How to Color Temporal Graphs to Ensure Proper Transitions

Allen Ibiapina, Minh-Hang Nguyen, <u>Mikaël Rabie</u>, Cléophée Robin Algorithmic Aspects of Temporal Graphs - ICALP 2025 Monday July 7th

Color each snapshot? colors needed : $\max\{\chi(G_i)|i\leq T\}$

3 colors needed

Mertzios, Molter, Zamaraev -2021 : Each edge must be 2-colored at least once

2 colors are enough

Yu, Bar-Noy, Basu, Ramanathan - 2013 : Minimize the number of colors AND color switches

 $Yu, \ Bar-Noy, \ Basu, \ Ramanathan - 2013: \ Minimize \ the \ number \ of \ colors \ AND \ color \ switches$

3 colors and 7 switches

Yu, Bar-Noy, Basu, Ramanathan - 2013 : Minimize the number of colors AND color switches

3 colors and 2 switches

Yu, Bar-Noy, Basu, Ramanathan - 2013 : Minimize the number of colors AND color switches

4 colors and 0 switches

- G_i : graph from censor detectors at time i
- From times i to i + 1, edges are added, removed, and vertices change colors
- No control on the order in which those operations happen

- G_i : graph from censor detectors at time i
- From times i to i + 1, edges are added, removed, and vertices change colors
- No control on the order in which those operations happen

- G_i : graph from censor detectors at time i
- From times i to i + 1, edges are added, removed, and vertices change colors
- No control on the order in which those operations happen

- G_i : graph from censor detectors at time i
- From times i to i + 1, edges are added, removed, and vertices change colors
- No control on the order in which those operations happen

- G_i : graph from censor detectors at time i
- From times i to i + 1, edges are added, removed, and vertices change colors
- No control on the order in which those operations happen

- G_i : graph from censor detectors at time i
- From times i to i + 1, edges are added, removed, and vertices change colors
- No control on the order in which those operations happen

Coloring Compatibility

Two consecutive colorings are compatible if :

- c_i and c_{i+1} are proper on $G_i \cup G_{i+1}$
- $\forall uv \in E_i \cup E_{i+1}, c_i(u) \neq c_{i+1}(v)$

Temporal Coloring

Temporal chromatic number $\chi^t(\mathcal{G})$ with $\mathcal{G} = (G_1, G_2, \dots, G_T)$:

- Minimum number of colors for colorings c_1, c_2, \ldots, c_T
- $\forall i \leq T$, c_i proper coloring of G_i
- $\forall i < T, c_i$ and c_{i+1} compatible on $G_i \cup G_{i+1}$

Temporal Coloring

Temporal chromatic number $\chi^t(\mathcal{G})$ with $\mathcal{G} = (G_1, G_2, \dots, G_T)$:

- Minimum number of colors for colorings c_1, c_2, \ldots, c_T
- $\forall i \leq T$, c_i proper coloring of G_i
- $\forall i < T, c_i \text{ and } c_{i+1} \text{ compatible on } G_i \cup G_{i+1}$

We directly observe:

- $\forall i \in [2, t-1]$, c_i proper coloring of $G_{i-1} \cup G_i \cup G_{i+1}$
- $\max\{\chi(\mathit{G}_{i-1}\cup\mathit{G}_{i}\cup\mathit{G}_{i+1})|i\in[2,\mathit{T}-1]\}\leq\chi^{t}(\mathcal{G})\leq\chi\left(\bigcup_{i\leq\mathit{T}}\mathit{G}_{i}\right)$

Upper Bounds - Triplets

From a coloring of each snapshot:

- $\forall i \leq T$, k_i proper coloring of G_i
- K: maximal number of colors used by some k_i
- $\chi^t(\mathcal{G}) \leq K^3$

Upper Bounds - Triplets

From a coloring of each snapshot:

- $\forall i \leq T$, k_i proper coloring of G_i
- K: maximal number of colors used by some k_i
- $\chi^t(\mathcal{G}) \leq K^3$

 $G_3, c_3 = (k_4, k_2, k_3)$

 $G_4, c_4 = (k_4, k_5, k_3)$

 $G_5, c_3 = (k_4, k_5, k_6)$

Upper Bounds - Union of Three

From a coloring of each snapshot :

- $\forall i \in [2, T-1]$, p_i proper coloring of $G_{i-1} \cup G_i \cup G_{i+1}$
- K: maximal number of colors used by some p_i
- $\chi^t(\mathcal{G}) \leq 2K$

Upper Bounds - Union of Three

From a coloring of each snapshot :

- $\forall i \in [2, T-1]$, p_i proper coloring of $G_{i-1} \cup G_i \cup G_{i+1}$
- K: maximal number of colors used by some p_i
- $\chi^t(\mathcal{G}) \leq 2K$

Bipartite Graphs

When each snapshot is a bipartite graph:

- Triplet upper bound : $k^3 = 8$ colors are enough
- There exists G_1 , G_2 and G_3 such as $\chi(G_1 \cup G_2 \cup G_3) = 8$

 G_1

 G_2

 G_3

Trees and Paths

When each snapshot is a tree :

- Triplet upper bound : $k^3 = 8$ colors are enough
- Fo all G_1 , G_2 and G_3 , $\chi(G_1 \cup G_2 \cup G_3) \leq 6$
- There exists G_1 , G_2 and G_3 such as $\chi(G_1 \cup G_2 \cup G_3) = 6$

△-Bounded Graphs

When each snapshot has maximal degree Δ :

- We can always $5\Delta + 1$ -color the temporal graph
- Fo all G_1 , G_2 and G_3 , $\chi(G_1 \cup G_2 \cup G_3) \leq 3\Delta + 1$
- There exists G_1 , G_2 and G_3 such as $\chi(G_1 \cup G_2 \cup G_3) = 3\Delta + 1$

d-Degenerate Graphs

When each snapshot is d-degenerate :

- Triplet and Union of $3: d^3$ and 12d colors are enough
- Fo all G_1 , G_2 and G_3 , $\chi(G_1 \cup G_2 \cup G_3) \le 6d$
- There exists G_1 , G_2 and G_3 such as $\chi(G_1 \cup G_2 \cup G_3) = 5d$

d-Degenerate Graphs

When each snapshot is d-degenerate :

• There exists G_1 , G_2 and G_3 such as $\chi(G_1 \cup G_2 \cup G_3) = 5d$

2-Colorability

Checking **2-colorability** of a temporal graph is in P :

- To change its color in c_i , a node must be isolated in c_{i-1} and c_i
- Equivalent to 2-color a static graph $col(\mathcal{G})$

Grow Pace

Grow pace of $k : \forall i < T, |E_{i+1} \setminus E_i| \le k$.

For any temporal graph ${\cal G}$ with grow pace 1, where each snapshot has bounded degree Δ , we have :

$$\chi^t(\mathcal{G}) \leq \Delta + 2$$

Moreover, for any c_i , coloring of $G_{i-1} \cup G_i \cup G_{i+1}$, we can build c_{i+1} compatible with c_i .

Grow Pace

Grow pace of $k : \forall i < T, |E_{i+1} \setminus E_i| \le k$.

- Grow pace 1, bounded degree 2
- Fo all \mathcal{G} , $\chi^t(\mathcal{G}) \leq 4$
- There exists $\mathcal{G} = G_{i \leq 4}$, such as $\chi^t(\mathcal{G}) = 4$

Grow Pace

- Grow pace 1, bounded degree 3
- Fo all \mathcal{G} , $\chi^t(\mathcal{G}) \leq 5$
- There exists $\mathcal{G} = G_{i < 4}$, such as $\chi^t(\mathcal{G}) = 5$

Sum Up and Open Questions

- Worst-case scenarios when each snapshot is
 - a tree : $6 \le \chi^t(\mathcal{G}) \le 8$
 - of bounded degree $\Delta: 3\Delta + 1 \leq \chi^t(\mathcal{G}) \leq 5\Delta + 1$
 - d-degenerate : $5d \le \chi^t(\mathcal{G}) \le \min(12d, d^3)$
- With grow pace 1 and $\Delta > 5$, are $\Delta + 1$ colors enough?
- Online vs. centralized temporal coloring : what changes?
- How to define compatibility for Matchings and Independent Sets?

Sum Up and Open Questions

- Worst-case scenarios when each snapshot is
 - a tree : $6 \le \chi^t(\mathcal{G}) \le 8$
 - of bounded degree $\Delta: 3\Delta + 1 \leq \chi^t(\mathcal{G}) \leq 5\Delta + 1$
 - d-degenerate : $5d \le \chi^t(\mathcal{G}) \le \min(12d, d^3)$
- With grow pace 1 and $\Delta > 5$, are $\Delta + 1$ colors enough?
- Online vs. centralized temporal coloring : what changes?
- How to define compatibility for Matchings and Independent Sets?

Thank You!

https://arxiv.org/abs/2505.10207