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The notation we will be adopting
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τ = 3

Definitions: Temporal Graph
▶ A temporal graph is a pair (G , λ) where G is a simple graph, and

λ : E (G ) → 2N;

▶ A temporal edge is a pair (e, t) where e ∈ E (G ) and t ∈ λ(e);
▶ A temporal graph (G , λ) with lifetime τ is called dynamic-based if

λ(e) = [τ ], ∀e ∈ E (G ).
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Definitions: Snapshot
▶ A temporal graph is a pair (G , λ) where G is a simple graph, and

λ : E (G ) → 2N;
▶ The graph Gi = (V (G ), {e | i ∈ λ(e)} is called a snapshot.

Sometimes the temporal graph will be described by its sequence of
snapshots.;

▶ The value maxe∈E(G) λ(e) is called the lifetime and denoted by τ .

▶ A temporal edge is a pair (e, t) where e ∈ E (G ) and t ∈ λ(e);
▶ A temporal graph (G , λ) with lifetime τ is called dynamic-based if

λ(e) = [τ ], ∀e ∈ E (G ).
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Definitions: Lifetime
▶ A temporal graph is a pair (G , λ) where G is a simple graph, and

λ : E (G ) → 2N;
▶ The graph Gi = (V (G ), {e | i ∈ λ(e)} is called a snapshot.
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Definitions: Temporal vertex
▶ A temporal graph is a pair (G , λ) where G is a simple graph, and

λ : E (G ) → 2N;
▶ A temporal vertex is a pair (u, t) where u ∈ V (G ) and t ∈ [τ ];

▶ A temporal edge is a pair (e, t) where e ∈ E (G ) and t ∈ λ(e);
▶ A temporal graph (G , λ) with lifetime τ is called dynamic-based if

λ(e) = [τ ], ∀e ∈ E (G ).
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Definitions: Temporal edge
▶ A temporal graph is a pair (G , λ) where G is a simple graph, and

λ : E (G ) → 2N;
▶ A temporal vertex is a pair (u, t) where u ∈ V (G ) and t ∈ [τ ];
▶ A temporal edge is a pair (e, t) where e ∈ E (G ) and t ∈ λ(e);

▶ A temporal graph (G , λ) with lifetime τ is called dynamic-based if
λ(e) = [τ ], ∀e ∈ E (G ).
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Definitions:
▶ A temporal graph is a pair (G , λ) where G is a simple graph, and

λ : E (G ) → 2N;
▶ A temporal vertex is a pair (u, t) where u ∈ V (G ) and t ∈ [τ ];
▶ A temporal edge is a pair (e, t) where e ∈ E (G ) and t ∈ λ(e);
▶ A temporal graph (G , λ) with lifetime τ is called dynamic-based if

λ(e) = [τ ], ∀e ∈ E (G ).
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Temporal coloring
Coloring temporal graphs, Marino and Silva. J. Comp. System and Sciences 123 (2022) 171–185.
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Temporal Coloring
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We want to minimize the number of colors needed to color the temporal
vertices in a way that every edge is properly colored at least once.

Intruced in Sliding window temporal graph coloring, Mertzios, Molter, Zamaraev.

JCSS 120 (2021) 97–115.
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We want to minimize the number of colors needed to color the temporal
vertices in a way that every edge is properly colored at least once.

Let us call it the temporal chromatic number and denote it by tχ(G , λ).

Intruced in Sliding window temporal graph coloring, Mertzios, Molter, Zamaraev.

JCSS 120 (2021) 97–115.
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k-partite cover of static graphs

▶ A graph is k-partite if it can be properly colored with at most k
colors.

▶ A k-partite cover of G is a collection of subgraphs H1, . . . ,Ht such
that each Hi is k-partite and every e ∈ E (G ) belongs to at least one
Hi .

▶ The minimum number of subgraphs t is the k-partite number of G
and denoted by βk(G ).
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k-partite number

▶ The minimum number of subgraphs t is the k-partite number of G
and denoted by βk(G ).

Theorem (Khan, Alaimia, and Mahmood, 2013)
βk(G ) = ⌈logk χ(G )⌉, where χ(G ) denotes the chromatic number of G
(minimum number of colors needed to properly color G ).
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k-partite number and temporal coloring

Recall:
▶ temporal chromatic number of (G , λ) (tχ(G , λ)) is the minimum

number of colors needed to color the temporal vertices in a way that
every edge is properly colored at least once.

▶ k-partite number of G (βk(G )): minimum number of subgraphs t
such that the edges of G can be covered by t subgraphs, each of
which is k-partite (can be properly colored with k colors).

▶ βk(G ) = ⌈logk χ(G )⌉ (Khan, Alaimia, and Mahmood).

Corollary
Let G be a graph and t = βk(G ). If (G , λ) is dynamic-based with
lifetime t, then tχ(G , λ) ≤ k .
In particular, as χ(G ) ≤ n, if (G , λ) is dynamic-based with lifetime τ ,
then tχ(G , λ) ≤ τ

√
n.
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Temporal Eulerian Walks
Eulerian walks in temporal graphs, Marino and Silva. Algorithmica 85 (2023) 805–830.
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Eulerian Trails on Static Graphs
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A trail is a sequence of edges that does not repeat edges. If it is a circuit
if starts and finishes on the same vertex. It is Eulerian if it visits every
edge of the graph.
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A trail is a sequence of edges that does not repeat edges. If it is a circuit
if starts and finishes on the same vertex. It is Eulerian if it visits every
edge of the graph.

Theorem (Euler, 1736)
G has an Eulerian trail (circuit) iff it has exactly two (zero) odd-degree
vertices.
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Eulerian Local Trails on Temporal Graphs
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A temporal local trail is a temporal walk that forms a trail in each
snapshot.
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Eulerian Local Trails and Static Graphs

Theorem (Marino and Silva)
Let G = (G , λ) be a dynamic-based graph with lifetime 2 s.t. G has
degree at most 4. Then, deciding whether G has an Eulerian local trail is
NP-complete.

Corollary
Let G be a graph of degree at most 4. Deciding whether the edges of G
can be covered with two trails is NP-complete.
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Final remarks

Temporal graphs seem to combine Graph Theory and Ordering problems
in an interesting way. So I guess it is worth looking for collaborations
within these three fields.
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