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temporal graphs

A temporal graph G = (V ,E , π) is a finite simple graph together
with an ordering π : E → {1, 2, . . . , |E |} of the edges.

The edges have time stamps.

Edge e precedes edge f if π(e) < π(f ).

Temporal graphs model time-dependent propagation processes
such as infection processes.

An infection spreads along monotone increasing paths.
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random simple temporal graphs

Today G ∼ G(n, p) is an Erdős–Rényi random graph.

Such a random graph may be generated by assigning i.i.d. random
labels to each edge of the complete graph Kn.

The label of edge {i , j} is a uniform [0, 1] random variable Ui ,j .

An edge is kept if and only if Ui ,j ≤ p.

Denote the random temporal graph by G(U).



connectivity

This model was formally introduced by Casteigts, Raskin, Renken,
and Zamaraev (2022) and Becker, Casteigts, Crescenzi, Kodrić,
Renken, Raskin, and Zamaraev (2022).
They prove that, with high probability,

• a typical pair of vertices is connected by an increasing path if
p ≥ (1 + ε) log n/n and disconnected if
p ≤ (1− ε) log n/n.

• a typical vertex can reach all other vertices if
p ≥ (2 + ε) log n/n and cannot reach all of them if
p ≤ (2− ε) log n/n.

• any pair of vertices are connected if p ≥ (3 + ε) log n/n but
not all of them are connected if p ≤ (3− ε) log n/n.



longest and shortest monotone paths

Define `(i , j) and L(i , j) as the minimum and maximum length of
any increasing path from i to j .

We study

• L(1, 2) and `(1, 2); the lengths of the longest and shortest
increasing paths between two fixed vertices.

• maxj∈{2,...,n} L(1, j) and maxj∈{2,...,n} `(1, j); the
maximum length of the longest and shortest increasing paths
starting at a fixed vertex;

• maxi ,j∈[n] L(i , j) and maxi ,j∈[n] `(i , j); the maximal length
of the longest and shortest increasing paths.



longest monotone paths

Angel, Ferber, Sudakov, and Tassion (2020) showed that if
p = o(n) and, pn/ log n →∞ then, with high probability,

max
i ,j∈[n]

L(i , j) ∼ enp .

This excludes the “interesting” regime p ∼ c log n/n.

In fact, when pn/ log n →∞,

L(1, 2) ∼ enp .



proof of L(1, 2) ∼ enp

Partition [0, p) as [0, 2 log n/n) ∪ [2 log n/n, p − 2 log n/n) ∪
[p − 2 log n/n, p) and let U1, U2, U3 be the collections of edge
weights falling in the corresponding intervals.

This decomposes G(U) into the union of three graphs
G(U1),G(U2),G(U3).

The longest monotone path in G(U2) has length ∼ enp, say from
i∗ to j∗.

But in G(U1) there is a path from vertex 1 to i∗ and in G(U3)
there is a path from vertex j∗ to 2.



some key constants

For any c > 0, define

α(c) = inf{x > 0 : x log(x/ec) = 1}

and for c > 1,

β(c) = sup{x > 0 : x log(x/ec) = −1}

γ(c) = inf{x > 0 : x log(x/ec) = −1}



some key constants

The equation x log(x/ec) = −1 has at most two solutions for
c > 0, these are β(c) and γ(c).

When c = 1, there is only one solution and β(1) = γ(1) = 1.

For c < 1 there is no solution, for c > 1 there are two.

The equation x log(x/ec) = 1 has a unique solution for all c > 0.

Note that as c →∞, α(c)/c → e, β(c)/c → e, and
γ(c)/c → 0.

An example value is α(1) ≈ 3.5911.



longest monotone paths

Suppose p = c log n/n. With high probability,

• if c ∈ (0, 1), there is no increasing path between 1
and 2, and if c ≥ 1, L(1, 2) ∼ β(c) log n;

• for all c > 0, maxj∈{2,...,n} L(1, j) ∼ ec log n;

• for all c > 0, maxi ,j∈[n] L(i , j) ∼ α(c) log n .



shortest monotone paths

Let p = c log n/n. With high probability,

• for c > 1, `(1, 2) ∼ γ(c) log n;

• for c > 2, maxi∈[n] `(1, i) ∼ γ(c − 1) log n;

• for c > 3, maxi ,j∈[n] `(i , j) ∼ γ(c − 2) log n .



upper bounds: first moment considerations

Let Xk be the number of increasing paths of length k . Then
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Similarly, for the number Yk of increasing paths of length k
starting at vertex 1 and for the number Zk of increasing paths of
length k vertex 1 to vertex 2,
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The upper bounds follow simply from these identities.

We prove the lower bounds of the three statements by three
different techniques.



proof of maxj L(1, j) ≥ ec(1− o(1)) log n

Since the bound is linear in c , it suffices to prove the lower bound
for c ≤ 1. Otherwise we may decompose the graph into dce
disjoint layers and concatenate the paths.

When c ≤ 1, one can show that the graph contains a uniform
random recursive tree of size nc(1−o(1)), rooted at vertex 1 such
that all paths of the tree starting at vertex 1 are monotone.

The construction of the tree is similar to the shortest-path tree.
We need to discard a small number of vertices in order to keep
monotonicity.

Since the height of the urrt is ∼ e log nc(1−o(1)), we have a
monotone path of desired length.

This also shows that at least nc(1−o(1)) can be reached from
vertex 1.



proof of maxi ,j L(i , j) ≥ α(c)(1− o(1)) log n

Since the expected number of monotone paths of length
α(c)(1− o(1)) log n goes to infinity, it is natural to resort to the
second moment method.

However, the second moment is too large due to the many ways
paths can intersect.

We borrow ideas from Addario-Berry, Broutin, and Lugosi (2010)
and apply the second moment method to a restricted class of
paths.



building short and long monotone paths

Suppose c > 1. It still remains to show that

`(1, 2) ≤ (γ(c) + o(1)) log n

and
L(1, 2) ≥ (β(c)− o(1)) log n

Recall that γ(c) < β(c) are the two solutions of
x log(x/ec) = −1.
We prove that for any x ∈ (γ(c), β(c)), whp there exists an
increasing path between 1 and 2 containing ∼ x log n edges.

Note that γ(1) = β(1) = 1 so for c ≈ 1, all monotone paths
between 1 and 2 have about the same length log n.



building short and long monotone paths

We look for increasing paths from vertex 1 such that labels
increase as they should to have length x log n.

Similarly, we look for decreasing paths from vertex 2

We conduct this search up to distance 1
2x log n.

We show that the two sets of end points of the path must intersect,
because the sets at distance x

2 log n are of size at least n1/2.



the temporal diameter

The last argument is to show why

• for c > 2, maxi∈[n] `(1, i) ∼ γ(c − 1) log n;

• for c > 3, maxi ,j∈[n] `(i , j) ∼ γ(c − 2) log n .

For c > 2, if we partition (0, c log n/n) = I1 ∪ I2 with I2 of
length (1− ε) log n/n, then G(I2) has an isolated vertex and in
G(I1) shortest paths are of length at least γ(c − 1) log n.



temporal cliques

A set of vertices forms a temporal clique if there is an increasing
path from any vertex to any other vertex.

We are interested in the size of the largest temporal clique.

Becker, Casteigts, Crescenzi, Kodrić, Renken, Raskin, and
Zamaraev (2022) show that:

if p > (1 + ε) log(n)/n, then there is a temporal clique of size
n − o(n), with high probability;

if p < (1− ε) log(n)/n, then the largest temporal clique is of
size o(n), with high probability.



temporal cliques in the sub-critical regime

Let p = c log n/n with c < 1. With high probability, the
largest temporal clique is of size at most⌈

1

1− c
+ 1

⌉

Thus, the temporal clique number jumps from constant to
n − o(n).

For c ≤ 1/2, the upper bound is 3 which is optimal, since in this
range, G(n, p) has (many) trianges.



uniform temporal trees

Assigning independent uniform [0, 1] labels to the edges of a
rooted complete infinite n-ary tree.

Keep only those vertices for which the path from the root to the
vertex has decreasing edge labels.

In the p-percolated temporal tree Tn,p, only edges with labels
below p are kept.



uniform temporal trees



uniform temporal trees–the size

The expected size is easily to calculate: each one of the nk

vertices at depth k are kept with probability pk/k!, so

E|Tn,p| =
∞∑

k=0

(np)k

k!
= enp

We also have

|Tn,p|
enp

L−→ E as n →∞ ,

where E is an exponential(1) random variable.



uniform temporal trees–distribution of mass at the root

Let vi be the child of the root with the i -th largest label.
Then for any m ≥ 1,( |Tn,p(v1)|

enp
, . . . ,

|Tn,p(vm)|
enp

)
(1)

L−→ (E1U1,E2U1U2, . . . ,EmU1 · · ·Um) as n →∞ ,
(2)

where Ek are i.i.d. exponential (1) and Uk are i.i.d. uniform
[0, 1].



uniform temporal trees–height and depth

Let Hn,p denote the height of a percolated uniform temporal
tree Tn,p. Then

Hn,p

np
P−→ e as n →∞.

Let let Dn,p denote the depth of a uniformly chosen vertex
in a percolated uniform temporal tree Tn,p. Then

Dn,p

np
P−→ 1 as n →∞.



uniform temporal trees–degree distribution

For k ≥ 0, let Ln,k denote the number of vertices of out-
degree k in a percolated uniform temporal tree Tn,p. Then

ELn,k

enp
→ 2−(k+1) as n →∞.

Height, depth, and degree distribution as in a uniform random

recursive tree of size enp.



some further questions

• Length of longest path when p is constant?

• What happens in the critical window?

• Optimality of the clique number bound for c ∈ (1/2, 1)?

• Different random graph models.

• Models with recovery, reinfection.

• Super spreader events.

• Statistical questions.
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