
Temporal Triadic Closure:

University of Glasgow

Finding Dense Structures in Social Networks That Evolve

Tom Davot, Jessica Enright, Jayakrishnan Madathil, Kitty Meeks



Temporal Graph

t = 1 t = 2 t = 3 t = 4

A graph in which edges appear and disappear over discrete time-steps



Temporal Graph

𝒢 = (G, λ)

t = 1 t = 2 t = 3 t = 4

1,2,3

2,3,4

1,2,3,4

1,2,3,4

1,3,4

3,4 4

λ : E(G) → 2ℕ

Set of time-steps at which edge  is activeλ(e) = e

A graph in which edges appear and disappear over discrete time-steps



Temporal Graph

𝒢 = (G, λ)

t = 1 t = 2 t = 3 t = 4

1,2,3

2,3,4

1,2,3,4

1,2,3,4

1,3,4

3,4 4

λ : E(G) → 2ℕ

Set of time-steps at which edge  is activeλ(e) = e

A graph in which edges appear and disappear over discrete time-steps

t = T

⋯

Finite Lifetime



Temporal Graph

𝒢 = (G, λ)

t = 1 t = 2 t = 3 t = 4

1,2,3

2,3,4

1,2,3,4

1,2,3,4

1,3,4

3,4 4

λ : E(G) → 2ℕ

Set of time-steps at which edge  is activeλ(e) = e

A graph in which edges appear and disappear over discrete time-steps

t = T

⋯

Finite Lifetime
+



Concepts & Algorithms From Graphs to Temporal Graphs

Translating 
Adapting 
Generalizing 

Can we formulate and prove Theorem 2? 

Extending

Theorem 1: Let  be a graph. If  satisfies property P, then Q holds. G G

Theorem 2: Let  be a temporal graph. If  satisfies a temporal analogue of 
property P, then a temporal analogue of Q holds. 

𝒢 𝒢

Can we formulate and prove Theorem 2? 



The hunt for structural parameters for temporal graphs

• NP-hard problems on static graphs —Structural parameters to the rescue

NO  algorithm, but  algorithm poly(n) f(p) ⋅ poly(n)

for various parameters  p
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p
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Define structural parameters for temporal graphs

A structural parameter inspired by social networks 
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Triadic Closure Property  
in Social Networks

Friends of friends tend to be friends themselves

The triad is closedu v

w

A triad



-Closed Temporal Graphsc



 common neighborsc

u vu v

 uv ∈ E(G)

⟹

Closure Number of G = min{c | G is c-closed}

-Closed Graphsc

= 1 + max{0, |N(u) ∩ N(v) | | uv ∉ E(G)}



 edges 
Treewidth  

Degeneracy  
Max-degree  

Closure Number 

𝒪(n)
= 2
= 2

= n − 2
= n − 1

Closure Number of 1 + max-degreeG ≤ (G)

Kn K2,n−2

 edges 
Treewidth  

Degeneracy  
Max-degree  
Closure Number 

𝒪(n2)
= n − 1
= n − 1
= n − 1

= 1

Closure Number vs. Other Graph Parameters

Closure Number of G = 1 + max{0, |N(u) ∩ N(v) | | uv ∉ E(G)}



• Introduced by Fox, Roughgarden, Seshadhri, Wei and Wein [ICALP 2018]


• At most  maximal cliques (vs.  on general graphs)

• A useful structural parameter — Koana, Komusiewicz, Sommer [ESA 2020]


• Easy to understand

• Polynomial-time computable

• Modest values on real-world networks

• Captures a property not described by other parameters


• A number of problems admit efficient algorithms on -closed graphs

• Inspired a number of papers in the last five years

3c/3 ⋅ n2 3n/3

c

Static -closed graphs: A success storyc



Static -closed graphs: A success storyc

[From Fox, Roughgarden, Seshadhri, Wei and Wein (ICALP 2018)]




Static -closed graphs: A success storyc

[Enron email network with 36K nodes and 183K edges: From Fox, Roughgarden, Seshadhri, Wei and Wein (ICALP 2018)]


y =
#{u, v} with at least x common neighbors and uv ∈ E(G)

#{u, v} with at least x common neighbors



-Closed Temporal Graphsc

How to define a temporal analogue of -closed graphs?


Can we prove algorithmic results on temporal -closed 
graphs, analogous to the ones on static -closed graphs?

c

c
c
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Temporal Graph
A graph in which edges appear and disappear over discrete time-steps

t = 1 t = 2 t = 3 t = 4 t = T

⋯

time
a b

 is active at  for some  uv t t ∈ [a, b]

u v

Adjacent during [a, b] Common neighbor during [a, b]

u v

w

 is active at  &  is active at 

for some  

uw t vw t′ 

t, t′ ∈ [a, b]

Re
ca
ll



[Davot, Enright, Madathil, Meeks: AAAI 2025]

•Defined temporal -closed graphs — a formalism of triadic closure propertyc
If  two vertices  and  have at least  common neighbors during a short interval of  time,  

then  and  are adjacent to each other around that time.
u v c

u v

What we did: c-Closed Temporal Graphs

•Upper bounds for the number of maximal temporal cliques

•Enumerate all maximal temporal cliques in time .2𝒪(c) ⋅ n𝒪(1) ⋅ T

•More general results — other dense subgraphs, weakly -closed temporal graphs.c

• Empirical analysis of a handful of small real-world networks: -closed for modest values of  c c

2Ω(n) ⋅ TEvery slowly-evolving -closed temporal graph with  vertices and lifetime  has 
at most  maximal temporal cliques. 

c n T
2𝒪(c) ⋅ n2 ⋅ T

time

 common neighbors≥ c



Quick Overview of Technical Details



-Closed Temporal Graphsc
If  two vertices  and  have at least  common neighbors during a short interval of  time,  

then  and  are adjacent to each other around that time. 
u v c

u v

(Almost) Formal Definition of -closed temporal graphs(Δ0, Δ1, Δ2, c)
For every two distinct vertices  and ,  

and every time-interval  with ,  

if   and  have at least  common neighbors during ,  
then  and  are adjacent to each other during .

u v
[a, b] b − a ≤ Δ1

u v c [a, b]
u v [a − Δ0, b + Δ2]

a ba − Δ0
b + Δ2

≤ Δ1

time



Temporal Cliques: -CliquesΔ
Clique in a static graph:  such that  for every X ⊆ V(G) xy ∈ E(G) x, y ∈ X

Clique in a temporal graph: (X, [p, q])

[Viard, Latapy, Magnien: Computing maximal cliques in link streams. TCS, 2016]

  and  is a time-interval  
such that for every  and  

for every time-interval , 
The edge  is active during  

X ⊆ V(G) [p, q]
x, y ∈ X
[t, t + Δ] ⊆ [p, q]

xy [t, t + Δ]
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Temporal Cliques: -CliquesΔ

Clique in a temporal graph: (X, [p, q])

Can we bound #Maximal -cliques by ?Δ f(c) ⋅ poly(n) ⋅ T

Yes, if  the graph evolves slowly 
No, otherwise

Clique in a static graph:  such that  for every X ⊆ V(G) xy ∈ E(G) x, y ∈ X

[Viard, Latapy, Magnien: Computing maximal cliques in link streams. TCS, 2016]
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A (Fast-Evolving) Temporal -Closed Graph 
with  maximal -cliques 

c
Ω(2n) Δ

 : the  subsets of  vertices of  size at least 2 X1, X2, . . . , X2n−(n+1) 2n − (n + 1)

Choose time-steps  such that . t1 < t2 < ⋯ < t2n−(n+1) ti+1 − ti > 3Δ

At time-step , the set  induces a clique.  ti Xi

Then  is a maximal -clique. (Xi, [ti − Δ, ti + Δ]) Δ

1-closed

Construct an -vertex temporal graph as follows. n



Slow Evolution: Small instability

Between consecutive time-steps,  
the neighborhood of each vertex changes very little

 

And 

|Nt(v)∖Nt+1(v) | ≤ η

|Nt+1(v)∖Nt(v) | ≤ η

-unstable 
temporal graph

η



Our Bound for #Maximal -CliquesΔ

a pair of vertices , 

a time-step 

a subset of the common neighborhood of  and  during 

                             such that  is not active during 

u, v
t

u v [t, t + Δ]
uv [t, t + Δ]

Outline of the proof:   2c+2ηΔ ⋅ n2 ⋅ T
Associate every maximal -clique with Δ

t + Δ0 t + Δ0 + Δ1t t + Δ

 common neighborsc − 1

 common neighborsc − 1 + 2ηΔ



Empirical Results

sociopatterns.org
•Seven contact networks 


•#vertices in the range 21–217

•#edges in the range 54–4274

• #time-steps in the range 27—275

•  values in the range 8—30c

Temporal  value is smaller than the static  value c c



#({u, v}, a),  where u and v have at least x common neighbors during [a, a + Δ1]
 and uv is active during [a − Δ0, a + Δ1 + Δ2])

y =

#vertices = 73, 

#edges = 1381, 

lifetime  =71  

#({u, v}, a),  where u and v have at least x common neighbors during [a, a + Δ1]



Summary and Next Steps
• Defined  -closed (and weakly -closed) temporal graphs

• Bounded the number of maximal cliques

• Similar bounds for -plexes and -defective cliques

• Introduced notions of stability

c c

k k

• Bounds for other dense subgraphs — (dense := complement of sparse)?

• Weaker notions of stability? 

• Usefulness of -closure in designing algorithms for temporal graph problems?

• Detailed empirical study?

c

Thank You


