

Reachability in Temporal Graph Settings: A Structural Comparison

Michelle Döring

Algorithmic Aspects of Temporal Graphs ICALP 2025 Satellite Workshop Aarhus, Denmark, 07. July 2025

• static graph is a tuple G = (V, E) G:

a------b------c

- static graph is a tuple G = (V, E) $G : a \xrightarrow{1,2} b \xrightarrow{4} c$
- temporal graph is a tuple $G = (V, E, \lambda)$

- static graph is a tuple G = (V, E) $G : a \xrightarrow{1,2} b \xrightarrow{4} c$
- temporal graph is a tuple $\mathcal{G} = (V, E, \lambda)$ or a sequence of snapshots G_1, \ldots, G_{τ}

- temporal graph is a tuple $\mathcal{G} = (V, E, \lambda)$ or a sequence of snapshots G_1, \ldots, G_{τ}
- temporal path is a sequence of temporal edges $(e_1, t_1), \ldots, (e_k, t_k)$ such that the time labels t_i are non-decreasing

static graph is a tuple
$$G = (V, E)$$
 $G : a = 1, 2$ $b = 4$

- temporal graph is a tuple $\mathcal{G} = (V, E, \lambda)$ or a sequence of snapshots G_1, \ldots, G_{τ}
- temporal path is a sequence of temporal edges $(e_1, t_1), \ldots, (e_k, t_k)$ such that the time labels t_i are non-decreasing

directed / undirected

• static graph is a tuple G = (V, E)

$$\mathcal{G}$$
: a 1,2 b 4 c

- temporal graph is a tuple $\mathcal{G} = (V, E, \lambda)$ or a sequence of snapshots G_1, \ldots, G_{τ}
- temporal path is a sequence of temporal edges $(e_1, t_1), \ldots, (e_k, t_k)$ such that the time labels t_i are non-decreasing

directed / undirected

strict / non-strict

- static graph is a tuple G = (V, E)
- temporal graph is a tuple $\mathcal{G} = (V, E, \lambda)$ or a sequence of snapshots G_1, \ldots, G_{τ}

- temporal path is a sequence of temporal edges $(e_1, t_1), \ldots, (e_k, t_k)$ such that the time labels t_i are non-decreasing

directed / undirected

strict / non-strict

λ (not) restricted to simple

not simple
$$\bigcirc$$
 3 \bigcirc 3,5 \bigcirc

- static graph is a tuple G = (V, E)
- temporal graph is a tuple $\mathcal{G} = (V, E, \lambda)$ or a sequence of snapshots G_1, \ldots, G_{τ}

- temporal path is a sequence of temporal edges $(e_1, t_1), \ldots, (e_k, t_k)$ such that the time labels t_i are non-decreasing

directed / undirected

strict / non-strict

λ (not) restricted to simple

not simple
$$\bigcirc$$
 3 \bigcirc 3,5 \bigcirc

λ (not) restricted to proper

static graph is a tuple
$$G = (V, E)$$
 $G : a = 1, 2$ $b = 4$

• temporal graph is a tuple $\mathcal{G} = (V, E, \lambda)$ or a sequence of snapshots G_1, \ldots, G_{τ}

- G_4 : a b——c

• temporal path is a sequence of temporal edges $(e_1, t_1), \ldots, (e_k, t_k)$ such that the time labels t_i are non-decreasing

directed / undirected

strict / non-strict

TEMPORAL SETTINGS [Simple, strict, proper, happy: A study of reachability in temporal gra

λ (not) restricted to simple

not simple
$$\bigcirc$$
 3 \bigcirc 3,5 \bigcirc

λ (not) restricted to proper

$$\mathcal{G}$$

$$\mathcal{R}(\mathcal{G})$$

 \mathcal{G}

$$a - \frac{3}{b} - \frac{3}{5} c - \frac{4}{c}$$

 $\mathcal{R}(\mathcal{G})$

non-strict

strict

G

 $\mathcal{R}(\mathcal{G})$

non-strict

strict

G

$$a - \frac{3}{b} - \frac{3}{5} c - \frac{4}{c}$$

G

 $\mathcal{R}(\mathcal{G})$

non-strict

strict

$$a \longrightarrow b \longrightarrow c \longrightarrow d$$

G

 $\mathcal{R}(\mathcal{G})$

non-strict

strict

$$a \xrightarrow{3} b \xrightarrow{2,5} c \xrightarrow{4} c$$

G

 $\mathcal{R}(\mathcal{G})$

non-strict

strict

$$a - 3$$
 $b - 2, 5$ $c - 4$

G

$$a - 3$$
 $b - 3$, 5 $c - 4$

 $\mathcal{R}(\mathcal{G})$

non-strict

strict

$$a - 3$$
 $b - 2, 5$ $c - 4$

 \mathcal{G}

$$a - \frac{3}{b} - \frac{3}{5} c - \frac{4}{d}$$

 $\mathcal{R}(\mathcal{G})$

non-strict

strict

$$a - 3$$
 $b - 2, 5$ $c - 4$ d

$$a \longrightarrow b \longrightarrow c \longrightarrow d$$

$$d = 3, 4, 5$$
 $a = 1, 6$ $c = 2$ b

 \mathcal{G}

$$a - 3$$
 $b - 3, 5$ $c - 4$ d

 $\mathcal{R}(\mathcal{G})$

non-strict

strict

$$a - \frac{3}{b} - \frac{2,5}{c} - \frac{4}{d}$$

$$a \longrightarrow b \longrightarrow c \longrightarrow d =$$

$$d = 3, 4, 5$$
 $a = 1, 6$ $c = 2$ b

$$d \longrightarrow a \longrightarrow c \longrightarrow b =$$

G

$$a - 3$$
 $b - 3$, 5 $c - 4$

 $\mathcal{R}(\mathcal{G})$

non-strict

strict

$$a \longrightarrow b \longrightarrow c \longrightarrow d \neq a \longrightarrow b \longrightarrow c \longrightarrow d$$

Two temporal graphs \mathcal{G}_1 and \mathcal{G}_2 are reachability equivalent if their reachability graphs are isomorphic (the same).

$$a - \frac{3}{b} - \frac{2}{5} c - \frac{4}{c}$$

$$d = 3, 4, 5$$
 $a = 1, 6$ $c = 2$ b

$$d \longrightarrow a \longrightarrow c \longrightarrow b =$$

$$\mathcal{G}$$

$$a - \frac{3}{b} - \frac{3}{5} c - \frac{4}{c}$$

 $\mathcal{R}(\mathcal{G})$

non-strict

strict

$$a \longrightarrow b \longrightarrow c \longrightarrow d \neq a \longrightarrow b \longrightarrow c \longrightarrow d$$

Two temporal graphs \mathcal{G}_1 and \mathcal{G}_2 are reachability equivalent if their reachability graphs are isomorphic (the same).

A temporal graph setting $\mathbb S$ can *simulate* setting $\mathbb T$, if for every $\mathcal G_{\mathbb T}\in\mathbb T$ exists a reachability equivalent $\mathcal G_{\mathbb S}\in\mathbb S$.

$$a - \frac{3}{b} - \frac{2,5}{c} - \frac{4}{d}$$

$$d = 3, 4, 5$$
 $a = 1, 6$ $c = 2$ b

$$d \longrightarrow a \longrightarrow c \longrightarrow b =$$

 \mathcal{G}

$$a - 3$$
 $b - 3, 5$ $c - 4$

 $\mathcal{R}(\mathcal{G})$ non-strict strict

Two temporal graphs \mathcal{G}_1 and \mathcal{G}_2 are reachability equivalent if their reachability graphs are isomorphic (the same).

A temporal graph setting $\mathbb S$ can *simulate* setting $\mathbb T$, if for every $\mathcal G_{\mathbb T}\in\mathbb T$ exists a reachability equivalent $\mathcal G_{\mathbb S}\in\mathbb S$. A temporal graph setting $\mathbb S$ is *strictly more expressive* than setting $\mathbb T$, if

- 1. \mathbb{S} can simulate \mathbb{T} but
- 2. T cannot simulate S.

$$d = \frac{3,4,5}{a} = \frac{1,6}{c} = \frac{2}{b}$$

$$d \longrightarrow c \longrightarrow b = d \longrightarrow a \longrightarrow c \longrightarrow b$$

$$\mathcal{G}$$

$$a - \frac{3}{b} - \frac{3}{5} c - \frac{4}{c}$$

 $\mathcal{R}(\mathcal{G})$

non-strict

strict

$$a \longrightarrow b \longrightarrow c \longrightarrow d \neq a \longrightarrow b \longrightarrow c \longrightarrow d$$

Two temporal graphs \mathcal{G}_1 and \mathcal{G}_2 are reachability equivalent if their reachability graphs are isomorphic (the same).

A temporal graph setting $\mathbb S$ can *simulate* setting $\mathbb T$, if for every $\mathcal G_{\mathbb T}\in\mathbb T$ exists a reachability equivalent $\mathcal G_{\mathbb S}\in\mathbb S$.

A temporal graph setting $\mathbb S$ is *strictly more expressive* than setting $\mathbb T$, if

- 1. S can simulate T but
- 2. \mathbb{T} cannot simulate \mathbb{S} .

$$d = \frac{3,4,5}{a} = \frac{1,6}{c} = \frac{2}{b}$$

$$d \longrightarrow a \longrightarrow c \longrightarrow b = d \longrightarrow a \longrightarrow$$

$$\mathcal{G} \in \mathsf{undirected} + \mathsf{strict} + \mathsf{multilabel}$$

$$\mathcal{R}(\mathcal{G})$$

$$a - 3$$
 $b - 3, 5$ $c - 5$ d

$$\mathcal{G} \in \mathsf{undirected} + \mathsf{strict} + \mathsf{multilabel}$$

$$a - \frac{3}{b} - \frac{3}{b} - \frac{5}{c} - \frac{5}{d}$$

$$\mathcal{R}(\mathcal{G})$$

$$\mathcal{G} \in \mathsf{undirected} + \mathsf{strict} + \mathsf{multilabel}$$

$$\mathcal{R}(\mathcal{G})$$

$$a - \frac{3}{b} - \frac{3}{5} c - \frac{5}{d}$$

■ possible footprint of transformed $\mathcal{H} \in \text{undirected} + \text{strict} + \text{simple}$: all undirected edges in $\mathcal{R}(\mathcal{G})$

$$\mathcal{H} \in \mathsf{undirected} + \mathsf{strict} + \mathsf{simple}$$

$$\mathcal{R}(\mathcal{H})$$

$$\mathcal{G} \in \mathsf{undirected} + \mathsf{strict} + \mathsf{multilabel}$$

$$a - \frac{3}{b} - \frac{3}{5} c - \frac{5}{d}$$

$$\mathcal{R}(\mathcal{G})$$

- possible footprint of transformed $\mathcal{H} \in \text{undirected} + \text{strict} + \text{simple}$: all undirected edges in $\mathcal{R}(\mathcal{G})$
- $a \rightsquigarrow c$ requires $\lambda(ab) < \lambda(bc)$

$$\mathcal{H} \in \mathsf{undirected} + \mathsf{strict} + \mathsf{simple}$$

$$a - \frac{1}{b} - c - d$$

$$\mathcal{R}(\mathcal{H})$$

$$\mathcal{G} \in \mathsf{undirected} + \mathsf{strict} + \mathsf{multilabel}$$

$$a - \frac{3}{b} - \frac{3}{b} - \frac{5}{c} - \frac{5}{d}$$

$$\mathcal{R}(\mathcal{G})$$

- possible footprint of transformed $\mathcal{H} \in \text{undirected} + \text{strict} + \text{simple}$: all undirected edges in $\mathcal{R}(\mathcal{G})$
- $a \rightsquigarrow c$ requires $\lambda(ab) < \lambda(bc)$
- $b \rightsquigarrow d$ requires $\lambda(bc) < \lambda(cd)$

$$\mathcal{H} \in \mathsf{undirected} + \mathsf{strict} + \mathsf{simple}$$

$$a - \frac{1}{b} - \frac{2}{c} - \frac{3}{d}$$

$$\mathcal{R}(\mathcal{H})$$

$$\mathcal{G} \in \mathsf{undirected} + \mathsf{strict} + \mathsf{multilabel}$$

$$a - \frac{3}{b} - \frac{3}{5} c - \frac{5}{d}$$

$$\mathcal{R}(\mathcal{G})$$

- possible footprint of transformed $\mathcal{H} \in \text{undirected} + \text{strict} + \text{simple}$: all undirected edges in $\mathcal{R}(\mathcal{G})$
- $a \rightsquigarrow c$ requires $\lambda(ab) < \lambda(bc)$
- $b \rightsquigarrow d$ requires $\lambda(bc) < \lambda(cd)$
- but now $a \rightsquigarrow d$

$$\mathcal{H} \in \mathsf{undirected} + \mathsf{strict} + \mathsf{simple}$$

$$a - \frac{1}{b} - \frac{2}{c} - \frac{3}{d}$$

$$\mathcal{R}(\mathcal{H})$$

 $\mathcal{G} \in \mathsf{directed} + \mathsf{strict} + \mathsf{multilabel}$

 $\mathcal{G} \in \mathsf{directed} + \mathsf{strict} + \mathsf{multilabel}$

 $\mathcal{R}(\mathcal{G})$

■ possible footprint of transformed $\mathcal{H} \in \text{directed} + \text{nonstrict} + \text{multilabel}$: all directed edges in $\mathcal{R}(\mathcal{G})$

 $\mathcal{H} \in \mathsf{directed} + \mathsf{nonstrict} + \mathsf{multilabel}$

 $\mathcal{R}(\mathcal{H})$

b b

C

 $\mathcal{G} \in \mathsf{directed} + \mathsf{strict} + \mathsf{multilabel}$

 $\mathcal{R}(\mathcal{G})$

- possible footprint of transformed $\mathcal{H} \in \text{directed} + \text{nonstrict} + \text{multilabel}$: all directed edges in $\mathcal{R}(\mathcal{G})$
- $a \not \sim b$ requires $\lambda(ac) > \lambda(cb)$

 $\mathcal{H} \in \mathsf{directed} + \mathsf{nonstrict} + \mathsf{multilabel}$

 $\mathcal{R}(\mathcal{H})$

 $\mathcal{G} \in \mathsf{directed} + \mathsf{strict} + \mathsf{multilabel}$

 $\mathcal{R}(\mathcal{G})$

- possible footprint of transformed $\mathcal{H} \in \text{directed} + \text{nonstrict} + \text{multilabel}$: all directed edges in $\mathcal{R}(\mathcal{G})$
- $a \not \rightarrow b$ requires $\lambda(ac) > \lambda(cb)$
- $c \not \rightarrow a$ requires $\lambda(cb) > \lambda(ba)$

 $\mathcal{H} \in \mathsf{directed} + \mathsf{nonstrict} + \mathsf{multilabel}$

 $\mathcal{R}(\mathcal{H})$

 $\mathcal{G} \in \mathsf{directed} + \mathsf{strict} + \mathsf{multilabel}$

 $\mathcal{R}(\mathcal{G})$

- possible footprint of transformed $\mathcal{H} \in \text{directed} + \text{nonstrict} + \text{multilabel}$: all directed edges in $\mathcal{R}(\mathcal{G})$
- $a \not \sim b$ requires $\lambda(ac) > \lambda(cb)$
- $c \not\rightarrow a$ requires $\lambda(cb) > \lambda(ba)$
- but now $b \rightsquigarrow c$

$$\mathcal{H} \in \mathsf{directed} + \mathsf{nonstrict} + \mathsf{multilabel}$$

 $\mathcal{R}(\mathcal{H})$

- replace edges with same time labels
- preserve reachabilities (temporal trips)

- replace edges with same time labels
- preserve reachabilities (temporal trips)

- replace edges with same time labels
- preserve reachabilities (temporal trips)

- replace edges with same time labels
- preserve reachabilities (temporal trips)

Goal:

- replace edges with same time labels
- preserve reachabilities (temporal trips)

• each snapshot G_t of \mathcal{G} consists of 1 to n weakly connected components

- replace edges with same time labels
- preserve reachabilities (temporal trips)

- each snapshot G_t of \mathcal{G} consists of 1 to n weakly connected components
- interpretation as DAG: each strongly connected subgraph is a vertex, directed, acyclic edges between

- replace edges with same time labels
- preserve reachabilities (temporal trips)

- each snapshot G_t of \mathcal{G} consists of 1 to n weakly connected components
- interpretation as DAG: each strongly connected subgraph is a vertex, directed, acyclic edges between
- now, for every snapshot:
 - 1. replace the labels of the DAG-edges in the order of the DAG

- replace edges with same time labels
- preserve reachabilities (temporal trips)

- each snapshot G_t of \mathcal{G} consists of 1 to n weakly connected components
- interpretation as DAG: each strongly connected subgraph is a vertex, directed, acyclic edges between
- now, for every snapshot:
 - 1. replace the labels of the DAG-edges in the order of the DAG

- replace edges with same time labels
- preserve reachabilities (temporal trips)

- each snapshot G_t of \mathcal{G} consists of 1 to n weakly connected components
- interpretation as DAG: each strongly connected subgraph is a vertex, directed, acyclic edges between
- now, for every snapshot:
 - 1. replace the labels of the DAG-edges in the order of the DAG
 - 2. replace each strongly connected component with a connected graph (e.g., simple, proper bidirected tree)

- replace edges with same time labels
- preserve reachabilities (temporal trips)

- each snapshot G_t of \mathcal{G} consists of 1 to n weakly connected components
- interpretation as DAG: each strongly connected subgraph is a vertex, directed, acyclic edges between
- now, for every snapshot:
 - 1. replace the labels of the DAG-edges in the order of the DAG
 - 2. replace each strongly connected component with a connected graph (e.g., simple, proper bidirected tree)

- replace edges with same time labels
- preserve reachabilities (temporal trips)

- each snapshot G_t of \mathcal{G} consists of 1 to n weakly connected components
- interpretation as DAG: each strongly connected subgraph is a vertex, directed, acyclic edges between
- now, for every snapshot:
 - 1. replace the labels of the DAG-edges in the order of the DAG
 - 2. replace each strongly connected component with a connected graph (e.g., simple, proper bidirected tree)
- shift labels of subsequent snapshots

$$a \xrightarrow{3} b \xrightarrow{3,5} c \cong a \xrightarrow{1,2} b \xrightarrow{1} c$$

$$a \frac{3}{b} b \frac{3,5}{c} c \cong a \frac{1,2}{b} b \frac{1}{c}$$

$$a \xrightarrow{3} b \xrightarrow{3,5} c \cong a \xrightarrow{1,2} b \xrightarrow{1} c$$

$$a \xrightarrow{3} b \xrightarrow{3,5} c \cong a \xrightarrow{1,2} b \xrightarrow{1} c$$

$$a \xrightarrow{3} b \xrightarrow{3,5} c \cong a \xrightarrow{1,2} b \xrightarrow{1} c$$

$$a \xrightarrow{3} b \xrightarrow{3,5} c \cong a \xrightarrow{1,2} b \xrightarrow{1} c$$

$$a \frac{3}{b} b \frac{3,5}{c} c \cong a \frac{1,2}{b} b \frac{1}{c} c$$

