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Abstract
Broadcast is a central problem in distributed computing. Recently,
Hussak and Trehan [PODC’19/DC’23] proposed a stateless broad-
casting protocol (Amnesiac Flooding), which was surprisingly
proven to terminate in asymptotically optimal time (linear in the
diameter of the network). However, it remains unclear: (i) Are there
other stateless terminating broadcast algorithms with the desir-
able properties of Amnesiac Flooding, (ii) How robust is Amnesiac
Flooding with respect to faults?

In this paper we make progress on both of these fronts. Under
a reasonable restriction (obliviousness to message content) addi-
tional to the fault-free synchronous model, we prove that Amnesiac
Flooding is the only strictly stateless deterministic protocol that
can achieve terminating broadcast. We identify four natural prop-
erties of a terminating broadcast protocol that Amnesiac Flooding
uniquely satisfies. In contrast, we prove that even minor relax-
ations of any of these four criteria allow the construction of other
terminating broadcast protocols.

On the other hand, we prove that Amnesiac Flooding can be-
come non-terminating or non-broadcasting, even if we allow just
one node to drop a single message on a single edge in a single
round. As a tool for proving this, we focus on the set of all con-
figurations of transmissions between nodes in the network, and
obtain a dichotomy characterizing the configurations, starting from
which, Amnesiac Flooding terminates. Additionally, we charac-
terise the structure of sets of Byzantine agents capable of forcing
non-termination or non-broadcast of the protocol on arbitrary net-
works.
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1 Introduction
The dissemination of information to disparate participants is a
fundamental problem in both the construction and theory of dis-
tributed systems. A common strategy for solving this problem is
to “broadcast”, i.e. to transmit a piece of information initially held
by one agent to all other agents in the system[1, 13, 15–17]. In fact,
broadcast is not merely a fundamental communication primitive
in many models, but also underlies solutions to other fundamental
problems such as leader election and wake-up. Given this essen-
tial role in the operation of distributed computer systems and the
volume of broadcasts, an important consideration is simplifying
the algorithms and minimizing the overhead required for each
broadcast [8].

Within a synchronous setting, Amnesiac Flooding as introduced
by Hussak and Trehan in 2019 [9–11] eliminates the need to store
historical messages. The algorithm terminates in asymptotically op-
timal𝑂 (𝐷) time (for𝐷 the diameter of the network) and is stateless
as agents are not required to hold any information between com-
munication rounds. The algorithm in the fault-free synchronous
message passing model is defined as follows:

Definition 1.1. Amnesiac flooding algorithm. (adapted
from [11]) Let 𝐺 = (𝑉 , 𝐸) be an undirected graph, with vertices
𝑉 and edges 𝐸 (representing a network where the vertices represent
the nodes of the network and edges represent the connections between
the nodes). Computation proceeds in synchronous ‘rounds’ where each
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round consists of nodes receiving messages sent from their neighbours.
A receiving node then sends messages to some neighbours in the next
round. No messages are lost in transit. The algorithm is defined by
the following rules:

(i) All nodes from a subset of sources or initial nodes 𝐼 ⊆ 𝑉 send
a message𝑀 to all of their neighbours in round 1.

(ii) In subsequent rounds, every node that received𝑀 from a neigh-
bour in the previous round, sends𝑀 to all, and only, those nodes
from which it did not receive𝑀 . Flooding terminates when𝑀
is no longer sent to any node in the network.

Extending Amnesiac Flooding and other stateless flooding al-
gorithms (such as those proposed in [3, 18, 20]) beyond synchro-
nous fault-free scenarios is challenging. This is due to the fragility
of these algorithms and their inability to build in complex fault-
tolerance due to the absence of state and longer term memory. It
has been shown that no stateless flooding protocol terminates un-
der moderate asynchrony, unless allowed to perpetually modify a
super-constant number (i.e. 𝜔 (1)) of bits in each message [18]. Yet,
given the fundamental role of broadcast in distributed computing,
the resilience of these protocols is extremely important even on
synchronous networks.

Outside of a partial robustness to crash failures, the fault sensitiv-
ity of Amnesiac Flooding under synchrony has not been explored
in the literature. This omission is further compounded by the use
of Amnesiac Flooding as an underlying subroutine for the con-
struction of other broadcast protocols. Multiple attempts have been
made to extend Amnesiac Flooding to new settings (for example
routing multiple concurrent broadcasts [3] or flooding networks
without guaranteed edge availability [20]), while maintaining its
desirable properties. However, none have been entirely successful,
typically requiring some statefulness. It has not in fact been estab-
lished that any other protocol can retain all of Amnesiac Flooding’s
remarkable properties even in its original setting. These gaps stem
fundamentally from the currently limited knowledge of the dynam-
ics of Amnesiac Flooding beyond the fact of its termination and its
speed to do so. In particular, both of the existing techniques (parity
arguments such as in [11] or auxiliary graph constructions such as
in [19]) used to obtain termination results for Amnesiac Flooding
are unable to consider faulty executions of the protocol and fail to
capture the underlying structures driving terminating behaviour.

We address these gaps through the application of novel analysis
and by considering the structural properties of Amnesiac Flooding
directly. By investigating the sequence of message configurations,
we are able to identify the structures underlying Amnesiac Flood-
ing’s termination and use these to reason about the algorithm in
arbitrary configurations. The resulting dichotomy gives a compre-
hensive and structured understanding of termination in Amnesiac
Flooding. For example, we apply this to investigate the sensitivity of
Amnesiac Flooding with respect to several forms of fault and find it
to be quite fragile. Furthermore, we show that under reasonable as-
sumptions on the properties of a synchronous network, any strictly
stateless deterministic terminating broadcast algorithm oblivious to
the content of messages, must produce the exact same sequence of
message configurations as Amnesiac Flooding on any network from
any initiator. We therefore argue that Amnesiac Flooding is unique.
However, we show that if any of these restrictions are relaxed, even

slightly, distinct terminating broadcast algorithms can be obtained.
As a result of this uniqueness and simplicity, we argue that Amne-
siac Flooding represents a prototypical broadcast algorithm. This
leaves open the natural question: do there exist fundamental state-
less algorithms underlying solutions to other canonical distributed
network problems? Though memory can be essential or naturally
useful in certain scenarios [4–7, 12, 14], understanding what we
can do with statelessness can help us push fundamental boundaries.
A full version of this paper appears at [2], which should be referred
to for the full formal statement of all definitions and results.

2 Model and Notation
Throughout this work we consider only finite, connected graphs on
at least two nodes. We denote the set {1, ..., 𝑥} by [𝑥] and 𝑅(𝑟, 𝑠) the
Ramsey number such that any graph of size 𝑅(𝑟, 𝑠) contains either
a clique on 𝑟 vertices or an independent set on 𝑠 vertices. In this
work, wemake use of a generic synchronousmessage passingmodel
with several additional assumptions based on the truly stateless
model of [18]. In particular, nodes cannot maintain any additional
information between rounds (such as routing information, previous
participation in the flood or even a clock value), cannot hold onto
messages and can only forward, not modify the messages. For a
graph 𝐺 = (𝑉 , 𝐸) and an initiator set 𝐼 ⊆ 𝑉 we say that a node
is informed if it has ever received a message from a previously
informed node (where initiators are assumed to begin informed).
An algorithm correctly solves broadcast (resp. multicast) on 𝐺 if
for all singleton (resp. non-empty) initiator sets there exists a finite
number of rounds after which all nodes will be informed. Unless
specified otherwise, we assume that initiator nodes remain aware of
their membership for only a single round. We say that an algorithm
terminates on 𝐺 = (𝑉 , 𝐸) if, for all valid initiator sets, there exists
a finite round after which no further messages are sent. We refer
to a configuration of messages 𝑆 ⊆ {(𝑢, 𝑣) |𝑢𝑣 ∈ 𝐸} where (𝑢, 𝑣) ∈ 𝑆

implies that in the current round 𝑢 sent a message to 𝑣 .

3 Uniqueness
In this work, we investigate the existence of other protocols possess-
ing the following four desirable properties of Amnesiac Flooding:

(1) Strict Statelessness: Nodes maintain no information other
than their port labellings between rounds. This includes
whether or not they were in the initiator set.

(2) Obliviousness: Routing decisions may not depend on the
contents of received messages.

(3) Determinism: All decisions made by a node must be deter-
ministic.

(4) Unit Bandwidth: Each node may send at most one message
per edge per round.

Our main technical result regarding the existence of alternative
protocols to Amnesiac Flooding is the following:

Theorem 3.1 (Uniqeness of Amnesiac Flooding). Any ter-
minating broadcast algorithm possessing all of Strict Statelessness,
Obliviousness, Determinism and Unit Bandwidth behaves identi-
cally to Amnesiac Flooding on all graphs under all valid labellings.

Note that this theorem allows, but does not require, that nodes
have access to unique identifiers labelling themselves and their
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ports. However, we enforce the condition that these identifiers,
should they exist, may be drawn adversarially from some super
set of [𝑛 + 𝜅] where 𝑛 is the number of nodes on the network
and 𝜅 = 𝑅(9, 8). Here 𝑅(9, 8) is the Ramsey number describing the
smallest number of vertices such that a graph must have either a
clique on at least 9 vertices or an independent set on 8 vertices.

Intuitively, the Strict Statelessness condition forces any broadcast
protocol to make its forwarding decisions based only on the mes-
sages it receives in a given round. The combination of Obliviousness
and Unit Bandwidth forces any protocol meeting the conditions to
view messages as atomic. Finally, Determinism forces the protocol
to make identical decisions every time it receives the same set of
messages. Therefore, we can model the routing decisions of the
protocol as a function from the set of ports it received a message
over to the set of ports it will then send messages over.

It is important to stress here that this result holds even if the
space of unique identifiers is only greater than 𝑛 by an additive
constant. The proof is deferred to the full version, but has three key
steps. The first is combinatorial. For any given protocol we derive
a directed graph describing its behaviour and demonstrate via a
forbidden subgraph argument that any set of IDs of size𝑅(𝑥, 8)must
contain a subset of size at least 𝑥 that do not respond to each other
as leaf nodes. The second leverages a set of 9 IDs with this property
to establish that they behave identically to Amnesiac Flooding on all
sub-cubic graphs labelled from only that set. The third and final step
is a sequence of inductive arguments constructing topologies that
use these 9 IDs to force all IDs to behave identically to Amnesiac
Flooding for any set of neighbours.

The previous result is sharp, as we are able to obtain the follow-
ing:

Theorem 3.2 (Existence of relaxed Algorithms). There ex-
ist terminating broadcast algorithms which behave distinctly from
Amnesiac Flooding on infinitely many networks possessing any three
of: Strict Statelessness, Obliviousness, Determinism and Unit Band-
width.

We derive three relaxed algorithms which all build upon Amne-
siac Flooding and illuminate the role of each of the four conditions
in the uniqueness result.

• Strict Statelessness: Neighbourhood-2 Flooding. Nodes
know the ID of their neighbours’ neighbours. The protocol
behaves distinctly on star graphs, as the hub can determine
the entire graph topology.

• Obliviousness and Unit Bandwidth: 1-bit flooding. Nodes
are allowed to send a single bit of read-only control infor-
mation (in the message header or encoded in the number
of messages sent) communicating whether the initiator is
a leaf vertex. If it is, nodes implement Amnesiac Flooding,
otherwise they use a different mechanism called Parrot
Flooding (leaves bounce the message back) which always
terminates when begun from a non-leaf vertex.

• Determinism: Random-Flooding. Nodes have access to one
bit of randomness per round. Each round every node ran-
domly chooses to implement Amnesiac Flooding or to for-
ward to all neighbours. Random-Flooding achieves broad-
cast with certainty and terminates almost surely in finite
time.

4 Fault Sensitivity
To complement our results on uniqueness, we also perform a com-
prehensive investigation of the fault sensitivity of Amnesiac Flood-
ing in a synchronous setting. In order to achieve this (as well as to
support the proofs of the previous section), we need to be able to de-
termine its behaviour outside of correct broadcasts. Unfortunately,
neither of the existing termination proofs naturally extend to the
case of arbitrary message configurations. We make use of a method
of invariants, to obtain much stronger characterizations of termi-
nation than were previously known, for both Amnesiac Flooding,
and the subsequently proposed Stateless Flooding protocol [18]. In
fact we obtain the following dichotomy:

Theorem 4.1. For a graph 𝐺 = (𝑉 , 𝐸) and a configuration of
messages 𝑆 ⊆ {(𝑢, 𝑣) |𝑢𝑣 ∈ 𝐸}, the following are all equivalent:

(1) Amnesiac Flooding terminates on 𝐺 when begun from 𝑆 .
(2) Amnesiac Flooding terminates on 𝐺 within 2|𝐸 | − 3 rounds

when begun from 𝑆 .
(3) 𝑆 is obtainable via Amnesiac Flooding from some sequence of

multi-casts on 𝐺 .
(4) 𝑆 is balanced.

In Theorem 4.1, balance is a combinatorial property describing
the distribution of messages around certain structures that can re-
tain messages indefinitely (namely cycles and systems of connected
odd cycles). The definition of balance and the proof of this result are
quite involved and we defer them to the full version. Both centre
on determining exactly which structures drive both termination
and non-termination in Amnesiac Flooding dynamics and the role
parity plays. The proof is independent of all previous work on Am-
nesiac Flooding and captures precisely the minimal set of structural
elements that determine termination in Amnesiac Flooding, which
is surprisingly determined entirely by systems of at most two cycles.
The balance invariant may be of independent interest, beyond fault
sensitivity, as they provide strong intuition for how asynchrony
interferes with the termination of both Amnesiac Flooding and
the Stateless Flooding proposed in [18]. The techniques are also
generalisable to related processes, such as the Parrot-Flooding
process mentioned in the previous section.

Theorem 4.1 allows us to provide precise characterizations of the
behaviour of Amnesiac Flooding under the loss of single messages,
uni-directional link failure, and time bounded Byzantine failures.
Intuitively, these correspond to a set of messages failing to send in
a specific round, a link failing in one direction creating a directed
edge and a set of nodes becoming transiently controlled by an
adversary. While we defer the statement of these results to the full
version, we highlight the following specific consequences:

(1) On any graph with any initiator vertex, there exists a single
message the dropping of which will force either a failure to
terminate or a failure to broadcast.

(2) On any bipartite graph, the dropping of any message will
force either a failure to broadcast or terminate.

(3) Any set of time bounded Byzantine agents containing a non-
leaf node can force either a failure to broadcast or a failure
to terminate.
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