v1 for every vertex v of G, and one vertex we for every edge e of G. The230

set F of the edges of H contains {v0, v1} for every v ∈ V , and for every edge e = {u, v} ∈ E231

it contains {we, uα}, {we, vα}, where c(e) ≡ α (mod 2). In temporal graph (H,λ) every edge232

of the underlying graph appears in exactly one of the three time slots:233

1. λ({we, uα}) = λ({we, vα}) = 1, where c(e) ≡ α (mod 2), for every edge e = {u, v} ∈ E234

such that c(e) ∈ {1, 2};235

2. λ({v0, v1}) = 2 for every v ∈ V ;236

3. λ({we, uα}) = λ({we, vα}) = 3, where c(e) ≡ α (mod 2), for every edge e = {u, v} ∈ E237

such that c(e) ∈ {3, 4}.238

It is easy to check that the reduction also implies NP-completeness of Temporal Matching.239

The full proof of Theorem 5 can be found in the full version of this paper.240

I Observation 6 (?). Temporal Matching is NP-complete, even if ∆ = 2, T = 5, and241

the underlying graph of the input temporal graph is complete.242

The importance of this observation is due to the following parameterized complexity243

implication. Parameterizing Temporal Matching by structural graph parameters of244

the underlying graph that are constant on complete graphs cannot yield fixed-parameter245

tractability unless P = NP, even if combined with the lifetime T . Note that many structural246

parameters fall into this category, such as domination number, distance to cluster graph,247

clique cover number, etc. We discuss how our reduction can be adapted to the model of248

Baste et al. [6] in the full version of this paper.249

3.2 NP-completeness of Temporal Matching with Underlying Paths250

In this subsection we show NP-completeness of Temporal Matching even for a very251

restricted class of temporal graphs.252

I Theorem 7. Temporal Matching is NP-complete even if ∆ = 2 and the underlying253

graph of the input temporal graph is a path.254
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We show this result by a reduction from Independent Set on connected cubic planar255

graphs, which is known to be NP-complete [11]. More specifically, we show that Independent256

Set is NP-complete on the temporal line graphs of temporal graphs that have a path as257

underlying graph. Recall that by Observation 4, solving Independent Set on a temporal258

line graph is equivalent to solving Temporal Matching on the corresponding temporal259

graph. We proceed as follows.260

1. We show that 2-temporal line graphs of temporal graphs that have a path as underlying261

graph have a grid-like structure. More specifically, we show that they are induced262

subgraphs of so-called diagonal grid graphs or king’s graphs.263

2. We show that Independent Set is NP-complete on induced subgraphs of diagonal grid264

graphs which together with Observation 4 yields Theorem 7. More specifically:265

We exploit that cubic planar graphs are induced topological minors of grid graphs266

and extend this result by showing that they are also induced topological minors of267

diagonal grid graphs.268

We show how to modify the subdivision of a cubic planar graph that is an induced269

subgraph of a diagonal grid graph such that NP-hardness of finding independent sets270

of certain size is preserved.271

I Definition 8 (Diagonal Grid Graph). A diagonal grid graph Ẑn,m has a vertex vi,j for all272

i ∈ [n] and j ∈ [m] and there is an edge {vi,j , vi′,j′} if and only if |i− i′|2 + |j − j′|2 ≤ 2.273

It is easy to check that for a temporal graph with a path as underlying graph and where274

each edge is active at every time step, the 2-temporal line graph is a diagonal grid graph.275

I Observation 9. Let G = (Pn, λ) with λ(e) = [T ] for all e ∈ E(Pn), then L2(G) = Ẑn−1,T .276

Further, it is easy to see that deactivating an edge at a certain point in time results in277

removing the corresponding vertex from the diagonal grid graph. See Figure 1 for an example.278

Hence, we have that every induced subgraph of a diagonal grid graph is a 2-temporal line279

graph.280

I Corollary 10. Let Z ′ be a connected induced subgraph of Ẑn−1,T . Then there is a λ and281

an n′ ≤ n such that Z ′ = L2((Pn′ , λ)).282

Having these results at hand, it suffices to show that Independent Set is NP-complete283

on induced subgraphs of diagonal grid graphs. By Observation 4, this directly implies that284

Temporal Matching is NP-complete on temporal graphs that have a path as underlying285

graph. Hence, in the remainder of this section, we discuss the following result.286

I Theorem 11 (?). Independent Set on induced subgraphs of diagonal grid graphs is287

NP-complete.288

This result may be of independent interest and strengthens a result by Clark et al. [9], who289

showed that Independent Set is NP-complete on unit disk graphs. It is easy to see from290

Definition 8 that diagonal grid graphs and their induced subgraphs are a (proper) subclass291

of unit disk graphs.292

In the following, we give the main ideas of how we prove Theorem 11. The first building293

block for the reduction is the fact that we can embed cubic planar graphs into a grid [22].294

More specifically, a cubic planar graph admits a planar embedding in such a way that295

the vertices are mapped to points of a grid and the edges are drawn along the grid lines.296
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e5, λ(e5) = {1, 2, 5}

e4, λ(e4) = {1, 4}

e3, λ(e3) = {1, 2, 3}

e2, λ(e2) = {2, 4}

e1, λ(e1) = {2, 4, 5}

(a) Temporal graph G = (P6, λ) with λ as
visualized.

1

e1

2

e2

3

e3

4

e4

5

e5

(b) 2-Temporal line graph L2(G).

Figure 1 A temporal line graph with a path as underlying graph where edges are not always
active and its 2-temporal line graph.

Moreover, such an embedding can be computed in polynomial time and the size of the grid297

is polynomially bounded in the size of the planar graph.298

Note that if we replace the edges of the original planar graph by paths of appropriate299

length, then the embedding in the grid is actually a subgraph of the grid. Furthermore, if we300

scale the embedding by a factor of two, i.e. subdivide every edge once, then the embedding301

is also guaranteed to be an induced subgraph of the grid. In other words, we argue that302

every cubic planar graph is an induced topological minor of a polynomially large grid graph.303

We then show how to modify the embedding in a way that insures that the resulting graph304

is also an induced topological minor of an polynomially large diagonal grid graph. The305

last step is to further modify the embedding such that it can be obtained from the original306

graph by subdividing each edge an even number of times, this ensures that NP-hardness of307

Independent Set is preserved.308

It is easy to check that Theorem 11, Observation 4, and Corollary 10 together imply309

Theorem 7. Theorem 7 also has some interesting implications from the point of view of310

parameterized complexity: Parameterizing Temporal Matching by structural graph311

parameters of the underlying graph that are constant on a path cannot yield fixed-parameter312

tractability unless P = NP, even if combined with ∆. Note that a large number of popular313

structural parameters fall into this category, such as maximum degree, treewidth, pathwidth,314

feedback vertex number, etc.315

4 Algorithms316

Here, we show one approximation and two exact algorithms for Temporal Matching.317

4.1 Approximation of Maximum Temporal Matching318

In this section, we present a ∆
2∆−1 -approximation algorithm for Maximum Temporal319

Matching. Note that for ∆ = 2 this is a 2
3 -approximation, while for arbitrary constant ∆320

this is a ( 1
2 + ε)-approximation, where ε = 1

2(2∆−1) is a constant, too. Specifically, we show321

the following.322
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Algorithm 4.1 ∆
2∆−1 -Approximation Algorithm (Theorem 12).

1 M ← ∅.
2 foreach ∆-template S do
3 Compute a ∆-temporal matching MS with respect to S.
4 if |MS | > |M | then M ←MS .
5 return M .

I Theorem 12 (?). Maximum Temporal Matching admits an O (Tm(
√
n+ ∆))-time323

∆
2∆−1 -approximation algorithm.324

The main idea of our approximation algorithm is to compute maximum matchings for325

slices of size ∆ of the input temporal graph that are sufficiently far apart from each other326

such that they do not interfere with each other, and hence are computable in polynomial327

time. Then we greedily fill up the gaps. We try out certain combinations of non-interfering328

slices of size ∆ in a systematic way and then take the largest ∆-matching that was found329

in this way. With some counting arguments we can show that this achieves the desired330

approximation ratio. In the following we describe and prove this claim formally.331

We first introduce some additional notation and terminology. Recall that µ∆(G) denotes332

the size of a maximum ∆-temporal matching in G. Let ∆ and T be fixed natural numbers333

such that ∆ ≤ T . For every time slot t ∈ [T −∆ + 1], we define the ∆-window Wt as the334

interval [t, t + ∆ − 1] of length ∆. We use this to formalize slices of size ∆ of a temporal335

graph. An interval of length at most ∆ − 1 that either starts at slot 1, or ends at slot T336

is called a partial ∆-window (with respect to lifetime T ). For the sake of brevity, we write337

partial ∆-window, when the lifetime T is clear from the context. The distance between two338

disjoint intervals [a1, b1] and [a2, b2] with b1 < a2 is a2 − b1 − 1.339

A ∆-template (with respect to lifetime T ) is a maximal family S of ∆-windows or partial340

∆-windows in the interval [T ] such that any two consecutive elements in S are at distance341

exactly ∆ − 1 from each other. Let S be a ∆-template. A ∆-temporal matching MS in342

G = (G,λ) is called a ∆-temporal matching with respect to ∆-template S if MS has the343

maximum possible number of edges in every interval W ∈ S, i.e.
∣∣MS |W ∣∣ = µ∆(G|W ) for344

every W ∈ S.345

Now we are ready to present and analyze our ∆
2∆−1 -approximation algorithm, see Al-346

gorithm 4.1. The idea of the algorithm is simple: for every ∆-template S compute a347

∆-temporal matching MS with respect to S and among all of the computed ∆-temporal348

matchings return a matching of the maximum cardinality.349

We remark that our analysis ignores the fact that the algorithm may add time-edges from350

the gaps between the ∆-windows defined by the template to the matching if they are not351

in conflict with any other edge in the matching. Hence, on the one hand, there is potential352

room for improvement. On the other hand, our analysis of the approximation factor of353

Algorithm 4.1 is tight for ∆ = 2. Namely, there exists a temporal graph G (see Figure 2) such354

that on the instance (G, 2) our algorithm (in the worst case) finds a 2-temporal matching of355

size two, while the size of a maximum 2-temporal matching in G is three. In this example356

any improvement of the algorithm that utilizes the gaps between the ∆-windows would not357

lead to a better performance.358
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e1

λ(e1) = {2}
e2

λ(e2) = {1, 3}
e3

λ(e3) = {1}
e4

λ(e4) = {2}

Figure 2 A temporal graph witnessing that the analysis of Algorithm 4.1 is tight for ∆ = 2.

4.2 Fixed-parameter tractability for the parameter solution size359

In this section we provide a fixed-parameter algorithm for Temporal Matching paramet-360

erized by the solution size k. More specifically, we provide a linear-time algorithm for a fixed361

solution size k. Formally, the main result of this subsection is to show the following.362

I Theorem 13 (?). There is a linear-time FPT-algorithm for Temporal Matching363

parameterized by the solution size k.364

We discuss the proof Theorem 13 in the remainder of this section. Recall that due to365

Baste et al. [6] it is already known that Temporal Matching is fixed-parameter tractable366

when parameterized by the solution size k and ∆. In comparison to the algorithm of367

Baste et al. [6] the running time of our algorithm is independent of ∆, hence improving their368

result from a parameterized classification standpoint.369

The rough idea of our algorithm is the following. We develop a preprocessing procedure370

that reduces the number of time-edges of the first ∆-window. After applying this procedure,371

the number of time-edges in the first ∆-window is upper-bounded in a function of the solution372

size parameter k. This allows us to enumerate all possibilities to select time-edges from the373

first ∆-window for the temporal matching. Then, for each possibility, we can remove the374

first ∆-window from the temporal graph and solve the remaining part recursively.375

Next, we describe the preprocessing procedure more precisely. Referring to kernelization376

algorithms, we call this procedure kernel for the first ∆-window. If we count naively the377

number of ∆-temporal matchings in the first ∆-window of a temporal graph, then this378

number clearly depends on ∆. This is too large for Theorem 13. A key observation to379

overcome this obstacle is that if we look at an edge appearance of a ∆-temporal matching380

which comes from the first ∆-window, then we can exchange it with the first appearance of381

the edge.382

I Lemma 14 (?). Let (G,λ) be a temporal graph and let M be a ∆-temporal matching in383

(G,λ). Let also e ∈ Et1 ∩ Et2 , where t1 < t2 ≤ ∆. If (e, t1) 6∈ M and (e, t2) ∈ M , then384

M ′ = (M \ {(e, t2)}) ∪ {(e, t1)} is a ∆-temporal matching in (G,λ).385

We use Lemma 14 to construct a small set K of time-edges from the first ∆-window such386

that there exists a maximum ∆-temporal matching M in (G,λ) with the property that the387

restriction of M to the first ∆-window is contained in K.388

I Definition 15 (Kernel for the First ∆-Window). Let ∆ be a natural number and let G be a389

temporal graph. We call a set K of time-edges of G|[1,∆] a kernel for the first ∆-window of G390

if there exists a maximum ∆-temporal matching M in G with M |[1,∆] ⊆ K.391

Informally, the idea for computing the kernel for the first ∆-window is to first select vertices392

that are suitable to be matched. Then, for each of these vertices, we select the earliest393

appearance of a sufficiently large number of incident time-edges, where each of these time-394

edges corresponds to a different edge of the underlying graph. We show that we can do this395

in a such way that the number of selected time-edges can be upper-bounded in a function of396

the size ν of a maximum matching of the underlying graph G. Formally, we aim at proving397

the following lemma.398
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Algorithm 4.2 Kernel for the First ∆-Window (Lemma 16).

1 Let G′ be the underlying graph of G|[1,∆] and K = ∅.
2 A← a maximum matching of G′.
3 VA ← the set of vertices matched by A.
4 foreach v ∈ VA do
5 Rv ←

{
({v, w}, t) | w ∈ NG′(v) and t = min{i ∈ [∆] | {v, w} ∈ Ei}

}
.

6 if |Rv| ≤ 4ν then K ← K ∪Rv.
7 else
8 Form a subset R′ ⊆ Rv such that |R′| = 4ν + 1 and for every (e, t) ∈ R′ and

(e′, t′) ∈ Rv \R′ we have t ≤ t′.
9 K ← K ∪R′.

10 return K.

I Lemma 16 (?). Given a natural number ∆ and a temporal graph G = (G,λ) we can399

compute in O(ν2 · |G|) time a kernel K for the first ∆-window of G such that |K| ∈ O(ν2).400

Algorithm 4.2 presents the pseudocode for the algorithm behind Lemma 16. We show401

correctness of Algorithm 4.2 in Lemma 17 and examine its running time in Lemma 18. Hence,402

Lemma 16 follows from Lemmas 17 and 18.403

I Lemma 17. Algorithm 4.2 is correct, that is, the algorithm outputs a size-O(ν2) kernel K404

for the first ∆-window of G.405

Proof. LetM be a maximum ∆-temporal matching of G such that
∣∣M |[1,∆] \K

∣∣ is minimized.406

Without loss of generality we can assume that every time-edge inM |[1,∆] is the first appearance407

of an edge. Indeed, by construction, K contains only the first appearances of edges, and408

therefore if (e, t) ∈M |[1,∆] is not the first appearance of e, by Lemma 14 it can be replaced409

by the first appearance, and this would not increase
∣∣M |[1,∆] \K

∣∣. Now, assume towards410

a contradiction that M |[1,∆] \K is not empty and let (e, t) be a time-edge in M |[1,∆] \K.411

Since A is a maximum matching in the underlying graph G′ of G|[1,∆], at least one of the412

end vertices of e is matched by A, i.e., it belongs to VA. Then for a vertex v ∈ VA ∩ e we413

have that (e, t) ∈ Rv. Moreover, observe that |Rv| > 4ν, because otherwise (e, t) would be414

in K. For the same reason (e, t) 6∈ R′, where R′ ⊆ Rv is the set of time-edges computed in415

Line 8 of the algorithm. Let W = {(w, t) | ({v, w}, t) ∈ R′} be the set of vertex appearances416

which are adjacent to vertex appearance (v, t) by a time-edge in R′. Since Rv contains only417

the first appearances of edges, we know that W contains exactly 4ν + 1 vertex appearances418

of pairwise different vertices.419

We now claim that W contains a vertex appearance which is not ∆-blocked by any time-420

edge inM . To see this, we recall that ν is the maximum matching size of the underlying graph421

of G. Hence it is also an upper bound on the number of time-edges inM |[1,∆] andM |[∆+1,2∆],422

which implies that in the first ∆-window vertex appearances of at most 4ν distinct vertices423

are ∆-blocked by time-edges in M . Since W contains 4ν + 1 vertex appearances of pairwise424

different vertices, we conclude that there exists a vertex appearance (w′, t′) ∈ W which is425

not ∆-blocked by M .426

Observe that t′ ≤ t because ({v, w′}, t′) ∈ R′ and (e, t) ∈ Rv \ R′. Hence, (v, t′) is not427

∆-blocked by M \ {(e, t)}. Thus, M∗ := (M \ {(e, t)}) ∪ {({v, w′}, t′)} is a ∆-temporal428

matching of size |M | with
∣∣M∗|[1,∆] \K

∣∣ < ∣∣M |[1,∆] \K
∣∣. This contradiction implies that429

M |[1,∆] \K is empty and thus M |[1,∆] ⊆ K.430
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It remains to show that |K| ∈ O(ν2). Since each maximum matching in G′ has at most431

ν edges, we have that |VA| ≤ 2ν. For each vertex in VA the algorithm adds at most 4ν + 1432

time-edges to K. Thus, |K| ≤ 2ν · (4ν + 1) ∈ O(ν2). J433

I Lemma 18 (?). Algorithm 4.2 runs in O(ν2(n + m∆)) time. In particular, the time434

complexity of Algorithm 4.2 is dominated by O(ν2|G|).435

Having Algorithm 4.2 at hand, we can formulate a recursive search tree algorithm which436

(1) picks a ∆-temporal matchings M in the kernel of the first ∆-window, (2) removes the first437

∆-window from the temporal graph, (3) removes all time-edges which are not ∆-independent438

with M , and (4) calls itself until the temporal graph in empty. For pseudocode of this439

algorithm and the proof of correctness, we refer to the full version of this paper.440

4.3 Fixed-parameter tractability for the combined parameter ∆ and441

maximum matching size ν of the underlying graph442

In this section we show that Temporal Matching is fixed-parameter tractable when443

parameterized by ∆ and the maximum matching size ν of the underlying graph.444

I Theorem 19 (?). Temporal Matching can be solved in 2O(ν∆) · |G| · T∆ time.445

Note that Theorem 19 implies that Temporal Matching is fixed-parameter tractable when446

parameterized by ∆ and the maximum matching size ν of the underlying graph, because447

there is a simple preprocessing step so that we can assume afterwards that the lifetime T is448

polynomially upper-bounded in the input size. This preprocessing step modifies the temporal449

graph such that it does not contain ∆ consecutive edgeless snapshots. This can be done by450

iterating once over the temporal graph. Observe that this procedure does not change the451

maximum size of a ∆-temporal matching and afterwards each ∆-window contains at least452

one time-edge. Hence, T∆ ≤ |G|.453

Note that this result is incomparable to Theorem 13. In some sense, we trade off replacing454

the solution size parameter k with the structurally smaller parameter ν but we do not know455

how to do this without combining it with ∆. In comparison to the exact algorithm by456

Baste et al. [6] (who showed fixed-parameter tractability with k and ∆) we replace k by457

the structurally smaller ν, hence improving their result from a parameterized classification458

standpoint. Furthermore, we note that Theorem 19 is asymptotically optimal for any fixed459

∆ since there is no 2o(ν) · |G|f(∆,T ) algorithm for Temporal Matching, unless ETH fails460

(see Theorem 5).461

In the reminder of this section, we sketch the main ideas of the algorithm behind462

Theorem 19. The algorithm works in three major steps:463

1. The temporal graph is divided into disjoint ∆-windows,464

2. for each of these ∆-windows a small family of ∆-temporal matchings is computed, and465

then466

3. the maximum size of a ∆-temporal matching for the whole temporal graph is computed467

with a dynamic program based on the families from (Step 2).468

We first discuss how the algorithm performs Step 2. Afterwards we formulate the dynamic469

program (Step 3). In a nutshell, Step 2 consists of an iterative computation of a small470

(upper-bounded in ∆ + ν) family of ∆-temporal matchings for an arbitrary ∆-window such471

that at least one of them is “extendable” to a maximum ∆-temporal matching for the whole472

temporal graph.473
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Families of `-complete ∆-temporal matchings. Throughout this section let G = (G =474

(V,E), λ) be a temporal graph of lifetime T and let ν be the maximum matching size in G.475

Let also ∆ and ` be natural numbers such that `∆ ≤ T .476

A familyM of ∆-temporal matchings of G|[∆(`−1)+1,∆`] is called `-complete if for any477

∆-temporal matching M of G there is M ′ ∈ M such that
(
M \M |[∆(`−1)+1,∆`]

)
∪M ′ is a478

∆-temporal matching of G of size at least |M |. A central part of our algorithm is an efficient479

procedure for computing an `-complete family. Formally, we aim for the following lemma.480

I Lemma 20 (?). There exists a 2O(ν∆) · |G|-time algorithm that computes an `-complete481

family of size 2O(ν∆) of ∆-temporal matchings of G|[∆(`−1)+1,∆`].482

In the proof of Lemma 20 we employ representative families and other tools from matroid483

theory [8, 10].484

Dynamic program. Now we are ready to combine Step 2 of our algorithm with the remaining485

Steps 1 and 3. More precisely, we employ `-complete families of ∆-temporal matchings486

of ∆-windows in a dynamic program (Step 3) to compute the ∆-temporal matching of487

maximum size for the whole temporal graph. The pseudocode of this dynamic program488

and its proof of correctness is stated in the full version of this paper. This is the algorithm489

behind Theorem 19. It computes a table T where each entry T [i,M ′] stores the maximum490

size of a ∆-temporal matching M in the temporal graph G|[1,∆i] such that all the time-edges491

in M |[∆(i−1)+1,∆i] = M ′. Observe that a trivial dynamic program which computes all492

entries of T cannot provide fixed-parameter tractability of Temporal Matching when493

parameterized by ∆ and ν, because the corresponding table is simply too large. The crucial494

point of the dynamic program is that it is sufficient to fix for each i ∈ [ T∆ ] an i-complete495

familyMi of ∆-temporal matchings for G|[∆(i−1)+1,∆i] and then compute only the entries496

T [i,M ′], where M ′ ∈Mi.497

Kernelization lower bound. Lastly, we can show that we cannot hope to obtain a polynomial498

kernel for the parameter combination number n of vertices and ∆. In particular, this implies499

that, presumably, we also cannot get a polynomial kernel for the parameter combination ν500

and ∆, since ν ≤ n
2 .501

I Proposition 21 (?). Temporal Matching parameterized by the number n of vertices502

does not admit a polynomial kernel for all ∆ ≥ 2, unless NP ⊆ coNP/poly.503

5 Conclusion504

The following issues remain research challenges. First, on the side of polynomial-time505

approximability, improving the constant approximation factors is desirable and seems feasible.506

Beyond, lifting polynomial time to FPT time, even approximation schemes in principle seem507

possible, thus circumventing our APX-hardness result. Taking the view of parameterized508

complexity analysis in order to cope with NP-hardness, a number of directions are naturally509

coming up. For instance, based on our fixed-parameter tractability result for the parameter510

solution size, the following questions naturally arise:511

1. Is there a polynomial-size kernel for the solution size parameter k?512

2. Is there a faster algorithm or a matching lower-bound for the running time of Theorem 13?513

To enlarge the range of promising and relevant parameterizations, one may extend the514

parameterized studies to structural graph parameters combined with ∆ or the lifetime of the515

temporal graph. In particular, treedepth combined with ∆ is left open, since it is a “stronger”516

parameterization than in Theorem 19 but has an unbounded value in all known NP-hardness517

reductions.518
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