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a Caesarea Rothschild Institute for Computer Science, University of Haifa, Israel
b Department of Computer Science, Rochester Institute of Technology, NY, USA

Abstract

The longest path problem asks for a path with the largest number of vertices in a
given graph. The first polynomial time algorithm (with running time O(n4)) has
been recently developed for interval graphs. Even though interval and circular-arc
graphs look superficially similar, they differ substantially, as circular-arc graphs are
not perfect. In this paper, we prove that for every path P of a circular-arc graph G,
we can appropriately “cut” the circle, such that the obtained (not induced) interval
subgraphG′ of G admits a path P ′ on the same vertices as P . This non-trivial result
is of independent interest, as it suggests a generic reduction of a number of path
problems on circular-arc graphs to the case of interval graphs with a multiplicative
linear time overhead of O(n). As an application of this reduction, we present the first
polynomial algorithm for the longest path problem on circular-arc graphs, which
turns out to have the same running time O(n4) with the one on interval graphs,
as we manage to get rid of the linear overhead of the reduction. This algorithm
computes in the same time an n-approximation of the number of different vertex sets
that provide a longest path; in the case where G is an interval graph, we compute
the exact number. Moreover, our algorithm can be directly extended with the same
running time to the case where every vertex has an arbitrary positive weight.
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1 Introduction

The Hamiltonian path problem, i.e. the problem of deciding whether a given
graph contains a simple path that visits all its vertices, is one of the most
well known and well studied NP-complete problems [2], with numerous appli-
cations. The most natural optimization version of this problem is the longest
path problem, which has been also extensively studied over the past several
decades as it has a number of applications, e.g. in computational biology [3].

Very recently, prompted by an open problem statement in [10], a polyno-
mial time algorithm has been developed for interval graphs [4] with running
time O(n4). This algorithm has been followed by two independent algorithms
for the longest path problem on the much greater class of cocomparability

graphs (one with running time O(n4) [9] and one with running time O(n8) [5]).

Circular-arc graphs naturally extend interval graphs: interval graphs are
the intersection graphs of intervals on the real line, while circular-arc graphs
are intersection graphs of arcs on a circle. Such an intersection model is called
an interval (resp. circular-arc) representation. Although circular-arc graphs
look superficially similar to interval graphs, several combinatorial problems
(e.g. minimum coloring) behave very differently on these classes of graphs.
The main reason for that is that there are two ways to travel from one point
to another on a circle, as opposed to just one on the real line.

In this article we present the first polynomial algorithm for the longest path
problem on circular-arc graphs by showing that the problem reduces to the
case of interval graphs. The significance of our reduction comes from the fact
that a path in a circular-arc graph can have a spiral-like form and this makes it
hard to “cut” the circle to create an interval graph that maintains the length of
a longest path. Note here that also other problems on circular arc graphs have
been reduced to the interval graph case. However, for problems that search for
a set (e.g. an independent set) the reduction is fairly natural, since “cutting”
the circle does not destroy the set. On the other hand, “cutting” a sequence
(such as a path) breaks the sequence into many parts. In this article we
overcome this issue by showing that for every path P of a circular-arc graph G,
we can appropriately “cut” the circle, such that the obtained (not necessarily
induced) interval subgraph admits a path P ′ on the same vertices as P .

This result suggests a generic reduction of a number of path problems (such
as the Hamiltonian and the longest path problems) on circular-arc graphs to
the corresponding problem on interval graphs with a multiplicative linear time
overhead of O(n). However, by exploiting deeper the structure of circular-arc
graphs, we manage to get rid of this overhead for the longest path problem.
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In particular, we introduce the crucial notion of normal paths in circular-arc
graphs, which can be thought of as “monotone representatives” of all paths.
Indeed, we prove that every path P of a circular-arc graph G can be restruc-
tured as a normal path on the same vertices. Our dynamic programming algo-
rithm searches for a longest normal path in a circular-arc graph with n vertices
and has the same running time O(n4) as the one on interval graphs.

Our algorithm significantly simplifies the approach of [4], by eliminating
the “dummy vertices” that were essential in [4] 3 . This simplification allows
us to compute in the same time bound also the total number of longest nor-
mal paths in the given circular-arc representation, which constitutes an n-
approximation of the (exponentially large in worst case) number of vertex sets
that provide a longest path of G. In the case where G is an interval graph, this
computation is exact. The motivation for studying counting problems is that
they are often related to their sampling counterpart [6]. In particular, sam-
pling of paths is mainly used in a variety of heuristics, e.g. in motion planning.

Finally, in contrast to [4], all the above results can be directly extended
(with the same running time as well) to the case where every vertex is assigned
a positive weight. However, for simplicity of the presentation, we present here
only the unweighted case. For a full version of this article, see [8].

2 Reduction to the case of interval graphs

Let G = (V,E) be a circular-arc graph. We denote the arc Iv of a vertex v ∈ V

with endpoints �v and rv by Iv = [�v, rv]. We always consider the arcs in
the counter-clockwise direction, i.e. �v (resp. rv) is the first (resp. last) point
of [�v, rv] (also referred to as the left and right endpoint of [�v, rv], respec-
tively) when traveled in the counter-clockwise direction. The intuition for the
terminology comes from imagining standing on the arc and facing the center
of the circle; then �v is on the left and rv on the right endpoint of [�v, rv],
respectively. Observe here that, if uv ∈ E for two vertices u, v ∈ V , then
ru ∈ Iv or rv ∈ Iu (or both).

Given an interval graph G = (V,E) along with an interval representa-
tion R, we can define an ordering of V by sorting the intervals in R according
to their right endpoints. In such a right-end ordering π of an interval graph
G, we can define a total order <π in V such that u <π v for two vertices
u, v ∈ V if u appears to the left of v in π. Similarly we define the right-end

circular ordering π = (u0, u1, . . . , un−1) of the set V of vertices of a circular-
arc graph G = (V,E), which results after sorting the arcs of a circular-arc
representation R according to their right endpoints. Note that, in contrast

3 The algorithm of [4] has three phases, during which it adds these dummy vertices to
construct a second auxiliary graph.
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to interval graphs, we can not define for circular-arc graphs a total order <π

of V , since there are two ways to travel from one point to another on a circle.
For any i ∈ Z, we may refer in the following to the vertex u(i mod n) (resp. to
the points �u(i mod n)

and ru(i mod n)
of the circle) as ui (resp. as �ui

and rui
).

Furthermore, for every vertex ui of a circular-arc graph G, we define a (not
necessarily induced) interval subgraph Gui

obtained from G by “cutting” the
circle and the arcs of a circular-arc representation R of G appropriately, as
follows. Let ui be a vertex of G and Iui

= [lui
, rui

] be the corresponding arc
in R. Consider an arbitrary point xi of the circle between rui−1

and rui
in the

counter-clockwise direction. Then, replace in R every arc Iuj
= [luj

, ruj
] such

that xi ∈ Iuj
by the arc [xi, ruj

]; denote by Gui
the resulting interval graph.

Intuitively, Gui
is the interval graph obtained by “cutting” R immediately to

the left of rui
. We are now ready to state the main theorem of this section.

Theorem 2.1 Let G = (V,E) be a circular-arc graph, R be a circular-arc

representation of G, and P be any path of G. Then there exists a vertex

v ∈ V and a path P ′ with V (P ′) = V (P ), such that P ′ is also a path of the

interval graph Gv.

This structural theorem suggests a generic reduction of a number of path
problems on circular-arc graphs to the corresponding problem on interval
graphs. For instance, in order to solve the Hamiltonian or the longest path
problem on a circular-arc graph G = (V,E) with n vertices, it suffices to ex-
ecute n times any known algorithm on interval graphs, once for each interval
graph Gv, where v ∈ V . This implies an immediate reduction to the Hamil-
tonian and the longest path problems on interval graphs with a multiplicative
linear time overhead of O(n).

3 Computation and counting of longest paths in
circular-arc graphs

In this section we exploit deeper the structure of circular-arc graphs, in order to
get rid of this linear time overhead for the longest path problem. In particular,
we present the first polynomial algorithm (with running time O(n4)) that
computes a longest path of a circular-arc graph G = (V,E) with n vertices. In
order to present our algorithm, we introduce the crucial notion of a normal path

of a circular-arc graph (cf. Definition 3.3). Using our structural Theorem 2.1,
we are able to prove the basic property that for every path P of a circular-
arc graph G, there exists another path P ′ on the same vertices, which is
normal in G, cf. Theorem 3.4. Therefore, normal paths can be thought as
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“representatives” of several non-normal paths. Recall first the notion of a
normal path in an interval graph G, given a right-end ordering π of G [4]. A
similar notion of a normal path in interval graphs has appeared in [7] (referred
to as a straight path), as well as in [1].

Definition 3.1 ([4]) Let G = (V,E) be an interval graph and π be a right-end
ordering of G. A path P = (v1, v2, . . . , vk) of G is normal if v1 is the leftmost
vertex of V (P ) in π and vi is the leftmost vertex of N(vi−1)∩{vi, vi+1, . . . , vk}
in π, for every i = 2, . . . , k.

Lemma 3.2 (see [4, 7]) Let G = (V,E) be an interval graph, π be a right-

end ordering of G, and P be a path of G. Then, there exists a normal path P ′

of G such that V (P ′) = V (P ).

In the next definition we extend the notion of normal paths to the case of
circular-arc graphs. For more details, we refer to [8].

Definition 3.3 Let G = (V,E) be a circular-arc graph and π be a circular
right-end ordering of G. A path P of G is normal if P is a normal path in
the interval graph Gu for some vertex u ∈ V (with respect to the right-end
ordering σ of Gu induced by π).

Normal paths in circular-arc graphs behave similarly to normal paths in in-
terval graphs. Indeed, the next theorem follows by the structural Theorem 2.1
and by the results of [4]. For more details see [8].

Theorem 3.4 Let G = (V,E) be a circular-arc graph, π be a circular right-

end ordering of G, and P be a path of G. Then there exists a normal path P ′

of G with V (P ′) = V (P ).

We are now ready to state the two main theorems of this section. The
proofs of these theorems rely on the construction of certain subgraphs of G
(two subgraphs for every ordered pair of vertices), which we use by dynamic
programming to recursively construct longest normal paths.

Theorem 3.5 Let G = (V,E) be a circular-arc graph with n vertices and π

be a right-end circular ordering of G. Then, a longest path P of G and the

number N of all longest normal paths of G can be computed in O(n4) time.

Theorem 3.6 Let G = (V,E) be a circular-arc graph with n vertices and π

be a right-end circular ordering of G. Then, the number N computed in

Theorem 3.5 is an n-approximation of the number of sets S ⊆ V , such that

V (P ) = S for a longest path P of G. Furthermore, if G is an interval graph,

then the exact number of such sets S ⊆ V can be computed in O(n4) time.
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The bound of n for the approximation ratio of Theorem 3.6 is tight. For
instance, let the circular-arc graph G = (V,E) be an induced circle with n

vertices. The algorithm of Theorem 3.5 will return N = n, one for each
Hamiltonian path of G, while S = V is the only set of vertices that provides
a longest path of G. Moreover, as the following lemma states, there can be
exponentially many such different sets S ⊆ V in the worst case.

Lemma 3.7 There exists a circular-arc graph G = (V,E) with n vertices,

such that there exist 2O(n) sets S ⊆ V , such that V (P ) = S for a longest

path P of G.
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