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Temporal (happy) graphs

G = (V ,E , λ), where λ : E → 2N assigns time labels to edges.
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(V ,E) is the underlying graph or footprint

proper : incident edges share no label

simple : λ : E → N
happy : simple and proper

From this point on, all temporal graphs are happy.

Temporal path: a path with increasing time labels.

▶ e.g. ⟨(b, a, 1), (a, d , 2), (d , c, 3)⟩

Temporal connectivity: All-pairs reachability (class TC).
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Spanning subgraph preserving TC

In static graphs: Minimum spanning subgraph preserving connectivity

→
1. Existence is guaranteed

2. It is always a spanning tree

3. Size is always n − 1

Temporal spanning subgraph preserving TC (a.k.a. Temporal spanner)

Input: A temporal graph G ∈ TC.

Goal: Minimum (# edges or labels) temporal spanner G′ ⊆ G such that G′ ∈ TC.

▶ Existence is guaranteed

▶ Complexity is open (?)

Question: Is there any guarantee on the size?
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Structural results

Given a temporal graph G that is temporally connected (G ∈ TC),

is there any guarantee on the size of a minimum spanner G′ ⊆ G?

Note: The absolute minimum is 2n − 4 [Bumby, 1979 (gossip theory)]

▶ Are spanners of size O(n) always guaranteed?

→ Nope, hypercubes may fail [Kleinberg, Kempe, Kumar, 2000]

▶ Are spanners of size o(n2) always guaranteed?

→ Not even! [Axiotis, Fotakis, 2016]

Any positive results?

Good news 1 (probabilistic): [Casteigts, Raskin, Renken, Zamaraev, 2021]:

▶ Nearly optimal spanners (of size 2n + o(n)) almost surely exist in

random temporal graphs, and so, as soon as the graph becomes TC!

Good news 2 (deterministic): [Casteigts, Peters, Schoeters, 2019]:

▶ Spanners of size O(n log n) always exist in temporal cliques.

Achieved using dismountability + a number of other techniques.

In fact (this talk), dismountability is all you need!
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Dismountability



(1-hop) Dismountability

Find a node u s.t. :

▶ uv = minimum edge of some v (denoted e−(v))

▶ uw = maximum edge of some w (denoted e+(w))

v

u

w
− +

Then spanner(G) := spanner(G[V \u]) + uv + uw → Recurse.
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If recursively applicable, it yields a spanner of size 2n − 3.

Unfortunately, it is not always applicable.
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Relaxed version: k-hop dismountability

Temporal paths u ⇝ v ending at e−(v) and w ⇝ u starting at e+(w)

v

u

w
+−

(a) Example of 2-hop dismountable

v

−
v

u

w
+

(b) Example of 3-hop dismountable

→ Select both paths in the spanner
→ recurse! (in G \ u)

If it is recursively applicable for some k ∈ O(1), we obtain an O(n) spanner.

Again, not always applicable, but...

The absence of k-hop dismountable vertices gives rise to an interesting structure.
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Non 1-hop dismountable cliques

V− = {u ∈ V : uv = e−(v) for some v}

V−

−

−
−

−

−

V+ = {u ∈ V : uv = e+(v) for some v}

V+

+

+

+

+

+

If u belongs to both V− and V+ then it is 1-hop dismountable!

=⇒ In non 1-hop dismountable cliques V− ∩ V+ = ∅.

v

u

w

− +

If the clique is non 1-hop dismountable, then V
can be partitioned into V−, V+, and
V 0 = V \ (V− ∪ V+).

Alternatively, V 0 is the set of vertices that do not
receive any minimum or maximum edge from any
other vertex.

V

V− V+

V 0
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Non {1, 2}-hop dismountable cliques

V− V+

V 0

If the minimum edge of two or more
vertices in V+ goes to the same vertex in
V− then 2-hop dismountable.

The same holds for maximum edges of
vertices in V−.

w ∈ V−

u ∈ V+ v ∈ V+

z

− −

+

Consequences for non {1, 2}-hop dismountable cliques:

▶ The edges {e−(v) : v ∈ V+} form a matching.

▶ The edges {e+(v) : v ∈ V−} form a matching.

▶ V− and V+ are of equal size.

Question: Where are the vertices of V 0?

V+ V−
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If G is non {1, 2}-hop dismountable, then V 0 is empty.



Summary of non {1, 2}-hop dismountable cliques

V

V− V+

+ +
−

−−

−

+

+
+

+

−

−−

−

+ +

+

+

+

+

−

−

−

−

If G is non {1, 2}-hop dismountable, then:

1. V− and V+ are the same size and form a partition of V .

2. The set M− := {e−(v) : v ∈ V+} is a perfect matching.

3. The set M+ := {e+(v) : v ∈ V−} is a perfect matching.

(Actually, if and only if)



Non {1, 2, 3}-hop dismountable cliques
V− V+

A non {1, 2}-hop dismountable clique is 3-hop dismountable if and only if
we have such temporal paths:

u

vy

x

w+

−−

− −

u

v y

x

w −

+ +

++

Theorem 3,7: G k-hop dismountable =⇒ G {1, 2, 3}-hop dismountable

By contradiction:

k ≥ 4 minimal

v ∈ V+ can reach e−(u) in k-hop

through path v , x1, x2, . . . , xk−1, u

Obs: xi ∈ V− for i ∈ [k − 1]

v

v ′

u

xk−2

xk−1

−

−

v

v ′

u xk−1

xk−3

xk−2−

−

b

a

c
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Consequences of Theorem 3.7

Theorem 3,7: G k-hop dismountable =⇒ G {1, 2, 3}-hop dismountable

Consequences:

▶ We can stop the analysis at k = 3.

▶ Any minimal counter-example to the existence of 4n spanners must have all the
properties of non {1, 2, 3}-hop dismountable.

▶ As far as O(n) spanners are concerned, excluding {1, 2}-hop dismountability is
sufficient.

Why?

▶ Let G′ ⊆ G be the bipartite part
between V− and V+.

▶ G′ is extremally matched
(reciprocal − and + edges)

▶ G′ ∈ TC

▶ Any spanner of G′ is a spanner of G

Thm: Extremally matched bicliques admit
O(n) spanners if and only if temporal
cliques admit O(n) spanners.

( =⇒ ) [Casteigts, Peters, Schoeters, 2019]

( ⇐= ) [Angrick et al., 2024]
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O(n log n) spanners using only dismountability

Let’s work in extremally matched temporal bicliques

▶ We can add the two matching to the spanner (essentially free)

▶ Focus on preserving reachability left to right only (with matchings =⇒ spanner TC)

Theorem: O(n log n) spanners always exist [Casteigts, Peters, Shoeters, 2019]

↓ A much simpler proof by [Angrick et al., 2024]

Split Dismount Split Dismount

L R

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

⇝

1. Split the work, achieving both halves of L to all of R separately.

2. Dismount vertices of R whose + collide in L (pay two edges).

3. Recurse.

One-sided dismountability

+

+

cost(n) = 2 · cost(n/2) + O(n)

By the Master’s theorem for recurrences, the total cost is O(n log n)
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▶ Focus on preserving reachability left to right only (with matchings =⇒ spanner TC)

Theorem: O(n log n) spanners always exist [Casteigts, Peters, Shoeters, 2019]

↓ A much simpler proof by [Angrick et al., 2024]
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Pivotability and Recursively k-hop

Dismountable



Pivotability and Recursively k-hop Dismountable

Let (e, t) be a temporal edge. If for every w ∈ V

▶ There exists a temporal path from w to e (ending with e), and

▶ There exists a temporal path from e to w (starting with e).

Then we say that the graph is pivotable.

t
u v

< t

> t

2n − 3 spanner

Theorem 5.2: Let G be a temporal clique. If G is recursively k-hop dismountable, then
G is pivotable.
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Summary

Theorem 3.10: G is non k-hop dismountable (k ≥ 3) if and only if:

1. V− and V+ are the same size and form a partition of V .

2. Every edge between V− and V+ is later than all adjacent edges in E− and
earlier than all adjacent edges in E+.

3. For every edge e within the part V− (resp. V+), the label of e cannot be
between the labels of the two incident edges of M− (resp. M+).

▶ Any minimal counterexample to a 4n spanner must satisfy conditions 1, 2, and 3.

▶ Non {1, 2}-hop dismountable (conditions 1. and 2.) is sufficient to reduce the
problem to extremally matched bicliques.

▶ Recursively k-hop dismountable =⇒ pivotable.


