Temporal Exploration of Random Spanning Tree Models

Samuel Baguley¹, Andreas Göbel¹, **Nicolas Klodt**¹, George Skretas¹, John Sylvester², Viktor Zamaraev²

 $^1{\rm Hasso}$ Plattner Institute, University of Potsdam, Germany $^2{\rm University}$ of Liverpool, UK

Exploration

Task: visit all European cities by train before your interrail pass expires...

The problem of minimising the total time is called the *Graphical Travelling Salesperson Problem*.

Exploration

${\bf Exploration}$

t = 1

Exploration

t = 2

${\bf Exploration}$

t = 3

Exploration

t = 4

${\bf Exploration}$

t = 5

Exploration

t = 6

${\bf Exploration}$

t=7

Temporal Exploration

Task: visit all European cities by train before your interrail pass expires. However, you can only travel between cities A and B at a given time if there is a train scheduled at that time.

Always connected temporal graph

Temporal Exploration

- Michail and Spirakis, 2014
 - ▶ no (2ϵ) -approximation unless P=NP.
 - \triangleright Always connected temporal graphs are explorable in n^2 steps.
- Erlebach, Hoffmann and Kammer, 2015
 - ▶ No $n^{1-\epsilon}$ -approximation unless P=NP.
 - ▶ There exists an always connected temporal graph that needs $\Omega(n^2)$ time to explore.
 - ▶ Graphs with regularly present/probabilistic edges can be explored in at most O(m) in expectation, where m is the number of edges of the underlying graph.
 - \triangleright some restricted classes can be explored in $o(n^2)$ time.
- Adamson, Gusev, Malyshev, Zamaraev 2022
 - ▶ Improved exploration times for restricted classes.
- Many other works looking at
 - ▶ Other notions of exploration (crossing several edges at once etc).
 - \triangleright Temporal graphs where the difference between snapshots is small (k-deficient).
 - ▶ NP-Hardness for even more restricted classes.

t = 1

t = 3

,

t = 4

t = 5

t = 6

•

t = 7

t = 8

t = 9

,

t = 10

•

Random Spanning Tree temporal graph

Definition (Random Spanning Tree (RST) temporal graph)

Let \mathcal{T} be a set of trees with vertex set [n], and let μ be a probability distribution on \mathcal{T} . We call the pair (\mathcal{T}, μ) a Random Spanning Tree model. A Random Spanning Tree (RST) temporal graph is a temporal graph $\mathcal{G} = (G_i)_{i \in \mathbb{N}}$ such that each G_i is a tree independently drawn from \mathcal{T} according to μ . Abusing notation, we will write $\mathcal{G} \sim (\mathcal{T}, \mu)$.

Random Spanning Tree temporal graph

Definition (Random Spanning Tree (RST) temporal graph)

Let \mathcal{T} be a set of trees with vertex set [n], and let μ be a probability distribution on \mathcal{T} . We call the pair (\mathcal{T}, μ) a Random Spanning Tree model. A Random Spanning Tree (RST) temporal graph is a temporal graph $\mathcal{G} = (G_i)_{i \in \mathbb{N}}$ such that each G_i is a tree independently drawn from \mathcal{T} according to μ . Abusing notation, we will write $\mathcal{G} \sim (\mathcal{T}, \mu)$.

Random Spanning Tree temporal graph

Definition (Random Spanning Tree (RST) temporal graph)

Let \mathcal{T} be a set of trees with vertex set [n], and let μ be a probability distribution on \mathcal{T} . We call the pair (\mathcal{T}, μ) a Random Spanning Tree model. A Random Spanning Tree (RST) temporal graph is a temporal graph $\mathcal{G} = (G_i)_{i \in \mathbb{N}}$ such that each G_i is a tree independently drawn from \mathcal{T} according to μ . Abusing notation, we will write $\mathcal{G} \sim (\mathcal{T}, \mu)$.

t = 3

Theorem

Let S be a set of k stars on vertex set [n], and let $\mathcal{G} \sim (S, unif)$. Then $\mathbf{E} [TEXP(\mathcal{G})] \in \Theta(\sqrt{k} \cdot (n-k) + k \log k).$

Theorem

Let S be a set of k stars on vertex set [n], and let $G \sim (S, unif)$. Then $\mathbf{E}[TEXP(G)] \in \Theta(\sqrt{k} \cdot (n-k) + k \log k)$.

• Getting from one permanent leaf to another takes \sqrt{k} steps by Birthday Paradox.

Theorem

Let S be a set of k stars on vertex set [n], and let $G \sim (S, unif)$. Then $\mathbf{E}[TEXP(G)] \in \Theta(\sqrt{k} \cdot (n-k) + k \log k)$.

- Getting from one permanent leaf to another takes \sqrt{k} steps by Birthday Paradox.
- \blacksquare Collecting all of the centres takes $k \log k$ steps using Coupon Collector.

Theorem

Let S be a set of k stars on vertex set [n], and let $G \sim (S, unif)$. Then $\mathbf{E}[TEXP(G)] \in \Theta(\sqrt{k} \cdot (n-k) + k \log k)$.

- Getting from one permanent leaf to another takes \sqrt{k} steps by Birthday Paradox.
- Collecting all of the centres takes $k \log k$ steps using Coupon Collector.

Corollary

Any algorithm that solves temporal exploration on arbitrary input distributions has a worst-case runtime of $\Omega(n^{3/2})$.

Exploration upper bound

Theorem (Exploration upper bound)

Let \mathcal{T} be a set of trees on vertex set [n], μ be a probability distribution on \mathcal{T} , and $\mathcal{G} \sim (\mathcal{T}, \mu)$. Then

 $\Pr[\text{TEXP}(\mathcal{G}) \le 200000 \cdot n^{3/2}] \ge 1 - e^{-n}.$

Exploration upper bound

Theorem (Exploration upper bound)

Let \mathcal{T} be a set of trees on vertex set [n], μ be a probability distribution on \mathcal{T} , and $\mathcal{G} \sim (\mathcal{T}, \mu)$. Then

$$\Pr[\text{TEXP}(\mathcal{G}) \le 200000 \cdot n^{3/2}] \ge 1 - e^{-n}.$$

Definition (Close vertices)

Let
$$u, w \subseteq [n], t \in \mathbb{N}, p \in [0, 1]$$
. We say that w is (t, p) -close to u in (\mathcal{T}, μ) if $\Pr_{\mathcal{G} \sim (\mathcal{T}, \mu)} \left[w \in R_t^{\mathcal{G}}(u) \right] \geq p$.

 \blacksquare Red circle = reachability set of u after t steps.

 \blacksquare Red circle = reachability set of u after t steps.

 \blacksquare Red circle = reachability set of u after t steps.

- \blacksquare Red circle = reachability set of u after t steps.
- \blacksquare Probability of v being inside the red circle of at least p.

Exploration upper bound

Theorem (Exploration upper bound)

Let \mathcal{T} be a set of trees on vertex set [n], μ be a probability distribution on \mathcal{T} , and $\mathcal{G} \sim (\mathcal{T}, \mu)$. Then $\mathbf{Pr} \left(\mathit{TEXP}(\mathcal{G}) \leq 200000 \cdot n^{3/2} \right) \geq 1 - e^{-n}$.

Definition (Close vertices)

Let
$$u, w \subseteq [n]$$
, $t \in \mathbb{N}$, $p \in [0, 1]$. We say that w is (t, p) -close to u in (\mathcal{T}, μ) if $\Pr_{\mathcal{G} \sim (\mathcal{T}, \mu)} \left[w \in R_t^{\mathcal{G}}(u) \right] \geq p$.

Exploration upper bound

Theorem (Exploration upper bound)

Let \mathcal{T} be a set of trees on vertex set [n], μ be a probability distribution on \mathcal{T} , and $\mathcal{G} \sim (\mathcal{T}, \mu)$. Then $\mathbf{Pr} \left(\mathit{TEXP}(\mathcal{G}) \leq 200000 \cdot n^{3/2} \right) \geq 1 - e^{-n}$.

Definition (Close vertices)

Let $u, w \subseteq [n], t \in \mathbb{N}, p \in [0, 1]$. We say that w is (t, p)-close to u in (\mathcal{T}, μ) if $\Pr_{\mathcal{G} \sim (\mathcal{T}, \mu)} \left[w \in R_t^{\mathcal{G}}(u) \right] \ge p.$

Theorem (Close vertices)

Let $n \in \mathbb{N}$ be sufficiently large, \mathcal{T} be a set of trees on vertex set [n], and μ be a probability distribution on \mathcal{T} . Then, for every vertex $v \in [n]$ there are at least \sqrt{n} vertices that are $(700\sqrt{n}, 1/9)$ -close to v in (\mathcal{T}, μ) .

Connect all pairs of close vertices.

Each component is of size at least \sqrt{n} .

Build a spanning forest from those connections.

Connect the components arbitrarily to a tree.

Exploration upper bound

Theorem (Exploration upper bound)

Let \mathcal{T} be a set of trees on vertex set [n], μ be a probability distribution on \mathcal{T} , and $\mathcal{G} \sim (\mathcal{T}, \mu)$. Then $\mathbf{Pr} \left(\mathit{TEXP}(\mathcal{G}) \leq 200000 \cdot n^{3/2} \right) \geq 1 - e^{-n}$.

Definition (Close vertices)

Let $u, w \subseteq [n], t \in \mathbb{N}, p \in [0, 1]$. We say that w is (t, p)-close to u in (\mathcal{T}, μ) if $\Pr_{\mathcal{G} \sim (\mathcal{T}, \mu)} \left[w \in R_t^{\mathcal{G}}(u) \right] \ge p.$

Theorem (Close vertices)

Let $n \in \mathbb{N}$ be sufficiently large, \mathcal{T} be a set of trees on vertex set [n], and μ be a probability distribution on \mathcal{T} . Then, for every vertex $v \in [n]$ there are at least \sqrt{n} vertices that are $(700\sqrt{n}, 1/9)$ -close to v in (\mathcal{T}, μ) .

We aim to show that v has a $(c\sqrt{n}, p)$ -close vertex u.

v has to have an edge in every timestep.

If any edge has a probability of probability at least $\frac{1}{\sqrt{n}}$ we are done.

Otherwise it has to have a lot of potential neighbors.

We look at $\sim \sqrt{n}$ timesteps and track the neighbors.

Look at the next $\sim \sqrt{n}$ timesteps and track the vertices u can reach.

Case 1: there is no vertex that overlaps much with the sets of the other reached vertices.

Then all these sets are mostly disjoint and sum to more than n which is a contradiction.

Case 2: A vertex u that is reached by v shares most of its reached vertices with others.

We run the same process backwards from \boldsymbol{v} at a later time.

By birthday paradox, there is with constant probability a vertex w reached by u and another reached vertex in both the forward and backward run.

That implies a path with constant probability from u to v, so they are close to each other.

Open problems

- **Exploration** in time $O(\sqrt{d} \cdot n)$ on distributions with maximum degree d?
- Is greedily visiting the closest unvisited vertex asymptotically optimal?
- Linear exploration of uniform spanning trees of an arbitrary base graph?
- Modelling the temporal graph as a Markov chain.