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Abstract15

Spreading processes on graphs are a natural model for a wide variety of real-world phenomena,16

including information or behaviour spread over social networks, biological diseases spreading over17

contact or trade networks, and the potential flow of goods over logistical infrastructure. Often,18

the networks over which these processes spread are dynamic in nature, and can be modeled with19

graphs whose structure is subject to discrete changes over time, i.e. with temporal graphs. Here, we20

consider temporal graphs in which edges are available at specified timesteps, and study the problem21

of deleting edges from a given temporal graph in order to reduce the number of vertices (temporally)22

reachable from a given starting point. This could be used to control the spread of a disease, rumour,23

etc. in a temporal graph. In particular, our aim is to find a temporal subgraph in which a process24

starting at any single vertex can be transferred to only a limited number of other vertices using25

a temporally-feasible path (i.e. a path, along which the times of the edge availabilities increase).26

We introduce a natural deletion problem for temporal graphs and we provide positive and negative27

results on its computational complexity, both in the traditional and the parameterised sense (subject28

to various natural parameters), as well as addressing the approximability of this problem.29
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1 Introduction and motivation40

A temporal graph is, loosely speaking, a graph that changes with time. A great variety41

of modern and traditional networks can be modeled as temporal graphs; social networks,42

wired or wireless networks which change dynamically, transportation networks, and several43

physical systems are only a few examples of networks that change over time [31,38]. Due to44
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10:2 Deleting edges to restrict the size of an epidemic in temporal networks

its vast applicability in many areas, this notion of temporal graphs has been studied from45

different perspectives under various names such as time-varying [1,24,44], evolving [11,15,22],46

dynamic [14, 27], and graphs over time [33]; for a recent attempt to integrate existing47

models, concepts, and results from the distributed computing perspective see the survey48

papers [12–14] and the references therein. Mainly motivated by the fact that, due to causality,49

entities and information in temporal graphs can “flow” only along sequences of edges whose50

time-labels are increasing, most temporal graph parameters and optimization problems51

that have been studied so far are based on the notion of temporal paths (see Definition 252

below) and other path-related notions, such as temporal analogues of distance, diameter,53

reachability, exploration, and centrality [2–4,19,21,35,37]. Recently, non-path temporal graph54

problems have also been addressed theoretically, including for example temporal variations55

of coloring [36], vertex cover [5], and maximal cliques [30,49,50].56

Inspired by the foundational work of Kempe et al. [32], we adopt a simple model for57

such time-varying networks, in which the vertex set remains unchanged while each edge is58

equipped with a set of time-labels.59

I Definition 1 (temporal graph). A temporal graph is a pair (G,λ), where G = (V,E) is an60

underlying (static) graph and λ : E → 2N is a time-labelling function which assigns to every61

edge of G a set of discrete-time labels.62

For every edge e ∈ E in the underlying graph G of a temporal graph (G,λ), λ(e) denotes63

the set of time slots at which e is active in (G,λ).64

Unless stated otherwise, to simplify the presentation of our results we restrict our65

attention in this paper to temporal graphs in which each edge is assigned a singleton set by66

the time-labelling function, that is, in which each edge is active at exactly one time.67

Spreading processes on networks or graphs are a topic of significant research across68

network science [7], and a variety of application areas [28, 29], as well as inspiring more69

theoretical algorithmic work [23]. Part of the motivation for this interest is the usefulness70

of spreading processes for modelling a variety of natural phenomena, including biological71

diseases spreading over contact networks, and rumours or news (both fake and real) spreading72

over information-passing networks. The rise of quantitative approaches in modelling these73

phenomena is supported by the increasing number and size of network datasets that can be74

used as denominator graphs on which processes can spread (e.g. human mobility and contact75

networks [42], agricultural trade networks [39], and social networks [34]). Typically, a vertex76

in one of these networks represents some entity that has a state in the process (for example,77

being infected with a disease, or holding a belief), and edges represent contacts over which78

the state can spread to other vertices.79

Our work is partly motivated by the need to control contagion (be it biological or80

informational) that may spread over contact networks. Data specifying timed contacts that81

could spread an infectious disease are recorded in a variety of settings, including movements of82

humans via commuter patterns and airline flights [16], and fine-grained recording of livestock83

movements between farms in most European nations [40]. There is very strong evidence84

that these networks play a critical role in large and damaging epidemics, including the 200985

H1N1 influenza pandemic [10] and the 2001 British foot-and-mouth disease epidemic [28].86

Because of the key importance of timing in these networks to their capacity to spread disease,87

methods to assess the susceptibility of temporal graphs and networks to disease incursion88

have recently become an active area of work within network epidemiology in general, and89

within livestock network epidemiology in particular [9, 41,47,48].90

Here, similarly to [20], we focus our attention on deleting edges from (G,λ) in order91

to limit the temporal connectivity of the remaining temporal subgraph. To this end, the92
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following temporal extension of the notion of a path in a static graph is fundamental [32, 35].93

I Definition 2 (temporal path). A temporal path from u to v in a temporal graph (G,λ) is94

a path from u to v in G, composed of edges e0, e1, . . . , ek such that each edge ei is assigned a95

time t(ei) ∈ λ(ei), where t(ei) < t(ei+1) for 0 ≤ i < k.96

In many applications, it may be more realistic to generalise our notion of temporal paths97

so that the time between arriving at and leaving any vertex must fall within some fixed range.98

For example, in the context of disease transmission, an upper bound on the permitted time99

between entering and leaving a vertex might represent the time within which an infection100

would be detected and eliminated (thus ensuring no further transmission). On the other101

hand, a lower bound might represent the time between individuals being exposed to an102

infection and becoming infectious themselves. We formalise this as follows:103

I Definition 3. Let (G,λ) be a temporal graph and let α ≤ β ∈ N. An (α, β)-temporal path104

from u to v in (G,λ) is a path from u to v in G, composed of edges e0, e1, . . . , ek, such that each105

edge ei, 0 ≤ i < k, is assigned a time t(ei) from its image in λ, where α ≤ t(ei+1)− t(ei) ≤ β.106

Our contribution107

We consider a natural deletion problem for temporal graphs, namely Temporal Reachab-108

ility Edge Deletion (for short, TR Edge Deletion), as well as its optimisation version,109

and study its computational complexity, both in the traditional and the parameterised sense,110

subject to natural parameters. Given a temporal graph (G,λ) and two natural numbers k, h,111

the goal is to delete at most k edges from (G,λ) such that, for every vertex v of G, there112

exists a temporal path to at most h− 1 other vertices.113

In Section 3, we show that TR Edge Deletion is NP-complete, even on very restricted114

classes of graphs. We give two different reductions. The first shows that, assuming the115

Exponential Time Hypothesis, it is unlikely that we can improve significantly on a brute-force116

approach when considering how the running-time depends on the input size and the number117

of permitted deletions. The second demonstrates that TR Edge Deletion is para-NP-hard118

(i.e. NP-hard even for constant-valued parameters) with respect to each one of the parameters119

h, maximum degree ∆G, or lifetime of (G,λ) (i.e. the maximum label assigned by λ to any120

edge of G).121

In Section 4, we turn our attention to approximation algorithms for the optimisation122

version of the problem, Min TR Edge Deletion, in which the goal is to find a minimum-size123

set of edges to delete. We begin by describing a polynomial-time algorithm to compute an124

h-approximation to Min TR Edge Deletion on arbitrary temporal graphs, then show125

how similar techniques can be applied to compute a c-approximation on inputs in which the126

underlying graph has cutwidth c. We conclude our consideration of approximation algorithms127

by showing that in general there is unlikely to be a polynomial-time algorithm to compute128

any constant-factor approximation, even on temporal graphs of lifetime two.129

In Section 5, we consider exact FPT algorithms. Our hardness results show that the130

problem remains intractable when parameterised by h or ∆G alone; here we obtain an131

FPT algorithm by parameterising simultaneously by h, ∆G and the treewidth tw(G) of the132

underlying (static) graph G. In doing so, we demonstrate a general framework in which a133

celebrated result by Courcelle, concerning relational structures with bounded treewidth (see134

Theorem 14) can be applied to solve problems in temporal graphs.135

We note that all of our results can be applied, with minor modifications to the proofs, to136

the setting of (α, β)-temporal paths.137
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10:4 Deleting edges to restrict the size of an epidemic in temporal networks

2 Preliminaries138

Given a (static) graph G, we denote by V (G) and E(G) the sets of its vertices and edges,139

respectively. An edge between two vertices u and v of G is denoted by uv, and in this140

case u and v are said to be adjacent in G. Given a temporal graph (G,λ), where G =141

(V,E), the maximum label assigned by λ to an edge of G, called the lifetime of (G,λ), is142

denoted by T (G,λ), or simply by T when no confusion arises. That is, T (G,λ) = max{t ∈143

λ(e) : e ∈ E}. Throughout the paper we consider temporal graphs with finite lifetime T .144

Furthermore, we assume that the given labelling λ is arbitrary, i.e. (G,λ) is given with145

an explicit list of labels for every edge. Thus, the size of the input temporal graph (G,λ)146

is O
(
|V |+ T +

∑T
t=1 |Et|

)
= O(n + mT ): when we are considering temporal graphs in147

which edges are active at a single timestep, it suffices to only consider the space required to148

represent the single time assigned to each edge, and thus the size of the temporal graph is149

O(n+m log T ). We say that an edge e ∈ E appears at time t if t ∈ λ(e), and in this case we150

call the pair (e, t) a time-edge in (G,λ). Given a subset E′ ⊆ E, we denote by (G,λ) \ E′
151

the temporal graph (G′, λ′), where G′ = (V,E \ E′) and λ′ is the restriction of λ to E \ E′.152

We say that a vertex v is temporally reachable from u in (G,λ) if there exists a temporal153

path from u to v. Furthermore we adopt the convention that every vertex v is temporally154

reachable from itself. The temporal reachability set of a vertex u, denoted by reachG,λ(u), is155

the set of vertices which are temporally reachable from vertex u. The temporal reachability of156

u is the number of vertices in reachG,λ(u). Furthermore, the maximum temporal reachability157

of a temporal graph is the maximum of the temporal reachabilities of its vertices.158

In this paper we mainly consider the following problem.159

Temporal Reachability Edge Deletion (TR Edge Deletion)
Input: A temporal graph (G,λ), and k, h ∈ N.
Output: Is there a set E′ ⊆ E(G), with |E′| ≤ k, such that the maximum temporal
reachability of (G,λ) \ E′ is at most h?

160

Note that the problem clearly belongs to NP as a set of edges acts as a certificate (the161

reachability set of any vertex in a given temporal graph can be computed in polynomial162

time [3, 32, 35]). It is worth noting here that the (similarly-flavored) deletion problem for163

finding small separators in temporal graphs was studied recently, namely the problem of164

removing a small number of vertices from a given temporal graph such that two fixed vertices165

become temporally disconnected [26,51].166

3 Computational hardness167

The main results of this section demonstrate that TR Edge Deletion is NP-complete even168

under very strong restrictions on the input. Our first result shows that the trivial brute-force169

algorithm, running in time nO(k), in which we consider all possible sets of k edges to delete,170

cannot be significantly improved in general.171

I Theorem 4. TR Edge Deletion is W[1]-hard when parameterised by the maximum172

number k of edges that can be removed, even when the input temporal graph has lifetime 2.173

Moreover, assuming ETH, there is no f(k)τo(k) time algorithm for TR Edge Deletion,174

where τ is the size of the input temporal graph.175

The W[1]-hardness reduction of Theorem 4 also implies that the problem TR Edge176

Deletion is NP-complete, even on temporal graphs with lifetime at most two. We note177
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that, for temporal graphs of lifetime one, the problem is solvable in polynomial time: in178

this setting, the reachability set of each vertex is precisely its closed neighbourhood, so the179

problem reduces to that of deleting a set of at most k edges so that every vertex has degree180

at most h− 1 which is solvable in polynomial time [43, Theorem 33.4].181

We now demonstrate that TR Edge Deletion remains NP-complete on temporal graphs182

of lifetime two even if the underlying graph has bounded degree and the maximum permitted183

size of a temporal reachability set is bounded by a constant.184

I Theorem 5. TR Edge Deletion is NP-complete, even when the maximum temporal185

reachability h is at most 7 and the input temporal graph (G,λ) has:186

1. maximum degree ∆G of the underlying graph G at most 5, and187

2. lifetime at most 2.188

Therefore TR Edge Deletion is para-NP-hard with respect to each of the parameters h,189

∆G, and lifetime T (G,λ).190

Proof. As we mentioned in Section 2, the problem trivially belongs to NP. Now we give a191

reduction from the following well-known NP-complete problem [46].192

3,4-SAT
Input: A CNF formula Φ with exactly 3 variables per clause, such that each variable
appears in at most 4 clauses.
Output: Does there exists a truth assignment satisfying Φ?

193

Let Φ be an instance of 3, 4-SAT with variables x1, . . . , xn, and clauses C1, . . . , Cm.194

We may assume without loss of generality that every variable xi appears at least once195

negated and at least once unnegated in Φ. Indeed, if a variable xi appears only negated196

(resp. unnegated) in Φ, then we can trivially set xi = 0 (resp. xi = 1) and then remove from Φ197

all clauses where xi appears; this process would provide an equivalent instance of 3,4-SAT198

of smaller size. Now we construct an instance ((G,λ), k, h) of TR Edge Deletion which is199

a yes-instance if and only if Φ is satisfiable.200

vxi

xixi

2

11111

2

Figure 1 The gadget corresponding to variable xi. The number beside an edge is the time step
at which that edge appears. The bold edges are the ones we refer to as literal edges.

We construct (G,λ) as follows. For each variable xi we introduce in G a copy of the201

subgraph shown in Figure 1, which we call an xi-gadget. There are three special vertices in202

an xi-gadget: xi and xi, which we call literal vertices, and vxi which we call the head vertex203

of the xi-gadget. All the edges incident to vxi
appear in time step 1, the other two edges of204

MFCS 2019



10:6 Deleting edges to restrict the size of an epidemic in temporal networks

xi-gadget, which we call literal edges, appear in time step 2. Additionally, for every clause205

Cs we introduce in G: 1) a clause vertex Cs that is adjacent to the three literal vertices206

corresponding to the literals of Cs, and 2) one more vertex adjacent only to Cs, which we207

call the satellite vertex of Cs. All the new edges incident to Cs appear in time step 1. See208

Figure 2 for an illustration. Finally, we set k = n and h = 7.209

First recall that, in Φ, every variable xi appears at least once negated and at least once210

unnegated. Therefore, since every variable xi appears in at most four clauses in Φ, it follows211

that each of the two vertices corresponding to the literals xi, xi is connected to at most212

three clause gadgets. Therefore the degree of each vertex corresponding to a literal in the213

constructed temporal graph (G,λ) (see Figure 2) is at most five. Moreover, it can be easily214

checked that the same also holds for every other vertex of (G,λ), and thus ∆G,λ ≤ 5.215

We continue by observing temporal reachabilities of the vertices of (G,λ). A literal vertex216

can temporally reach only the corresponding clause vertices, and the two neighbours in its217

gadget. Since every literal belongs to at most 4 clauses in Φ, the temporal reachability of the218

literal vertex in (G,λ) is at most 7 (including the vertex itself). The head vertex of a gadget219

temporally reaches only the vertices of the gadget, hence the temporal reachability of any220

head vertex in (G,λ) is 8. Any other vertex belonging to a gadget can temporally reach only221

its unique neighbour in G and so has temporal reachability 2. Every clause vertex can reach222

only the corresponding literal vertices, their neighbours incident to the literal edges, and its223

own satellite vertex. Hence the temporal reachability of every clause vertex in (G,λ) is 8.224

Finally, every satellite vertex reaches only its neighbour, and thus its temporal reachability225

is 2. Therefore in our instance of TR Edge Deletion we only need to care about temporal226

reachabilities of the clause and head vertices.227

Now we show that, if there is a set E of n edges such that the maximum temporal228

reachability of the modified graph (G,λ) \ E is at most 7, then Φ is satisfiable. First, notice229

that since the temporal reachability of every head vertex is decreased in the modified graph230

and the number of gadgets is n, the set E contains exactly one edge from every gadget. Hence,231

as the temporal reachability of every clause vertex Cs is also decreased, set E must contain232

at least one literal edge that is incident to a literal neighbour of Cs. We now construct a233

truth assignment as follows: for every literal edge in E we set the corresponding literal to234

TRUE. If there are unassigned variables left we set them arbitrarily, say, to TRUE.235

Since E has one edge in every gadget, every variable was assigned exactly once. Moreover,236

by the above discussion, every clause has a literal that is set to TRUE by the assignment.237

Hence the assignment is well-defined and satisfies Φ.238

To show the converse, given a truth assignment (α1, . . . , αn) satisfying Φ we construct a239

set E of n edges such that the maximum temporal reachability of (G,λ) \ E is at most 7.240

For every i ∈ [n] we add to E the literal edge incident to xi if αi = 1, and the literal edge241

incident to xi otherwise. By the construction, E has exactly one edge from every gadget.242

Moreover, since the assignment satisfies Φ, for every clause Cs set E contains at least one243

literal edge corresponding to one of the literals of Cs. Hence, by removing E from (G,λ), we244

strictly decrease temporal reachability of every head and clause vertex. J245
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vxi

xixi

2

11111

2

vxj

xjxj

2

11111

2

vxk

xkxk

2

11111

2

Cs

111

1

Figure 2 A subgraph of a temporal graph corresponding to an instance of 3,4-SAT.

4 Approximability246

Given the strength of the hardness results proved in Section 3, it is natural to ask whether the247

problem admits efficient approximation algorithms for the following optimisation problem.248

Minimum Temporal Reachability Edge Deletion (Min TR Edge Deletion)
Input: A temporal graph (G,λ) and h ∈ N.
Output: A set X of edges of minimum size such that the maximum temporal reachability
of (G,λ) \X is at most h?

249

We begin with some more notation. If (G,λ) is a temporal graph and v ∈ V (G), we say250

that T is a reachable subtree for v if T is a subtree of G, v ∈ V (T ) and, for all u ∈ V (T )\{v},251

there is a temporal path from v to u in (T, λ′), where λ′ is the restriction of λ to the edges252

of T . We first observe that, if a temporal graph has maximum reachability more than h, we253

can efficiently find a minimal reachable subtree witnessing this fact.254

I Lemma 6. Let (G,λ) be a temporal graph, and h a positive integer. There is an algorithm255

running in polynomial time which, on input ((G,λ), h),256

1. if the maximum temporal reachability of (G,λ) is at most h, outputs “YES”;257

2. if the maximum temporal reachability of (G,λ) is greater than h, outputs a vertex v ∈ V (G)258

and a reachable subtree T for v where T has exactly h+ 1 vertices.259

Let h be a positive integer and (G = (V,E), λ) be a temporal graph. We say that edge260

set E′ ⊆ E is a valid deletion of (G = (V,E), λ) with respect to h if the maximum temporal261

reachability of (G = (V,E), λ)\E′ is at most h. Where h is clear from the context, we may262

not refer to it explicitly. We now make a simple observation about valid deletions.263

I Lemma 7. Let (G,λ) be a temporal graph and h a positive integer. Suppose that T is a264

reachable subtree for some v ∈ V (G) and that T has more than h vertices. If E′ ⊆ E(G) is a265

valid deletion with respect to h, then |E′ ∩ E(T )| ≥ 1.266

Using these two observations, we now describe our first approximation algorithm.267

I Theorem 8. There exists a polynomial-time algorithm to compute an h-approximation to268

Min TR Edge Deletion, where h denotes the maximum permitted reachability.269
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10:8 Deleting edges to restrict the size of an epidemic in temporal networks

Proof. Let ((G,λ), h) be an input instance of Min TR Edge Deletion, and let Eopt ⊆ E270

be a minimum-cardinality edge set such that (G,λ) \Eopt has temporal reachability at most271

h. It suffices to demonstrate that we can find in polynomial time a set E′ ⊆ E such that272

(G,λ) \ E′ has temporal reachability at most h, and |E′| ≤ h|Eopt|. We claim that the273

following algorithm achieves this.274

1. Initialise E′ := ∅.275

2. While (G,λ) has reachability greater than h:276

a. Find a pair (v, T ) such that v ∈ V (G), T is a reachable subtree for v and |T | = h+ 1.277

b. Add E(T ) to E′, and update (G,λ)← (G,λ) \ E′.278

3. Return E′.279

We begin by considering the running time of this algorithm. By Lemma 6 we can280

determine whether to execute the while loop and, if we do enter the loop, execute Step281

2(a), all in polynomial time. Steps 1 and 2(b) can clearly both be carried out in linear time.282

Moreover, the total number of iterations of the while loop is bounded by the number of edges283

in G, so we see that the algorithm will terminate in polynomial time.284

At every iteration, the algorithm removes exactly h edges, while the optimum deletion285

set Eopt must remove at least one of these h edges. Therefore, in total, we remove at most286

h|Eopt| edges. To complete the proof, we observe that, by construction, the identified set E′
287

is a valid deletion set. J288

We now demonstrate that we can improve on this general approximation algorithm when289

the underlying graph has certain useful temporal properties, in particular when the cutwidth290

is bounded.291

The cutwidth of a graph G = (V,E) is the minimum integer c such that the vertices of292

G can be arranged in a linear order v1, . . . , vn, called a layout, such that for every i with293

1 ≤ i < n the number of edges with one endpoint in v1, ..., vi and one in vi+1, ..., vn is at294

most c. Given a layout v1, v2, . . . , vn, we say that edges with one endpoint in v1, ..., vi and295

one in vi+1, ..., vn span vi, vi+1, and say that the maximum number of edges spanning a pair296

of consecutive vertices is the cutwidth of the layout. For any constant c, Thilikos et al. [45]297

give a linear-time algorithm to generate a layout of cutwidth at most c if one exists.298

We can use a similar argument to that in Theorem 8 to give a polynomial-time algorithm299

to compute a c-approximation to Min TR Edge Deletion, where c is the cutwidth of300

the input temporal graph. In addition to Lemma 7, we will also make use of the following301

definition and observation:302

Let G = (V,E) be a graph. We say that an edge set ES ⊆ E is an edge separator that303

separates G into GA = (VA, EA) and GB = (VB , EB) if, in GS = (V,E\ES) no vertex in VA304

is reachable from VB .305

I Lemma 9. Let h be a positive integer and (G = (V,E), λ) be a temporal graph with an306

edge separator ES that separates G into GA = (VA, EA) and GB = (VB , EB). If, for the307

given h, E′
A and E′

B are valid deletion sets for (GA, λ|EA
), (GB , λ|EB

), respectively, then308

E′
A ∪ E′

B ∪ ES is a valid deletion set for (G = (V,E), λ).309

We now describe a cutwidth approximation algorithm:310

I Theorem 10. There exists a polynomial-time algorithm to compute a c-approximation to311

Min TR Edge Deletion provided that a layout of cutwidth c is given.312

Proof (Sketch). Let ((G = (V,E), λ), h) be the input to Min TR Edge Deletion, and313

suppose that the layout v1, . . . , vn of V , with cutwidth c, is given. We claim that the following314

algorithm returns a c-approximation to Min TR Edge Deletion in polynomial time:315
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1. Initialise E′ := ∅.316

2. Initialise i := 0.317

3. While (G,λ) has reachability greater than h:318

a. Find the maximum j ∈ {i, . . . , n} such that the maximum reachability in the subgraph319

(G[{vi, . . . , vj}], λ|E(G[{vi,...,vj}])) is at most h.320

b. Add all edges that span vj , vj+1 to E′, and and update (G,λ)← (G,λ) \ E′.321

c. Update i← j + 1322

4. Return E′.323

J324

For any fixed cutwidth c, using the layout generation algorithm given by Thilikos et325

al. [45] and the algorithm described above, we can give a cutwidth-approximation to Min326

TR Edge Deletion for graphs with cutwidth c.327

I Corollary 11. There exists a polynomial-time algorithm to compute a c-approximation to328

Min TR Edge Deletion whenever the cutwidth of the input graph is bounded above by c.329

Note that as paths have cutwidth one, Corollary 11 gives us an exact polynomial-time330

algorithm for Min TR Edge Deletion on paths.331

We conclude this section by demonstrating that there is unlikely to be a polynomial-time332

algorithm to compute any constant factor approximation to Min TR Edge Deletion in333

general, even for temporal graphs of lifetime two.334

I Theorem 12. Unless P = NP , Min TR Edge Deletion cannot be approximated in335

polynomial time to within a factor of (1− o(1)) ln log2
√
n, where n is the number of vertices336

in the input temporal graph, even if the input temporal graph has lifetime two.337

5 An exact FPT algorithm338

In this section we show that TR Edge Deletion admits an FPT algorithm, when simul-339

taneously parameterised by h, ∆G, and tw(G), where ∆G is the maximum degree of G and340

tw(G) is the treewidth of G. It is worth noting that, although the parameters h and ∆G341

may at first seem to be large, parameterising only by these two parameters is not enough, as342

our results in the previous sections (see e.g. Theorem 5) imply that TR Edge Deletion is343

para-NP-hard, when simultaneously parameterised by h and ∆G.344

Our results in this section (see Theorem 16) illustrate how a celebrated theorem by345

Courcelle (see Theorem 14) can be applied to solve temporal graph problems, following346

a general framework that could potentially be applied to many other temporal problems347

as well: (i) we define a suitable family τ of relations (i.e. a suitable relational vocabulary)348

and a Monadic Second Order (MSO) formula φ (of length `) that expresses our temporal349

graph problem at hand; (ii) we represent an arbitrary input temporal graph (G,λ) with an350

equivalent relational structure A (of treewidth at most t); (iii) we apply Courcelle’s general351

theorem which solves our problem at hand in time linear to the size of the relational structure352

A, whenever both ` and t are bounded; that is, in time f(t, `) · ||A||.353

Here, we apply this general framework to the particular problem TR Edge Deletion354

(by appropriately defining τ , φ, and A) such that ` only depends on our parameter h, while355

t only depends on tw(G) and ∆G; this yields our FPT algorithm. Here, as it turns out, the356

size of A is quadratic on the size of the input temporal graph (G,λ). Before we present the357

main result of this section (see Section 5.2), we first present in Section 5.1 some necessary358

background on logic and on tree decompositions of graphs and relational structures. For any359

undefined notion in Section 5.1, we refer the reader to [25].360
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5.1 Preliminaries for the algorithm361

Treewidth of graphs362

Given any tree T , we will assume that it contains some distinguished vertex r(T ), which we363

will call the root of T . For any vertex v ∈ V (T ) \ {r(T )}, the parent of v is the neighbour364

of v on the unique path from v to r(T ); the set of children of v is the set of all vertices365

u ∈ V (T ) such that v is the parent of u. The leaves of T are the vertices of T whose set of366

children is empty. We say that a vertex u is a descendant of the vertex v if v lies somewhere367

on the unique path from u to r(T ). In particular, a vertex is a descendant of itself, and every368

vertex is a descendant of the root. Additionally, for any vertex v, we will denote by Tv the369

subtree induced by the descendants of v.370

We say that (T,B) is a tree decomposition of G if T is a tree and B = {Bs : s ∈ V (T )} is371

a collection of non-empty subsets of V (G) (or bags), indexed by the nodes of T , satisfying:372

(1) for all v ∈ V (G), the set {s ∈ T : v ∈ Bs} is nonempty and induces a connected subgraph373

in T ,374

(2) for every e = uv ∈ E(G), there exists s ∈ V (T ) such that u, v ∈ Bs.375

The width of the tree decomposition (T,B) is defined to be max{|Bs| : s ∈ V (T )} − 1, and376

the treewidth of G is the minimum width over all tree decompositions of G.377

Although it is NP-hard to determine the treewidth of an arbitrary graph [6], the problem378

of determining whether a graph has treewidth at most w (and constructing such a tree379

decomposition if it exists) can be solved in linear time for any constant w [8]; note that this380

running time depends exponentially on w.381

I Theorem 13 (Bodlaender [8]). For each w ∈ N , there exists a linear-time algorithm, that382

tests whether a given graph G = (V,E) has treewidth at most w, and if so, outputs a tree383

decomposition of G with treewidth at most w.384

Relational structures and monadic second order logic385

A relational vocabulary τ is a set of relation symbols. Each relation symbol R has an arity,386

denoted arity(R) ≥ 1. A structure A of vocabulary τ , or τ -structure, consists of a set A,387

called the universe, and an interpretation RA ⊆ Aarity(R) of each relation symbol R ∈ τ . We388

write a ∈ RA or RA(a) to denote that the tuple a ∈ Aarity(R) belongs to the relation RA.389

We briefly recall the syntax and semantics of first-order logic. We fix a countably infinite390

set of (individual) variables, for which we use small letters. Atomic formulas of vocabulary τ391

are of the form:392

1. x = y or393

2. R(x1 . . . xr),394

where R ∈ τ is r-ary and x1, . . . , xr, x, y are variables. First-order formulas of vocabulary τ395

are built from the atomic formulas using the Boolean connectives ¬,∧,∨ and existential and396

universal quantifiers ∃,∀.397

The difference between first-order and second-order logic is that the latter allows quanti-398

fication not only over elements of the universe of a structure, but also over subsets of the399

universe, and even over relations on the universe. In addition to the individual variables400

of first-order logic, formulas of second-order logic may also contain relation variables, each401

of which has a prescribed arity. Unary relation variables are also called set variables. We402

use capital letters to denote relation variables. To obtain second-order logic, the syntax of403

first-order logic is enhanced by new atomic formulas of the form X(x1 . . . xk), where X is404

k-ary relation variable. Quantification is allowed over both individual and relation variables.405
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A second-order formula is monadic if it only contains unary relation variables. Monadic406

second-order logic is the restriction of second-order logic to monadic formulas. The class of407

all monadic second-order formulas is denoted by MSO.408

A free variable of a formula φ is a variable x with an occurrence in φ that is not in the409

scope of a quantifier binding x. A sentence is a formula without free variables. Informally, we410

say that a structure A satisfies a formula φ if there exists an assignment of the free variables411

under which φ becomes a true statement about A. In this case we will write A |= φ.412

Treewidth of relational structures413

The definition of tree decompositions and treewidth generalizes from graphs to arbitrary414

relational structures in a straightforward way. A tree decomposition of a τ -structure A is a415

pair (T,B), where T is a tree and B a family of subsets of the universe A of A such that:416

(1) for all a ∈ A, the set {s ∈ V (T ) : a ∈ Bs} is nonempty and induces a connected subgraph417

(i.e. subtree) in T ,418

(2) for every relation symbol R ∈ τ and every tuple (a1, . . . , ar) ∈ RA, where r := arity(R),419

there is a s ∈ V (T ) such that a1, . . . , ar ∈ Bs.420

The width of the tree decomposition (T,B) is the number max{|Bs| : s ∈ V (T )} − 1. The421

treewidth tw(A) of A is the minimum width over all tree decompositions of A.422

We will make use of the version of Courcelle’s celebrated theorem for relational structures423

of bounded treewidth, which, informally, says that the optimization problem definable by424

an MSO formula can be solved in FPT time with respect to the treewidth of a relational425

structure. The formal statement is an adaptation of an analogous theorem (see Theorem 9.21426

in [18]) for the model-checking problem [17].427

I Theorem 14 ([18]). Let φ be an MSO formula with a free set variable E, and let A be a
relational structure on universe A, where tw(A) ≤ t. Then, given a width-t tree decomposition
of A, a minimum-cardinality set E ⊆ A such that A satisfies φ(E) can be computed in time

f(t, `) · ||A||,

where f is a computable function, ` is the length of φ, and ||A|| is the size of A.428

5.2 The FPT algorithm429

In this section we present an FPT algorithm for TR Edge Deletion when parameterised430

simultaneously by three parameters: h, tw(G) and ∆G. Our strategy is first, given an input431

temporal graph (G,λ), to construct a relational structure AG,λ whose treewidth is bounded432

in terms of tw(G) and ∆G. Then we construct an MSO formula φh with a unique free set433

variable E, such that AG,λ satisfies φh(E) for some E ⊆ A if and only if the maximum434

reachability of (G,λ) \E is at most h. Finally, we apply Theorem 14 to find the minimum435

cardinality of such a set E ⊆ A. If the minimum cardinality is at most k, then ((G,λ), k, h)436

is a yes-instance of the problem, otherwise it is a no-instance.437

We note that in the case we consider here in which each edge is active at a single timestep438

the construction below might be simplified slightly; however, in order to demonstrate the439

flexibility of this general framework, we choose to define a relational structure which would440

allow us to represent temporal graphs in which edges may be active at more than one timestep.441

Observe that Theorem 16 can immediately be adapted to this more general context if we442

replace ∆G by the maximum temporal total degree of the input temporal graph (i.e. the443

maximum number of time-edges incident with any vertex).444
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Given a temporal graph (G,λ), we define a relational structure AG,λ as follows. The445

ground set AG,λ consists of446

the set V (G) of vertices in G,447

the set E(G) of edges in G, and448

the set of all time-edges of (G,λ), i.e. the set Λ(G,λ) = {(e, t) | e ∈ E(G), t ∈ λ(e)}.449

On this ground set AG,λ, we define two binary relations R and L as follows:450

1. ((e1, t1), (e2, t2)) ∈ R if and only if the following conditions hold:451

a. (e1, t1), (e2, t2) ∈ Λ(G,λ);452

b. e1, e2 share a vertex in G;453

c. t1 < t2.454

2. (e, (e, t)) ∈ L if and only if (e, t) ∈ Λ(G,λ).455

First we show that the treewidth of AG,λ is bounded by a function of tw(G) and ∆G.456

I Lemma 15. The treewidth of AG,λ is at most (2∆G + 1)(tw(G) + 1)− 1.457

Using this, we now provide the main result of this section.458

I Theorem 16. TR Edge Deletion admits an FPT algorithm with respect to the combined459

parameters h, tw(G), and ∆G.460

6 Conclusions and open problems461

In this paper we studied the problem of removing a small number of edges from a given462

temporal graph (i.e. a graph that changes over time) to ensure that every vertex has a463

temporal path to at most h other vertices. The main motivation for this problem comes from464

the need to limit spreading processes on dynamic graphs. Such a graph could, for example,465

capture potentially-infectious contacts between individuals, and removing an edge would466

correspond to restricting or prohibiting contact between two entities in order to limit the467

spread of an epidemic.468

We show that our problem is W[1]-hard when parameterised by the maximum number k469

of edges that can be removed and, assuming the Exponential Time Hypothesis, we cannot470

significantly improve on the brute-force algorithm that considers all possible deletions sets471

of k edges. On the positive side, we prove that this problems admits a fixed-parameter472

tractable (FPT) algorithm with respect to the combination of three parameters: the treewidth473

tw(G) of the underlying graph G, the maximum allowed temporal reachability h, and the474

maximum degree ∆G of (G,λ). Moreover, we show that the latter two parameters combined475

(i.e. without the treewidth tw(G)) are not enough for deriving an FPT algorithm as the476

problem is para-NP-complete with respect to both of these parameters. On the other hand,477

it remains open whether this problem is FPT, when parameterised by treewidth tw(G),478

combined with only one of the other two parameters h and ∆G. We also consider the479

approximability of this problem, and give two polynomial-time approximation algorithms.480

The first computes an h-approximation on an arbitrary input graph, where h denotes the481

maximum allowable temporal reachability, and the second computes a c-approximation on482

graphs of cutwidth c. We complement these positive results by showing that no constant-483

factor approximation algorithm exists for general input graphs unless P = NP . A natural484

open problem is whether we can improve these approximation algorithms. Our lower bound485

rules out a (log log h)-factor approximation, but a significant improvement on our factor h486

approximation may be possible.487
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