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Abstract10

Broadcast is a central problem in distributed computing. Recently, Hussak and Trehan [PODC’19/11

STACS’20/DC’23] proposed a stateless broadcasting protocol (Amnesiac Flooding), which was12

surprisingly proven to terminate in asymptotically optimal time (linear in the diameter of the13

network). However, it remains unclear: (i) Are there other stateless terminating broadcast algorithms14

with the desirable properties of Amnesiac Flooding, (ii) How robust is Amnesiac Flooding with15

respect to faults?16

In this paper we make progress on both of these fronts. Under a reasonable restriction (oblivi-17

ousness to message content) additional to the fault-free synchronous model, we prove that Amnesiac18

Flooding is the only strictly stateless deterministic protocol that can achieve terminating broadcast.19

We achieve this by identifying four natural properties of a terminating broadcast protocol that20

Amnesiac Flooding uniquely satisfies. In contrast, we prove that even minor relaxations of any of21

these four criteria allow the construction of other terminating broadcast protocols.22

On the other hand, we prove that Amnesiac Flooding can become non-terminating or non-23

broadcasting, even if we allow just one node to drop a single message on a single edge in a single24

round. As a tool for proving this, we focus on the set of all configurations of transmissions between25

nodes in the network, and obtain a dichotomy characterizing the configurations, starting from which,26

Amnesiac Flooding terminates. Additionally, we characterise the structure of sets of Byzantine27

agents capable of forcing non-termination or non-broadcast of the protocol on arbitrary networks.28
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1 Introduction41

The dissemination of information to disparate participants is a fundamental problem in42

both the construction and theory of distributed systems. A common strategy for solving43

this problem is to “broadcast”, i.e. to transmit a piece of information initially held by one44

agent to all other agents in the system [1, 18, 21, 24, 25]. In fact, broadcast is not merely45

a fundamental communication primitive in many models, but also underlies solutions to46

other fundamental problems such as leader election and wake-up. Given this essential role in47

the operation of distributed computer systems and the potential volume of broadcasts, an48

important consideration is simplifying the algorithms and minimizing the overhead required49

for each broadcast.50

Within a synchronous setting, Amnesiac Flooding as introduced by Hussak and Trehan51

in 2019 [13, 14] eliminates the need of the standard flooding algorithm to store historical52

messages. The algorithm terminates in asymptotically optimal O(D) time (for D the diameter53

of the network) and is stateless as agents are not required to hold any information between54

communication rounds. The algorithm in the fault-free synchronous message passing model55

is defined as follows:56

▶ Definition 1. Amnesiac flooding algorithm. (adapted from [16]) Let G = (V, E)57

be an undirected graph, with vertices V and edges E (representing a network where the58

vertices represent the nodes of the network and edges represent the connections between the59

nodes). Computation proceeds in synchronous ‘rounds’ where each round consists of nodes60

receiving messages sent from their neighbours. A receiving node then sends messages to some61

neighbours which arrive in the next round. No messages are lost in transit. The algorithm is62

defined by the following rules:63

(i) All nodes from a subset of sources or initial nodes I ⊆ V send a message M to all of64

their neighbours in round 1.65

(ii) In subsequent rounds, every node that received M from a neighbour in the previous66

round, sends M to all, and only, those nodes from which it did not receive M . Flooding67

terminates when M is no longer sent to any node in the network.68

These rules imply several other desirable properties. Firstly, the algorithm only requires69

the ability to forward the messages, but does not read the content (or even the header70

information) of any message to make routing decisions. Secondly, the algorithm only makes71

use of local information and does not require knowledge of a unique identifier. Thirdly, once72

the broadcast has begun, the initial broadcaster may immediately forget that they started it.73

However, extending Amnesiac Flooding and other stateless flooding algorithms (such as74

those proposed in [27, 29, 4]) beyond synchronous fault-free scenarios is challenging. This is75

due to the fragility of these algorithms and their inability to build in complex fault-tolerance76

due to the absence of state and longer term memory. It has subsequently been shown that77

no stateless flooding protocol can terminate under moderate asynchrony, unless it is allowed78

to perpetually modify a super-constant number (i.e. ω(1)) of bits in each message [27]. Yet,79

given the fundamental role of broadcast in distributed computing, the resilience of these80

protocols is extremely important even on synchronous networks.81

Outside of a partial robustness to crash failures, the fault sensitivity of Amnesiac Flooding82

under synchrony has not been explored in the literature. This omission is further compounded83

by the use of Amnesiac Flooding as an underlying subroutine for the construction of other84

broadcast protocols. In particular, multiple attempts have been made to extend Amnesiac85

Flooding to new settings (for example routing multiple concurrent broadcasts [4] or flooding86

networks without guaranteed edge availability [29]), while maintaining its desirable properties.87
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However, none have been entirely successful, typically requiring some state-fulness. It has88

not in fact been established that any other protocol can retain all of Amnesiac Flooding’s89

remarkable properties even in its original setting. These gaps stem fundamentally from the90

currently limited knowledge of the dynamics of Amnesiac Flooding beyond the fact of its91

termination and its speed to do so. In particular, all of the existing techniques (e.g. parity92

arguments such as in [16] and auxiliary graph constructions such as in [28]) used to obtain93

termination results for Amnesiac Flooding are unable to consider faulty executions of the94

protocol and fail to capture the underlying structures driving terminating behaviour.95

96

We address these gaps through the application of novel analysis and by considering97

the structural properties of Amnesiac Flooding directly. By considering the sequence of98

message configurations, we are able to identify the structures underlying Amnesiac Flooding’s99

termination and use these to reason about the algorithm in arbitrary configurations. The100

resulting dichotomy gives a comprehensive and structured understanding of termination in101

Amnesiac Flooding. For example, we apply this to investigate the sensitivity of Amnesiac102

Flooding with respect to several forms of fault and find it to be quite fragile. Furthermore,103

we show that under reasonable assumptions on the properties of a synchronous network, any104

strictly stateless deterministic terminating broadcast algorithm oblivious to the content of105

messages, must produce the exact same sequence of message configurations as Amnesiac106

Flooding on any network from any initiator. We therefore argue that Amnesiac Flooding107

is unique. However, we show that if any of these restrictions are relaxed, even slightly,108

distinct terminating broadcast algorithms can be obtained. As a result of this uniqueness and109

simplicity, we argue that Amnesiac Flooding represents a prototypical broadcast algorithm.110

This leaves open the natural question: do there exist fundamental stateless algorithms111

underlying solutions to other canonical distributed network problems? Though memory can112

be essential or naturally useful in certain scenarios [5, 7, 8, 10, 17, 20], understanding what113

we can do with statelessness can help us push fundamental boundaries.114

1.1 Our Contributions115

In this work, we investigate the existence of other protocols possessing the following four116

desirable properties of Amnesiac Flooding:117

1. Strict Statelessness: Nodes maintain no information other than their port labellings118

between rounds. This includes whether or not they were in the initiator set.119

2. Obliviousness: Routing decisions may not depend on the contents of received messages.120

3. Determinism: All decisions made by a node must be deterministic.121

4. Unit Bandwidth: Each node may send at most one message per edge per round.122

Our main technical results regarding the existence of alternative protocols to Amnesiac123

Flooding are given in the next two theorems (reworded in Section 4).124

▶ Theorem 2 (Uniqueness of Amnesiac Flooding). Any terminating broadcast algorithm125

possessing all of Strict Statelessness, Obliviousness, Determinism and Unit Bandwidth126

behaves identically to Amnesiac Flooding on all graphs under all valid labellings for all source127

nodes.128

Note that the last theorem allows, but does not require, that nodes have access to unique129

identifiers labelling themselves and their ports. However, we enforce the condition that these130

identifiers, should they exist, may be drawn adversarially from some super set of [n + κ]131

where n is the number of nodes on the networks and κ = R(9, 8) where R(9, 8) is a Ramsey132

DISC 2025
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Number (≤ 2662)[22]. It is important to stress here that Theorem 2 holds even if the space133

of unique identifiers is only greater than n by an additive constant. In contrast to the last134

theorem, the next one does not assume that agents have access to unique identifiers.135

▶ Theorem 3 (Existence of relaxed Algorithms). There exist terminating broadcast algorithms136

which behave distinctly from Amnesiac Flooding on infinitely many networks possessing any137

three of: Strict Statelessness, Obliviousness, Determinism and Unit Bandwidth.138

We derive four of these relaxed algorithms which all build upon Amnesiac Flooding:139

1. Neighbourhood-2 Flooding: Strict Statelessness is relaxed and agents are given140

knowledge of their neighbours’ neighbours. This allows for distinct behaviour on networks141

of radius one as some agents are aware of the entire network topology.142

2. Random Flooding: Determinism is relaxed and agents are given access to a random143

coin. Agents randomly choose in each round whether to use Amnesiac Flooding or to144

forward messages to all of their neighbours.145

3. 1-Bit Flooding (Message Dependent): Obliviousness is relaxed and the source is146

allowed to include one bit of read-only control information in the messages. The source147

records in the message whether they are a leaf vertex, and if so agents perform Amnesiac148

Flooding upon receiving the message. Otherwise, agents perform a modified version149

where leaf vertices return messages.150

4. 1-Bit Flooding (High Bandwidth): Unit Bandwidth is relaxed and agents are allowed151

to send either one or two messages over an edge. This permits the same algorithm as the152

previous case by encoding the control information in the number of messages sent.153

We note that despite being a non-deterministic algorithm Random Flooding achieves154

broadcast with certainty and terminates almost surely in finite time.155

156

We also perform a comprehensive investigation of the fault sensitivity of Amnesiac157

Flooding in a synchronous setting. Through the use of a method of invariants, we obtain158

stronger characterizations of termination than were previously known, for both Amnesiac159

Flooding, and a subsequently proposed Stateless Flooding protocol [27]. This allows us to160

provide precise characterizations of the behaviour of Amnesiac Flooding under the loss of161

single messages, uni-directional link failure, and time bounded Byzantine failures. The above162

invariants may be of independent interest, beyond fault sensitivity, as they provide strong163

intuition for how asynchrony interferes with the termination of both Amnesiac Flooding164

and the Stateless Flooding proposed in [27]. The main technical result concerning fault165

sensitivity is a dichotomy characterizing the configurations, starting from which, Amnesiac166

Flooding terminates. As the rigorous statement of the result requires some additional167

notation and terminology, we will state it only informally here. We show in Theorem 15168

that, whether Amnesiac Flooding terminates when begun from a configuration or not, is169

determined exclusively by the parity of messages distributed around cycles and so-called170

faux-even cycles (FEC) (essentially pairs of disjoint odd cycles connected by a path, see171

section 5 for a full definition) within the graph. It follows from this characterisation that172

Amnesiac Flooding terminates from a configuration if and only if it the configuration can173

be reached from some sequence of multi-casts. Theorem 15 also implies the following three174

theorems which demonstrate the fragility of Amnesiac Flooding under three increasingly175

strong forms of fault. We give our fault model explicitly in Section 5.2.176

▶ Theorem 4 (Single Message Failure). If single-source Amnesiac Flooding experiences a177

single message drop failure for the message (u, v) then it fails to terminate if and only if178

either or both of the following hold:179
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uv is not a bridge180

uv lies on a path between vertex disjoint odd cycles181

Moreover, it fails to broadcast if and only if this is the first message sent along uv, uv is a182

bridge, and the side of the cut containing u does not contain an odd cycle.183

We also consider the possibility of a link/edge failing in one direction (or if we consider184

an undirected edge as two directed links in opposite directions, only one of the directed links185

fails).186

▶ Theorem 5 (Uni-directional link failure). For any graph G = (V, E) and any initiator set187

I ⊊ V there exists an edge e ∈ E such that a uni-directional link failure at e will cause188

Amnesiac Flooding to either fail to broadcast or fail to terminate when initiated from I on189

G. Furthermore, for any non-empty set of uni-directional link failures there exists v ∈ V190

such that, when Amnesiac Flooding is initiated at v, it will either fail to broadcast or fail to191

terminate.192

We, finally, consider a set of Byzantine nodes, who know the original message, are free to193

collude among themselves and may decide to forward this message in any arbitrary pattern194

to their neighbours. However, for a discussion of termination to be meaningful, we require195

that the nodes have Byzantine behaviour for only a finite number of rounds.196

▶ Theorem 6 (Byzantine Failure). If Amnesiac Flooding on G = (V, E) initiated from I ⊊ V197

experiences a weak Byzantine failure at J ⊆ V \ I, then the adversary can force:198

Failure to broadcast if and only if J contains a cut vertex set.199

Non-termination if and only if at least one member of J lies on either a cycle or a path200

between odd-cycles.201

Two natural corollaries of the Theorem 4 we wish to highlight here are: (i) on any network202

from any initial node there exists a single message, the dropping of which, will produce either203

non-termination or non-broadcast and (ii) dropping any message on a bipartite network will204

cause either non-termination or non-broadcast. The latter requires the additional observation205

that each edge is traversed by a message precisely once in a bipartite graph under Amnesiac206

Flooding. Similarly, Theorem 6 implies that any Byzantine set containing a non-leaf node207

on any network can force either non-termination or non-broadcast for Amnesiac Flooding208

with any initial set.209

210

1.2 Organisation of the paper211

The initial part of the paper presents the required technical and motivational background,212

statements of our results and a technical outline of the more interesting proofs. Due to213

space limitations detailed proofs are deferred to the appendices and the full version [2].214

Related work is presented in Section 2. Section 3 presents the model and notation required215

for the following technical sections. Uniqueness of the algorithm is discussed in Section 4.216

In subsection 4.1 we discuss the conditions under which the algorithm is unique and in217

subsection 4.2 we relax the conditions individually to derive additional algorithms. The proof218

of the uniqueness result is given in Appendix A. We present our work on the termination219

dichotomy for Amnesiac Flooding and its applications to fault sensitivity in Section 5 with220

the proof of the dichotomy given in Appendix B. We end with our conclusions and pointers221

to future work in Section 6.222

DISC 2025
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2 Related Work223

The literature surrounding both the broadcast problem and fault sensitivity is vast, and a224

summary of even their intersection is well beyond the scope of this work. Instead, we shall225

focus on work specifically concerning stateless, or nearly stateless broadcast.226

The termination of Amnesiac Flooding and its derivatives has been the focus of several227

works. In combination they provide the following result that Amnesiac Flooding terminates228

under any sequence of multi-casts, i.e.229

▶ Theorem 7 (Termination of Amnesiac Flooding (adapted from [15, 16, 28])). For G = (V, E)230

a graph and I1, ..., Ik ⊆ V a sequence of sets of initiator nodes, Amnesiac Flooding on G231

terminates when initiated from I1 in round 1, then I2 in round 2 and so forth.232

Two independent proofs of the algorithm’s termination have been presented, using either233

parity arguments over message return times [16] or axillary graph constructions [28]. The234

latter technique has further been used to establish tight diameter independent bounds on235

the termination of multicast using Amnesiac Flooding, complementing the eccentricity based236

bounds of [16]. The techniques we develop in this work, however, are more closely aligned237

with those of [15], as we exploit a similar notion to their "even flooding cycles" in our message238

path argument. In contrast to that work we focus on arbitrary configurations of messages,239

rather than just those resulting purely from a correct broadcast which allows us to obtain a240

stronger characterisation. Combining our techniques with the dual "reverse" flood introduced241

by [15], we are able to show the complement of Theorem 7, that only those configurations242

reachable from a sequence of multi-casts lead to termination.243

There have, further, been multiple variants of Amnesiac Flooding introduced. It was244

observed by [27] in a result reminiscent of the BASIC protocol proposed by [12], that245

sending a second wave of messages from a subset of the initial nodes reduces the worst246

case 2D + 1 termination time to the optimal D + 1 in all but a specific subset of bipartite247

graphs. We note that our fault sensitivity results extend naturally to this algorithm as248

well, as the same invariants apply to this setting. Beyond this, there have been several249

approaches to deal with the flooding of multiple messages simultaneously. In [15], the original250

authors of [13] show that under certain conditions termination can be retained, even when251

conflicting floods occur. Since then, two partially stateless algorithms have been proposed,252

both making use of message buffers and a small amount of local memory [29, 4]. We will253

not be directly concerned with these approaches, however, as we assume a single concurrent254

broadcast throughout. However, the mechanism employed in [29] should be highlighted as it255

rather cleverly exploits the underlying parity properties we identify as driving termination.256

Furthermore, as reduction to Amnesiac Flooding is used as a technique for proofs in many of257

these works, the comprehensive understanding of its termination we present here could prove258

a powerful tool for future work in these areas.259

While the robustness of Amnesiac flooding and its variants have been previously studied,260

this has been focused on two forms of fault. The first is the disappearance and reappearance261

of nodes and links. The termination of Amnesiac Flooding is robust to disappearance and262

vulnerable to reappearance [16]. We will observe that this is a necessary consequence of the263

invariants driving termination and their relation to cyclicity. In particular, the disappearance264

of nodes and links cannot form new cycles violating the invariant, whereas their reappearance265

can. A pseudo-stateless extension to Amnesiac Flooding has been proposed to circumvent266

this [29], implicitly exploiting the parity conditions of [16]. The second are faults that267

violate synchrony. Under a strong form of asynchrony, truly stateless and terminating268

broadcast is impossible [27]. However, the landscape under a weaker form of asynchrony269
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(namely, the case of fixed delays on communication links) is more fine-grained. Although270

termination results have been obtained for cycles, as well as the case of single delayed edges271

in bipartite graphs [16], there is no clear understanding of the impact of fixed channel delays.272

While we do not directly address this, we believe that techniques mirroring our invariant273

characterizations may prove fruitful in this area. To our knowledge, this work is the first to274

consider both the uniqueness of Amnesiac Flooding, as well as its fault sensitivity beyond275

node/link unavailability in a synchronous setting.276

Beyond Amnesiac Flooding and its extensions, the role of memory in information dis-277

semination is well studied in a variety of contexts. Frequently, stateful methods obtain278

faster termination time, such as in the phone-call model where the ability to remember one’s279

communication partners and prevent re-communication dramatically improves termination280

time and message efficiency [10, 5, 8]. Similarly, for bit dissemination in the passive com-281

munication model the addition of only log log n bits of memory is sufficient to break the282

near linear time convergence lower bound of [7] and achieve polylogarithmic time [17]. Even283

more strongly, a recent work [20] has shown that in the context of synchronous anonymous284

dynamic networks, stabilizing broadcast from an idle start is impossible with O(1) memory285

and even with o(log n) memory if termination detection is required. Despite this, low memory286

and even stateless broadcasts remain desirable [12]. The possibility of solving other canonical287

distributed computing problems beyond broadcast, in a stateless manner, remains intriguing.288

In this direction, various low memory stateful models have been proposed to handle more289

complex distributed problems e.g. the compact local streaming (CLS) model in [6] with290

deterministic solutions (routing, self-healing fault-tolerance etc.) and randomised solutions291

for distributed colouring in a similar model [11].292

Stateless broadcast schemes have been studied in a variety of contexts. To give an example,293

they are used in mobile ad hoc networks, which, due to the lower power and rapid movement294

of devices, see diminishing returns from maintaining information about the network [19].295

However, given a lack of synchronisation as well as the wish to avoid so-called broadcast296

storms [26], these techniques typically rely on either some form of global knowledge (such297

as the direction or distance to the initiator) or the ability to sample network properties298

by eavesdropping on communications over time [3, 23]. It should be noted however, that299

in contrast to many models, such as anonymous dynamic networks, radio networks and300

many mobile ad hoc networks, the typical framework for studying stateless flooding ("true301

statelessness" as defined by [27] restricting the model of [9]) permits the knowledge and302

distinguishing of neighbours in both broadcasting and receiving.303

3 Model and Notation304

Throughout this work we consider only finite, connected graphs on at least two nodes. We305

denote the set {1, ..., x} by [x] and R(r, s) the Ramsey number such that any graph on306

R(r, s) vertices contains either a clique on r vertices or an independent set on s vertices.307

In this work, we make use of a generic synchronous message passing model (as described308

in definition 1) with several additional assumptions based on the truly stateless model of309

[27]. Our agents are the nodes of a network and are able to communicate via messages310

of arbitrary size sent over the edges of this network. Computation occurs in synchronous311

rounds, consisting of three phases: (i) nodes receive messages sent in the previous round,312

(ii) nodes perform computation and (iii) nodes send messages to be delivered in the next313

round. Unless stated otherwise, agents do not suffer faults and no messages are lost. In314

addition to these standard assumptions, we enforce that the model is stateless, i.e. nodes315

DISC 2025
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cannot maintain any additional information between rounds (such as routing information,316

previous participation in the flood or even a clock value), cannot hold onto messages and317

can only forward, not modify the messages.318

Unless stated otherwise we do not assume that nodes have access to unique identifiers,319

however they have locally labelled ports that are distinguishable and totally orderable for320

both receiving and sending messages. When we do work with identifiers these identifiers are321

assumed to be unique, drawn from [|V | + κ] for κ > 0 a constant and assigned adversarially.322

We refer to such an assignment of IDs to a network as a labelling of the network and we323

identify the port label of a link leading to a node with the ID of that node. We further324

assume that individual nodes have access to arbitrarily powerful computation on information325

they do have.326

We are principally interested in the problem of broadcast, although we will occasionally327

consider the related multicast problem i.e. there are multiple initiators who may potentially328

wake up in different rounds with the same message to be broadcast. For a graph G = (V, E)329

and an initiator set I ⊆ V we say that a node is informed if it has ever received a message330

from a previously informed node (where initiators are assumed to begin informed). An331

algorithm correctly solves broadcast (resp. multicast) on G if for all singleton (resp. non-332

empty) initiator sets there exists a finite number of rounds after which all nodes will be333

informed. Unless specified otherwise, we assume that initiator nodes remain aware of their334

membership for only a single round. We say that an algorithm terminates on G = (V, E) if,335

for all valid initiator sets, there exists a finite round after which no further messages are sent336

(i.e. the communication network quiesces).337

Formally, for the message M , we denote a configuration of Amnesiac Flooding as follows:338

▶ Definition 8. A configuration of Amnesiac Flooding on graph G = (V, E) is a collection339

of messages/edges S ⊆ {(u, v)|uv ∈ E} where (u, v) ∈ S implies that in the current round u340

sent a message to v.341

Further, for H a subgraph of G, we denote by SH , S restricted to H. Below, we define342

the operator AI,G : 2V 2 → 2V 2 to implement one round of Amnesiac Flooding on the given343

configuration where agents in I receive the message from outside the network:344

▶ Definition 9. The operator AI,G : 2V 2 → 2V 2 is defined as follows: The set I of nodes345

initiate the broadcast. The message (u, v) ∈ AI,G(S) if uv ∈ E, (v, u) /∈ S and either346

∃w ∈ V : (w, u) ∈ S or u ∈ I.347

We will drop the subscript when G is obvious from context and I = ∅. Further, we adopt348

the standard convention of using Ak
I,G to mean AI,G applied k times. Theorem 7 in this349

notation can be expressed as follows:350

▶ Theorem 10 (Theorem 7 restated). For any graph G = (V, E), and any finite sequence
I1, ..., Ik ⊆ V , there exists m ∈ N such that

Am
∅,G(AIk,G(...AI1,G(∅))) = ∅.

4 Uniqueness351

In this section, we investigate broadcast protocols similar to Amnesiac Flooding and establish352

four desirable properties that Amnesiac Flooding uniquely satisfies in combination. On the353

other hand, we show that this result is sharp and that by relaxing any of these conditions354

one can obtain similar terminating broadcast protocols.355
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4.1 Uniqueness356

Our first major result concerns the uniqueness of Amnesiac Flooding. Given the algorithms357

surprising properties, a natural question is whether other broadcast algorithms exist main-358

taining these properties. Specifically, does there exist a terminating protocol for broadcast359

which obeys all of the following for all graphs and valid port labellings:360

1. Strict Statelessness: Nodes maintain no information other than their port labellings361

between rounds. This includes whether or not they were in the initiator set.362

2. Obliviousness: Routing decisions may not depend on the contents of received messages.363

3. Determinism: All decisions made by a node must be deterministic.364

4. Unit Bandwidth: Each node may send at most one message per edge per round.365

The answer is negative. We will actually prove the slightly stronger case, that this366

holds even if agents are provided with unique identifiers, are aware of the identifiers of their367

neighbours and that these identifiers have bounded size. Intuitively, the Strict Statelessness368

condition forces any broadcast protocol to make its forwarding decisions based only on the369

messages it receives in a given round. The combination of Obliviousness and Unit Bandwidth370

forces any protocol meeting the conditions to view messages as atomic. Finally, Determinism371

forces the protocol to make identical decisions every time it receives the same set of messages.372

Formally, any broadcast protocol meeting the four conditions must be expressible in the373

following form:374

▶ Definition 11. A protocol P = (b, f) is a pair of functions, an initial function b and a375

forwarding function f , where b : N × 2N → 2N and f : N × 2N × 2N → 2N. The protocol is376

implemented as follows. On the first round the initiator node s with neighbourhood N(s)377

sends messages to every node with a label in b(s, N(s)). On future rounds, each node u sends378

messages to every node with a label in f(u, N(u), S) where S is the set of labels of nodes u379

received messages from in the previous round. Further, we require that for any B ⊆ A ⊂ N380

b(u, A), f(u, A, B) ⊆ A and that f(u, A, ∅) = ∅, enforcing that agents can only communicate381

over edges of the graph and can only forward messages they have actually received respectively.382

In this setting, achieving broadcast is equivalent to every node receiving a message at least383

once and terminating in finite time corresponds to there existing a finite round after which384

no messages are sent. For example, Amnesiac Flooding is defined by the following functions:385

▶ Definition 12 (Amnesiac Flooding Redefinition). Amnesiac Flooding is defined by PAF =386

(bAF , fAF ) where, for all T ⊆ S ⊂ N, b(u, S) = S and f(u, S, T ) = S \ T if T ̸= ∅ and ∅387

otherwise.388

In order, to argue that Amnesiac Flooding is unique we require a notion of what it means389

for two broadcast algorithms to be distinct.390

▶ Definition 13. Let G = (V, E) be a graph and L ⊆ N a set of labels. We say that the pair391

(G, L) distinguishes the protocols P and Q if there exists a labelling of G using only labels392

from L such that for some initial vertex s, P and Q send messages over different sets of393

edges in the same round when implementing broadcast on G initiated from s. If there exists394

some pair (G, L) which distinguishes P and Q, we describe P and Q as distinct. Otherwise,395

we consider them the same protocol.396

For a protocol P = (b, f), a set S ⊆ N and a number k ∈ N we describe P as AF up to397

degree k on S if there is no graph G of maximum degree k such that (G, S) distinguishes398

P from PAF . From here on we will assume that all unique labels are drawn from [n + κ]399
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where κ is a sufficiently large constant and n is the number of nodes in the graph. As this400

only eliminates possible pairs distinguishing protocols from Amnesiac Flooding, this only401

strengthens the result. We obtain the following result, discussion and sketching the proof of402

which makes up the remainder of this section, provided κ ≥ R(9, 8).403

▶ Theorem 14. (Restatement of Theorem 2) Let P = (b, f) be a correct and terminating404

broadcast protocol defined according to definition 11, then P is not distinct from Amnesiac405

Flooding.406

Proof sketch for Theorem 14. The basic argument is to show that any correct and termi-407

nating broadcast protocol meeting the criteria is identical to Amnesiac Flooding. Our core408

technique is to construct a set of network topologies such that any policy distinct from409

Amnesiac Flooding fails on at least one of them. However, the behaviour of these alternative410

protocols can be quite complex, as can the relationship between the constraints enforced by411

different networks under different labellings. In order to circumvent this, we find very simple412

networks, and labellings there of, where any algorithm must behave like Amnesiac Flooding413

and then modify them to obtain new instances, with the property that only a small number414

of vertices may ever behave distinctly from Amnesiac Flooding. In these more manageable415

cases, we are able to then show that any distinct behaviour leads to an incorrect algorithm.416

More precisely, for any given protocol we derive a directed graph (separate from the network417

topology) describing its behaviour and demonstrate via a forbidden subgraph argument that418

any set of IDs of size R(x, 8) must contain a subset T of size at least x such that P is AF419

up to degree 1 on T . We take κ = R(9, 8) and show that there must then exist U ⊆ T420

containing at least 6 identifiers such that P is AF up to degree 2 on U . By constructing a421

set of small sub-cubic graphs, we are able to extend this to degree 3.422

These form the base case of a pair of inductive arguments. First, we construct a progression423

of sub-cubic graphs which enforce that if P is AF on [m] up to degree 3 it must be AF on424

[m + 1] up to degree 3. We then construct a family of graphs which have a single node of425

high-degree, while all other nodes have a maximum degree of 3 and so must behave as though426

running Amnesiac Flooding. These graphs permit a second inductive argument showing427

that this unique high degree node must also behave as if running Amnesiac Flooding. In428

combination, these two constructions enforce that P behaves like Amnesiac Flooding in all429

possible cases. The proof is given in appendix A. ◀430

4.2 Relaxing the constraints431

Despite the uniqueness established in the previous subsection, we are able to derive four432

relaxed algorithms distinct from Amnesiac Flooding each obeying only three of the four433

conditions.434

▶ Theorem 3 (Existence of relaxed Algorithms). There exist terminating broadcast algorithms435

which behave distinctly from Amnesiac Flooding on infinitely many networks possessing any436

three of: Strict Statelessness, Obliviousness, Determinism and Unit Bandwidth.437

The algorithms we obtain all build upon Amnesiac Flooding, and we believe illuminate438

the role of each of the four conditions in the uniqueness result by showing what they prevent.439

The algorithms for Obliviousness and Unit Bandwidth are presented together, as they differ440

only in how control information is encoded.441

Strict Statelessness: Several relaxations of this already exist, such as Stateless Flooding442

(the initiator retains information for one round) or even classical non-Amnesiac Flooding443

(nodes are able to retain 1-bit for one round). We present Neighbourhood-2 Flooding.444
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Nodes know the ID of their neighbours’ neighbours. The protocol behaves distinctly on445

star graphs, as the hub can determine the entire network topology.446

Obliviousness and Unit Bandwidth: 1-bit flooding. Nodes are allowed to send a single447

bit of read-only control information (in the message header or encoded in the number448

of messages sent) communicating whether the initiator is a leaf vertex. If it is, nodes449

implement Amnesiac Flooding, otherwise they use a different mechanism called Parrot450

Flooding (leaves bounce the message back) which always terminates when begun from451

a non-leaf vertex.452

Determinism: Random-Flooding. Nodes have access to one bit of randomness per453

round. Each round every node randomly chooses to implement Amnesiac Flooding or to454

forward to all neighbours. Random-Flooding is correct with certainty and terminates455

almost surely in finite time.456

Since each of these constitutes only a minor relaxation of the restrictions, we argue that the457

uniqueness of Amnesiac Flooding is in some sense sharp. We present the protocols fully and458

demonstrate their correctness and termination for each of these cases independently in the459

full version [2].460

5 Termination Dichotomy461

With the uniqueness of Amnesiac Flooding established, a greater understanding of its462

properties is warranted. In this section, we study the configuration space of Amnesiac463

Flooding and obtain an exact characterisation of terminating configurations. We then apply464

this to investigate the algorithm’s fault sensitivity.465

5.1 Obtaining a termination dichotomy466

In order to consider the fault sensitivity of Amnesiac Flooding, we need to be able to determine467

its behaviour outside of correct broadcasts. Unfortunately, neither of the existing termination468

proofs naturally extend to the case of arbitrary message configurations. Fortunately, we can469

derive an invariant property of message configurations when restricted to subgraphs that470

exactly captures non-termination, which we will call "balance" (see Definition 20).471

▶ Theorem 15. Let S be a configuration on G = (V, E) then there exists k ≥ 0 such that472

Ak
G(S) = ∅ if and only if S is balanced on G.473

In fact we obtain that not only do balanced configurations terminate, they terminate quickly.474

475

▶ Corollary 16. Let S be a balanced configuration on G = (V, E) then there exists k ≤ 2|E|476

such that Ak
G(S) = ∅.477

Intuitively, for the protocol not to terminate, we require that a message is passed around478

forever and since it is impossible for a message to be passed back from a leaf node the message479

must traverse either a cycle or system of interconnected cycles. As we will demonstrate in480

the rest of the section we need only consider systems of at most two cycles. Specifically, we481

introduce an invariant property determined by parity constraints on the number of messages482

travelling in each direction and their spacing around: odd-cycles, even cycles and what we483

will dub, faux-even cycles.484

▶ Definition 17. A faux-even cycle (FEC) is a graph comprised of either two node disjoint485

odd cycles connected by a path or two odd cycles sharing only a single node. We denote by486
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FECx,y,z the FEC with one cycle of length 2x+1, one of length 2z +1 and a path containing487

y edges between them. We emphasize that if y = 0 the two cycles share a common node and488

if y = 1 the two cycles are connected by a single edge.489

FECs get their name from behaving like even cycles with respect to the operator A. In order490

to capture this we can perform a transformation to convert them into an equivalent even491

cycle.492

▶ Definition 18. Let F = (V, E) be FECx,y,z. Then the even cycle representation of F493

denoted F2 is the graph constructed by splitting the end points of the interconnecting path in494

two, and duplicating the path to produce an even cycle. Formally, if the two cycles are of the495

form a0...a2xa0 and c0...c2zc0, with a0 and c0 connected by the path b1...by−1, we construct496

the following large even cycle from four paths: a0...a2xa−1d1...dy−1c−1c2z...c0by−1...b1a0.497

Here a−1 is a copy of a0, c−1 is a copy of c0, and the path d1...dy−1 is a copy of the path498

b1...by−1 (See figure 1). Note that if y = 0, a0 = c0 and so we do not include any nodes from499

b or d. Similarly, if y = 1, a0 and c0 are connected by a single edge, as are a−1 and c−1.500

There then exists a corresponding message configuration over the even cycle representation.501

Essentially (other than a few technical exceptions), this new configuration is the same as the502

old configuration but with two copies of each message on the path, one on each corresponding503

edge of the even cycle representation. Formally,504

▶ Definition 19. Let F = (V, E) be FECx,y,z and S a configuration of Amnesiac Flooding505

on F , the even cycle representation of S on F denoted S2,F is determined as follows. For506

each m ∈ S507

If m = (a2x, a0) (resp. (a0, a2x)) we add (a2x, a−1) (resp. (a−1, a2x)) to S2,F .508

If m = (bi, bj) for some i, j ∈ {1, ..., y − 1}, we add both (bi, bj) and (di, dj) to S2,F .509

If m = (c2z, c0) (resp. (c0, c2z)) we add (c2z, c−1) (resp. (c−1, c2z)) to S2,F .510

If m = (a0, b1) (resp. (b1, a0)) we add both (a0, b1) and (a−1, d1) (resp. (b1, a0) and511

(d1, a−1)) to S2,F .512

If m = (c0, by−1) (resp. (by−1, c0)) we add both (c0, by−1) and (c−1, dy−1) (resp. (by−1, c0)513

and (dy−1, c−1)) to S2,F .514

If m = (a0, c0) (resp. (c0, a0)) we add both (a0, c0) and (a−1, c−1) (resp. (c0, a0) and515

(c−1, a−1)) to S2,F .516

Otherwise we add m to S2,F .517

With this established we can now define the notion of balance.518

▶ Definition 20. A configuration S is balanced on G = (V, E) if for all subgraphs H of G519

one of the following holds:520

H is not a cycle or FEC.521

H is an odd cycle and SH contains an equal number of messages travelling clockwise and522

anti-clockwise on H.523

H is an even cycle and for any given message m in SH , there is an equal number of524

messages travelling clockwise and anti-clockwise on H such that their heads are an even525

distance from m’s.526

H is an FEC and S2,H is balanced on H2 (i.e. obeys the previous condition).527

With these definitions established, we can present the intuition behind the proof of Theo-528

rem 15.529

Sketch of the proof of Theorem 15. We first establish that balance, and therefore imbal-530

ance, is conserved by Amnesiac flooding and, as the empty configuration is balanced, Amnesiac531
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a1 a2x

a2 a2x-1

c1

c0

c2x
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a1

a2x-1

a2x

a0

b1

by-1

c0

c1

c2 c2x-1
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c-1

dy-1

d1

a-1

Figure 1 Left: An F ECx,y,z. Right: The corresponding even cycle representation. Please note
that this depiction only holds for y ≥ 2. For y = 1: a0 and c0 are connected directly by an edge in
both sub figures (as are a−1 and c−1). For y = 0: a0 = c0 and a−1 = c−1.

Flooding cannot terminate from any imbalanced configuration. For Amnesiac Flooding not532

to terminate it requires that some message travels around the communication graph and533

returns to the same edge, in the same direction. We show that if a configuration is balanced,534

the trajectory of any message can spend only a bounded number of consecutive steps on any535

given cycle or FEC. However, we can also show that any message’s trajectory which crosses536

the same edge twice in the same direction, must have spent a large number of consecutive537

steps on some cycle or FEC, and therefore could not have begun in a balanced configuration.538

Thus, Amnesiac Flooding started from any balanced configuration must terminate. The539

proof is given in appendix B. ◀540

5.2 Applying the termination dichotomy541

In this section, we apply the dichotomy to obtain a number of results.542

5.2.1 Extended Dichotomy543

While Theorem 15 provides a full dichotomy over the configuration space of Amnesiac544

Flooding and is easier to reason about than previous results, the definition is somewhat545

unwieldy. In this subsection, we demonstrate the effectiveness of the dichotomy and unify it546

with the existing results [15, 16, 28]. It has previously been observed that running Amnesiac547

Flooding backwards obtains another instance of multi-cast Amnesiac Flooding [15]. Formally,548

549

▶ Definition 21. Let G = (V, E) be a graph and S be a configuration of messages on G.550

Then S̄ = {(v, u)|(u, v) ∈ S}.551

The following lemma is similar to the argument made in Corollary 4.6. of [15].552

DISC 2025



17:14 Amnesiac Flooding: Easy to Break, Hard to Escape

▶ Lemma 22. Let G = (V, E) be a graph, S a configuration of messages on G and T = {u ∈553

V |∀v ∈ N(u) : (u, v) ∈ S} the set of source vertices. Then AT,G

(
A∅,G(S̄)

)
= S554

Which gives the following immediately via induction,555

▶ Lemma 23. Let G = (V, E) be a graph and S a configuration of messages on G. Then for556

any k ∈ N there exists a sequence I1, ..., Ik ⊆ V such that AI1,G

(
...

(
AIk,G

(
Ak

∅,G

(
S̄

)))
...

)
=557

S.558

Intuitively, this means that given any configuration S of Amnesiac Flooding, we can run it559

backwards through time to some earlier configuration S′. Further we obtain a sequence of560

vertex sets I1, ..., Ik that were sinks in the time-reversed process and therefore sources in the561

forwards process. We can therefore reconstruct S beginning from S′ via some sequence of562

fresh multi-casts from I1, ..., Ik. We will use this fact to obtain all configurations from which563

Amnesiac Flooding terminates (i.e. balanced configurations) from the empty configuration.564

The following lemma is immediate from the definition of balance (definition 20), as reversing565

the direction of all messages in a configuration does not affect its balance.566

▶ Lemma 24. S̄ is balanced on G if and only if S is balanced on G567

Putting it all together, we obtain the following extension of the dichotomy result, as well as568

the complement to Theorem 7.569

▶ Theorem 25. Let G = (V, E) be a graph and S a configuration of G, the following are all570

equivalent:571

1. ∃k ∈ N : Ak
∅,G(S) = ∅572

2. ∃k ∈ N, I1, ..., Ik ⊆ V : AIk,G (... (AI1,G(∅)) ...) = S573

3. S is balanced on G574

Proof. The equivalence of (1) and (3) follow immediately from Theorem 15. Further, we have575

that (2) implies (1) from Theorem 7. Now assume S is balanced, then by lemma 24, so is S̄.576

Thus by Theorem 15 there exists a finite k such that after k rounds Amnesiac flooding started577

from S̄ must terminate, i.e. Ak
∅,G(S̄) = ∅ . Therefore, by lemma 23 we have a sequence578

I1, ..., Ik ⊆ V such that S = AI1,G

(
...

(
AIk,G

(
Ak

∅,G

(
S̄

)))
...

)
= AI1,G (... (AIk,G(∅)) ...).579

Thus, we have (3) implies (2) and the result follows. ◀580

5.2.2 Fault Sensitivity581

In this work we consider three key forms of fault of increasing severity: message dropping,582

uni-directional link failure and weak-Byzantine failures. Intuitively, these correspond to a583

set of messages failing to send in a specific round, a link failing in one direction creating a584

directed edge and a set of nodes becoming transiently controlled by an adversary.585

More precisely, let S = (Si)i∈N be the sequence of actual message configurations on our586

network. We say that S is fault free for G = (V, E) if Si+1 = AG(Si) for all i ∈ N. Otherwise,587

we say it experienced a fault. In this case we say S has suffered from,588

Message dropping, if there exists T ⊆ V 2 and k ≥ 1 such that Sk+1 = A(Sk) \ T and for589

all i ≠ k, Si+1 = A(Si). This corresponds to all messages in T being dropped on round k.590

Uni-directional link failure, if there exists X ⊆ V 2 such that for all i ≥ 1, Si+1 = A(Si)\X.591

This corresponds to all oriented links in X failing.592
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Weak-Byzantine failure, if there exists Y ⊆ V such that for some k at least twice the593

diameter, for all i < k, Si+1 \ {(u, v)|u ∈ Y } = A(Si) \ {(u, v)|u ∈ Y }. This corresponds594

to a possible failure where an adversary determines the forwarding decisions of the nodes595

in Y until round k.596

Note that we refer to the Byzantine failures as weak, since they are transient and only597

interfere with the forwarding of the message, not its content. It is obvious to see that in a598

stateless setting there is no way to deal with a Byzantine fault that changes the message599

as there is no method to verify which message is authentic. Intuitively, in our setting,600

Weak-Byzantine agents may choose to send messages to an arbitrary set of neighbours in601

each round and they are all controlled by a single coordinated adversary. We say that a602

Weak-Byzantine adversary with control of a given set of nodes can force some behaviour if603

there exists any weak byzantine failure on that set of nodes producing the forced behaviour.604

We can now express our fault sensitivity results, the proofs of which we defer to the full605

version [2], and begin with an extreme case of single message dropping.606

▶ Theorem 4 (Single Message Failure). If single-source Amnesiac Flooding experiences a607

single message drop failure for the message (u, v) then it fails to terminate if and only if608

either or both of the following hold:609

uv is not a bridge610

uv lies on a path between vertex disjoint odd cycles611

Moreover, it fails to broadcast if and only if this is the first message sent along uv, uv is a612

bridge, and the side of the cut containing u does not contain an odd cycle.613

Thus, Amnesiac Flooding is extremely fault-sensitive with respect to message dropping.614

Secondly, considering uni-directional link failures we obtain the following.615

▶ Theorem 5 (Uni-directional link failure). For any graph G = (V, E) and any initiator set616

I ⊊ V there exists an edge e ∈ E such that a uni-directional link failure at e will cause617

Amnesiac Flooding to either fail to broadcast or fail to terminate when initiated from I on618

G. Furthermore, for any non-empty set of uni-directional link failures there exists v ∈ V619

such that, when Amnesiac Flooding is initiated at v, it will either fail to broadcast or fail to620

terminate.621

Finally for the weak-Byzantine case.622

▶ Theorem 6 (Byzantine Failure). If Amnesiac Flooding on G = (V, E) initiated from I ⊊ V623

experiences a weak Byzantine failure at J ⊆ V \ I, then the adversary can force:624

Failure to broadcast if and only if J contains a cut vertex set.625

Non-termination if and only if at least one member of J lies on either a cycle or a path626

between odd-cycles.627

6 Conclusions and Future Work628

In this paper, we prove a uniqueness result: Under standard synchronous message passing629

assumptions, any strictly stateless deterministic algorithm oblivious to the message content630

which solves terminating broadcast is indistinguishable from Amnesiac Flooding. We therefore631

argue due to both its uniqueness and simplicity, that Amnesiac Flooding is a fundamental632

or prototypical broadcast algorithm. We formalise the four properties required for this633

uniqueness to hold, and show that by relaxing each individually one can obtain other correct634

and terminating broadcast algorithms, of which we present several. These present the635

following natural questions: To what extent does Amnesiac Flooding represent a “minimal”636
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broadcast algorithm? Are there identifiable families of algorithms solving terminating637

broadcast with a subset of these restrictions? Are any of these independent of (i.e. not638

derivatives of) Amnesiac Flooding? Lastly, we are not aware of any similar uniqueness639

results in algorithms literature, restricting the number of successful algorithms to just one640

(or even to small finite numbers) - can this result stimulate a study into enumerating distinct641

algorithms for solutions to interesting problems? Note that our model of true statelessness642

rules out trivial extensions to algorithms such as delaying algorithm start or holding messages643

for a certain count. Are there reasonable ways to define distinctiveness i.e. discard ‘trivial’644

extensions to algorithms in less restrictive models than ours?645

We also obtain an understanding of the structural properties of Amnesiac Flooding. In646

particular, we study its sensitivity to single message drops, uni-directional link failures, and647

weak byzantine collusion, showing it can easily become non-terminating or non-broadcasting648

under such conditions. This is perhaps surprising, as statelessness is frequently associated649

with fault tolerance, such as in the self stabilizing setting. A reasonable interpretation of650

Theorem 15, however, is that Amnesiac Flooding, while locally stateless, depends heavily on651

a distributed “meta-state” contained in the configuration of sent messages. This suggests it652

is unlikely that any minor modification of Amnesiac Flooding will resolve its fragility without653

depending on an entirely different mechanism for termination. In support of this, we note654

that of the four alternatives presented in the proof of Theorem 3, only Random-Flooding is655

meaningfully more robust (and will in fact terminate from any configuration in finite time656

almost surely). Nevertheless, we contend that further exploration of stateless algorithms such657

as Amnesiac Flooding, their properties and related models are important for both theory658

and practice of distributed networks.659
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Appendix763

In this section we present the proof of our main technical results, i.e. theorems 14 and 15, as764

well as their constituent lemmas. Due to space constraints, we defer the proofs of all such765

lemmas as well as the correctness of all other results to the full version. Additionally, we will766

refer to Amnesiac Flooding as simply AF throughout.767

A Proof of Uniqueness (Theorem 14)768

We begin with the following observations, which follow from case analysis on paths:769

▶ Observation 26.770

1. For all ∅ ≠ S ⊂ N and u ∈ N, b(u, S) ̸= ∅. Otherwise no new nodes will be informed after771

the first round, violating correctness.772

2. For u, v, w ∈ N, f(v, {u, w}, {u}) ∈ {{w}, {u, w}}. Otherwise, if uvw is a subsequence of773

a path the message started from u will not reach w.774

3. For u, v ∈ [κ], if f(u, {v}, {v}) = v then f(v, {u}, {u}) = ∅. Otherwise P will not775

terminate on the two node path labelled with u and v.776

4. For u, v, w ∈ [κ] if f(u, {v}, {v}) = {v} and f(w, {v}, {v}) = {v} then f(v, {u, w}, {u}) =777

{u, w} and/or f(v, {u, w}, {w}) = {u, w}. Additionally, f(v, {u, w}, {u, w}) = ∅. Other-778

wise the protocol would not terminate on the three node path with labels uvw.779

Via a combinatorial argument followed by case analysis, we show the existence of a small set780

of labels which when restricted to, P behaves identically to AF for subcubic graphs.781

▶ Lemma 27. There exists T ⊆ [κ] such that |T | ≥ 6 and P is AF on T up to degree 3.782

With this established we can extend the result to all labels via an inductive argument.783

Essentially, we are able to construct a sequence of graph-labelling pairs that grow to include784

all labels with all possible neighbourhoods. At each state, by our constructions and the785

induction hypothesis, at most four vertices may behave distinctly from AF. By careful786

construction, however, any distinct behaviour will lead to an incorrect algorithm.787

▶ Lemma 28. P is AF on N up to degree 3.788

The main proof makes use of a very similar argument. However, we now construct graphs789

with one high degree vertex, while the rest all have degree at most three and so behave790

indistinguishably from AF.791

Proof of Theorem 14. By lemma 28 we have that P is AF up to degree 3 on N. It is792

immediate that for all u ∈ N, S ⊂ N b(u, S) = S as u could be at the centre of a star with793

one of its leaves replaced by a long path. In this case, u will never receive a message again794

and so must send to all of its neighbours in the first round.795

For an arbitrary label u ∈ N and degree k ∈ N we can show that u must behave as though796

it is implementing AF if it is at a node of degree k. Take S ⊂ N such that |S| = k, we will797

show that for all non-empty T ⊆ S, f(u, S, T ) = S \ T via induction on the size of T .798

Beginning with our base case. If u receives from a single neighbour we can construct a799

pair of graphs (special cases of our general construction) that enforce the AF policy. Consider800

the tree in figure 2a, if u receives a message from v it must send to at least x1, ..., xk−1 as801

u will receive messages in only a single round. This follows as the rest of tree will use AF802

policies and since the graph is bipartite each node will be active only once. Thus, the only803
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two options for f(u, S, {v}) are S or S \ {v}. Now consider the second graph from figure 2a804

and a broadcast initiated at u. We can see that if f(u, S, {v}) = S then the cycle and u will805

simply pass a message back and forth forever. Thus, f(u, S, {v}) = S \ {v}.806

We now generalize this construction and perform our induction. Assume that for any non-807

empty subset T of S of size at most q, f(u, S, T ) = S \T . For the sake of contradiction assume808

that this is not true for V where T ⊂ V ⊆ S with |V | = q + 1. Thus either f(u, S, V ) ∩ V ̸= ∅809

or f(u, S, V ) ∪ V ̸= S.810

In the first, case let W = V ∩ f(u, S, V ), and for some ordering label the elements of W :811

w1, ..., wr and the elements of V \ W : v1, ..., vq+1−r.812

If W = V , then we construct a communication graph as in figure 2b and consider a broadcast813

initiated at u. The messages will travel in only one direction through the binary tree and so814

when w∗ receives a message it will be the only message on the graph. This message will then815

be passed onto the cycle where it will circulate, before being passed back onto the binary816

tree in the opposite direction. Again the policy of all nodes other than u is indistinguishable817

from AF and so when u next receives a message, it receives from all of V and these are the818

only messages (outside of the path from c to d). We therefore have a repeating sequence as819

u will forward the message back to every node of W .820

If W ⊂ V , then we construct a slightly different communication graph (see figure 2c). This821

graph instead partitions S into W , V \ W and S \ V , with separate binary trees for W822

and V \ W . Here we consider a broadcast initiated at a. When u first receives a message823

it will receive the message from all identifiers in V and there will be no other messages824

in the body of the graph. Then by assumption u will send a message to some portion of825

{l1, ..., lk−q−1} as well as all of W . The leaves will not respond and messages will travel826

only upwards in the binary tree with W as leaves and w∗ as its root. Thus, a will next827

receive a message only from w∗ and will send to v∗ and c. Until u receives a message the828

only messages in the body of the graph will be those travelling down the binary tree with829

V \ W as its leaves and they will all arrive at u simultaneously. Thus, u will then receive830

only from V \ W . Since |V \ W | < |V | = q + 1 by assumption u must make the same831

decision as AF and so will send messages to all of W and its leaves. This creates a repeating832

sequence and so we have non-termination. Thus, since f(u, S, V ) ∩ V ̸= ∅ always allows us833

to construct a communication graph with a non-terminating broadcast, we must have that834

f(u, S, V ) ∩ V = ∅. Now consider the communication graph from figure 2c again but with W835

an arbitrary strict subset of V . Since f(u, S, V ) does not contain any id from V and none836

of {l1, ..., lk−q−1} will send a message back to u, u sends messages in only a single round.837

Therefore, u must send to all of {l1, ..., lk−q−1} otherwise some would not receive the message838

(and so the protocol would not implement broadcast correctly). Thus, f(u, S, V ) = S \ V839

and so we have our contradiction.840

Therefore, if f(u, S, T ) = S \ T for S ⊂ N where |S| = k and all T ⊆ S such that841

0 < |T | ≤ q, then f(u, S, V ) = S \ V for V ⊂ S such that |V | = q + 1. Thus, by induction842

since we know this to be true for all u and S when q = 1 it must hold for all q ≤ |S|.843

This gives our claim, as for every u and k we can apply this argument and show that for844

any k ∈ N, P is AF up to degree k. ◀845

B Proof of the Dichotomy (Theorem 15)846

We begin by showing that (im)balance is preserved by the operation of AF,847

▶ Lemma 29. For any set of initiators I ⊆ V and configuration S on G = (V, E), AI,G(S)848

is balanced if and only if S is balanced.849
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(a) Two graphs used in the proof of theorem 14 to determine identifiers’ response to
receiving only a single message. Left: A tree that forbids sending to too small a subset
of neighbours. Right: A graph that forbids sending a message to all neighbours.
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a c
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l1

lk-r
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d
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(b) A graph used in the proof of theorem 14. The graph consists of a star centred
at u with its leaves partitioned into two sets of size r and k − r. The leaves in the
set of size r are connected by a binary tree of depth ⌈log2 r⌉ with root w∗ to a cycle,
which in turn is connected to a path.

u

v1

vq-r+1

w1

w2

vq-r

v2

wr-1

wr

v*

a c

d

w*

l1

lk-q-1

(c) A graph used in the proof of Theorem 14. The graph consists of a star centred at
u with its leaves partitioned into three sets of size r, q − r + 1 and k − q − 1. The
leaves in the first two sets are then each joined to a single node labelled by w∗ and
v∗ respectively by binary trees of depth ⌈log2 q⌉. The single nodes are connected to
a node labelled a which is the start of a path ac...d.

Figure 2 Note that in all figures the path c...d contains all identifiers in [m] not used in labelling
the body of the graph, where m is the largest id in the whole labelling.
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This gives the following immediate corollary, as ∅ is trivially balanced.850

▶ Corollary 30. If S is imbalanced on G = (V, E), then for all k > 0, Ak
G(S) ̸= ∅.851

This gives us the forward direction of Theorem 15. For the other direction, we need the852

notion of message paths and their recurrence.853

▶ Definition 31. A message m = (v0, v1) in configuration S ⊂ V 2 has a message path v0v1.854

We define the rest of its paths recursively, i.e. m = (v0, v1) has a message path v0...vk+1 from855

S on G if:856

v0v1...vk is a message path of m in S857

The message (vk, vk+1) exists in Ak
G(S)858

We say that a message m = (v0, v1) is recurrent on G = (V, E) from S if m has a message859

path of the form v0v1...v0v1 on G from S.860

We obtain the following property relating message paths and termination immediately.861

▶ Lemma 32. Let S be a non-empty configuration on G = (V, E) such that Ak
G(S) = S,862

then S contains a recurrent message on G.863

The following theorem connects the notions of imbalance and recurrence.864

▶ Theorem 33. Let S be a configuration on G, S is imbalanced if and only if it contains a865

recurrent message.866

Since, all non-terminating configurations must either contain a recurrent message or eventually867

reach a configuration with a recurrent message, we have that all balanced configurations868

must terminate. Thus, Theorem 15 follows immediately from Theorem 33. The forward869

direction is itself immediate from Corollary 30. For the reverse we take G = (V, E) to870

be a communication graph and S ⊆ V 2 to be a balanced configuration of messages. For871

contradiction we assume that S contains a recurrent message m which has a message path W872

performing exactly one excursion and return to m. We will view W = w0w1...w0w1 as both873

a walk on G and a word. The key observation we require is that the number of consecutive874

steps that can be spent on certain subgraphs by a message path is bounded from a balanced875

configurations.876

▶ Lemma 34. W must obey the following rules:877

1. W cannot return to the node it just came from, i.e. no sequence of the form uvu.878

2. W cannot take 2x + 2 consecutive steps around an odd cycle of length 2x + 1.879

3. W cannot take x + 1 consecutive steps around an even cycle of length 2x .880

4. If W takes more than x + y + z + 2 consecutive steps on an FEC it remains on one cycle.881

5. If W takes x steps around an even cycle of length 2x, then there exists W ′ which takes882

the opposite path of equal length and is otherwise identical.883

The fifth of these has the following useful interpretation, if the existence of W ′ implies884

imbalance then the existence of W implies imbalance. Therefore, we will use this rule as a885

substitution allowing us to "modify" W to take the alternate path. By application of these886

rules we can obtain the following further conditions:887

▶ Lemma 35. W must contain the following four rules:888

1. If W contains a factor u...u then that factor contains an odd cycle as a subfactor.889

2. There can only be one factor of W that forms an odd cycle.890

3. Every node appears at most twice in W .891
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4. There exists at most one node that is both a member of a consecutive odd cycle and appears892

twice. Furthermore, such a node must be the start and end of the cycle.893

No matter how we construct W , it will violate one of these rules.894

Proof of the reverse direction of Theorem 33. Since W must have the form w0w1...w0w1,895

it follows from Lemma 35 (3) that there exists a cycle C containing m such that W fully896

traverses C before returning to m, with possible excursions. Specifically, there exists a897

sequence of pairs (w0, w1), (w1, w2)...(wk, w0), (w0, w1) such that C = w0w1..wkw0 is a cycle898

of G, each pair appears in W in consecutive order (i.e. W = w0w1...w1w2...wkw0..w0w1).899

▷ Claim 36. C is an odd cycle900

Proof. If C is of even length (say 2k), then there must be an excursion from C otherwise901

Lemma 34 (3) would be violated. However, by Lemma 35 (1) and (2), there can be at most902

one such excursion as it must contain a consecutive odd cycle. Thus, the two subsequences903

on either side must be factors of W . Therefore, since some subsequence of W traverses C904

fully with one additional step, one of the two factors must take k + 1 steps around C. This905

also violates Lemma 34 (3) and so C must be an odd cycle. ◁906

▷ Claim 37. W consists of two odd cycles C and Ĉ connected by a path.907

Proof. If C is an odd cycle there must be an excursion from it or Lemma 34 (2) would be908

violated. By Lemma 35 (1) and (2) the excursion must contain exactly one consecutive odd909

cycle which we denote by Ĉ. If Ĉ does not share its starting node with C, W either forms910

a path between C and Ĉ or some chain of cycles. We can use Lemma 34 (5) to eliminate911

all even cycles of this chain, after which any odd cycles in the chain correspond to a fully912

traversed FEC when paired with Ĉ and so violate Lemma 34 (4). Thus, W takes a simple913

path from C to Ĉ and back, although possibly intersecting C along the way. ◁914

▷ Claim 38. C and Ĉ intersect with each other but not the path between them.915

Proof. If the path to Ĉ does intersect C, since we are taking the same path in both directions916

any node shared between the path and C appears in W three times. This violates Lemma 35917

(3) and so C must be disjoint from the path to Ĉ. Similarly Ĉ must be disjoint from the918

path otherwise it would violate the same lemma. If C is disjoint from Ĉ the pair would form919

a fully traversed FEC, thereby violating Lemma 34 (4). Thus, C and Ĉ must intersect. ◁920

▷ Claim 39. Claim: C and Ĉ do not intersect.921

Proof. Let W = uv..wx1, ..., xkw..uv where C = u...w...uv and the excursion to Ĉ is given922

by wx1...xkw. Now assume that Ĉ contains a node from C which occurs strictly before w in923

W . This node is on a consecutive odd cycle and appears twice. There must exist a latest924

such node in the ordering of C, we denote it y. Since y is on a consecutive odd cycle and925

appears twice in W it must be the start and end point of Ĉ by Lemma 35 (4). However,926

then since y ̸= w it must appear three times, violating Lemma 35 (3). The same argument927

holds taking the earliest node shared by C and Ĉ strictly after w. Thus, the only node that928

can be shared by C and Ĉ is W , implying that W forms two odd cycles sharing a single929

node. However, this is an FEC which is fully traversed and so violates Lemma 34 (4). ◁930

Thus, W cannot exist and so there can be no recurrent message in S ◀931
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