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Temporal networks

Networks (or graphs) are powerful models used to capture pairwise relationships

𝑡 = 10/07/08

𝑡 = 11/07/08
(a) E → time of friendship

𝑡 = 32

𝑡 = 20

(b) E → time of link

Set of nodes V = {v1, . . . , vn} → entities of the system
Set of (directed) edges E = {e1, . . . , em} → relationships among entities
Obs. Edges are of the form e = (u, v , t) ∈ E with u 6= v ∈ V and t is the time of (u, v)

We say that G = (V ,E) is a temporal network
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Static subgraphs and motifs
The analysis of small patterns, subgraphs or motifs is fundamental for our
understanding of real graphs

I Graphlet analysis for biological networks (Pržulj, 2007)
I Social network analysis (Yin et al., 2017)
I . . .

What about temporal networks?
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Temporal network motifs

Patterns on temporal networks. (Paranjape et al., 2017; Kovanen et al., 2011)

Temporal motifs = static subgraphs + temporal ordering (+ additional information)

Where
(A) static subgraph captures topological properties in the data

(B) temporal ordering how time “flows”
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Temporal network motifs

Patterns on temporal networks. (Paranjape et al., 2017; Kovanen et al., 2011)

Temporal motifs = static subgraphs + temporal ordering (+ additional information)

Where
(A) static subgraph captures topological properties in the data
(B) temporal ordering how time “flows”

Example. Information spreading along a path.

TueMon MonTue
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Temporal motifs by Paranjape et al. (2017)

A temporal motif is a pair M = (K , σ) (Liu et al., 2019) where
I K is a directed and (weakly)connected multigraph with k-nodes and `-edges

v2 v3v1

(a) K1

v2 v3v1

(b) K2

I σ is an ordering of the edges of K (modelling temporal dynamics of K)
Example. Fixing K = K1 then

v2 v3v1
σ2σ1

(a) σL = 〈(v1, v2), (v2, v3)〉

v2 v3v1
σ1σ2

(b) σR = 〈(v2, v3), (v1, v2)〉

Note. σL is time respecting while σR not!
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Temporal motif occurrence

Given G and a value δ ∈ R+, a time-ordered sequence S = 〈(x ′
1, y ′

1, t ′1), . . . , (x ′
`, y ′

`, t ′`)〉
of ` unique edges from G is a δ-instance of M = 〈(x1, y1), . . . , (x`, y`)〉 if

1. there exists a bijection h from the vertices appearing in S to the vertices of M,
with h(x ′

i ) = xi and h(y ′
i ) = yi , and i ∈ [`];

2. the edges of S occur within δ time; i.e., t ′` − t ′1 ≤ δ.

Def. Count of a temporal motif M is: # of δ-instances of M in G
Def. SW set of temporal motif δ-instances among vertices in W ⊆ V
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Temporal motif occurrence (example)
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Counting temporal motifs

Typical problem addressed in literature.

Problem
Given a temporal network G , a temporal motif M and a parameter δ ∈ R+ obtain the
count of the temporal motif M

The problem is NP-hard

The (decision) problem is NP-hard even for motifs in P for static networks (Liu et al.,
2019), star-shaped subgraphs!

⚠️ Scalability and efficiency are key challenges for algorithms for temporal motifs.

8 / 24



Counting temporal motifs

Typical problem addressed in literature.

Problem
Given a temporal network G , a temporal motif M and a parameter δ ∈ R+ obtain the
count of the temporal motif M

The problem is NP-hard

The (decision) problem is NP-hard even for motifs in P for static networks (Liu et al.,
2019), star-shaped subgraphs!

⚠️ Scalability and efficiency are key challenges for algorithms for temporal motifs.

8 / 24



Exact algorithms
(Mackey et al., 2018) enumerates all δ-instances of a fixed temporal motif M
(Pashanasangi and Seshadhri, 2021) Fast algorithms for temporal triangle counting
based on degeneracy ordering
(Gao et al., 2022) improved algorithms for counting {2, 3}-node 3-edge temporal motifs
(Sarpe, 2023) improved (Mackey et al., 2018) by different matching criteria and timeline
partition
(Yuan et al., 2023) dedicated hardware for counting temporal motifs
(Cai et al., 2023) exact algorithms for counting butterflies in temporal bipartite networks
(Li et al., 2024) exact algorithms based on temporal partitioning and matrix power to
count 2-node {2, 3}-edge temporal motifs
(Xia et al., 2025) efficient temporal triangle counting algorithms based on degeneracy
ordering and tree-based data structures
...
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Temporal motifs (some) applications
Just a few applications, extremely used in practice! (Porter et al., 2022; Lei et al.,
2020; Liu et al., 2024; Belth et al., 2020)

I SBMs and synthetic network
generation

I Capture phishing communities

I Mining interesting events

I Analyze travel patterns

Enrich ML models and more...
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Beyond temporal motif counts
Obs 1. Counts may not yield a complete view of temporal data (e.g., bursty events
occurring between a small subset of nodes)
Obs 2. Counts do not identify important subnetworks V ′ ⊆ V where instances of the
motif occur

We propose the new problem (Sarpe et al., 2024)

Problem – Temporal Motif Densest Subnetwork

Given a temporal network G , a temporal motif M, a parameter δ ∈ R+, and a weighting
function τ : SW 7→ R+ accounting for motif occurrences over W ⊆ V obtain

W ∗ = arg max
W⊆V

τ(W )

|W | .
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Temporal Motif Densest Subnetwork Discovery
Our objective

W ∗ = arg max
W⊆V

τ(W )

|W | .

Some nice properties 😎

I Our new captures important subnetworks W ∗ ⊆ V and realizing many occurrences
of a fixed temporal motif M

I The user can flexibly select M and the weight assigned to its occurrences (τ)
I The user can pick the time duration δ of the motif occurrences

Applications. Temporal community detection, personalized advertisement, travels, and
more...

Cool but how do we solve the problem? 🤔
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Challenges and scalable approach

Challenge 1.🤯 Even evaluating the objective function τ(W ) for a subset W ⊆ V is
challenging, there are up to O(m`) occurrences M with ` edges!

Challenge 2.🤯 Avoid expensive methods such flow or ILP formulations → do not scale
on large data.

Def. Temporal motif degree of v ∈ V is the # of temporal motif occurrences of a motif
M in which v occurs. Notation: dv(M,G)

Our solution. Rely on peeling approaches (developed for similar problems) + improve
the scalability through randomized approximations 🎲
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ALDENTE – randomized peeling

Our ALDENTE 🍝 algorithms (ProbPeel and HybridPeel) leverage the following
procedure.
1. Compute for each vertex v ∈ V , d̂v(M,G) ∈ (1± ε)dv(M,G)

2. Set V1 ← V ; G1 ← G
3. For i ≥ 1 let V ′ be a batch of nodes from Vi with small degrees d̂v(M,Gi)
(controlled by a parameter ξ > 0)
4. Vi+1 ← Vi \ V ′; update Gi+1

5. If |Vi+1| < k output arg maxj≥1
τ̂(Vj)
|Vj |

6. Else estimate d̂v(M,Gi+1) ∈ (1± ε)dv(M,Gi+1) for each v ∈ Vi+1

Obs. To compute d̂v(M,G) ∈ (1± ε)dv(M,G) we can use any state-of-the-art
randomized sampling approach, for local motif approximation.
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ALDENTE – guarantees
Guarantees (informal)

Our algorithms yield a solution W = Vi for some i ≥ 1 s.t. w.p. at least 1− η,

τ(W )

|W | ≥
1

k
1

(1 + ξ)

(1− ε)2

(1 + ε)2
τ(W ∗)

|W ∗|
.

d̂v ∈ (1± ε)dv and τ̂(W ) ∈ (1± ε)τ(W )

Batch peeling

Greedy peeling + k-node motif-based objective (tight)

Table: ALDENTE algorithms

Name Approximation Parameters Time Complexity

ProbPeel (1−ε)2

k(1+ξ)(1+ε)2
ξ > 0, ε, η ∈ (0, 1) O

(
r(ε, η)

(
m̂` log1+ξ(n) +

(1+ξ)n
ξ

))
HybridPeel (1−ε)2

k(1+ξ)(1+ε)2
ξ > 0, ε, η ∈ (0, 1), J > 0 O

(
Jr(ε, η)m̂` + γ−1k3 nk/γ log(n)

)
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Experiments – Setup

Table: Networks used, |EG |: static undirected edges, time-interval length δ.

Network n m |EG | Precision Timespan δ

M
ed

iu
m

Sms 44 K 545 K 52 K sec 338 (days) 172.8 K
Facebook 45.8 K 856 K 183 K sec 1561 (days) 86.4 K
Askubuntu 157 K 727 K 455 K sec 2614 (days) 172.8 K
Wikitalk 1 100 K 6 100 K 2 800 K sec 2277 (days) 43.2 K

La
rg

e

Stackoverflow 2.6 M 47.9 M 28.1 M sec 2774 (days) 172.8 K
Bitcoin 48.1 M 113 M 84.3 M sec 2585 (days) 7.2 K
Reddit 8.4 M 636 M 435.3 M sec 3687 (days) 14.4 K
EquinixChicago 11.2 M 2 300 M 66.8 M µ-sec 62.0 (mins) 50 K
Venmo 19.1 K 131 K 18.5 K sec 2091 (days) -

Implementation. Code in C++17 with optimization, on a 72-core machine and 1TB
RAM. Each experiment (5×) executed for at most three hours and max RAM 200GB.
Goals.
1. Show that ALDENTE is efficient, scalable and reports high quality solutions
2. Show that the TMDS captures important subnetworks
+ (a) Discuss memory efficiency; (b) test parameter space, and converge
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Experiments – ALDENTE efficiency and scalability

Motifs.
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Experiments – TMDS for discovering communities
Data. From Venmo platform e = (u, v , t), user u transfer money to user v at time t +
for each e the corresponding message to the transaction is available.
TMDS params. By using a star-shaped M and small δ = 7200

v1

v2
v3

v4v5v6
v7

v8

v9
v10 v11 v12

v13
v14

2015-05-21 2018-04-01 2021-02-09
Time

Figure: The TMDS captures a bursty event.
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Wrap up

In our work

I We introduce a novel problem, to find the Temporal Motif Densest Subnetwork,
capturing important properties in temporal data;

I We develop ALDENTE: two efficient and scalable algorithms to obtain high-quality
solutions for the TMDS based on randomized sampling;

I We show empirically the scalability of our ALDENTE algorithms and the usefulness
of the proposed formulation.

Many open challenges
I Theoretically control for temporal evolution of the optimal solution
I Control for the number of temporal motif occurrences in the optimal solution
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Thank you for your attention!

I Our paper: https://arxiv.org/abs/2406.10608
I Our code: https://github.com/iliesarpe/ALDENTE

Feel free to reach out to discuss more
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