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Abstract16

In this paper we consider the following total functional problem: Given a cubic Hamiltonian graph G17

and a Hamiltonian cycle C0 of G, how can we compute a second Hamiltonian cycle C1 6= C0 of G?18

Cedric Smith and William Tutte proved in 1946, using a non-constructive parity argument, that19

such a second Hamiltonian cycle always exists. Our main result is a deterministic algorithm which20

computes the second Hamiltonian cycle in O(n ·20.299862744n) = O(1.23103n) time and in linear space,21

thus improving the state of the art running time of O∗(20.3n) = O(1.2312n) for solving this problem22

(among deterministic algorithms running in polynomial space). Whenever the input graph G does not23

contain any induced cycle C6 on 6 vertices, the running time becomes O(n·20.2971925n) = O(1.22876n).24

Our algorithm is based on a fundamental structural property of Thomason’s lollipop algorithm,25

which we prove here for the first time. In the direction of approximating the length of a second26

cycle in a (not necessarily cubic) Hamiltonian graph G with a given Hamiltonian cycle C0 (where we27

may not have guarantees on the existence of a second Hamiltonian cycle), we provide a linear-time28

algorithm computing a second cycle with length at least n− 4α(
√
n+ 2α) + 8, where α = ∆−2

δ−2 and29

δ,∆ are the minimum and the maximum degree of the graph, respectively. This approximation30

result also improves the state of the art.31
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1 Introduction40

Graph Hamiltonicity problems are among the most fundamental problems in theoretical41

computer science. Problems related to Hamiltonian paths and Hamiltonian cycles have42

attracted a tremendous amount of work over the years, see for example the recent survey of43

Gould [14] and the references therein. Deciding whether a given graph has a Hamiltonian44
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21:2 Exact and Approximate Algorithms for Computing a Second Hamiltonian Cycle

cycle, i.e. a cycle that contains each vertex once, was among Karp’s 21 NP-hard problems [16].45

On the other hand, there are several exponential-time algorithms for computing a Hamiltonian46

cycle or a solution to the Traveling Salesman Problem (TSP), which is a direct generalization47

of the Hamiltonian cycle problem. The first algorithms for the problem were based on dynamic48

programming and required O(n22n) time [2, 15]. One of the next major improvements came49

decades later by Eppstein [11] who showed that a Hamiltonian cycle in a graph of degree at50

most three with n vertices can be computed in O(2 n
3 ) ≈ 1.26n time and linear space; at the51

same time the algorithm can also compute an optimum solution for TSP on such graphs.52

The algorithm of Eppstein works by forcing specific edges of the graph which must be part53

of any generated cycle; a variation of this algorithm can also enumerate all Hamiltonian54

cycles in a graph of degree at most three in O(2 3n
8 ) time [11]. After that, there has been55

a series of improvements on the running time for TSP and the Hamiltonian cycle problem56

in degree-three graphs. In this direction there are two different lines of research, one for57

algorithms using polynomial space and one for algorithms using exponential space. With58

respect to algorithms using polynomial space, the most recent results are an O(1.2553n)-time59

algorithm by Liśkiewicz and Schuster [18] and an O∗(20.3n) = O(1.2312n)-time algorithm by60

Xiao and Nagamochi [23], where O∗(·) suppresses polynomial factors. For bounded-degree61

graphs, it is known by Björklund et al. [5] that TSP can be solved in O∗((2 − ε)n) time,62

where ε > 0 only depends on the maximum degree of the input graph. Furthermore, for63

general graphs there exists a Monte Carlo algorithm for computing a Hamiltonian cycle with64

running time O∗(1.657n), given by Björklund [3]. By allowing exponential space, the running65

time for solving TSP on degree-three graphs can be improved further to O∗(1.2186n) [6],66

while a Hamiltonian cycle can also be detected in O∗(1.1583n) time using a Monte Carlo67

algorithm [8]. In our paper we focus on algorithms running in polynomial space.68

On the other hand, using a non-constructive parity argument, Cedric Smith and William69

Tutte [21] proved in 1946 that, for any fixed edge in a cubic (i.e. 3-regular) graph G, there70

exists an even (potentially zero) number of Hamiltonian cycles through this edge. Thus, the71

existence of a first Hamiltonian cycle guarantees the existence of a second one too, and this72

allows us to define the following total functional problem [19].73

Smith
Input: A cubic Hamiltonian graph G and a Hamiltonian cycle C0 of G.
Task: Compute a second Hamiltonian cycle C1 6= C0 of G.

74

It is easy to see that any algorithm A for the Hamiltonian cycle (decision) problem on75

graphs with maximum degree three can be trivially adapted to solve Smith as follows: for76

every edge e of the initial Hamiltonian cycle C0, run A on G\ e, i.e. on the graph obtained by77

removing e from G. Then, as a second Hamiltonian cycle C1 6= C0 always exists, at least one78

of these n calls of A will return such a cycle C1. That is, Smith can be solved in n ·T (A) time,79

where T (A) is the worst-case running time of A on input graphs with n vertices. Similarly,80

any algorithm A′ which computes the parity of the number of Hamiltonian cycles in a given81

graph can be also used as a subroutine to solve Smith. Such an algorithm A′, which runs82

in time O(1.619n) and in polynomial space, was given by Björklund and Husfeldt [4] for83

directed graphs, but the result carries over to undirected graphs as well.84

Thomason [20] was the first one who provided an algorithm, known as the lollipop85

algorithm, for Smith. This algorithm starts from the given Hamiltonian cycle C0 of G86

and creates a sequence of distinct Hamiltonian paths where the last of these Hamiltonian87

paths trivially augments to a different Hamiltonian cycle of G. This algorithm was actually88

used by Papadimitriou to place Smith within the complexity class PPA [19]. Although89
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Thomason’s lollipop algorithm is well-known for decades, the internal structure of the90

algorithm’s execution on cubic Hamiltonian graphs remains so far mostly unclear and not91

well understood. In an attempt to construct worst-case instances for the lollipop algorithm,92

Cameron proved in 2001 [7] that on a specific family of cubic graphs (which is a variation93

of the family introduced by Krawczyk [17]) the lollipop algorithm runs in time at least 2cn,94

for some constant c. Thus, the state of the art running time (using polynomial space) for95

computing a second Hamiltonian cycle in Smith is to use the best known algorithm for96

the Hamiltonian cycle problem in cubic graphs which runs in O∗(20.3n) [23]. However, a97

tantalizing longstanding question is whether the knowledge of the first Hamiltonian cycle C098

strictly helps to reduce the running time for computing a second Hamiltonian cycle C1. In99

this paper we provide evidence for the affirmative answer to this question.100

A relaxation of Smith is, given a Hamiltonian cycle C0, to efficiently compute a second101

cycle (different than C0) that is large enough. This relaxed problem becomes more meaningful102

for graphs with degrees larger than three, as it is well known that uniquely Hamiltonian103

graphs (i.e. graphs with a unique Hamiltonian cycle) exist, even when all vertices have degree104

three except two vertices which have degree four [10, 12]. For cubic Hamiltonian graphs,105

Bazgan, Santha, and Tuza [1] showed that the knowledge of the first Hamiltonian cycle C0106

algorithmically strictly helps to approximate the length of a second cycle. In fact, if C0 is107

not given along with the input, there is no polynomial-time constant-factor approximation108

algorithm for finding a long cycle in cubic graphs, unless P=NP. In contrast, if C0 is given,109

then for every ε > 0 a cycle C ′ 6= C0 of length at least (1− ε)n can be found in 2O(1/ε2) · n110

time, i.e. there is a linear-time PTAS for approximating the second Hamiltonian cycle [1].111

The main ingredient in the proof of the latter result is an O(n 3
2 logn)-time algorithm which,112

given G and C0, computes a cycle C ′ 6= C0 of length at least n− 4
√
n [1]. In wide contrast to113

cubic graphs, for graphs of minimum degree at least three, only existential proofs are known114

for a second large cycle. In particular, Girão, Kittipassorn, and Narayanan recently proved115

with a non-constructive argument that any n-vertex Hamiltonian graph with minimum degree116

at least 3 contains another cycle of length at least n− o(n) [13].117

Our contribution. In this paper we do the first attempt to understand the internal118

structure of the lollipop algorithm of Thomason [20]. Our main result in this direction119

embarks from the following trivial observation, which is not specific to Thomason’s algorithm120

or to cubic graphs.121

I Observation 1. Let G be a cubic Hamiltonian graph and let C0, C1 be any two different122

Hamiltonian cycles of G. Then the symmetric difference C0 ∆ C1 of the edges of the two123

cycles is a 2-factor, i.e. a collection of cycles in G.124

Although Observation 1 determines that the symmetric difference of any two Hamiltonian125

cycles C0 and C1 is a collection of cycles in G, it does not rule out the possibility that126

C0 ∆ C1 contains more than one cycle. Our first technical contribution is that, for any127

given Hamiltonian cycle C0, there exists at least one other Hamiltonian cycle C1 such that128

C0 ∆ C1 is connected, i.e. it contains exactly one cycle. More specifically, we prove that129

this holds for the particular Hamiltonian cycle C1 that is computed by Thomason’s lollipop130

algorithm when starting from the cycle C0. For our proof we simulate the execution of the131

lollipop algorithm by simultaneously assigning to every edge one of four distinct colors in a132

specific way such that four coloring invariants are maintained. Using this coloring procedure,133

an alternating red-blue path is maintained during the execution of the algorithm, which134

becomes an alternating red-blue cycle at the end of the execution. As it turns out, this135

alternating cycle coincides with the symmetric difference C0 ∆ C1.136
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This fundamental structural property of the lollipop algorithm (see Theorem 3 in Section 3)137

has never been revealed so far, and it enables us to design a novel and more efficient algorithm138

for detecting a second Hamiltonian cycle of G. This improves the current state of the art in the139

computational complexity of Smith among deterministic algorithms running in polynomial140

space (see Section 4). Instead of trying to generate the second Hamiltonian cycle C1 directly141

from C0 (as Thomason’s lollipop algorithm does), our new algorithm enumerates –almost– all142

alternating red-blue cycles, until it finds one alternating cycle D such that the symmetric143

difference C0 ∆ D is a Hamiltonian cycle of G (and not just a collection of cycles that144

collectively contain all vertices of G). During its execution, this algorithm iteratively has145

a choice between two different options for the next edge to be colored red, in which cases146

it branches to create two new instances. However, in order for the algorithm to achieve a147

strictly better worst-case running time than O∗(20.3n), it has to refrain from just always148

blindly branching to new instances. We are able to do this by identifying appropriate disjoint149

quadruples of edges, which we call ambivalent quadruples, and by deferring the choice for150

the colors of each of these quadruples until the very end. Then, at the last step of the151

algorithm we are able to choose their colors in linear time. That is, using the ambivalent152

quadruples we do not generate all possible alternating red-blue cycles but only a succinct153

representation of them. The running time of the algorithm that we eventually achieve is154

O(n ·20.299862744n) = O(1.23103n), while our algorithms runs in linear space. In the particular155

case where the input graph G contains no induced cycle C6 on 6 vertices, the running time156

becomes O(n · 20.2971925n) = O(1.22876n).157

In the direction of approximating the length of a second cycle on graphs with minimum158

degree δ and maximum degree ∆, we provide in Section 5 a linear-time algorithm for159

computing a cycle C ′ 6= C0 of length at least n− 4a(
√
n+ 2α) + 8, where α = ∆−2

δ−2 . On the160

one hand, this improves the results of [1] in two ways. First, it provides a direct generalization161

to arbitrary Hamiltonian graphs of degree at least 3. Second, our algorithm works in linear162

time in n for all constant-degree regular graphs; in particular it works in time O(n) on cubic163

graphs (see Corollary 14). On the other hand, we complement the results of [13] as we164

provide a constructive proof for their result in case where the ∆ and δ are o(
√
n)-factor away165

from each other. Formally, our algorithm constructs in linear time another cycle of length166

n− o(n) whenever ∆
δ = o(

√
n) (see Corollary 15).167

Due to space constraints, the missing proofs can be found in the full version of the168

paper [9].169

2 Preliminaries170

Given a graph G = (V,E), an edge between two vertices u and v is denoted by uv ∈ E, and171

in this case u and v are said to be adjacent in G. The neighborhood of a vertex v ∈ V is the172

set N(v) = {u ∈ V : uv ∈ E} of its adjacent vertices. A graph G is cubic if |N(v)| = 3 for173

every vertex v ∈ V . Given a path P = (v1, v2, . . . , vk) (resp. a cycle C = (v1, v2, . . . , vk, v1))174

of G, the length of P (resp. C) is the number of its edges. Furthermore, E(P ) (resp. E(C))175

denotes the set of edges of the path P (resp. of the cycle C). A path P (resp. cycle C) in G176

is a Hamiltonian path (resp. Hamiltonian cycle) if it contains each vertex of G exactly once.177

Every cubic Hamiltonian graph is referred to as a Smith graph. Given a Smith graph G and178

a Hamiltonian cycle C0 of G, an edge of G which does not belong to C0 is called a chord179

of C0, or simply a chord. The next theorem allows us to assume without loss of generality180

that the input Smith graph G is triangle-free.181

I Theorem 1. Let G = (V,E) be a Smith graph with n vertices that contains at least one182



A. Deligkas and G. B. Mertzios and P. G. Spirakis and V. Zamaraev 21:5

triangle, and let C0 be a Hamiltonian cycle of G. In linear time we can compute either a183

second Hamiltonian cycle C1 of G or a triangle-free Smith graph G′ with fewer vertices such184

that every Hamiltonian cycle in G bijectively corresponds to a Hamiltonian cycle in G′.185

Now we define the auxiliary notion of an X-certificate which is a pair of chords forming186

the shape of an “X” in a given Hamiltonian cycle. If an X-certificate exists then a second187

Hamiltonian cycle can be immediately computed.188

I Definition 2. Let G = (V,E) be a Smith graph with n vertices and let C0 = (v1, v2, . . . , vn)189

be a given Hamiltonian cycle of G. Let i, k ∈ {1, 2, . . . , n}, where k /∈ {i− 1, i, i+ 1} (here we190

consider all indices modulo n), such that vivk, vi+1vk+1 ∈ E. Then the pair {vivk, vi+1vk+1}191

of chords is an X-certificate of G.192

I Observation 2. Let G be a Smith graph with n vertices, let C0 = (v1, v2, . . . , vn) be a193

Hamiltonian cycle of G, and let the pair {vivk, vi+1vk+1} of chords be an X-certificate of G,194

where i < k. Then C1 = (v1, v2, . . . , vi, vk, vk−1, . . . , vi+1, vk+1, vk+2, . . . , vn) is a second195

Hamiltonian cycle of G.196

3 A connected symmetric difference of the two Hamiltonian cycles197

In this section we present the fundamental structural property of Thomason’s lollipop198

algorithm that the symmetric difference of the two involved Hamiltonian cycles is connected.199

For the sake of presentation, in this section we simulate Thomason’s lollipop algorithm [20]200

on an arbitrary given Smith graph G and, during this simulation, we assign colors to some of201

the edges of G. In particular, we assign to some edges of G one of the colors red, blue, black,202

and yellow. Note that the colors of the edges change in every step of the lollipop algorithm.203

Furthermore, every such (partial) edge-coloring of G uniquely determines one step of the204

lollipop algorithm on G that starts at a specific initial configuration.205

Thomason’s lollipop algorithm starts (at Step 0) with a Hamiltonian cycle C0 =206

(v1, v2, . . . , vn, v1); at this step we color all n edges of C0 black, while all other edges are207

colored yellow. Any Step i ≥ 1 of the lollipop algorithm is called non-final if the Hamiltonian208

path at this step does not correspond to a Hamiltonian cycle, i.e. v1 is not connected in G to209

the last vertex of this Hamiltonian path.210

Step 1 is derived from Step 0 by removing the edge v1vn from the cycle C0, thus obtaining211

the Hamiltonian path P1 = (v1, v2, . . . , vn). We color this removed edge v1vn red. Let212

N(vn) = {v1, vn−1, vk}. At Step 2, the lollipop algorithm continues by adding to the current213

Hamiltonian path P1 the edge vnvk, thus obtaining a “lollipop” in which vk keeps all its three214

incident edges, v1 keeps only the incident edge v1v2, and every other vertex keeps exactly two215

of its incident edges. Step 2 is completed by removing the edge vkvk+1 from P1, thus “breaking”216

the lollipop and obtaining the next Hamiltonian path P2 = (v1, v2, . . . , vk, vn, . . . , vk+1). It217

is important to note here that vk+1 is the vertex immediately after vertex vk in the path218

Pi−1, where we consider that the path starts at v1. At Step 2 we color the newly added edge219

vnvk blue and the removed edge vkvk+1 red, while the last vertex of the path P2 is vk+1. The220

algorithm continues towards Step 3 by adding to P2 the third edge incident to vk+1 (i.e. the221

unique incident edge vk+1v` different from the edges vkvk+1 and vk+1vk+2 that belonged to222

the previous path P1) and by removing again the other incident edge of v` that “breaks” the223

lollipop. Similarly to Step 2, in Step 3 we color the newly added edge vk+1v` blue and the224

newly removed incident edge of v` red.225

As the lollipop algorithm progresses, the (partial) coloring of the edges of G continues,226

according to the following rules at Step i ≥ 1. Recall that the Hamiltonian path at Step i ≥ 1227

MFCS 2020



21:6 Exact and Approximate Algorithms for Computing a Second Hamiltonian Cycle

is denoted by Pi. Furthermore, assume that during Step i, the path Pi is obtained by adding228

to Pi−1 the edge vxvy (where vx is the last vertex of Pi−1, thus building a lollipop) and by229

subsequently removing from Pi−1 the edge vyvz, thus breaking the constructed lollipop.230

The description of the edge-coloring procedure that we apply at every step of the lollipop231

algorithm can be formally given by four coloring rules, which are intuitively described as232

follows. At every step, the black edges are those edges of the initial cycle C0 which are still233

contained in the current Hamiltonian path, while the red edges are all the remaining edges234

of C0, i.e. those edges which do not belong to the current Hamiltonian path. The blue edges235

are those chords of C0 that belong to the current Hamiltonian path. Finally, the yellow236

edges are all the remaining chords of C0, i.e. those chords that do not belong to the current237

Hamiltonian path. Initially we start with the cycle C0 that contains n black edges and we238

remove one of them (the edge v1vn) which becomes red. At every step of the algorithm we239

build the new lollipop when all three incident edges of some vertex vy become either black or240

blue. This can happen either by adding a new (previously yellow) chord (thus coloring it241

blue) or by adding a new (previously colored red) C0-edge (thus coloring it black). Once we242

have build the new lollipop, we break it within the same step of the lollipop algorithm, either243

by removing a (previously colored black) C0-edge (thus coloring it red) or by removing a244

(previously colored blue) chord (thus coloring it yellow).245

As we prove in our main technical contribution in this section (see Theorem 3), the246

coloring of the edges proceeds such that the following main invariant is maintained:247

I Main Invariant. When the lollipop is built during any non-final Step i ≥ 2, the set of all248

red and blue edges form an alternating path of even length in G, starting at v1 with a red249

edge. Furthermore, at the final step (i.e. when we build a second Hamiltonian cycle instead250

of a lollipop) the set of all red and blue edges form an alternating cycle D in G.251

I Theorem 3. The Main Invariant is maintained at every (final or non-final) Step i ≥ 1 of252

Thomason’s lollipop algorithm. Thus, after the final step of the algorithm, the symmetric253

difference C0 ∆ C1 of C0 with the produced Hamiltonian cycle C1 is the alternating red-blue254

cycle D.255

The next corollary follows by the proof of Theorem 3, and will allow us to reduce the256

asymptotic running time of our algorithm in Section 4 by a factor of n.257

I Corollary 4. Let C0 be a given Hamiltonian cycle of a Smith graph G. Let (vi, vj , vk) be258

three consecutive vertices of C0. Then there exists a second Hamiltonian cycle C1 of G such259

that (i) C0 ∆ C1 is a cycle in G and (ii) either the edge vivj or the edge vjvk does not belong260

to C1.261

4 The alternating cycles’ exploration algorithm262

In this section we present our O(n · 2(0.3−ε)n)-time algorithm for Smith, where ε > 0 is a263

strictly positive constant. This algorithm improves the state of the art, as it is asymptotically264

faster than all known algorithms for detecting a second Hamiltonian cycle in cubic graphs265

(among algorithms running in polynomial space). Our algorithm is inspired by the structural266

property of Theorem 3. It starts from a designated vertex v1 and constructs an alternating267

cycle D of red-blue edges (with respect to C0, in the terminology of Section 3) such that the268

symmetric difference C0 ∆ D is a Hamiltonian cycle C1 of G. Equivalently, the algorithm269

constructs a second Hamiltonian cycle C1 such that the symmetric difference D = C0 ∆ C1270

is connected, i.e. one single cycle D of G in which every edge alternately belongs to C0 and271

to C1, respectively.272
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Before we present and analyze our algorithm, we first present some necessary definitions273

and notation. Let G be a Smith graph and C0 = (v1, v2, . . . , vn) be the initial Hamiltonian274

cycle of G. For every vertex vi of G, we denote by v∗i the unique vertex that is connected to275

vi through a chord. That is, whenever vivj is a chord, we have that vj = v∗i and vi = v∗j .276

Furthermore, every vertex vi is incident to exactly two C0-edges vi−1vi and vivi+1, where we277

consider all indices modulo n. The algorithm iteratively forces specific edges to be colored278

red (C0-edges not belonging to C1), black (C0-edges belonging to C1), blue (chords belonging279

to C1), and yellow (chords not belonging to C1). Initially, the algorithm starts by coloring280

the C0-edge v1vt red, where vt ∈ {v2, vn}, the chord vtv∗t blue, and the two C0-edges adjacent281

to the edge vtv1 black. That is, if vt = v2 (resp. if vt = vn) then the edges v1vn and v2v3282

(resp. v1v2 and vn−1vn) are initially black. During its execution, the algorithm maintains283

an alternating red-blue path D of even length (starting with the red edge v1vt and ending284

with a blue edge), until D eventually becomes an alternating cycle. Note that D can only285

become a cycle when we color the chord v1v
∗
1 blue. At every iteration the algorithm has286

(at most) two choices for the next red edge to be added to D, and thus it branches to (at287

most) two new instances of the problem, inheriting to both of them the choices of the forced288

(i.e. previously colored) edges made so far. At an arbitrary non-final step, let vy be the last289

vertex of the alternating path D, and let vxvy be the last (blue) edge of D. For each of the290

two C0-edges vy−1vy and vyvy+1 that are incident to vy, this edge is called eligible if it has291

not been forced (i.e. colored) at a previous iteration; otherwise it is called non-eligible. Here292

the term “eligible” stands for “eligible for branching”. We define the following operations;293

note that, once an edge has been assigned a color, it can never be forced to change its color.294

Blue-Branch: Whenever a chord vxvy is colored blue (where vy is the last vertex of the295

current red-blue alternating path D) and both C0-edges vyvy+1, vyvy−1 are eligible, we296

create two new instances I1 and I2, where I1 (resp. I2) has the edge vyvy+1 (resp. vyvy−1)297

colored red and the edge vyvy−1 (resp. vyvy+1) colored black.298

Blue-Force: Whenever a chord vxvy is colored blue (where vy is the last vertex of the299

current red-blue alternating path D) and exactly one of the two C0-edges vyvy+1, vyvy−1300

is eligible, we color this eligible C0-edge red.301

Red-Force: Assume that a C0-edge is colored red; note that this edge must be incident302

to a blue chord (i.e. its previous edge in the alternating path D). If its other incident303

chord is uncolored, we color it blue. Otherwise, if it has been previously colored yellow,304

we announce “contradiction”. Moreover, if this new red edge is incident to a C0-edge that305

is uncolored, we color this edge black.306

Black-Force: Assume that a C0-edge vivi+1 is colored black, where this edge is adjacent307

to the (previously colored) black C0-edge vi−1vi (resp. vi+1vi+2). If their commonly308

incident chord viv∗i (resp. vi+1v
∗
i+1) is so far uncolored, we color it yellow. Otherwise, if309

it has been previously colored blue, we announce “contradiction”.310

Yellow-Force: Assume that a chord viv∗i is colored yellow by the operation Black-Force311

(i.e. once both C0-edges vi−1vi, vivi+1 become black); furthermore let vk = v∗i . If at312

least one of the C0-edges vk−1vk, vkvk+1 has been previously colored red, we announce313

“contradiction”. Otherwise, for each of the C0-edges vk−1vk, vkvk+1, if this edge is314

uncolored, we color it black. (Note that, if the Yellow-Force operation does not announce315

“contradiction”, at the end of the operation all four C0-edges vi−1vi, vivi+1, vk−1vk, vkvk+1316

that are incident to the chord viv∗i are colored black.)317

The main idea of the algorithm is as follows. If both edges vyvy+1, vyvy−1 are eligible,318

the algorithm branches (in most cases) to two new instances I1 and I2, where I1 (resp. I2)319

has the eligible edge vyvy+1 (resp. vyvy−1) colored red. After the algorithm has branched320
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to these two new instances I1 and I2, it exhaustively applies the four forcing operations321

Blue-Force, Red-Force, Black-Force, and Yellow-Force, until none of them is applicable any322

more. The correctness of these forcing operations becomes straightforward by recalling our323

interpretation of the four colors, i.e. that the C0-edges belonging (resp. not belonging) to324

C1 are colored black (resp. red), while the chords belonging (resp. not belonging) to C1 are325

colored blue (resp. yellow).326

In some cases, the exhaustive application of the forcing rules in the two new instances327

I1, I2 may only force very few edges, which results in a large running time of the algorithm328

before we reach a state where D becomes an alternating red-blue cycle. To circumvent this329

problem, we refrain from just always applying the operation Blue-Branch. Instead, in some330

cases we are able to defer the choice of the forced color of specific edges until the very end.331

More specifically, in some cases we are able to determine specific sets of four edges (each332

containing three C0-edges and one chord) which build a C4 in G (i.e. a cycle of length 4)333

such that all colored edges in the two different instances I1, I2 are identical, apart from the334

colors of these four edges. Therefore all forcing operations in the subsequent iterations of335

the algorithm are identical in both these instances I1, I2, regardless of the specific colors336

of these four edges. Furthermore, as it turns out, every such a quadruple of edges can337

receive forced colors in exactly two alternative ways. We call every such a set an ambivalent338

quadruple of edges. In these few cases, where an ambivalent quadruple occurs, we do not339

apply the operation Blue-Branch; instead we continue our forcing and branching operations340

in the subsequent iterations of the algorithm by only starting from one of these instances341

(instead of starting from both instances). Then, at the final step of the algorithm, i.e. when342

D becomes an alternating red-blue cycle, we are able to decide which of the two alternative343

edge colorings is correct for each ambivalent quadruple of edges.344

The above crucial trick of not always applying the operation Blue-Branch allows us345

to avoid generating all possible red-blue alternating cycles, thus obtaining an exponential346

speed-up of the algorithm and beating the state of the art running time of O∗(20.3n) which is347

implied by the TSP-algorithm of [23]. For example, in one of the cases where an ambivalent348

quadruple occurs, if we would branch to two new instances we would only force 5 new349

edges. Thus, since G has 3
2n edges (as a cubic graph), forcing 5 edges at a time would350

imply the generation of at most O∗
(

2 3
2 ·

1
5n
)

= O∗
(
20.3n) instances in the worst case, each351

of them corresponding to a different red-blue alternating cycle. However, by deferring the352

exact coloring of all ambivalent quadruples until the end of the algorithm, we bypass this353

problem: instead of generating all possible red-blue alternating cycles, we create a succinct354

representation of them by only generating O
(
2(0.3−ε)n) alternating cycles (for some constant355

ε > 0), and then we determine from them the desired alternating cycle, i.e. the one which gives356

us a second Hamiltonian cycle as its symmetric difference with the given first Hamiltonian357

cycle C0. Now we define the operation Ambivalent-Flip, which appropriately changes at the358

end of the algorithm the already chosen colors of an ambivalent quadruple. Recall here that359

every ambivalent quadruple q contains exactly three C0-edges and one chord.360

Ambivalent-Flip: Let q be an ambivalent quadruple of (already colored) edges. For361

every C0-edge of q, if it has been colored red (resp. black), change its color to black362

(resp. red). Also, if the (unique) chord of q has been colored yellow (resp. blue), change363

its color to blue (resp. yellow).364

Before we proceed with the proof of our main technical lemmas in this section (see365

Lemmas 6 and 7), we first need to define the notions of a forcing path and a forcing cycle.366

Intuitively, a forcing path consists of a sequence of edges of G such that, during the execution367
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of the algorithm, once the first edge is forced to receive a specific color, every other edge of368

the path is also forced to receive some other specific color.369

I Definition 5 (forcing path and cycle). Let G be a Smith graph. At an arbitrary iteration of370

the algorithm, a path P = (vi1 , vi2 , . . . , vik ) of G is a forcing path starting at vertex vi1 if:371

each of its edges vi1vi2 , . . . , vik−1vik is yet uncolored and372

each of its first k− 1 vertices vi1 , . . . , vik−1 is incident to exactly one already colored edge,373

while its last vertex vik is incident to three yet uncolored edges.374

Similarly, a cycle C = (vi1 , vi2 , . . . , vik , vi1) of G is a forcing cycle if:375

each of its edges vi1vi2 , . . . , vik−1vik , vikvi1 is yet uncolored and376

each of its k vertices vi1 , . . . , vik is incident to exactly one already colored edge.377

In the next lemma (Lemma 6) we prove the correctness of our algorithm, and after378

that we prove our crucial technical Lemma 7 which specifies how the current instance379

is transformed in one iteration of the algorithm. The input instance I of the algorithm380

consists of a Smith graph G = (V,E), a Hamiltonian cycle C0 of G, the set Q of all381

ambivalent quadruples, and four disjoint sets of forced (i.e. colored) edges Red, Blue,382

Black, Y ellow. Initially the four sets of uncolored edges as well as the set Q are all383

empty. Given such an instance I = (G,C0, Q,Red,Blue,Black, Y ellow), we denote by384

U(I) = E \ {Red ∪Blue ∪Black ∪ Y ellow} be the set of all unforced (i.e. uncolored) edges385

in this instance. Furthermore we denote by W (I) the set of vertices which are not incident386

to any edge of Red∪Black in I; we refer to the vertices of W (I) as biased vertices, while all387

other vertices in V −W (I) are referred to as unbiased vertices.388

I Lemma 6. Let G = (V,E) be a Smith graph and C0 be a Hamiltonian cycle of G.389

Then, the algorithm correctly computes a second Hamiltonian cycle C1 of G on the input390

I = (G,C0, ∅, ∅, ∅, ∅, ∅).391

I Lemma 7. Let I = (G,C0, Q,Red,Blue,Black, Y ellow) be the instance at some iteration392

of the algorithm, where G = (V,E) is a Smith graph, and let D = Red ∪Blue be the current393

alternating red-blue path of even length. Then, within a constant number of iterations, either394

a “contradiction” is announced or the algorithm transforms the instance I either to a single395

instance I ′, where |U(I ′)| ≤ |U(I)| − 2, or to two instances I1 and I2, where one of the396

following is satisfied:397

1. |W (I1)|, |W (I2)| ≤ |W (I)| − 2 and |U(I1)|, |U(I2)| ≤ |U(I)| − 7,398

2. |W (I1)|, |W (I2)| ≤ |W (I)| − 2 and |U(I1)|, |U(I2)| ≤ |U(I)| − 9,399

3. |W (I1)|, |W (I2)| ≤ |W (I)| − 4 and |U(I1)|, |U(I2)| ≤ |U(I)| − 4,400

4. |W (I1)| ≤ |W (I)|−4, |U(I1)| ≤ |U(I)|−4, and |W (I2)| ≤ |W (I)|−4, |U(I2)| ≤ |U(I)|−6,401

5. |W (I1)| ≤ |W (I)|−2, |U(I1)| ≤ |U(I)|−9, and |W (I2)| ≤ |W (I)|−4, |U(I2)| ≤ |U(I)|−6,402

6. |W (I1)| ≤ |W (I)|−2, |U(I1)| ≤ |U(I)|−5, and |W (I2)| ≤ |W (I)|−4, |U(I2)| ≤ |U(I)|−8,403

7. |W (I1)| ≤ |W (I)|−2, |U(I1)| ≤ |U(I)|−3, and |W (I2)| ≤ |W (I)|−6, |U(I2)| ≤ |U(I)|−7,404

8. |W (I1)| ≤ |W (I)| − 2, |U(I1)| ≤ |U(I)| − 3, and405

|W (I2)| ≤ |W (I)| − 4, |U(I2)| ≤ |U(I)| − 10,406

9. |W (I1)| ≤ |W (I)|−2, |U(I1)| ≤ |U(I)|−3, and |W (I2)| ≤ |W (I)|−5, |U(I2)| ≤ |U(I)|−9.407

We are now ready to use the results of our technical Lemma 7 to derive an upper bound408

for the running time of the algorithm.409
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I Theorem 8. Let G be a Smith graph on n vertices with a given Hamiltonian cycle C0.410

Then the algorithm runs in O(n · 20.299862744n) = O(1.23103n) time and in linear space.411

If G does not contain any induced cycle C6 on 6 vertices, then the running time becomes412

O(n · 20.2971925n) = O(1.22876n).413

5 Efficiently computing another long cycle in a Hamiltonian graph414

In this section we prove our results on approximating the length of a second cycle on graphs415

with minimum degree δ ≥ 3 and maximum degree ∆. In [1], Bazgan, Santha, and Tuza416

considered the optimization problem of efficiently (i.e. in polynomial time) constructing a417

large second cycle different than the given Hamiltonian cycle C0 in a given Hamiltonian418

graph G. In particular they proved the following results.419

I Theorem 9 ([1]). Let G be an n-vertex cubic Hamiltonian graph and let C0 be a Hamiltonian420

cycle of G. Given G and C0, for every ε > 0, a cycle C ′ 6= C0 of length at least (1− ε)n can421

be found in time 2O(1/ε2) × n.422

I Theorem 10 ([1]). Let G be an n-vertex cubic Hamiltonian graph and let C0 be a Hamilto-423

nian cycle of G. There is an algorithm which, given G and C0, computes a cycle C ′ 6= C0 of424

length at least n− 4
√
n in time O(n3/2 logn).425

5.1 Notation and preliminary results426

Before we proceed to the main result of the section, we introduce some necessary notation427

and state preliminary results. Let G = (V,E) be a graph with a designated Hamiltonian428

cycle C0 = (v1, v2, . . . , vn, v1). Two chords of C0 are independent if they do not share an429

endpoint. The length of a chord vivj , with i < j, is defined as min{j − i, n+ i− j}. We say430

that two vertices u, v ∈ V are chord-adjacent if they are connected by a chord of G. Two431

independent chords e1 and e2 are called crossing if their endpoints appear in an alternating432

order around C0; otherwise e1 and e2 are called parallel.433

For x, y ∈ V , we denote by d(x, y) the length of the path from x to y around C0. Note434

that, in general, d(x, y) 6= d(y, x). We define the distance between two independent chords435

xy and ab as follows:436

1. if xy and ab are crossing, such that a lies on the path from x to y around C0, then437

dist(xy, ab) = min{d(x, a) + d(y, b), d(b, x) + d(a, y)};438

2. if xy and ab are parallel such that neither y nor b lie on the path from x to a around C0,439

then dist(xy, ab) = d(x, a) + d(b, y).440

In the proof of our main result of this section (see Theorem 13) we use the following two441

lemmas. The first one is a basic fact from graph theory and the second one is straightforward442

to check (see Figure 1 for an illustration).443

I Lemma 11. [[22], Exercise 3.1.29] Let G = (V,E) be a bipartite graph of maximum444

degree ∆. Then G has a matching of size at least |E|∆ .445

I Lemma 12. Let G = (V,E) be an n-vertex graph with a Hamiltonian cycle C0.446

(1) If G has a chord of length `, then G contains a cycle C ′ 6= C0 of length at least n− `+ 1.447

(2) If G has two crossing chords e1, e2 and dist(e1, e2) = d, then G contains a cycle C ′ 6= C0448

of length at least n− d+ 2.449

(3) If G has four pairwise independent chords e1, e2, f1, and f2 such that450

a. e1, e2 are parallel and f1, f2 are parallel,451
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b. ei and fj are crossing for every i, j ∈ {1, 2},452

c. dist(e1, e2) = d1 and dist(f1, f2) = d2,453

then G contains a cycle C ′ 6= C0 of length at least n− d1 − d2 + 4.454

(a) A short chord. (b) A pair of
crossing chords.

(c) Crossing pairs of
parallel chords.

Figure 1 An illustration of Lemma 12.

5.2 Long cycles in Hamiltonian graphs455

I Theorem 13. Let G = (V,E) be an n-vertex Hamiltonian graph of minimum degree δ ≥ 3.456

Let C0 = (v1, v2, . . . , vn, v1) be a Hamiltonian cycle in G and let ∆ denote the maximum457

degree of G. Then G has a cycle C ′ 6= C0 of length at least n − 4α(
√
n + 2α) + 8, where458

α = ∆−2
δ−2 . Moreover, given C0, such a cycle C ′ can be computed in O(m) time, where459

m = |E|.460

Proof. We start by showing the existence of the desired cycle C ′. Without loss of generality461

we assume that α <
√
n

2 , as otherwise any cycle C ′ 6= C0 in G satisfies the theorem.462

Furthermore, we assume that the length of every chord in G is at least 4α(
√
n+ 2α)− 6, as463

otherwise the existence of C ′ follows from Lemma 12 (1).464

Let q = α
√
n. We arbitrarily partition the vertices1 of the Hamiltonian cycle C0 into r465

consecutive intervals B0, B1, . . . , Br−1, such that r ∈
{⌊√

n
α

⌋
,
⌊√

n
α

⌋
+ 1
}
and bqc ≤ |Bi| ≤466

bqc+ 2α2 for every i ∈ {0, 1, . . . , r − 1}. It is a routine task to check that such a partition467

exists.468

For every i ∈ {0, 1, . . . , r− 1} we denote by Wi the set of vertices that are chord-adjacent469

to a vertex in Bi, and by Ei we denote the set of chords that are incident to a vertex in470

Bi. Furthermore, we denote by Hi the graph with vertex set Bi ∪Wi and edge set Ei.471

Since the length of every chord in G is at least 4α(
√
n + 2α) − 6, observe that for every472

i ∈ {0, 1, . . . , r − 1}, the set Wi is disjoint from Bi−1 ∪ Bi ∪ Bi+1 (where the arithmetic473

operations with indices are modulo r). The latter, in particular, implies that Hi is a bipartite474

graph with color classes Bi and Wi.475

Let i, j ∈ {0, 1, . . . , r − 1} be two distinct indices, we say that the intervals Bi and Bj
are matched if there exist two independent chords such that each of them has one endpoint
in Bi and the other endpoint in Bj . We claim that every interval Bi is matched to another
interval Bj for some j ∈ {0, 1, . . . , r − 1} \ {i− 1, i, i+ 1}. Indeed, by Lemma 11, graph Hi

has a matching Mi of size at least

bqc(δ − 2)
∆− 2 = bα

√
nc

α
>
α
√
n− 1
α

≥
√
n− 1 >

⌊√n
α

⌋
− 2 ≥ r − 3,

1 More formally, we partition the interval [1, n] into the consecutive intervals B0, B1, . . . , Br−1, which
immediately implies a partition of the vertices of the Hamiltonian cycle C0.
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and therefore, by the pigeonhole principle, there exists j ∈ {0, 1, . . . , r − 1} \ {i− 1, i, i+ 1}476

such that at least two edges in Mi have their endpoints in Bj , meaning that Bi is matched477

to Bj .478

Let σ : {0, 1, . . . , r− 1} → {0, 1, . . . , r− 1} be a function such that Bi is matched to Bσ(i),479

and denote by fi,1 and fi,2 some fixed pair of independent chords between Bi and Bσ(i). We480

observe that dist(fi,1, fi,2) ≤ 2
(
bqc+ 2α2 − 1

)
≤ 2α(

√
n+ 2α)− 2, as the endpoints of fi,1481

and fi,2 lie in the intervals Bi and Bσ(i) each of length at most bqc+ 2α2.482

Let now R be an auxiliary graph with a Hamiltonian cycle (x0, x1, . . . , xr−1) and the483

chord set being {xixσ(i) : i = 0, 1, . . . , r − 1}. Let xixj be a chord in R of the minimum484

length, where j = σ(i). Without loss of generality, we assume that i < j and j− i ≤ r+ i− j.485

Let xk be a vertex of R such that i < k < j and let s = σ(k). Since xixj is of minimum486

length, the chords xixj and xkxs are crossing, and hence each of fi,1 and fi,2 crosses both487

fk,1 and fk,2.488

Finally, if fi,1, fi,2 or fk,1, fk,2 are crossing, then by Lemma 12 (2) there exists a cycle489

C ′ 6= C0 of length at least n−2α(
√
n+ 2α) + 4. Otherwise, fi,1, fi,2 are parallel and fk,1, fk,2490

are parallel, and hence by Lemma 12 (3) there exists a cycle C ′ 6= C0 of length at least491

n− 4α(
√
n+ 2α) + 8, which proves the first part of the theorem.492

The above proof is constructive. We now explain at a high level how the proof can be493

turned into the desired algorithm. First, if α ≥
√
n

2 , then we output any cycle formed by494

a chord and the longer path of C0 connecting the endpoints of the chord. Otherwise, we495

partition the vertices of C0 into the intervals B1, . . . , Br−1 and we assign to each vertex the496

index of its interval. Clearly, this can be done in O(n) time. Next, we traverse the vertices497

of G along the cycle C0 and for every vertex v of an interval Bi we check the chords incident498

to v. If we encounter a chord f of length less than 4α(
√
n + 2α) − 6, then we output the499

cycle formed by f and the longer path of C0 connecting the endpoints of f . Otherwise, for500

the interval Bi we keep the information of how many and which vertices of Wi belong to501

other intervals Bj for j ∈ {0, 1, . . . , r− 1} \ {i− 1, i, i+ 1}. When we find an interval Bj that502

has at least two elements from Wi, we set σ(i) to j and proceed to the first vertex of the503

next interval Bi+1. By doing this, we also keep the information of the current shortest chord504

in the graph R (defined in the proof above). After finishing this procedure: (1) we have a505

function σ(·); (2) for every i ∈ {0, 1, . . . , r− 1} we know a pair fi,1, fi,2 of independent edges506

between Bi and Bσ(i); and (3) we know k such that xkxσ(k) is a minimum length chord in R.507

Clearly, this information is enough to identify the desired cycle in constant time. In total,508

we spent O(n) time to compute the partition of the vertices into the intervals and we visited509

every chord at most twice, which implies the claimed O(m) running time. J510

The next two corollaries are implied as immediate consequences of Theorem 13, and they511

provide immediate extensions of the results of [1] and [13], respectively.512

I Corollary 14. Let G = (V,E) be an n-vertex Hamiltonian δ-regular graph with δ ≥ 3, and513

let C0 be a Hamiltonian cycle of G. Then G has a cycle C ′ 6= C0 of length at least n− 4
√
n,514

which can be computed in O(δn) time.515

I Corollary 15. Let G = (V,E) be an n-vertex Hamiltonian graph of minimum degree516

δ ≥ 3. Let C0 be a Hamiltonian cycle of G and let ∆ denote the maximum degree of G. If517

∆
δ = o(

√
n), then G has a cycle C ′ 6= C0 of length at least n− o(n), which can be computed518

in O(m) time.519
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