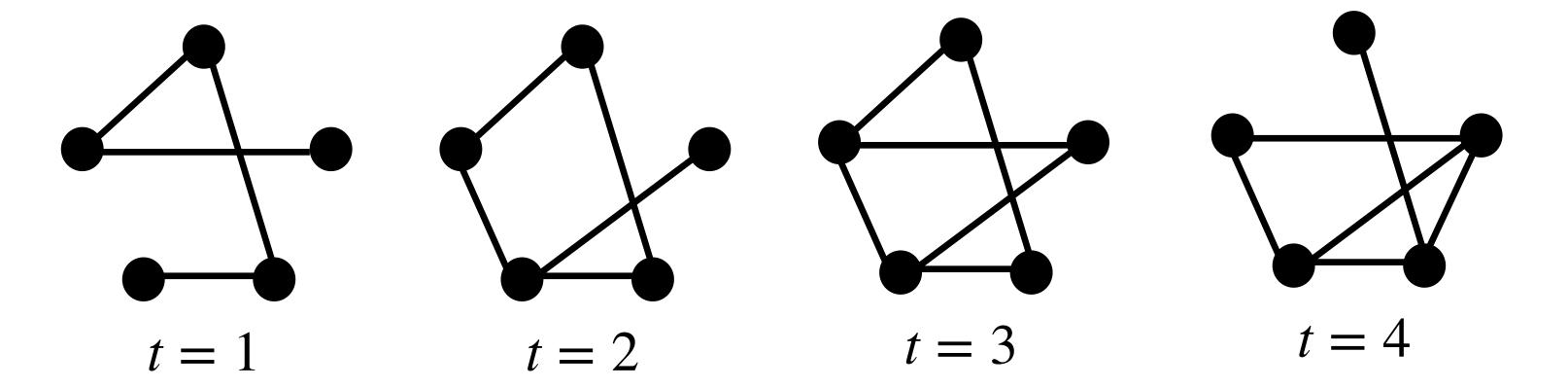
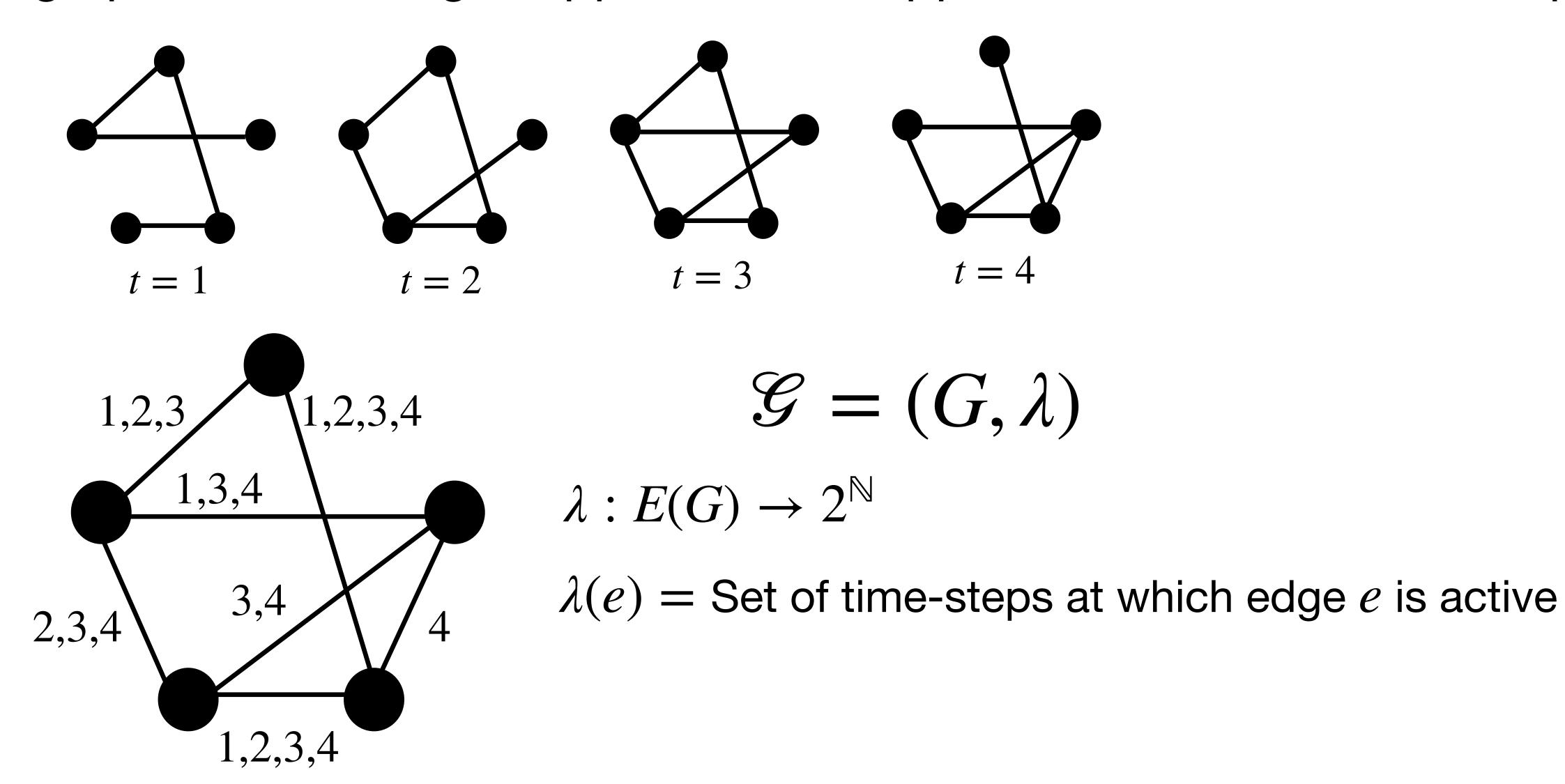
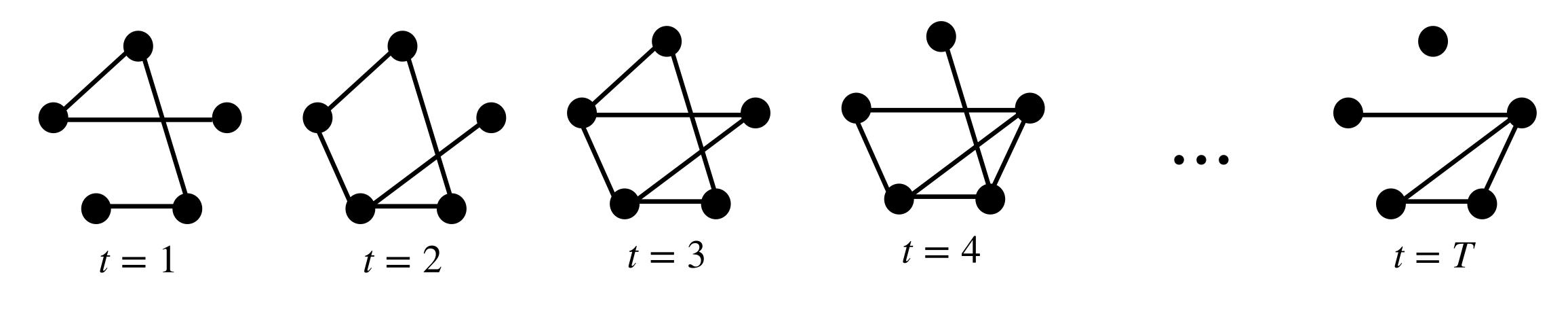
Temporal Triadic Closure:

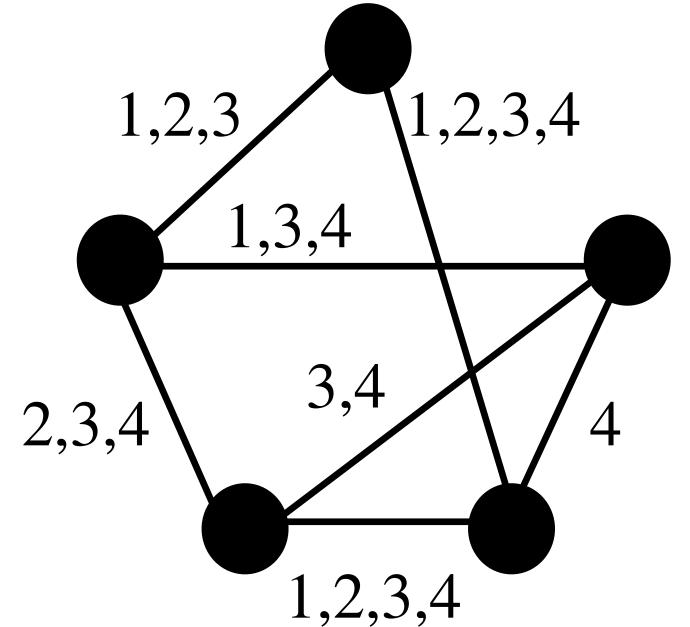
Finding Dense Structures in Social Networks That Evolve

Tom Davot, Jessica Enright, Jayakrishnan Madathil, Kitty Meeks
University of Glasgow





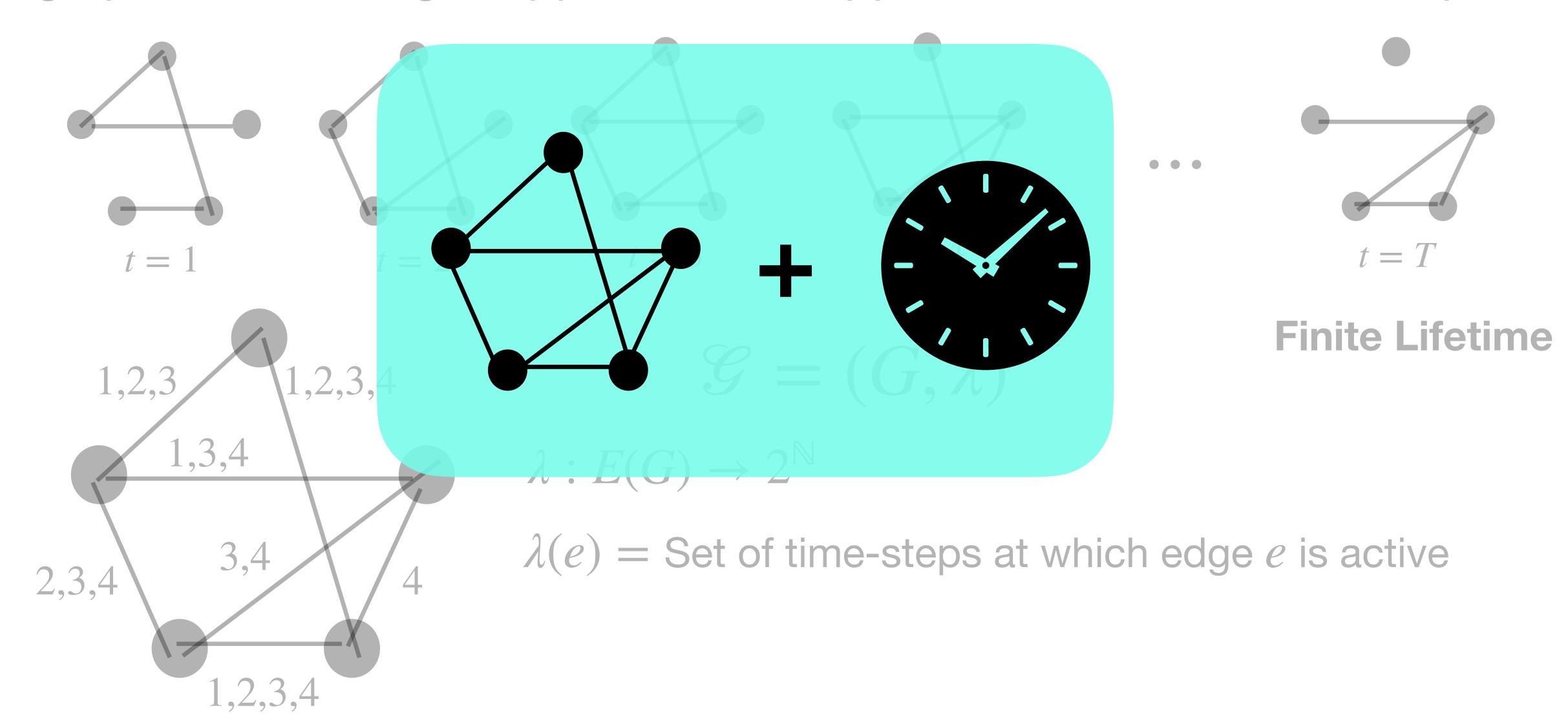




$$\mathscr{G} = (G, \lambda)$$

$$\lambda: E(G) \to 2^{\mathbb{N}}$$

$$\lambda(e)$$
 = Set of time-steps at which edge e is active



Translating
Adapting
Generalizing

Extending

Concepts & Algorithms From Graphs to Temporal Graphs

Theorem 1: Let G be a graph. If G satisfies property P, then Q holds.

Can we formulate and prove Theorem 2?

Theorem 2: Let \mathcal{G} be a temporal graph. If \mathcal{G} satisfies a temporal analogue of property P, then a temporal analogue of Q holds.

The hunt for structural parameters for temporal graphs

NP-hard problems on static graphs —Structural parameters to the rescue

NO poly(n) algorithm, but $f(p) \cdot poly(n)$ algorithm for various parameters p

Max-Degree
Degeneracy
Treewidth
Cliquewidth
Forest + p vertices

Attempts to translate this algorithmic success to temporal graphs

Define structural parameters for temporal graphs

Treewidth
Cliquewidth
Feedback Edge Number
Nbd Diversity

....

The hunt for structural parameters for temporal graphs

• NP-hard problems on *static* graphs —Structural parameters to the rescue

A structural parameter inspired by social networks

ces

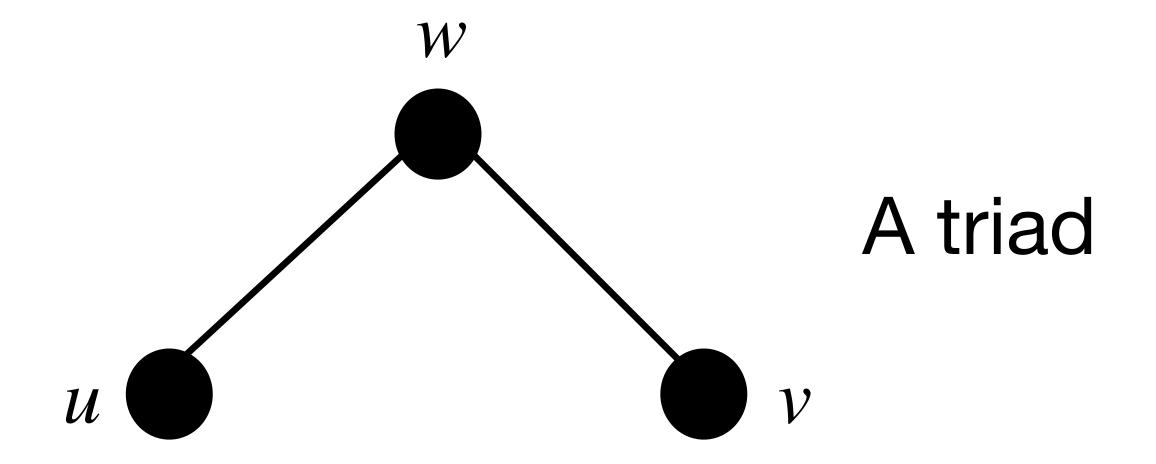
Attempts to translate this algorithmic success to temporal graphs

Define structural parameters for temporal graphs

Treewidth
Cliquewidth
Feedback Edge Number
Nbd Diversity

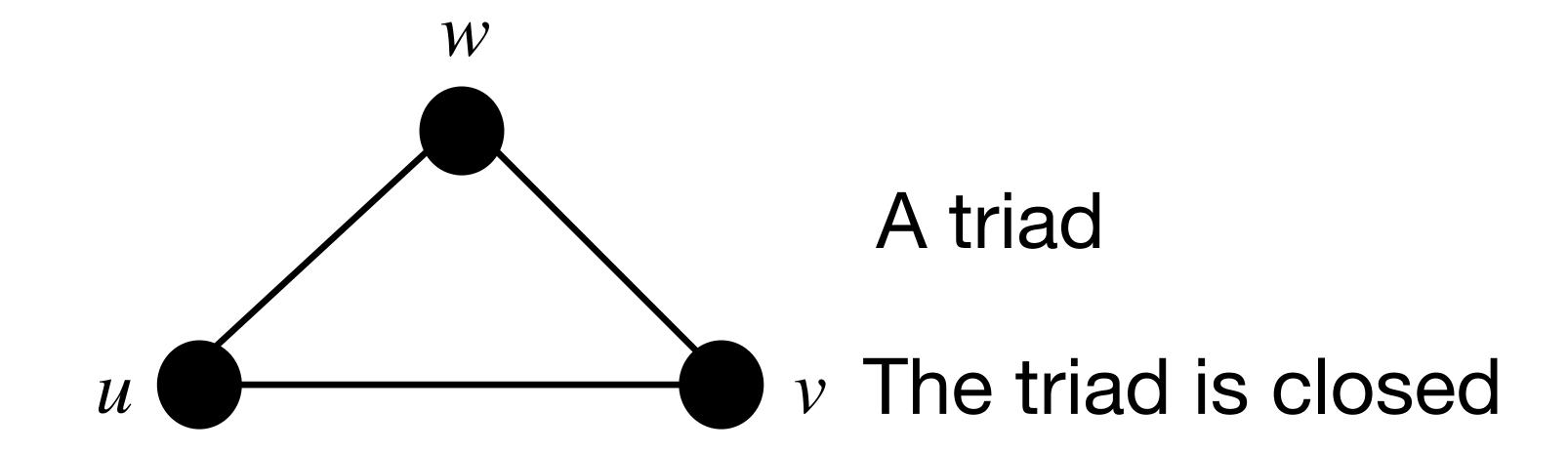
Triadic Closure Property in Social Networks

Friends of friends tend to be friends themselves



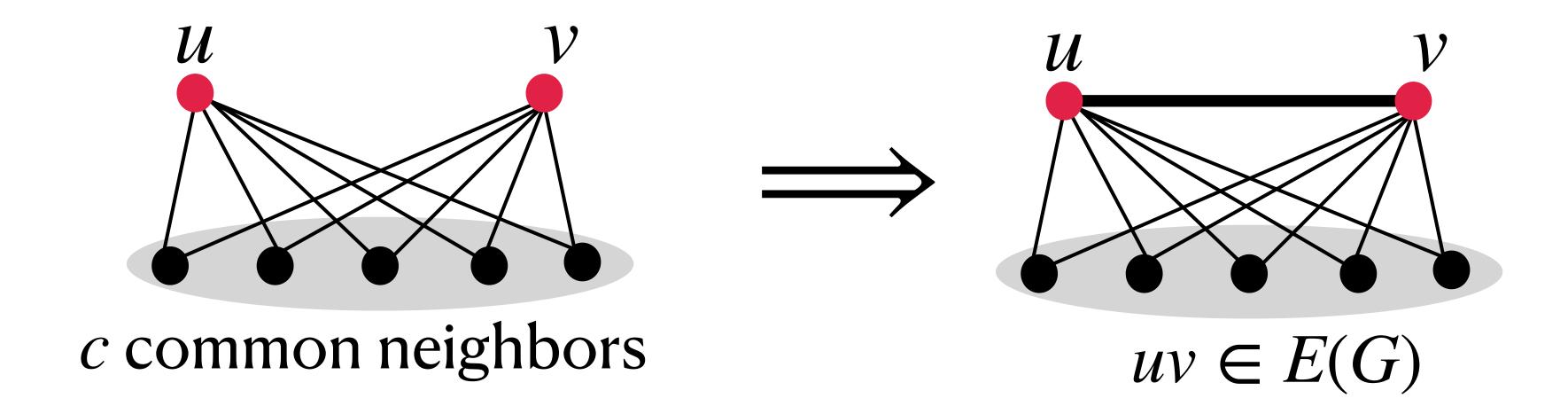
Triadic Closure Property in Social Networks

Friends of friends tend to be friends themselves



c-Closed Temporal Graphs

c-Closed Graphs



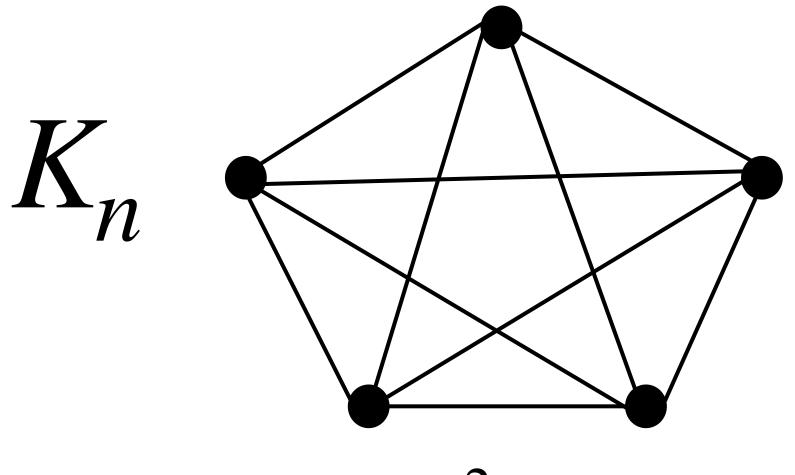
Closure Number of $G = \min\{c \mid G \text{ is } c\text{-closed}\}$

 $= 1 + \max\{0, |N(u) \cap N(v)| | uv \notin E(G)\}$

Closure Number vs. Other Graph Parameters

Closure Number of $G = 1 + \max\{0, |N(u) \cap N(v)| | uv \notin E(G)\}$

Closure Number of $G \le 1 + \max - \deg ree(G)$



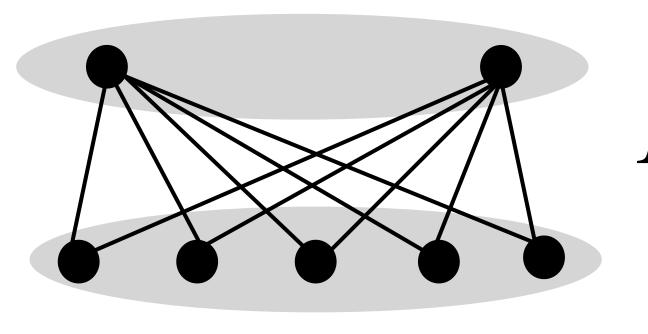
 $\mathcal{O}(n^2)$ edges

Treewidth = n - 1

Degeneracy = n - 1

Max-degree = n - 1

Closure Number = 1



 $K_{2,n-2}$

 $\mathcal{O}(n)$ edges

Treewidth = 2

Degeneracy = 2

Max-degree = n - 2

Closure Number = n - 1

Static c-closed graphs: A success story

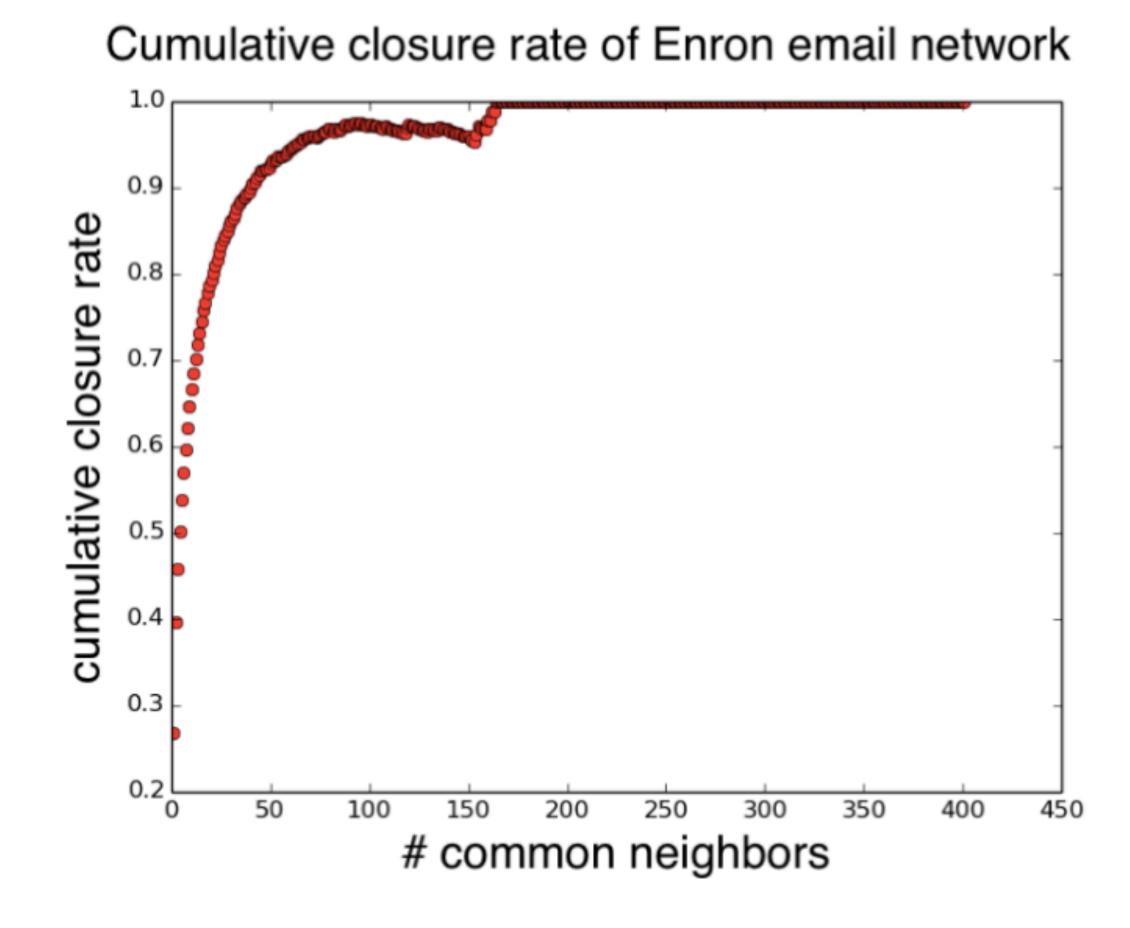
- Introduced by Fox, Roughgarden, Seshadhri, Wei and Wein [ICALP 2018]
- At most $3^{c/3} \cdot n^2$ maximal cliques (vs. $3^{n/3}$ on general graphs)
- A useful structural parameter Koana, Komusiewicz, Sommer [ESA 2020]
 - Easy to understand
 - Polynomial-time computable
 - Modest values on real-world networks
 - Captures a property not described by other parameters
 - A number of problems admit efficient algorithms on c-closed graphs
- Inspired a number of papers in the last five years

Static c-closed graphs: A success story

	n	m	c	$\operatorname{weak} c$
email-Enron	36692	183831	161	34
p2p-Gnutella04	10876	39994	24	8
wiki-Vote	7115	103689	420	42
ca-GrQc	5242	14496	41	9

Static c-closed graphs: A success story

$$y = \frac{\#\{u,v\} \text{ with at least } x \text{ common neighbors and } uv \in E(G)}{\#\{u,v\} \text{ with at least } x \text{ common neighbors}}$$



[Enron email network with 36K nodes and 183K edges: From Fox, Roughgarden, Seshadhri, Wei and Wein (ICALP 2018)]

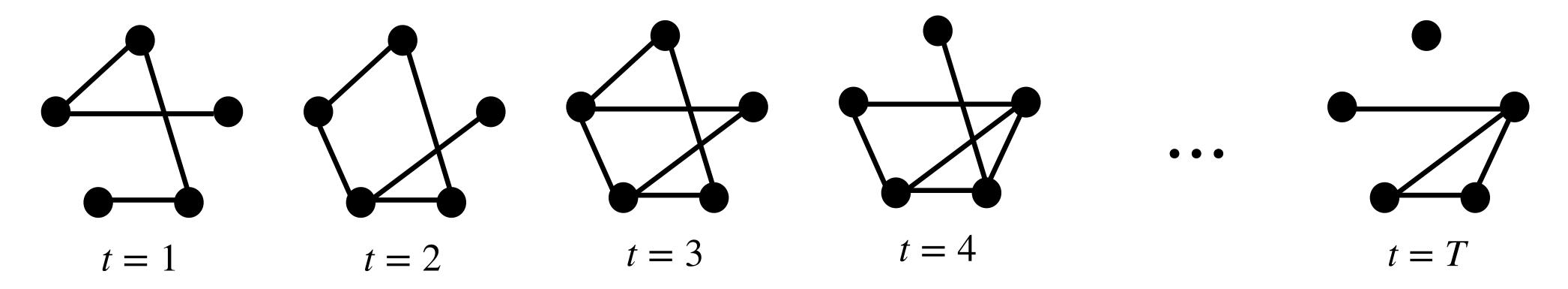
c-Closed Temporal Graphs

How to define a temporal analogue of c-closed graphs?

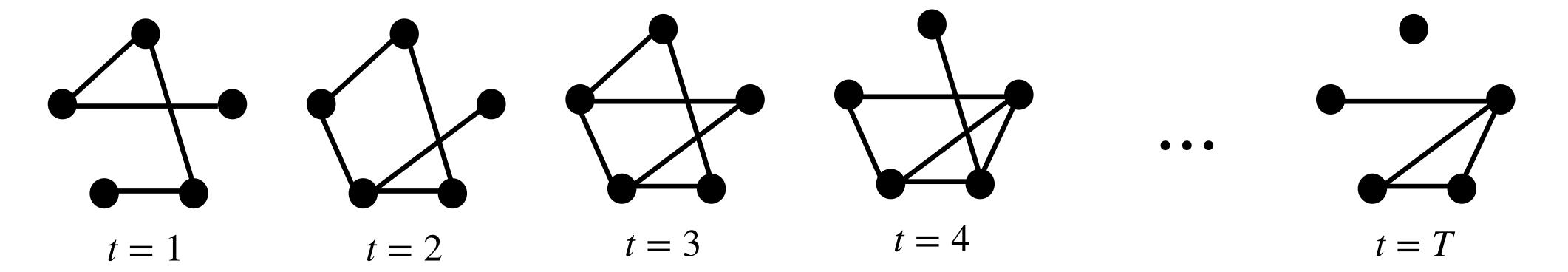
Can we prove algorithmic results on temporal c-closed graphs, analogous to the ones on static c-closed graphs?

recall

Temporal Graph



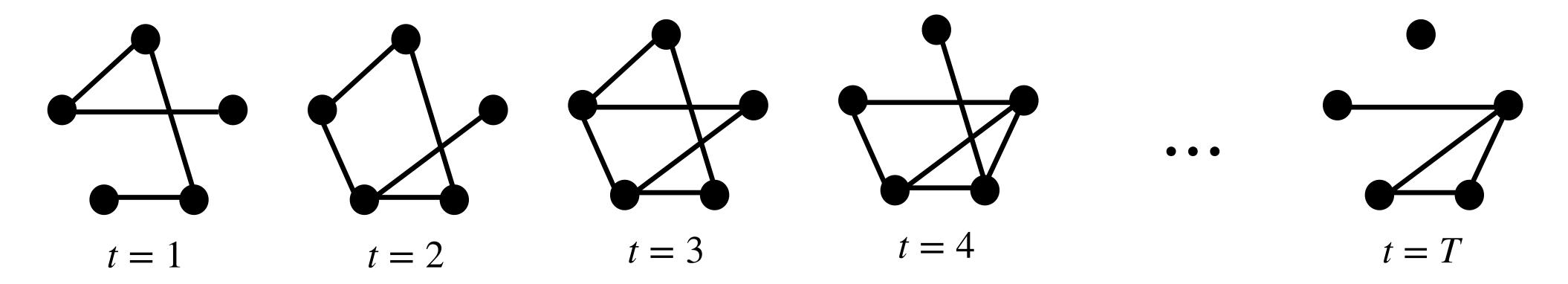
A graph in which edges appear and disappear over discrete time-steps



(

b

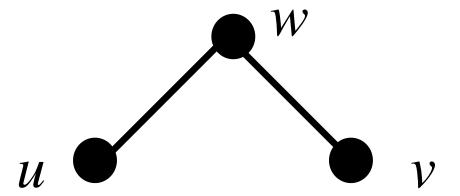
A graph in which edges appear and disappear over discrete time-steps



Adjacent during [a, b]

uv is active at t for some $t \in [a, b]$

Common neighbor during [a, b]



uw is active at t & vw is active at t' for some $t, t' \in [a, b]$

What we did: c-Closed Temporal Graphs

[Davot, Enright, Madathil, Meeks: AAAI 2025]

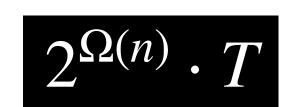
• Defined temporal c-closed graphs — a formalism of triadic closure property

If two vertices *u* and *v* have at least *c* common neighbors during a short interval of time, then *u* and *v* are adjacent to each other around that time.



Upper bounds for the number of maximal temporal cliques

Every slowly-evolving c-closed temporal graph with n vertices and lifetime T has at most $2^{\mathcal{O}(c)} \cdot n^2 \cdot T$ maximal temporal cliques.



- Enumerate all maximal temporal cliques in time $2^{\mathcal{O}(c)} \cdot n^{\mathcal{O}(1)} \cdot T$.
- ullet More general results other dense subgraphs, weakly c-closed temporal graphs.
- Empirical analysis of a handful of small real-world networks: c-closed for modest values of c

Quick Overview of Technical Details

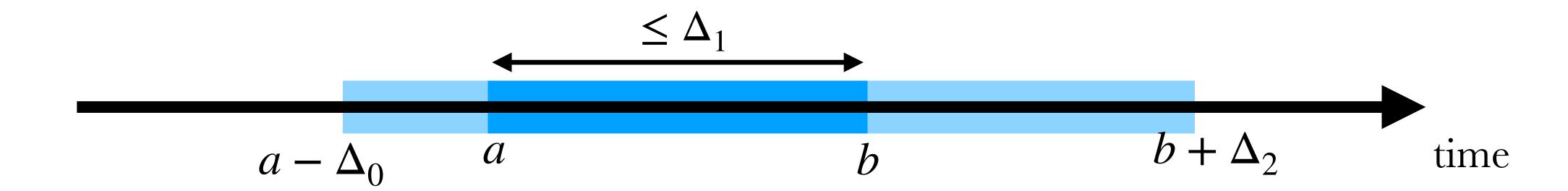
c-Closed Temporal Graphs

If two vertices *u* and *v* have at least *c* common neighbors during a short interval of time, then *u* and *v* are adjacent to each other around that time.

(Almost) Formal Definition of $(\Delta_0, \Delta_1, \Delta_2, c)$ -closed temporal graphs

For every two distinct vertices u and v, and every time-interval [a,b] with $b-a \leq \Delta_1$,

if u and v have at least c common neighbors during [a, b], then u and v are adjacent to each other during $[a - \Delta_0, b + \Delta_2]$.



[Viard, Latapy, Magnien: Computing maximal cliques in link streams. TCS, 2016]

Clique in a static graph: $X \subseteq V(G)$ such that $xy \in E(G)$ for every $x, y \in X$

Clique in a temporal graph: (X, [p, q])

 $X \subseteq V(G)$ and [p,q] is a time-interval such that for every $x,y \in X$ and for every time-interval $[t,t+\Delta] \subseteq [p,q]$, The edge xy is active during $[t,t+\Delta]$

[Viard, Latapy, Magnien: Computing maximal cliques in link streams. TCS, 2016]

Clique in a static graph: $X \subseteq V(G)$ such that $xy \in E(G)$ for every $x, y \in X$

Clique in a temporal graph: (X, [p, q])

 $X \subseteq V(G)$ and [p,q] is a time-interval such that for every $x,y \in X$ and for every time-interval $[t,t+\Delta] \subseteq [p,q]$, The edge xy is active during $[t,t+\Delta]$

#Maximal Δ -cliques could be as large as $2^n \cdot T$

[Viard, Latapy, Magnien: Computing maximal cliques in link streams. TCS, 2016]

Clique in a static graph: $X \subseteq V(G)$ such that $xy \in E(G)$ for every $x, y \in X$

Clique in a temporal graph: (X, [p, q])

 $X \subseteq V(G)$ and [p,q] is a time-interval such that for every $x,y \in X$ and for every time-interval $[t,t+\Delta] \subseteq [p,q]$, The edge xy is active during $[t,t+\Delta]$

#Maximal Δ -cliques could be as large as $2^n \cdot T$

Can we bound #Maximal Δ -cliques by $f(c) \cdot poly(n) \cdot T$?

[Viard, Latapy, Magnien: Computing maximal cliques in link streams. TCS, 2016]

Clique in a static graph: $X \subseteq V(G)$ such that $xy \in E(G)$ for every $x, y \in X$

Clique in a temporal graph: (X, [p, q])

 $X \subseteq V(G)$ and [p,q] is a time-interval such that for every $x,y \in X$ and for every time-interval $[t,t+\Delta] \subseteq [p,q]$, The edge xy is active during $[t,t+\Delta]$

#Maximal Δ -cliques could be as large as $2^n \cdot T$

Can we bound #Maximal Δ -cliques by $f(c) \cdot poly(n) \cdot T$?

Yes, if the graph evolves slowly No, otherwise

A (Fast-Evolving) Temporal c-Closed Graph with $\Omega(2^n)$ maximal Δ -cliques

Construct an *n*-vertex temporal graph as follows.

$$X_1, X_2, \ldots, X_{2^n-(n+1)}$$
: the $2^n-(n+1)$ subsets of vertices of size at least 2

Choose time-steps $t_1 < t_2 < \dots < t_{2^n - (n+1)}$ such that $t_{i+1} - t_i > 3\Delta$.

At time-step t_i , the set X_i induces a clique.

1-closed

Then $(X_i, [t_i - \Delta, t_i + \Delta])$ is a maximal Δ -clique.

Slow Evolution: Small instability

Between consecutive time-steps, the neighborhood of each vertex changes very little

η-unstable temporal graph

$$|N_t(v)\backslash N_{t+1}(v)| \leq \eta$$

And

$$|N_{t+1}(v)\rangle N_t(v)| \leq \eta$$

Our Bound for #Maximal Δ -Cliques

Outline of the proof:

 $2^{c+2\eta\Delta} \cdot n^2 \cdot T$

Associate every maximal Δ -clique with

a pair of vertices u, v,

a time-step t

a subset of the common neighborhood of u and v during $[t, t+\Delta]$

such that uv is not active during $[t, t + \Delta]$

c-1 common neighbors

$$t + \Delta_0 \qquad \qquad t + \Delta_0 + \Delta_1$$

 $t + \Delta$

 $c-1+2\eta\Delta$ common neighbors

Empirical Results

- Seven contact networks
 - #vertices in the range 21–217
 - #edges in the range 54–4274
 - #time-steps in the range 27—275
 - c values in the range 8—30

ABOUT | GALLERY | PUBLICATIONS | NEWS | PRESS | DATA |

WELCOME

SocioPatterns is an interdisciplinary research collaboration formed in 2008 that adopts a datadriven methodology to study social dynamics and human activity.

Since 2008, we have collected longitudinal data on the physical proximity and face-to-face contacts of individuals in numerous real-world environments, covering widely varying contexts across several countries: schools, museums, hospitals, etc. We use the data to study human behaviour and to develop agent-based models for the transmission of infectious diseases.

We make most of the collected data freely available to the scientific community

NEWS

New data sets published: copresence and face-to-face contacts

Through a publication in EPJ Data Science, we have released several new data sets of different types. These datasets can be found on Zenodo.

sociopatterns.org

Temporal c value is smaller than the static c value

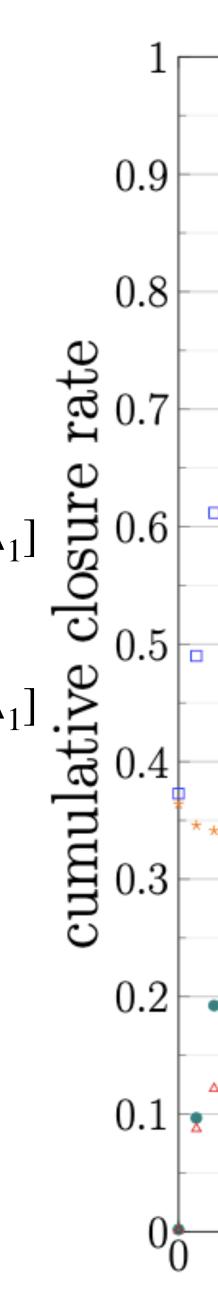
 $^{*}\Delta_{1}=5, \Delta_{0}=\Delta_{2}=10$

15

20

#common neighbors

 $25 \quad 30 \quad 35$



 $\#(\{u,v\},a)$, where u and v have at least x common neighbors during $[a,a+\Delta_1]$ and uv is active during $[a-\Delta_0,a+\Delta_1+\Delta_2]$)

 $\#(\{u,v\},a)$, where u and v have at least x common neighbors during $[a,a+\Delta_1]$

#vertices = 73, #edges = 1381, lifetime = 71

Summary and Next Steps

- Defined c-closed (and weakly c-closed) temporal graphs
- Bounded the number of maximal cliques
- Similar bounds for k-plexes and k-defective cliques
- Introduced notions of stability

- Bounds for other dense subgraphs (dense := complement of sparse)?
- Weaker notions of stability?
- Usefulness of c-closure in designing algorithms for temporal graph problems?
- Detailed empirical study?

Thank You