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Exploration
Task: visit all European cities by train before your interrail pass expires...

The problem of minimising the total time is called the Graphical Travelling
Salesperson Problem.
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Temporal Exploration
Task: visit all European cities by train before your interrail pass expires.
However, you can only travel between cities A and B at a given time if there
is a train scheduled at that time.

Just like the Graphical Travelling Salesperson Problem but you can only use
edges at certain times.
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Always connected temporal graph
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Temporal Exploration
■ Michail and Spirakis, 2014

▶ no (2 − ϵ)-approximation unless P=NP.
▶ Always connected temporal graphs are explorable in n2 steps.

■ Erlebach, Hoffmann and Kammer, 2015
▶ No n1−ϵ-approximation unless P=NP.
▶ There exists an always connected temporal graph that needs Ω(n2) time to explore.
▶ Graphs with regularly present/probabilistic edges can be explored in at most O(m) in

expectation, where m is the number of edges of the underlying graph.
▶ some restricted classes can be explored in o(n2) time.

■ Adamson, Gusev, Malyshev, Zamaraev 2022
▶ Improved exploration times for restricted classes.

■ Many other works looking at
▶ Other notions of exploration (crossing several edges at once etc).
▶ Temporal graphs where the difference between snapshots is small (k-deficient).
▶ NP-Hardness for even more restricted classes.
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Exploring temporal stars
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Exploring temporal stars
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Exploring temporal stars

va

b

c d

e

t = 10

7



Random Spanning Tree temporal graph
Definition (Random Spanning Tree (RST) temporal graph)
Let T be a set of trees with vertex set [n], and let µ be a probability distribution on T .
We call the pair (T , µ) a Random Spanning Tree model. A Random Spanning Tree (RST)
temporal graph is a temporal graph G = (Gi)i∈N such that each Gi is a tree independently
drawn from T according to µ. Abusing notation, we will write G ∼ (T , µ).
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Exploring random stars
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Exploring random stars
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Exploring random stars
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Exploration lower bound

Theorem
Let S be a set of k stars on vertex set [n], and let G ∼ (S, unif). Then

E [ TEXP(G) ] ∈ Θ(
√

k · (n − k) + k log k).

■ Getting from one permanent leaf to another takes
√

k steps by Birthday Paradox.

■ Collecting all of the centres takes k log k steps using Coupon Collector.

Corollary
Any algorithm that solves temporal exploration on arbitrary input distributions has a
worst-case runtime of Ω(n3/2).
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Exploration upper bound

Theorem (Exploration upper bound)
Let T be a set of trees on vertex set [n], µ be a probability distribution on T , and
G ∼ (T , µ). Then

Pr[TEXP(G) ≤ 200000 · n3/2] ≥ 1 − e−n.

Definition (Close vertices)
Let u, w ⊆ [n], t ∈ N, p ∈ [0, 1]. We say that w is (t, p)-close to u in (T , µ) if

Pr
G∼(T ,µ)

[
w ∈ RG

t (u)
]

≥ p.
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Close vertices

u v

■ Red circle = reachability set of u after t steps.

■ Probability of v being inside the red circle of at least p.
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Exploration upper bound

Theorem (Exploration upper bound)
Let T be a set of trees on vertex set [n], µ be a probability distribution on T , and
G ∼ (T , µ). Then Pr

(
TEXP(G) ≤ 200000 · n3/2)

≥ 1 − e−n.

Definition (Close vertices)
Let u, w ⊆ [n], t ∈ N, p ∈ [0, 1]. We say that w is (t, p)-close to u in (T , µ) if
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Theorem (Close vertices)
Let n ∈ N be sufficiently large, T be a set of trees on vertex set [n], and µ be a probability
distribution on T . Then, for every vertex v ∈ [n] there are at least

√
n vertices that are

(700
√

n, 1/9)-close to v in (T , µ).

13



Exploration upper bound

Theorem (Exploration upper bound)
Let T be a set of trees on vertex set [n], µ be a probability distribution on T , and
G ∼ (T , µ). Then Pr

(
TEXP(G) ≤ 200000 · n3/2)

≥ 1 − e−n.

Definition (Close vertices)
Let u, w ⊆ [n], t ∈ N, p ∈ [0, 1]. We say that w is (t, p)-close to u in (T , µ) if

Pr
G∼(T ,µ)

[
w ∈ RG

t (u)
]

≥ p.

Theorem (Close vertices)
Let n ∈ N be sufficiently large, T be a set of trees on vertex set [n], and µ be a probability
distribution on T . Then, for every vertex v ∈ [n] there are at least

√
n vertices that are

(700
√

n, 1/9)-close to v in (T , µ).

13



Close vertices -> Exploration
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Close vertices -> Exploration

Connect all pairs of close vertices.
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Close vertices -> Exploration

Each component is of size at least
√

n.
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Close vertices -> Exploration

Build a spanning forest from those connections.
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Close vertices -> Exploration

Connect the components arbitrarily to a tree.
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Close vertices proof
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We aim to show that v has a (c
√

n, p)-close vertex u.
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Close vertices proof
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v has to have an edge in every timestep.
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Close vertices proof
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If any edge has a probability of probability at least 1√
n

we are done.
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Close vertices proof
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Otherwise it has to have a lot of potential neighbors.
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Close vertices proof
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We look at ∼
√

n timesteps and track the neighbors.
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Close vertices proof
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Look at the next ∼
√

n timesteps and track the vertices u can reach.
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Close vertices proof
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Case 1: there is no vertex that overlaps much with the sets of the other reached vertices.
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Close vertices proof
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Then all these sets are mostly disjoint and sum to more than n which is a contradiction.
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Close vertices proof
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Case 2: A vertex u that is reached by v shares most of its reached vertices with others.
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Close vertices proof
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We run the same process backwards from v at a later time.
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Close vertices proof
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By birthday paradox, there is with constant probability a vertex w reached by u and
another reached vertex in both the forward and backward run.
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Close vertices proof
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That implies a path with constant probability from u to v, so they are close to each other.
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Open problems

■ Exploration in time O(
√

d · n) on distributions with maximum degree d?

■ Is greedily visiting the closest unvisited vertex asymptotically optimal?

■ Linear exploration of uniform spanning trees of an arbitrary base graph?

■ Modelling the temporal graph as a Markov chain.
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