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Temporal graphs (basic example)
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Also known as :
• time-dependent networks [Cooke, Halsey 1966],
• edge scheduled networks [Berman 1996], dynamic graphs

[Harary, Gupta 1997], temporal networks [Kempe, Kleinberg,
Kumar 2002 ; Holme ‛15], evolving graphs [Bhadra, Ferreira ‛03],

• time-varying graphs [Casteigts, Flocchini, Quattrociocchi,
Santoro 2012],

• link streams [Latapy, Viard, Magnien 2018],...
⇐ ? ⇒ 1 / 2 3 / 16
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Temporal path/walk
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Definitions :
• Simple directed model : a temporal graph is a

multi-digraph D = (V,A) with a time labeling λ : A → N of its
edges.

• A path with edges e1, . . . , ek is a (strict) temporal path
when λ(e1) < · · · < λ(ek), i.e. time labels (strictly) increase
along the path.

Example : e 1→ f 3→ g 4→ b (waiting at f is allowed, ¬a −→ f)
⇐ ? ⇒ 1 / 3 4 / 16
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Temporalization problem
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Directed graph temporalization

Problem : given a multi-digraph, assign time labels to edges
so as to maximise the number of pairs temporally
conneceted.

⇐ ? ⇒ 1 / 1 6 / 16
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Motivation

Original motivation : optimize the schedule of a public
transit network.

Also a natural fundamental problem.

The problem is mostly interesting when most pairs can be
connected, we thus focus on strong digraphs.

We will see that this problem is related to fundamental
properties of strong digraphs.
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Related work

Undirected graph version (symmetric digraph, an arc and its
reverse must have same time label) : deciding “label
connectivity” is NP-complete [Göbel, Cerdeira, Veldman 1991].

Approximation is easy : use a spanning tree and a centroid
node...

Minimizing |λ|, i.e. the number of labels, for achieving
temporal connectivity is NP-hard [Klobas, Mertzios, Molter,
Spirakis 2022].

It is NP-hard to decide if a strong digraph has a pair of
edge-disjoint spanning in-tree and out-tree [Bang-Jensen
1991].
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Hardness

Given a strong digraph D, deciding whether there exists an
assignment of one time label per arc such that all pairs are
temporally connected is NP-complete. [Balliu, Brunelli,
Crescenzi, Olivetti, V. 2023]

Conjecture : any strong digraph has a pair of edge-disjtoint
in-tree and out-tree both spanning n/3 nodes.
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Problem variants

Problem 1 : Given a strong digraph, compute a
temporalization connecting a constant fraction of pairs
through strict temporal paths.

Problem 1bis edge-ordering (equivalent) : Compute an arc
ordering σ for σ-respecting paths.

 

Problem node-ordering : a node ordering π for π-forward
paths.

⇐ ? ⇒ 1 / 3 11 / 16
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Problem 2 edge-disjoint trees (solves edge-ordering) :
Compute a pair of edge-disjoint in-tree and out-tree both
spanning a constant fraction of nodes.

Problem 3 node-disjoint trees (solves all others) :
Compute a bitree, i.e. a pair of node-disjoint in-tree and
out-tree both spanning a constant fraction of nodes.

⇐ ? ⇒ 1 / 2 12 / 16
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Main result : approximation

Any strong digraph D has a pair of node-disjtoint in-tree
and out-tree both spanning n/6 nodes that can be computed
in O(n2) time [Bessy, Thomassé, V. 2023].

Lemma : any strong digraph (V,A) has a balanced cyclic
separator C, that is V can be partionned in I,C,O such that :

• C is spanned by a directed cycle,
• there are no arcs from I to O (directed separator),
• both I ∪ C and I ∪O has size at least n/3 (balanced).

Main tool : a “left-maximal” DFS tree.
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Extensions

The bitree construction generalizes to node weights.

And thus to a subset of nodes U (only pairs in
((U

2

))
are

counted).

But not to an arbitrary set R ⊂
((V

2

))
of requested pairs.

Conjecture : every strong digraph has a O(log n) forward
cover, i.e. k = O(log n) node orderings such that any pair
{x, y} is connected by a path respecting one of the k
orderings.

Transit networks : trip temporalization [Brunelli, Crescenzi, V.
2023].

⇐ ? ⇒ 1 / 5 15 / 16
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Perspectives

What about general (non-strong) digraphs?

Is there a gap between edge ordering and node ordering?
((n/3)2 vs (n/6)2 ?)

What is the complexity of left-maximal DFS?

What about limited lifetime?
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A good node ordering may give poor bitrees.

Problem 2 What is the maximum cb for which every strongly connected directed graph on n

vertices has a balanced bi-tree of size at least cb.n?

We show in Theorem 4 that cb � 1/3, where both |T+| and |T�| have size at least 1/6. One can
naturally ask if the enumeration problem directly implies the bi-tree problem. But the following
example shows that this is not true in general.

Proposition 1 For every integer k, there exists a minimally strongly connected digraph D on

n = 3k2 + 2k + 2 vertices admitting an enumeration E = v1, . . . , vn such that:

- the number of forward couples in E is quadratic in n (at least k
4
), and

- the maximal size of a balanced bi-tree only using forward arcs in E is 2k + 5 = O(
p
n).

Proof. Let D be the digraph with vertex set {x} [A [A
0 [X [B

0 [B [ {y} where A
0, B0 have

size k and A, B and X all have size k
2. Consider (Ai)1ik a partition of A into k sets of size k

and (Bi)1ik a partition of B into k sets of size k. Moreover, we denote by a1, . . . ak the vertices
of A0, b1, . . . bk the vertices of B0, and (xi,j)1i,jk the vertices of X. Now, add to D the following
sets of arcs: {xa : a 2 A}, {aai : a 2 Ai} for all 1  i  k, {aixi,j : j = 1, . . . , k} for all
1  i  k, {xi,jbj : i = 1, . . . , k} for all 1  j  k, {bjb : b 2 Bj} for all 1  j  k, {by : b 2 B}
and {yx}. The construction is depicted in Figure 1.

A X B

x1,2
x1,k

x1,1

x2,1

xk,1
xk,2

xk,k

b2

bk

x y

A0 B0

A1

A2

Ak

ak

a2

a1
B1

b1
B2

Bk

Figure 1: The digraph D in the proof of Proposition 1. An arc between a block and a particular
vertex stands for all the arcs between every vertices of the block and the particular vertex. The
arc yx is not drawn.

The digraph D is strongly connected and has n = 3k2 + 2k + 2 vertices. Furthermore, D
is minimally strongly connected, as for every arc uv we have either d

+(u) = 1 (if uv = yx or
u 2 A [X [B) or d�(v) = 1 (if v 2 A [X [B).

Consider now any enumeration of D where x is the first vertex, then A is before A
0, then A

0

is before X, then X is before B
0, then B

0 is before B, and finally y is the last vertex. For such
an enumeration all the arcs of D are forward except yx. For every 1  i, j  k, any vertex of Ai

has a path to any vertex of Bj using the vertex xij . So the number of forward couples is at least
|A|.|B| = k

4, which is quadratic in n. However, the largest balanced bi-tree only using forward
arcs has its center in X and has size 2k + 5 = O(

p
n).

3 Computing a left-maximal depth first search tree

Given an out-tree T and a node x of T , we denote by Tx the subtree rooted at x consisting of all
vertices in the ousection of x in T . A child of x is an outneighbor of x in T . Let D = (V,A) be

4

⇐ ? ⇒ 1 / 1 18 / 16



Open problem

MRET is in APX for strong digraphs.

Does it hold also for general digraphs?
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Edge-disjoint in-tree and out-tree : related work

Related problem : Find an in-tree and an out-tree with same
root that are edge disjoint and have size Ω(n).

It is NP-hard to decide if a strong digraph has such a pair.
[Bang-Jensen 1991]

Conjecture : There exist c such that any c-edge-connected
digraph has such a pair. [Thomassen 1989]

Th : Every strong digraph has an in-tree and an out-tree
with same root that are vertex disjoint and both have size
n/6. [Bessy, Thomassé, Viennot 2023]

Question : How many pairs of in-tree, out-tree are needed
to cover all pairs ?

⇐ ? ⇒ 1 / 5 20 / 16
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Undirected graph temporalization is quite known

Given an undirected graph G, deciding whether there exists
an assignment of one time label per edge such that all pairs
are temporally connected is NP-complete. [Göbel, Cerdeira,
Veldman 1991]

Approximation is obvious : take a spanning tree and assign
time labels that connect (n/2)2 pairs.

Related (Gossip/telephone problem [Bumby 1981]) : The
minimum number of time labels allowing to temporally
connect all pairs at least 2n− 4, and equals 2n− 4 if G has a
C4 (one or two time labels per edge).

⇐ ? ⇒ 1 / 3 21 / 16
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Temporal graph models

⇐ ? ⇒ 1 / 1 22 / 16



Main models (interval availability)

Time-dependent network : a graph where edge delay
depends on time [Cooke, Halsey 1966] :
G = ((V,E), δ) with δ : E → RR (δ(e)(τ) is the delay of e ∈ E
at time τ ).

Time-varying graph : edge and nodes are available at certain
times.

Pice-wise constant-delay : each δ(e) is piecewise constant.
[Bui-Xuan, Ferreira, Jarry 2003], [Dehne, Omran, Sack 2012]

Pice-wise zero-delay : δ(e) has value 0 or ∞.
Temporal networks [Holme 2015], link-stream [Latapy, Viard,
Magnien 2018].

⇐ ? ⇒ 1 / 4 23 / 16
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Main models (point availability)

Evolving graph : sequence of (static) graphs with same
vertices G = (V,E1, . . . ,Eℓ) [Bhadra, Ferreira 2003]
or equivalently time labeled graphs G = ((E,V), λ) with
λ : E → 2N [Michail 2016].
(Delay of edges is 1/0 for strict/non-strict temporal paths.)

Simple : G = ((E,V), λ) with λ : E → N [Kempe, Kleinberg,
Kumar 2002].
Proper : edges incident to a node have pairwise disjoint
labels (strict and non-strict then coincide) [Casteigts, Corsini,
Sarkar 2022].
Happy : simple and proper [Casteigts, Corsini, Sarkar 2022].
Globally happy : simple and pairwise-disjoint time labels.

⇐ ? ⇒ 1 / 2 24 / 16
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What is time?

Time domain : N or R or T?

Discrete :
• time is discrete,
• and/or edges are available at some given points in time,
• and/or traversal takes time 1 (or 0).

Continous :
• time is continuous,
• and/or edges are available during given intervals of time,
• and/or traversal takes constant time.

⇐ ? ⇒ 1 / 4 25 / 16
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