Dismountability in Temporal Cliques Revisited

Daniele Carnevale¹, Arnaud Casteigts^{2,3}, Timothée Corsini³

July 7th, 2025

¹Gran Sasso Science Institute, L'Aquila, Italy ²University of Geneva, Switzerland

²University of Geneva, Switzerland ³LaBRI. University of Bordeaux, France

$$\mathcal{G}=(V,E,\lambda)$$
, where $\lambda:E o 2^{\mathbb{N}}$ assigns *time labels* to edges.

Example:

(V, E) is the *underlying graph* or *footprint*

$$\mathcal{G} = (V, E, \lambda)$$
, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *time labels* to edges.

Example:

(V, E) is the underlying graph or footprint

proper : incident edges share no label

$$\mathcal{G} = (V, E, \lambda)$$
, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *time labels* to edges.

Example:

(V, E) is the underlying graph or footprint

proper : incident edges share no label

$$\mathcal{G} = (V, E, \lambda)$$
, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *time labels* to edges.

(V, E) is the underlying graph or footprint

proper : incident edges share no label

 $\mathcal{G} = (V, E, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *time labels* to edges.

(V, E) is the underlying graph or footprint

proper : incident edges share no label

 $\textit{simple}: \ \lambda: \textit{E} \rightarrow \mathbb{N}$

$$\mathcal{G} = (V, E, \lambda)$$
, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *time labels* to edges.

(V, E) is the underlying graph or footprint

proper : incident edges share no label

 $\textit{simple}:\,\lambda: \textit{E} \rightarrow \mathbb{N}$

$$\mathcal{G} = (V, E, \lambda)$$
, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *time labels* to edges.

(V, E) is the underlying graph or footprint

proper : incident edges share no label

 $simple: \lambda: E \rightarrow \mathbb{N}$

 $\mathcal{G} = (V, E, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *time labels* to edges.

(V, E) is the underlying graph or footprint

proper: incident edges share no label

 $\textit{simple}: \ \lambda: \textit{E} \rightarrow \mathbb{N}$

happy: simple and proper

 $\mathcal{G} = (V, E, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *time labels* to edges.

(V, E) is the underlying graph or footprint

proper: incident edges share no label

 $\textit{simple}:\,\lambda: \textit{E} \rightarrow \mathbb{N}$

happy : simple and proper

From this point on, all temporal graphs are happy.

 $\mathcal{G} = (V, E, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *time labels* to edges.

Example:

f

c

d

happy 5

2

5

(V, E) is the underlying graph or footprint

proper: incident edges share no label

 $\textit{simple}:\,\lambda: \textit{E} \rightarrow \mathbb{N}$

happy : simple and proper

From this point on, all temporal graphs are happy.

Temporal path: a path with increasing time labels.

 $\mathcal{G} = (V, E, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *time labels* to edges.

Example:

c
c
d
happy 5

(V, E) is the underlying graph or footprint

proper: incident edges share no label

simple : $\lambda : E \to \mathbb{N}$

happy : simple and proper

From this point on, all temporal graphs are happy.

Temporal path: a path with increasing time labels.

• e.g.
$$\langle (b, a, 1), (a, d, 2), (d, c, 3) \rangle$$

 $\mathcal{G} = (V, E, \lambda)$, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *time labels* to edges.

(V, E) is the underlying graph or footprint

proper: incident edges share no label

 $\textit{simple}: \ \lambda: \textit{E} \rightarrow \mathbb{N}$

happy: simple and proper

From this point on, all temporal graphs are happy.

Temporal path: a path with increasing time labels.

• e.g.
$$\langle (b, a, 1), (a, d, 2), (d, c, 3) \rangle$$

Temporal connectivity: All-pairs reachability (class TC).

$$\mathcal{G} = (V, E, \lambda)$$
, where $\lambda : E \to 2^{\mathbb{N}}$ assigns *time labels* to edges.

(V, E) is the underlying graph or footprint

proper: incident edges share no label

 $simple: \lambda: E \rightarrow \mathbb{N}$

happy : simple and proper

From this point on, all temporal graphs are happy.

Temporal path: a path with increasing time labels.

• e.g.
$$\langle (b, a, 1), (a, d, 2), (d, c, 3) \rangle$$

Temporal connectivity: All-pairs reachability (class TC).

In static graphs: Minimum spanning subgraph preserving connectivity

- 1. Existence is guaranteed
- 2. It is always a spanning tree
- 3. Size is always n-1

In static graphs: Minimum spanning subgraph preserving connectivity

- 1. Existence is guaranteed
- 2. It is always a spanning tree
- 3. Size is always n-1

Temporal spanning subgraph preserving TC (a.k.a. Temporal spanner)

Input: A temporal graph $G \in TC$.

Goal: Minimum (# edges or labels) temporal spanner $\mathcal{G}' \subseteq \mathcal{G}$ such that $\mathcal{G}' \in \mathsf{TC}$.

In static graphs: Minimum spanning subgraph preserving connectivity

- 1. Existence is guaranteed
- 2. It is always a spanning tree
- 3. Size is always n-1

Temporal spanning subgraph preserving TC (a.k.a. Temporal spanner)

Input: A temporal graph $G \in TC$.

Goal: Minimum (# edges or labels) temporal spanner $\mathcal{G}' \subseteq \mathcal{G}$ such that $\mathcal{G}' \in \mathsf{TC}$.

Existence is guaranteed

In static graphs: Minimum spanning subgraph preserving connectivity

- 1. Existence is guaranteed
- 2. It is always a spanning tree
- 3. Size is always n-1

Temporal spanning subgraph preserving TC (a.k.a. Temporal spanner)

Input: A temporal graph $G \in TC$.

Goal: Minimum (# edges or labels) temporal spanner $\mathcal{G}' \subseteq \mathcal{G}$ such that $\mathcal{G}' \in \mathsf{TC}$.

- Existence is guaranteed
- Complexity is open (?)

In static graphs: Minimum spanning subgraph preserving connectivity

- 1. Existence is guaranteed
- 2. It is always a spanning tree
- 3. Size is always n-1

Temporal spanning subgraph preserving TC (a.k.a. Temporal spanner)

Input: A temporal graph $G \in TC$.

Goal: Minimum (# edges or labels) temporal spanner $\mathcal{G}' \subseteq \mathcal{G}$ such that $\mathcal{G}' \in \mathsf{TC}$.

- Existence is guaranteed
- ► Complexity is **open** (?)

Question: Is there any guarantee on the size?

Given a temporal graph $\mathcal G$ that is temporally connected ($\mathcal G\in\mathsf{TC}$), is there any guarantee on the size of a minimum spanner $\mathcal G'\subseteq\mathcal G$?

Given a temporal graph $\mathcal G$ that is temporally connected ($\mathcal G\in\mathsf{TC}$), is there any guarantee on the size of a minimum spanner $\mathcal G'\subseteq\mathcal G$?

Given a temporal graph $\mathcal G$ that is temporally connected ($\mathcal G\in\mathsf{TC}$), is there any guarantee on the size of a minimum spanner $\mathcal G'\subseteq\mathcal G$?

Note: The absolute minimum is 2n-4 [Bumby, 1979 (gossip theory)]

ightharpoonup Are spanners of size O(n) always guaranteed?

Given a temporal graph $\mathcal G$ that is temporally connected ($\mathcal G \in \mathsf{TC}$), is there any guarantee on the size of a minimum spanner $\mathcal G' \subseteq \mathcal G$?

- Are spanners of size O(n) always guaranteed?
 - \rightarrow Nope, hypercubes may fail [Kleinberg, Kempe, Kumar, 2000]

Given a temporal graph \mathcal{G} that is temporally connected ($\mathcal{G} \in \mathsf{TC}$), is there any guarantee on the size of a minimum spanner $\mathcal{G}' \subseteq \mathcal{G}$?

- Are spanners of size O(n) always guaranteed?
 - ightarrow Nope, hypercubes may fail [Kleinberg, Kempe, Kumar, 2000]
- Are spanners of size $o(n^2)$ always guaranteed?

Given a temporal graph $\mathcal G$ that is temporally connected ($\mathcal G \in \mathsf{TC}$), is there any guarantee on the size of a minimum spanner $\mathcal G' \subseteq \mathcal G$?

- Are spanners of size O(n) always guaranteed?
 - ightarrow Nope, hypercubes may fail [Kleinberg, Kempe, Kumar, 2000]
- Are spanners of size $o(n^2)$ always guaranteed?
 - ightarrow Not even! [Axiotis, Fotakis, 2016]

Given a temporal graph \mathcal{G} that is temporally connected ($\mathcal{G} \in \mathsf{TC}$), is there any guarantee on the size of a minimum spanner $\mathcal{G}' \subseteq \mathcal{G}$?

Note: The absolute minimum is 2n-4 [Bumby, 1979 (gossip theory)]

- Are spanners of size O(n) always guaranteed?
 - → Nope, hypercubes may fail [Kleinberg, Kempe, Kumar, 2000]
- Are spanners of size $o(n^2)$ always guaranteed?
 - → Not even! [Axiotis, Fotakis, 2016]

Any positive results?

Good news 1 (probabilistic): [Casteigts, Raskin, Renken, Zamaraev, 2021]:

Nearly optimal spanners (of size 2n + o(n)) almost surely exist in random temporal graphs, and so, as soon as the graph becomes TC!

Given a temporal graph $\mathcal G$ that is temporally connected ($\mathcal G \in \mathsf{TC}$), is there any guarantee on the size of a minimum spanner $\mathcal G' \subseteq \mathcal G$?

Note: The absolute minimum is 2n-4 [Bumby, 1979 (gossip theory)]

- Are spanners of size O(n) always guaranteed?
 - → Nope, hypercubes may fail [Kleinberg, Kempe, Kumar, 2000]
- Are spanners of size $o(n^2)$ always guaranteed?
 - → Not even! [Axiotis, Fotakis, 2016]

Any positive results?

Good news 1 (probabilistic): [Casteigts, Raskin, Renken, Zamaraev, 2021]:

Nearly optimal spanners (of size 2n + o(n)) almost surely exist in random temporal graphs, and so, as soon as the graph becomes TC!

Good news 2 (deterministic): [Casteigts, Peters, Schoeters, 2019]:

▶ Spanners of size $O(n \log n)$ always exist in temporal cliques.

Given a temporal graph $\mathcal G$ that is temporally connected ($\mathcal G \in \mathsf{TC}$), is there any guarantee on the size of a minimum spanner $\mathcal G' \subseteq \mathcal G$?

Note: The absolute minimum is 2n-4 [Bumby, 1979 (gossip theory)]

- Are spanners of size O(n) always guaranteed?
 - → Nope, hypercubes may fail [Kleinberg, Kempe, Kumar, 2000]
- Are spanners of size $o(n^2)$ always guaranteed?
 - → Not even! [Axiotis, Fotakis, 2016]

Any positive results?

Good news 1 (probabilistic): [Casteigts, Raskin, Renken, Zamaraev, 2021]:

Nearly optimal spanners (of size 2n + o(n)) almost surely exist in random temporal graphs, and so, as soon as the graph becomes TC!

Good news 2 (deterministic): [Casteigts, Peters, Schoeters, 2019]:

► Spanners of size $O(n \log n)$ always exist in temporal **cliques**. Achieved using **dismountability** + a number of other techniques.

Given a temporal graph $\mathcal G$ that is temporally connected ($\mathcal G \in \mathsf{TC}$), is there any guarantee on the size of a minimum spanner $\mathcal G' \subseteq \mathcal G$?

Note: The absolute minimum is 2n-4 [Bumby, 1979 (gossip theory)]

- Are spanners of size O(n) always guaranteed?
 - → Nope, hypercubes may fail [Kleinberg, Kempe, Kumar, 2000]
- Are spanners of size $o(n^2)$ always guaranteed?
 - → Not even! [Axiotis, Fotakis, 2016]

Any positive results?

Good news 1 (probabilistic): [Casteigts, Raskin, Renken, Zamaraev, 2021]:

Nearly optimal spanners (of size 2n + o(n)) almost surely exist in random temporal graphs, and so, as soon as the graph becomes TC!

Good news 2 (deterministic): [Casteigts, Peters, Schoeters, 2019]:

Spanners of size O(n log n) always exist in temporal cliques. Achieved using dismountability + a number of other techniques. In fact (this talk), dismountability is all you need!

Dismountability

Find a node u s.t.:

- $ightharpoonup uv = minimum edge of some <math>\mathbf{v}$ (denoted $e^-(v)$)
- $uw = \text{maximum edge of some } w \text{ (denoted } e^+(w)\text{)}$

Find a node u s.t.:

- $ightharpoonup uv = minimum edge of some <math>\mathbf{v}$ (denoted $e^-(v)$)
- $uw = \text{maximum edge of some } w \text{ (denoted } e^+(w)\text{)}$

Find a node u s.t.:

- $uv = minimum edge of some v (denoted e^{-}(v))$
- $uw = \text{maximum edge of some } w \text{ (denoted } e^+(w)\text{)}$

Find a node u s.t.:

- $uv = minimum edge of some v (denoted e^{-}(v))$
- $uw = \text{maximum edge of some } \boldsymbol{w} \text{ (denoted } e^+(w)\text{)}$

Find a node u s.t.:

- $uv = minimum edge of some v (denoted <math>e^{-}(v)$)
- $uw = \text{maximum edge of some } w \text{ (denoted } e^+(w)\text{)}$

Find a node u s.t.:

- $ightharpoonup uv = minimum edge of some <math>\mathbf{v}$ (denoted $e^-(v)$)
- $uw = \text{maximum edge of some } w \text{ (denoted } e^+(w)\text{)}$

Then $\operatorname{spanner}(\mathcal{G}) := \operatorname{spanner}(\mathcal{G}[V \setminus u]) + uv + uw \to \mathsf{Recurse}.$

If recursively applicable, it yields a spanner of size 2n-3.

(1-hop) Dismountability

Find a node u s.t.:

- $\mathbf{v} = \text{minimum edge of some } \mathbf{v} \text{ (denoted } e^-(\mathbf{v})$
- $uw = \text{maximum edge of some } w \text{ (denoted } e^+(w)\text{)}$

Then $\operatorname{spanner}(\mathcal{G}) := \operatorname{spanner}(\mathcal{G}[V \setminus u]) + uv + uw \to \mathsf{Recurse}.$

If recursively applicable, it yields a spanner of size 2n - 3. Unfortunately, it is not always applicable.

Relaxed version: k-hop dismountability

Temporal paths $u \leadsto v$ ending at $e^-(v)$ and $w \leadsto u$ starting at $e^+(w)$

(a) Example of 2-hop dismountable

(b) Example of 3-hop dismountable

Relaxed version: k-hop dismountability

Temporal paths $u \rightsquigarrow v$ ending at $e^-(v)$ and $w \rightsquigarrow u$ starting at $e^+(w)$

(b) Example of 3-hop dismountable

- \rightarrow Select both paths in the spanner
- $\rightarrow \ \mathsf{recurse!} \ \left(\mathsf{in} \ \mathcal{G} \setminus \mathit{u}\right)$

If it is recursively applicable for some $k \in O(1)$, we obtain an O(n) spanner.

Relaxed version: k-hop dismountability

Temporal paths $u \rightsquigarrow v$ ending at $e^-(v)$ and $w \rightsquigarrow u$ starting at $e^+(w)$

(b) Example of 3-hop dismountable

- \rightarrow Select both paths in the spanner
- \rightarrow recurse! (in $\mathcal{G} \setminus u$)

If it is recursively applicable for some $k \in O(1)$, we obtain an O(n) spanner.

Again, not always applicable, but...

The absence of k-hop dismountable vertices gives rise to an interesting structure.

$$V^- = \{u \in V : uv = e^-(v) \text{ for some } v\}$$

$$V^+ = \{u \in V : uv = e^+(v) \text{ for some } v\}$$

$$V^+ = \{u \in V : uv = e^+(v) \text{ for some } v\}$$

If u belongs to both V^- and V^+ then it is 1-hop dismountable! \implies In non 1-hop dismountable cliques $V^- \cap V^+ = \emptyset$.

$$V^+ = \{u \in V : uv = e^+(v) \text{ for some } v\}$$

If u belongs to both V^- and V^+ then it is 1-hop dismountable!

 \implies In non 1-hop dismountable cliques $V^- \cap V^+ = \emptyset$.

If the clique is non 1-hop dismountable, then V can be partitioned into V^- , V^+ , and $V^0 = V \setminus (V^- \cup V^+)$.

$$V^+ = \{u \in V : uv = e^+(v) \text{ for some } v\}$$

If u belongs to both V^- and V^+ then it is 1-hop dismountable!

 \implies In non 1-hop dismountable cliques $V^- \cap V^+ = \emptyset$.

If the clique is non 1-hop dismountable, then V can be partitioned into V^- , V^+ , and $V^0=V\setminus (V^-\cup V^+)$.

Alternatively, V^0 is the set of vertices that do not receive any minimum or maximum edge from any other vertex.

If the minimum edge of two or more vertices in V^+ goes to the same vertex in V^- then 2-hop dismountable.

The same holds for maximum edges of vertices in V^- .

If the minimum edge of two or more vertices in V^+ goes to the same vertex in V^- then 2-hop dismountable.

The same holds for maximum edges of vertices in V^- .

Consequences for non $\{1,2\}$ -hop dismountable cliques:

▶ The edges $\{e^-(v): v \in V^+\}$ form a *matching*.

If the minimum edge of two or more vertices in V^+ goes to the same vertex in V^- then 2-hop dismountable.

The same holds for maximum edges of vertices in V^- .

Consequences for non $\{1,2\}$ -hop dismountable cliques:

- ▶ The edges $\{e^-(v): v \in V^+\}$ form a matching.
- ▶ The edges $\{e^+(v): v \in V^-\}$ form a matching.

If the minimum edge of two or more vertices in V^+ goes to the same vertex in V^- then 2-hop dismountable.

The same holds for maximum edges of vertices in V^- .

Consequences for non $\{1,2\}$ -hop dismountable cliques:

- ▶ The edges $\{e^-(v): v \in V^+\}$ form a matching.
- ▶ The edges $\{e^+(v): v \in V^-\}$ form a matching.
- $ightharpoonup V^-$ and V^+ are of equal size.

If the minimum edge of two or more vertices in V^+ goes to the same vertex in V^- then 2-hop dismountable.

The same holds for maximum edges of vertices in V^- .

Consequences for non {1,2}-hop dismountable cliques:

- ▶ The edges $\{e^-(v): v \in V^+\}$ form a matching.
- ▶ The edges $\{e^+(v): v \in V^-\}$ form a matching.
- $ightharpoonup V^-$ and V^+ are of equal size.

Question: Where are the vertices of V^0 ?

If the minimum edge of two or more vertices in V^+ goes to the same vertex in V^- then 2-hop dismountable.

The same holds for maximum edges of vertices in V^- .

Consequences for non {1,2}-hop dismountable cliques:

- ▶ The edges $\{e^-(v): v \in V^+\}$ form a matching.
- ▶ The edges $\{e^+(v): v \in V^-\}$ form a matching.
- $ightharpoonup V^-$ and V^+ are of equal size.

Question: Where are the vertices of V^0 ?

Non $\{1,2\}\text{-hop dismountable cliques}$

Non $\{1,2\}$ -hop dismountable cliques

Non $\{1,2\}\text{-hop dismountable cliques}$

Non $\{1,2\}\text{-hop dismountable cliques}$

Non $\{1,2\}$ -hop dismountable cliques

Non $\{1,2\}$ -hop dismountable cliques

Non $\{1,2\}\text{-hop dismountable cliques}$

Non $\{1,2\}$ -hop dismountable cliques

If \mathcal{G} is non $\{1,2\}$ -hop dismountable, then \mathbf{V}^0 is empty.

Summary of non $\{1,2\}$ -hop dismountable cliques

If G is non $\{1,2\}$ -hop dismountable, then:

- 1. V^- and V^+ are the same size and form a partition of V.
- 2. The set $M^- := \{e^-(v) : v \in V^+\}$ is a perfect matching.
- 3. The set $M^+:=\{e^+(v):v\in V^-\}$ is a perfect matching. (Actually, if and only if)

A non $\{1,2\}\text{-hop}$ dismountable clique is 3-hop dismountable if and only if we have such temporal paths:

A non $\{1,2\}\text{-hop}$ dismountable clique is 3-hop dismountable if and only if we have such temporal paths:

Theorem 3,7: \mathcal{G} k-hop dismountable $\implies \mathcal{G}$ {1,2,3}-hop dismountable

A non $\{1,2\}\text{-hop}$ dismountable clique is 3-hop dismountable if and only if we have such temporal paths:

Theorem 3,7: \mathcal{G} k-hop dismountable $\implies \mathcal{G}$ {1,2,3}-hop dismountable

By contradiction:

 $k \ge 4$ minimal

 $v \in V^+$ can reach $e^-(u)$ in k-hop through path $v, x_1, x_2, \dots, x_{k-1}, u$

A non $\{1,2\}\text{-hop}$ dismountable clique is 3-hop dismountable if and only if we have such temporal paths:

Theorem 3,7: \mathcal{G} k-hop dismountable $\implies \mathcal{G}$ {1,2,3}-hop dismountable

By contradiction:

 $k \ge 4$ minimal

 $v \in V^+$ can reach $e^-(u)$ in k-hop through path $v, x_1, x_2, \dots, x_{k-1}, u$

A non $\{1,2\}$ -hop dismountable clique is 3-hop dismountable if and only if we have such temporal paths:

Theorem 3,7: \mathcal{G} k-hop dismountable $\implies \mathcal{G}$ {1,2,3}-hop dismountable

By contradiction:

 $k \ge 4$ minimal

 $v \in V^+$ can reach $e^-(u)$ in k-hop through path $v, x_1, x_2, \dots, x_{k-1}, u$

A non $\{1,2\}$ -hop dismountable clique is 3-hop dismountable if and only if we have such temporal paths:

Theorem 3,7: \mathcal{G} k-hop dismountable $\implies \mathcal{G}$ {1,2,3}-hop dismountable

By contradiction:

 $k \ge 4$ minimal

 $v \in V^+$ can reach $e^-(u)$ in k-hop through path $v, x_1, x_2, \dots, x_{k-1}, u$

A non $\{1,2\}$ -hop dismountable clique is 3-hop dismountable if and only if we have such temporal paths:

Theorem 3,7: \mathcal{G} k-hop dismountable $\implies \mathcal{G}$ {1,2,3}-hop dismountable

By contradiction:

 $k \ge 4$ minimal

 $v \in V^+$ can reach $e^-(u)$ in k-hop through path $v, x_1, x_2, \dots, x_{k-1}, u$

Consequences of Theorem 3.7

Theorem 3,7: $\mathcal G$ k-hop dismountable $\implies \mathcal G$ $\{1,2,3\}$ -hop dismountable Consequences:

▶ We can stop the analysis at k = 3.

Consequences of Theorem 3.7

Theorem 3,7: $\mathcal G$ k-hop dismountable $\implies \mathcal G$ $\{1,2,3\}$ -hop dismountable Consequences:

- ▶ We can stop the analysis at k = 3.
- ▶ Any minimal counter-example to the existence of 4*n* spanners must have all the properties of non {1, 2, 3}-hop dismountable.

Consequences of Theorem 3.7

Theorem 3,7: \mathcal{G} k-hop dismountable $\implies \mathcal{G}$ $\{1,2,3\}$ -hop dismountable

Consequences:

- ightharpoonup We can stop the analysis at k=3.
- Any minimal counter-example to the existence of 4n spanners must have all the properties of non $\{1, 2, 3\}$ -hop dismountable.
- ▶ As far as O(n) spanners are concerned, excluding $\{1,2\}$ -hop dismountability is sufficient.

Why?

- Let $\mathcal{G}' \subseteq \mathcal{G}$ be the bipartite part between V^- and V^+ .
- ▶ G' is extremally matched (reciprocal — and + edges)
- $ightharpoonup \mathcal{G}' \in \mathsf{TC}$
- ▶ Any spanner of \mathcal{G}' is a spanner of \mathcal{G}

Thm: Extremally matched bicliques admit O(n) spanners if and only if temporal cliques admit O(n) spanners.

Let's work in extremally matched temporal bicliques

- ▶ We can add the two matching to the spanner (essentially free)
- ► Focus on preserving reachability **left** to **right** only (with matchings ⇒ spanner TC)

Let's work in extremally matched temporal bicliques

- We can add the two matching to the spanner (essentially free)
- ► Focus on preserving reachability **left** to **right** only (with matchings ⇒ spanner TC)

Theorem: $O(n \log n)$ spanners always exist [Casteigts, Peters, Shoeters, 2019] \downarrow A much simpler proof by [Angrick et al., 2024]

Let's work in extremally matched temporal bicliques

- We can add the two matching to the spanner (essentially free)
- ► Focus on preserving reachability **left** to **right** only (with matchings ⇒ spanner TC)

Theorem: $O(n \log n)$ spanners always exist [Casteigts, Peters, Shoeters, 2019] \downarrow A much simpler proof by [Angrick et al., 2024]

1. Split the work, achieving both halves of L to all of R separately.

Let's work in extremally matched temporal bicliques

- ▶ We can add the two matching to the spanner (essentially free)
- ► Focus on preserving reachability **left** to **right** only (with matchings ⇒ spanner TC)

Theorem: $O(n \log n)$ spanners always exist [Casteigts, Peters, Shoeters, 2019]

↓ A much simpler proof by [Angrick et al., 2024]

- 1. Split the work, achieving both halves of L to all of R separately.
- 2. Dismount vertices of R whose + collide in L (pay two edges).

Let's work in extremally matched temporal bicliques

- We can add the two matching to the spanner (essentially free)
- ► Focus on preserving reachability **left** to **right** only (with matchings ⇒ spanner TC)

Theorem: $O(n \log n)$ spanners always exist [Casteigts, Peters, Shoeters, 2019]

↓ A much simpler proof by [Angrick et al., 2024]

- 1. Split the work, achieving both halves of L to all of R separately.
- 2. Dismount vertices of R whose + collide in L (pay two edges).
- 3. Recurse.

Let's work in extremally matched temporal bicliques

- We can add the two matching to the spanner (essentially free)
- ► Focus on preserving reachability left to right only (with matchings ⇒ spanner TC)

Theorem: $O(n \log n)$ spanners always exist [Casteigts, Peters, Shoeters, 2019]

↓ A much simpler proof by [Angrick et al., 2024]

- 1. Split the work, achieving both halves of L to all of R separately.
- 2. Dismount vertices of R whose + collide in L (pay two edges).
- 3. Recurse.

$$cost(n) = 2 \cdot cost(n/2) + O(n)$$

By the Master's theorem for recurrences, the total cost is $O(n \log n)$

One-sided dismountability

Pivotability and Recursively k-hop Dismountable

Pivotability and Recursively k-hop Dismountable

Let (e,t) be a temporal edge. If for every $w \in V$

- ▶ There exists a temporal path from w to e (ending with e), and
- ▶ There exists a temporal path from e to w (starting with e).

Then we say that the graph is *pivotable*.

Pivotability and Recursively k-hop Dismountable

Let (e, t) be a temporal edge. If for every $w \in V$

- ightharpoonup There exists a temporal path from w to e (ending with e), and
- ightharpoonup There exists a temporal path from e to w (starting with e).

Then we say that the graph is pivotable.

Theorem 5.2: Let \mathcal{G} be a temporal clique. If \mathcal{G} is recursively k-hop dismountable, then \mathcal{G} is pivotable.

Summary

Theorem 3.10: \mathcal{G} is non k-hop dismountable ($k \geq 3$) if and only if:

- 1. V^- and V^+ are the same size and form a partition of V.
- 2. Every edge between V^- and V^+ is later than all adjacent edges in E^- and earlier than all adjacent edges in E^+ .
- 3. For every edge e within the part V^- (resp. V^+), the label of e cannot be between the labels of the two incident edges of M^- (resp. M^+).
- \triangleright Any minimal counterexample to a 4n spanner must satisfy conditions 1, 2, and 3.
- Non {1,2}-hop dismountable (conditions 1. and 2.) is sufficient to reduce the problem to extremally matched bicliques.
- ightharpoonup Recursively k-hop dismountable \implies pivotable.