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Exploration

Task: visit all European cities by train before your interrail pass expires...
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The problem of minimising the total time is called the Graphical Travelling

Salesperson Problem.
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Temporal Exploration

Task: visit all European cities by train before your interrail pass expires.
However, you can only travel between cities A and B at a given time if there
is a train scheduled at that time.
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Just like the Graphical Travelling Salesperson Problem but you can only use
edges at certain times.



Always connected temporal graph
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Temporal Exploration

Michail and Spirakis, 2014
no (2 — e)-approximation unless P=NP.
Always connected temporal graphs are explorable in n? steps.
Erlebach, Hoffmann and Kammer, 2015
No n!~“-approximation unless P=NP.
There exists an always connected temporal graph that needs Q(n?) time to explore.
Graphs with regularly present/probabilistic edges can be explored in at most O(m) in
expectation, where m is the number of edges of the underlying graph.
some restricted classes can be explored in o(n?) time.
Adamson, Gusev, Malyshev, Zamaraev 2022
Improved exploration times for restricted classes.
Many other works looking at
Other notions of exploration (crossing several edges at once etc).
Temporal graphs where the difference between snapshots is small (k-deficient).
NP-Hardness for even more restricted classes.
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Random Spanning Tree temporal graph

Definition (Random Spanning Tree (RST) temporal graph)

Let T be a set of trees with vertex set [n], and let p be a probability distribution on 7.
We call the pair (7, 1) a Random Spanning Tree model. A Random Spanning Tree (RST)
temporal graph is a temporal graph G = (G;);en such that each G; is a tree independently
drawn from 7 according to u. Abusing notation, we will write G ~ (T, u).
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Exploration lower bound

Theorem
Let S be a set of k stars on vertex set [n], and let G ~ (S, unif). Then

E[TEXP(G)] € O(VE- (n — k) + klogk).
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Exploration lower bound

Theorem
Let S be a set of k stars on vertex set [n], and let G ~ (S, unif). Then

E[TEXP(G)] € O(VE- (n — k) + klogk).
Getting from one permanent leaf to another takes vk steps by Birthday Paradox.

Collecting all of the centres takes klog k steps using Coupon Collector.

Corollary

Any algorithm that solves temporal exploration on arbitrary input distributions has a
worst-case runtime of Q(n®/?).
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Exploration upper bound

Theorem (Exploration upper bound)

Let T be a set of trees on vertex set [n], u be a probability distribution on T, and
G~ (T,u). Then
Pr[TEXP(G) < 200000 - n/?] > 1 —e™™.
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Exploration upper bound

Theorem (Exploration upper bound)

Let T be a set of trees on vertex set [n], u be a probability distribution on T, and

G~ (T,u). Then
Pr[TEXP(G) < 200000 - n/?] > 1 —e™™.

Definition (Close vertices)
Let u,w C [n], t € N, p € [0,1]. We say that w is (t,p)-close to w in (T, p) if

g~1()71:,“) [w e RY (u)] > p.
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Close vertices
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Close vertices

Red circle = reachability set of u after ¢ steps.
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Red circle = reachability set of u after ¢ steps.
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Close vertices

Red circle = reachability set of u after ¢ steps.
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Close vertices

Red circle = reachability set of u after ¢ steps.

Probability of v being inside the red circle of at least p.
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Exploration upper bound

Theorem (Exploration upper bound)

Let T be a set of trees on vertex set [n], u be a probability distribution on T, and
G ~ (T,p). Then Pr (TEXP(G) < 200000 - n®/?) > 1 —e™".

Definition (Close vertices)
Let u,w C [n], t € N, p € [0,1]. We say that w is (¢,p)-close to u in (T, p) if

QNI()%:,#) [w € RY (u)] > p.
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Exploration upper bound

Theorem (Exploration upper bound)

Let T be a set of trees on vertex set [n], u be a probability distribution on T, and
G ~ (T,p). Then Pr (TEXP(G) < 200000 - n®/?) > 1 —e™".

Definition (Close vertices)
Let u,w C [n], t € N, p € [0,1]. We say that w is (¢,p)-close to u in (T, ) if
Pr [we RY(u)| >p.
G Top0) [ t ( )] Zp
Theorem (Close vertices)

Let n € N be sufficiently large, T be a set of trees on vertex set [n], and u be a probability
distribution on T. Then, for every vertex v € [n| there are at least /n vertices that are
(700 +/n, 1/9)-close to v in (T, ).
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Close vertices -> Exploration
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Close vertices -> Exploration

e NI

Connect all pairs of close vertices.
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Close vertices -> Exploration

o

Each component is of size at least /n.
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Close vertices -> Exploration

Build a spanning forest from those connections.
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Close vertices -> Exploration

Connect the components arbitrarily to a tree.

14



Exploration upper bound
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Close vertices proof

We aim to show that v has a (c/n, p)-close vertex w.
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Close vertices proof

v has to have an edge in every timestep.
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Close vertices proof

If any edge has a probability of probability at least % we are done.
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Close vertices proof

Otherwise it has to have a lot of potential neighbors.
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Close vertices proof

We look at ~ /n timesteps and track the neighbors.
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Close vertices proof

vn vn

Look at the next ~ /n timesteps and track the vertices u can reach.
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Close vertices proof

vn vn

Case 1: there is no vertex that overlaps much with the sets of the other reached vertices.
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Close vertices proof

vn vn

Then all these sets are mostly disjoint and sum to more than n which is a contradiction.
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Close vertices proof

vn vn

Case 2: A vertex u that is reached by v shares most of its reached vertices with others.
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Close vertices proof

We run the same process backwards from v at a later time.
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Close vertices proof

vn vn vn vn

By birthday paradox, there is with constant probability a vertex w reached by w and
another reached vertex in both the forward and backward run.
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Close vertices proof

That implies a path with constant probability from u to v, so they are close to each other.
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Open problems

Exploration in time O(+/d-n) on distributions with maximum degree d?
Is greedily visiting the closest unvisited vertex asymptotically optimal?
Linear exploration of uniform spanning trees of an arbitrary base graph?

Modelling the temporal graph as a Markov chain.
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