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About me

- Third-year PhD student under the supervision of David Coudert in
COATI team, Centre Inria d'Université Coéte d'Azur

- Starting in October, | will be a postdoctoral researcher under the
supervision of Petra Mutzel at the University of Bonn

- | contribute to GraphNeuralNetworks. jl1, a Julia package for GNNs
that also supports temporal graph learning.
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Feedforward Neural Network

A feedforward neural network is a parametric function composed of multiple
layers, where each layer is defined by an affine transformation followed by a
non-linear activation function.
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Recurrent Neural Network

RNNs have recurrent connections that allow them to maintain a memory of past
inputs, making them suitable for tasks such as natural language processing,
speech recognition, and time series prediction.
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Most popular ones are GRU and b
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Graph

A graph G(V,E) is a data structure where V is the set of nodes and E is a set of

paired nodes, whose elements are called edges.

‘\

Features can be associated to
nodes, edges, and graphs.

In the example on the left, xi are
nodes features of node i and g is
the graph feature.
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Message passing

Every node in the graph computes a message
for each of its neighbors

mj—i = ¢(Ti, T;5)

Every node aggregates the messages it
receives, using a permutation-invariant function

m; = Lie Ny My

Node updates its attributes as a function of its
current feature and the aggregated messages

Ly = Vx(xia m’b)
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Message passing

Every node in the graph computes a message
for each of its neighbors

mi;—; = qb(.fqu, xj)
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Message passing

Every node in the graph computes a message
for each of its neighbors
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m; = Lie Ny My
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Message passing
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Message pass i ng e Every node in the graph computes a message

for each of its neighbors

mj—i = ¢(Ti, T;5)

e Every node aggregates the messages it
receives, using a permutation-invariant function

m; = Lie Ny My

e Node updates its attributes as a function of its
current feature and the aggregated messages

Ly = fyas(xia m’b)

The message passing procedure is done in parallel for every node.
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Graph neural network

A graph neural network applies message passing using learnable functions.
Each message function qﬁ and update function 7Y, is implemented as a

neural network.

mj—g = (/5(51%7333')

m; = Ujen@)ymj—

T; = Yz (i, M)

\
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Supervised training

Loss function
Training is an optimization problem: A

the model output minimize an objective
function called loss function.

Learning step

Minimum

The model weights W are then updated

USing Random W >W
gradient descent to minimize the loss initial value
function.

W11 =W; — aVy L(model(W), trainset)
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What tasks can GNNs perform?

After performing some layers, depending on how you treat the
resulting features GNN can perform:

e Graph classification
e Link prediction

e Node classification
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Graph classification

The problem of determining the category of the graph is, for example, deciding what

kind of molecule
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Node classification P

The problem of determining the category of the graph nodes is, for example, the
decision of what kind of atom
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Link prediction

The problem of determining whether or not there will be
an edge between two nodes in the future
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Popular GNN layers

Layer 2

e Graph Convolutional Network GCN

“Semi-Supervised Classification with Graph Convolutional Network”, Kipf & Welling, 2016 Layer 1

-

1 Layer O
i e @i Wz ) where a5 = i .
'I"l. O( ZJGN(L)U{L} aILJ tI;J ) ere (¥} \/|N(’I)||N(])| (input) \ Pixels

® Gl’aph |Som0rphism NetWOI’k GIN “How Powerful are Graph Neural Networks?”, Xu et al., 2018

x; = fo((L+€)xi + ) ,cnuyTj) Where fyis alearnable function

High expressive power (provably as strong as the 1-Weisfeiler Leman test)
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Temporal Graph

Real world network are usually dynamic such as social networks, transportation
networks and brain activity.

e Static Temporal Graphs: the graph structure is fixed, but the node and edge
features change over time.
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Temporal Graph

e Dynamic Temporal Graphs: the structure of the graph (edges) and the features
of the nodes and edges change over time.

G ={G", G? ..., GT} where each snapshot Gt = (V, Et, Xt) shares the same node
set V, but allows for time-varying edge sets and features.
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Temporal Models

Static Temporal Graphs
Spatio-temporal GNN

GNN over a fixed graph to model spatial
dependence combined with recurrent
neural network (GRU, LSTM) to model
temporal dependence

Dynamic Temporal Graphs
Temporal GNN

Apply a GNN to each snapshot, or, as in
EvolveGCN, use a recurrent neural
network to evolve the GNN'’s weights over
time

Node embedding Node embedding Node embedding

I Layer 2 weights I Layer 2 weights
i Layer 1 weights

Layer 2 weights

Layer 1 weights Layer 1 weights
Time | Time 2 Time 3 26
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Temporal Models

Static Temporal Graphs
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Dynamic Temporal Graphs

Temporal GNN

Apply a GNN to each snapshot, or, as in
EvolveGCN, use a recurrent neural
network to evolve the GNN'’s weights over

time

Node embedding

GCN |

Layer 2 weights

Layer 1 weights

i,

Time |

RNN 2

Node embedding

(_Iﬁ

GCN 2

RNN 2

Node embedding

GCN 3

RNN 1

1 Layer 2 weights [
[iEaiientetanr =)

RNN 1

Layer 2 weights

1 Layer 1 weights I

4

Time 2

{ Layer 1 weights I

%

Time 3 27

Pareja et al, 2020 AAl


https://arxiv.org/search/cs?searchtype=author&query=Pareja,+A

Contents

- Introduction to neural networks and recurrent neural networks

- Message passing

- Graph Neural Networks: definition, training, tasks and popular layers
- Temporal Graph Neural Networks

- Real world application
Traffic prediction
Brain activity prediction
Temporal Katz centrality

28



Traffic prediction

Traffic forecasting is the problem of predicting future traffic trends on a road
network given historical traffic data such as traffic speed and time of day.
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METR-LA Dataset

It contains traffic data from 207 sensors in
highways of Los Angeles County.

Graph nodes: sensors

Edge weights: distances between the
Sensors.

Node features:

e traffic speed

e time of the day
collected from March 1, 2012 to June 30,
2012 every 5 minutes.

Los Aﬂ&le:.)

o
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DCRNN Model

It is a recurrent model and one cell is composed by:
e Diffusion convolutional layer DConv to model spatial dependence
e Gated Recurrent Unit GRU to model temporal dependence

Static graph and

temporal featuy'
Lt

P
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|

/l

Comparison
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Results

| T | Metric | HA  ARIMAg, VAR SVR FNN FC-LSTM DCRNN

MAE 4.16 3.99 4.42 3.99 3.99 3.44 2.77

15min | RMSE | 7.80 8.21 7.89 8.45 7.94 6.30 5.38

< MAPE | 13.0% 9.6% 102% 93%  9.9% 9.6% 7.3%
— MAE 4.16 5.1) 541 5.05 4.23 377 3.15
& 30min | RMSE | 7.80 10.45 9.13 10.87 8.17 723 6.45
aa) MAPE | 13.0% 12.7% 12.7% 12.1% 12.9% 10.9% 8.8%
= MAE 4.16 6.90 6.52 6.72 4.49 4.37 3.60
1 hour | RMSE | 7.80 13.23 10.11  13.76  8.69 8.69 7.59
MAPE | 13.0% 17.4% 158% 16.7% 14.0% 13.2% 10.5%

HA: Historical Average

ARIMAKal: Auto-Regressive Integrated Moving Average

VAR: Vector Auto-Regression

SVR: Support Vector Regression

FNN:Neural network with two hidden layers and L2 regularization

FC-LSTM: Recurrent Neural Network with fully connected LSTM hidden units
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Brain activity prediction

DCRNN model applied to the networks obtained from resting-state fMRI data from

the Human Connectome Project (HCP).
“Forecasting brain activity based on models of spatiotemporal brain dynamics: A comparison of graph neural network
architectures” Wein, 2022 Network Neuroscience

Graph nodes: brain regions 180 Glasser atlas
Edge weights: number of fibers connecting two brain regions
Node features: time series of brain activity of the region

Spatio-temporal brain network

Temporal Spatial
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Temporal Katz centrality

A temporal graph defined as G = (V, E, T), where V, E and T are the sets of the
vertices, the temporal edges, and the timestamps. A temporal edge e = (u, v, t)
fromnodeutovattimetinT.

A temporal walk z from node u. to ul] is an ordered series of nodes and
temporal edges in a temporal network, represented by z = (uo, us, t1), (us, Uz, t2), .
.., (U=, uld, t0), such that vV 1 <i<n, t] <t+1.

The temporal Katz centrality of a node u € V at time t is the weighted sum of
all temporal walks that end in node u, denoted by:

ru(t) =) > (A" - exp(—c(t - t1))

v temporal walks z from v to u 36



TATKC Model

“TATKC: A Temporal Graph Neural Network for Fast Approximate Temporal Katz Centrality Ranking”, Zhang 2024,
WWWw24

At each timestamp t, a subset of neighbors N[I(v) is sampled for every node v,
prioritizing those with higher out-degree; their messages are then combined
through attention-based weighted aggregation to form a temporal embedding for
v, which a lightweight MLP converts directly into Katz-inspired ranking scores.
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Results

Performance evaluation:

ETKC algorithm for exact Katz
centrality computation

KT kendall tau correlation

3 L
Tou-N |predicted top-N% nodes N true top-N% nodes| 10 e TATKC
Op-IN7 =
[V] x N%] | —=— ETKC
2 10" F
Dataset V] [E| [T 2
tgwiktionary 33,968 81,516 67,065 E lOl I
mlwikiquote 43,889 142,340 137,389 x>
mgwikipedia 220,064 750,811 736,680
plwikiquote 581,646 1472273 1,452,278 10°k
ltwﬂ.<t1c')nary 689,678 1,693,277 1,633,334 <:>d & & & ‘§\ fbd ) @d
zhwiktionary 1,347,094 5,276,371 4,448,306 'I\\OQ \}Q‘? ‘i-\Qe \Q& '-\'\Q{\ ..\\OQ \i-\Qv i}g“
warwikipedia 2,877,072 6,145,080 5,918,117 & & & § §F§F & F
$Yags & $ & N D r{,Q 4‘.‘” 6\@
mgwiktionary 4,064,239 22,720,139 19,759,219
Datasel Top-1% Top-5% Top-10% Top-20% KT
TATKC TATKC* TGAT TATKC TATKC* TGAT TATKC TATKC* TGAT TATKC TATKC* TGAT TATKC TATKC* TGAT
tgwiktionary 90.68+0.96 75.39+1.98 64.87+1.90 93.77+0.17 85.44+0.59 80.44+1.19 88.41+0.54 84.12+0.31 81.07+0.65 92.53+0.21 88.42+0.40 86.07+0.36 80.02+0.42 78.87+0.21 77.67+0.76
mlwikiquote 85.27+0.88 60.86+1.43 61.19+1.67 89.37+0.82 73.56+1.72 69.02+1.23 89.12+0.61 76.35+1.17 73.73+0.70 91.82+0.29 81.85+0.26 80.49+0.42 86.60+0.23 82.70+0.37 82.04+0.38
mgwikipedia 80.01+0.46 65.96+0.51 49.41+0.48 86.67+0.14 76.88+1.02 67.67+0.33 97.47+0.05 94.92+0.19 91.29+0.14 94.85+0.03 94.55+0.08 94.12+0.08 76.98+0.08 76.58+0.12 76.29+0.14
plwikiquote 85.34+0.18 73.33£0.93 66.98+0.58 85.08+0.02 74.37+0.38 70.95+0.24 84.76+0.27 76.02+0.18 73.69+0.23 85.97+0.18 78.74+0.22 77.47+0.12 82.49+0.17 79.60+0.03 79.03+0.04
Itwiktionary 88.14+0.82 60.45+0.13 56.48+0.21 94.32+0.08 89.51+0.08 83.99+0.13 95.29+0.05 94.03+0.04 92.67+0.11 94.98+0.03 94.48+0.05 94.38+0.02 70.68+0.04 70.34+0.06 70.17+0.04
zhwiktionary 72.20+0.41 57.48+0.11 55.40+0.18 91.48+0.31 82.31+0.68 73.42+0.31 88.89+0.36 83.13+0.29 79.13+0.31 91.88+0.03 89.93+0.14 87.90+0.17 84.90+0.03 83.13+0.29 82.14+0.11
warwikipedia 91.35+0.08 72.02+0.28 58.46+0.21 95.74+0.03 94.01+0.05 93.48+0.14 76.32+0.11 75.08+0.27 75.63+0.09 78.13+0.03 78.04+0.04 78.07+0.09 71.28+0.02 71.13+0.04 71.10+0.02
mgwiktionary 90.25+0.21 60.33+£0.87 46.59+1.43 89.81+0.26 76.84+0.40 62.69+0.98 90.10+0.14 79.21+0.19 69.29+0.73 97.61+0.16 84.41+0.09 78.17+0.48 84.65+0.06 79.42+0.10 75.12+0.33
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