# A Higher-Order Temporal H-Index for Evolving Networks

Lutz Oettershagen<sup>1</sup> Nils M. Kriege<sup>2</sup> Petra Mutzel<sup>3</sup>

October 24, 2024

1) University of Liverpool 2) University of Vienna 3) University of Bonn







• The H-index was proposed for measuring the productivity and impact of scientists: (J. E. Hirsch, 2005)

The maximum value of h such that the author has published at least h papers that have each been cited at least h times

• Has been used as centrality measure for ranking nodes according to spreading ability

• The H-index was proposed for measuring the productivity and impact of scientists: (J. E. Hirsch, 2005)

The maximum value of h such that the author has published at least h papers that have each been cited at least h times

• Has been used as centrality measure for ranking nodes according to spreading ability

The H-index was proposed for measuring the productivity and impact of scientists:
 (J. E. Hirsch, 2005)
 The maximum value of h such that the author has published at least h papers that have

each been cited at least h times

• Has been used as centrality measure for ranking nodes according to spreading ability

Let  $\ensuremath{\mathcal{M}}$  be the set of finite multisets of integers.

Function *H*: *M* → N<sub>0</sub> returns for a finite multiset of integers *S* ⊆ {{*j* | *j* ∈ N<sub>0</sub>}} the maximum integer *i* such that there are at least *i* elements *j* in *S* with *j* ≥ *i*.

#### *n*-th order H-index

*n*-th order H-index  $s_u^{(n)}$  of a node  $u \in V$  in a static graph G = (V, E): Let  $s_u^{(0)} = \delta(u)$  the degree of node u, then  $s_u^{(n)} = \mathcal{H}\left(\{\{s_u^{(n-1)} \mid v \in V \text{ and } v \text{ is neighbor of } u\}\}\right)$ 

 $s_u^{(1)}$  corresponds to the H-index of u

Let  $\ensuremath{\mathcal{M}}$  be the set of finite multisets of integers.

Function H: M → N<sub>0</sub> returns for a finite multiset of integers S ⊆ {{j | j ∈ N<sub>0</sub>}} the maximum integer i such that there are at least i elements j in S with j ≥ i.

#### *n*-th order H-index

*n*-th order H-index  $s_u^{(n)}$  of a node  $u \in V$  in a static graph G = (V, E): Let  $s_u^{(0)} = \delta(u)$  the degree of node u, then

$$s_u^{(n)} = \mathcal{H}\left(\{\!\!\{s_v^{(n-1)} \mid v \in V \text{ and } v ext{ is neighbor of } u\}\!\!\}
ight)$$

 $s_u^{(1)}$  corresponds to the H-index of u

Let  $\ensuremath{\mathcal{M}}$  be the set of finite multisets of integers.

Function H: M → N<sub>0</sub> returns for a finite multiset of integers S ⊆ {{j | j ∈ N<sub>0</sub>}} the maximum integer i such that there are at least i elements j in S with j ≥ i.

#### *n*-th order H-index

*n*-th order H-index  $s_u^{(n)}$  of a node  $u \in V$  in a static graph G = (V, E): Let  $s_u^{(0)} = \delta(u)$  the degree of node u, then

$$s_u^{(n)} = \mathcal{H}\left(\{\!\!\{s_v^{(n-1)} \mid v \in V ext{ and } v ext{ is neighbor of } u\}\!\!\}
ight)$$

 $s_u^{(1)}$  corresponds to the H-index of u

Let  $\ensuremath{\mathcal{M}}$  be the set of finite multisets of integers.

Function *H*: *M* → N<sub>0</sub> returns for a finite multiset of integers *S* ⊆ {{*j* | *j* ∈ N<sub>0</sub>}} the maximum integer *i* such that there are at least *i* elements *j* in *S* with *j* ≥ *i*.

#### *n*-th order H-index

*n*-th order H-index  $s_u^{(n)}$  of a node  $u \in V$  in a static graph G = (V, E): Let  $s_u^{(0)} = \delta(u)$  the degree of node u, then

$$s_u^{(n)} = \mathcal{H}\left(\{\!\!\{s_v^{(n-1)} \mid v \in V \text{ and } v ext{ is neighbor of } u\}\!\!\}
ight)$$

 $s_u^{(1)}$  corresponds to the H-index of u

- Prominent examples: Social and online communication networks
- Highly dynamic networks
- Information spreads over time
- H-index should take the dynamics into account

- Ranking nodes: Which nodes are important or central? Who can influence others well?
- Core-like decomposition: Find strongly connected subgraphs or communities?



- Prominent examples: Social and online communication networks
- Highly dynamic networks
- Information spreads over time
- H-index should take the dynamics into account

- Ranking nodes: Which nodes are important or central? Who can influence others well?
- Core-like decomposition: Find strongly connected subgraphs or communities?



- Prominent examples: Social and online communication networks
- Highly dynamic networks
- Information spreads over time
- H-index should take the dynamics into account

- Ranking nodes: Which nodes are important or central? Who can influence others well?
- Core-like decomposition: Find strongly connected subgraphs or communities?



- Prominent examples: Social and online communication networks
- Highly dynamic networks
- Information spreads over time
- H-index should take the dynamics into account

- Ranking nodes: Which nodes are important or central? Who can influence others well?
- Core-like decomposition: Find strongly connected subgraphs or communities?



- Prominent examples: Social and online communication networks
- Highly dynamic networks
- Information spreads over time
- H-index should take the dynamics into account

- Ranking nodes: Which nodes are important or central? Who can influence others well?
- Core-like decomposition: Find strongly connected subgraphs or communities?



- Prominent examples: Social and online communication networks
- Highly dynamic networks
- Information spreads over time
- H-index should take the dynamics into account

- Ranking nodes: Which nodes are important or central? Who can influence others well?
- Core-like decomposition: Find strongly connected subgraphs or communities?



- Prominent examples: Social and online communication networks
- Highly dynamic networks
- Information spreads over time
- H-index should take the dynamics into account

- Ranking nodes: Which nodes are important or central? Who can influence others well?
- Core-like decomposition: Find strongly connected subgraphs or communities?



- A temporal network is represented as  $\mathcal{G} = (V, \mathcal{E})$ 
  - with (static) set of nodes V, and
  - set of temporal edges  $\mathcal{E} = \{(u, v, t, \lambda)\}$ , with  $u, v \in V$  and  $t, \lambda \in \mathbb{N}$
  - transition time  $\lambda$  equals time required to traverse the edge



- A temporal network is represented as  $\mathcal{G} = (V, \mathcal{E})$ 
  - with (static) set of nodes V, and
  - set of temporal edges  $\mathcal{E} = \{(u, v, t, \lambda)\}$ , with  $u, v \in V$  and  $t, \lambda \in \mathbb{N}$
  - transition time  $\lambda$  equals time required to traverse the edge



- A temporal network is represented as  $\mathcal{G} = (V, \mathcal{E})$ 
  - with (static) set of nodes V, and
  - set of temporal edges  $\mathcal{E} = \{(u, v, t, \lambda)\}$ , with  $u, v \in V$  and  $t, \lambda \in \mathbb{N}$
  - transition time  $\lambda$  equals time required to traverse the edge



- A temporal network is represented as  $\mathcal{G} = (V, \mathcal{E})$ 
  - with (static) set of nodes V, and
  - set of temporal edges  $\mathcal{E} = \{(u, v, t, \lambda)\}$ , with  $u, v \in V$  and  $t, \lambda \in \mathbb{N}$
  - transition time  $\lambda$  equals time required to traverse the edge



- Goal is to rank according to influence and ability to spread information
- Information spreads along temporal walks
  - sequence of temporal edges, such that
  - consecutive edges share a common node, and
  - time stamps of temporal edges are increasing

- Goal is to rank according to influence and ability to spread information
- Information spreads along temporal walks
  - sequence of temporal edges, such that
  - consecutive edges share a common node, and
  - time stamps of temporal edges are increasing

- Goal is to rank according to influence and ability to spread information
- Information spreads along temporal walks
  - sequence of temporal edges, such that
  - consecutive edges share a common node, and
  - time stamps of temporal edges are increasing

- Goal is to rank according to influence and ability to spread information
- Information spreads along temporal walks
  - sequence of temporal edges, such that
  - consecutive edges share a common node, and
  - time stamps of temporal edges are increasing

- Goal is to rank according to influence and ability to spread information
- Information spreads along temporal walks
  - sequence of temporal edges, such that
  - consecutive edges share a common node, and
  - time stamps of temporal edges are increasing

# $\begin{pmatrix} 3 & 1 & b & 3 & c & 2 & d \end{pmatrix}$ $\begin{pmatrix} 3 & 1 & b & 2 & c & 3 & d \end{pmatrix}$

- Goal is to rank according to influence and ability to spread information
- Information spreads along temporal walks
  - sequence of temporal edges, such that
  - consecutive edges share a common node, and
  - time stamps of temporal edges are increasing

- Goal is to rank according to influence and ability to spread information
- Information spreads along temporal walks
  - sequence of temporal edges, such that
  - consecutive edges share a common node, and
  - time stamps of temporal edges are increasing



#### Temporal Neighborhood

The multiset  $\mathcal{N}(v, t)$  contains all pairs of nodes and times  $(w, t_w)$  such that there is a temporal edge from v to w leaving at time  $t' \ge t$  and arriving at time  $t_w$ .



# n-th Order Temporal H-Index

The *n*-th order temporal H-index of a node  $v \in V$  is defined as  $h_{v}^{(n)} = h_{v,0}^{(n)}$  with

$$h_{v,t}^{(n)} = \mathcal{H}\left(\left\{\!\!\left\{ \left. h_{w,t_w}^{(n-1)} \; \middle| \; (w,t_w) \in \mathcal{N}(v,t) 
ight\}\!\!\right\}\!\!\right\}\!\right).$$

We define  $h_{v,t}^{(0)} = |\mathcal{N}(v,t)|$ .

- Captures node importance in terms of temporal reachability
- Nodes with high reachability are ranked high

# n-th Order Temporal H-Index

The *n*-th order temporal H-index of a node  $v \in V$  is defined as  $h_{v}^{(n)} = h_{v,0}^{(n)}$  with

$$h_{v,t}^{(n)} = \mathcal{H}\left(\left\{\!\!\left\{ \left. h_{w,t_w}^{(n-1)} \; \middle| \; (w,t_w) \in \mathcal{N}(v,t) 
ight\}\!\!\right\}\!\!\right\}\!\right).$$

We define  $h_{v,t}^{(0)} = |\mathcal{N}(v,t)|$ .

- Captures node importance in terms of temporal reachability
- Nodes with high reachability are ranked high

# n-th Order Temporal H-Index

The *n*-th order temporal H-index of a node  $v \in V$  is defined as  $h_{v}^{(n)} = h_{v,0}^{(n)}$  with

$$h_{v,t}^{(n)} = \mathcal{H}\left(\left\{\!\!\left\{ \left. h_{w,t_w}^{(n-1)} \right| (w,t_w) \in \mathcal{N}(v,t) 
ight\}\!\!\right\}\!\right).$$

We define  $h_{v,t}^{(0)} = |\mathcal{N}(v,t)|$ .

- Captures node importance in terms of temporal reachability
- Nodes with high reachability are ranked high



(a)  $\mathcal{G}$  with  $\lambda = 1$  for all edges.

(b) The reachability tree  $\Gamma(f)$  for vertex f in  $\mathcal{G}$ .

$$h_{f,0}^{(1)} =$$





(a)  $\mathcal{G}$  with  $\lambda = 1$  for all edges.



$$h_{f,0}^{(1)} = \mathcal{H}(\{\!\!\{h_{d,2}^{(0)}, h_{e,2}^{(0)}, h_{h,2}^{(0)}, h_{g,2}^{(0)}\}\!\!\})$$

3

5



(a)  $\mathcal{G}$  with  $\lambda = 1$  for all edges.



$$h_{f,0}^{(1)} = \mathcal{H}(\{\!\{h_{d,2}^{(0)}, h_{e,2}^{(0)}, h_{h,2}^{(0)}, h_{g,2}^{(0)}\}\!\}) = \mathcal{H}(\{\!\{3, 2, 4, 3\}\!\}) = 3$$





(a)  $\mathcal{G}$  with  $\lambda = 1$  for all edges.



$$\begin{split} h_{f,0}^{(2)} &= \mathcal{H}(\{\!\!\{h_{d,2}^{(1)}, h_{e,2}^{(1)}, h_{b,2}^{(1)}, h_{g,2}^{(1)}\}\!\!) \\ &= \mathcal{H}(\{\!\!\{\mathcal{H}(\{\!\!\{h_{g,5}^{(0)}, h_{e,3}^{(0)}, h_{a,6}^{(0)}\}\!\!), \mathcal{H}(\{\!\!\{h_{d,3}^{(0)}, h_{b,4}^{(0)}\}\!\!), \mathcal{H}(\{\!\!\{h_{e,4}^{(0)}, h_{i,6}^{(0)}, h_{j,6}^{(0)}, h_{g,5}^{(0)}\}\!\!), \mathcal{H}(\{\!\!\{h_{c,5}^{(0)}, h_{d,5}^{(0)}, h_{b,5}^{(0)}\}\!\!)\}\!\!) \\ &= \mathcal{H}(\{\!\!\{\mathcal{H}(\{\!\!\{0,1,1\}\!\!\}), \mathcal{H}(\{\!\!\{2,3\}\!\!\}), \mathcal{H}(\{\!\!\{0,1,1,0\}\!\!\}), \mathcal{H}(\{\!\!\{1,1,2\}\!\!\})\}\!\!) = \mathcal{H}(\{\!\!\{1,2,1,1\}\!\!\}) = 1 \end{split}$$





(a)  $\mathcal{G}$  with  $\lambda = 1$  for all edges.



$$\begin{split} h_{f,0}^{(2)} &= \mathcal{H}(\{\!\!\{h_{d,2}^{(1)}, h_{e,2}^{(1)}, h_{b,2}^{(1)}, h_{g,2}^{(1)}\}\!\!) \\ &= \mathcal{H}(\{\!\!\{H_{d,0}^{(0)}, h_{e,3}^{(0)}, h_{a,6}^{(0)}\}\!\!), \mathcal{H}(\{\!\!\{h_{d,3}^{(0)}, h_{b,4}^{(0)}\}\!\!), \mathcal{H}(\{\!\!\{h_{e,4}^{(0)}, h_{j,6}^{(0)}, h_{g,5}^{(0)}\}\!\!), \mathcal{H}(\{\!\!\{h_{c,5}^{(0)}, h_{d,5}^{(0)}, h_{b,5}^{(0)}\}\!\!)\}\!\!) \\ &= \mathcal{H}(\{\!\!\{H_{d,0}^{(0)}, 1, 1\}\!\!), \mathcal{H}(\{\!\!\{2,3\}\!\!\}), \mathcal{H}(\{\!\!\{0,1,1,0\}\!\!\}), \mathcal{H}(\{\!\!\{1,1,2\}\!\!\})\}\!\!) = \mathcal{H}(\{\!\!\{1,2,1,1\}\!\!\}) = 1 \end{split}$$

6

6

 $h_{f,0}^{(2)} = \mathcal{H}(\{\!\!\{h_{d,2}^{(1)}, h_{e,2}^{(1)}, h_{b,2}^{(1)}, h_{g,2}^{(1)}\}\!\!\})$  $=\mathcal{H}(\{\!\{\mathcal{H}(\{\!\{h_{g,5}^{(0)}, h_{e,3}^{(0)}, h_{g,6}^{(0)}\}\!\}), \mathcal{H}(\{\!\{h_{d,3}^{(0)}, h_{b,4}^{(0)}\}\!\}), \mathcal{H}(\{\!\{h_{e,4}^{(0)}, h_{i,6}^{(0)}, h_{i,6}^{(0)}, h_{g,5}^{(0)}\}\!\}), \mathcal{H}(\{\!\{h_{c,5}^{(0)}, h_{d,5}^{(0)}, h_{b,5}^{(0)}\}\!\})\})$ 

(a)  $\mathcal{G}$  with  $\lambda = 1$  for all edges.

(b) The reachability tree  $\Gamma(f)$  for vertex f in  $\mathcal{G}$ .



3

6

6



d.3

(h,4)

(e,4)(i,6)

a.6

h.2

j,6(g,5) Depth:

-(d,5)

(h.5)

(c,5)

6

6



(i,6)

d.3

(h,4)

(j,6) (g,5)

(e,4)(i,6)

a.6

g,5

h.2

j,6(g,5) Depth:

i 63

-(d,5)

(h.5)

(c,5)

**Properties** 



For  $h_v^{(n)} = k > 1$ , there are at least  $\frac{k^{(n+2)}-k}{k-1}$  descendants u of the root r in  $\Gamma(v)$  with  $d(u) \le n$ .

**Properties** 



It holds that  $h_v^{(n)} = 0$  for all  $n > \Delta(\mathcal{G})$  with  $\Delta(\mathcal{G})$  being the max. temporal walk length.

# So far:

- Adapted n-th order H-index for temporal networks
- Rank nodes according to spreading capabilities

- For increasing n, the static n-th order H-index converges to the core number of u
  - k-core is a max. subgraph  $G_k$  of G, s.t. every node in  $G_k$  has
  - at least k neighbors in  $G_k$
  - Node u has core number c(u) = k if u belongs to a k-core but not the k + 1-core
- We define decomposition for the temporal variant

# So far:

- Adapted n-th order H-index for temporal networks
- Rank nodes according to spreading capabilities



# What's next?

• For increasing n, the static n-th order H-index converges to the core number of u

k-core is a max. subgraph G<sub>k</sub> of G, s.t. every node in G<sub>k</sub> has

- at least k neighbors in  $G_k$
- Node u has core number c(u) = k if u belongs to a k-core but not the k + 1-core
- We define decomposition for the temporal variant

# So far:

- Adapted n-th order H-index for temporal networks
- Rank nodes according to spreading capabilities



- For increasing n, the static n-th order H-index converges to the core number of u
  - *k*-core is a max. subgraph  $G_k$  of G, s.t. every node in  $G_k$  has at least k neighbors in  $G_k$
  - Node u has core number c(u) = k if u belongs to a k-core but not the k + 1-core
- We define decomposition for the temporal variant

# So far:

- Adapted n-th order H-index for temporal networks
- Rank nodes according to spreading capabilities



- For increasing n, the static n-th order H-index converges to the core number of u
  - k-core is a max. subgraph  $G_k$  of G, s.t. every node in  $G_k$  has
  - at least k neighbors in  $G_k$
  - Node u has core number c(u) = k if u belongs to a k-core but not the k + 1-core
- We define decomposition for the temporal variant

# So far:

- Adapted n-th order H-index for temporal networks
- Rank nodes according to spreading capabilities



- For increasing n, the static n-th order H-index converges to the core number of u
  - k-core is a max. subgraph  $G_k$  of G, s.t. every node in  $G_k$  has
  - at least k neighbors in  $G_k$
  - Node u has core number c(u) = k if u belongs to a k-core but not the k + 1-core
- We define decomposition for the temporal variant

### Temporal (n, k)-Pseudocore

Let  $k, n \in \mathbb{N}$ . The temporal (n, k)-pseudocore of  $\mathcal{G}$  is a maximal induced temporal subgraph  $\mathcal{G}_{(n,k)}$  of  $\mathcal{G}$  such that for all  $v \in V(\mathcal{G}_{(n,k)})$  the *n*-th order temporal H-index  $h_v^{(n)} \ge k$  in  $\mathcal{G}$ .

- (n, k)-pseudocore: Temporal subgraph containing nodes with similar temporal activity and importance in the network G
- For a node v in a (n, k)-pseudocore  $\mathcal{G}_{(n,k)}$ , the inequality  $h_v^{(n)} \ge k$  does not hold necessarily with respect to  $\mathcal{G}_{(n,k)}$



### Temporal (n, k)-Pseudocore

Let  $k, n \in \mathbb{N}$ . The temporal (n, k)-pseudocore of  $\mathcal{G}$  is a maximal induced temporal subgraph  $\mathcal{G}_{(n,k)}$  of  $\mathcal{G}$  such that for all  $v \in V(\mathcal{G}_{(n,k)})$  the *n*-th order temporal H-index  $h_v^{(n)} \ge k$  in  $\mathcal{G}$ .

- (n, k)-pseudocore: Temporal subgraph containing nodes with similar temporal activity and importance in the network G
- For a node v in a (n, k)-pseudocore  $\mathcal{G}_{(n,k)}$ , the inequality  $h_v^{(n)} \ge k$  does not hold necessarily with respect to  $\mathcal{G}_{(n,k)}$



### Temporal (n, k)-Pseudocore

Let  $k, n \in \mathbb{N}$ . The temporal (n, k)-pseudocore of  $\mathcal{G}$  is a maximal induced temporal subgraph  $\mathcal{G}_{(n,k)}$  of  $\mathcal{G}$  such that for all  $v \in V(\mathcal{G}_{(n,k)})$  the *n*-th order temporal H-index  $h_v^{(n)} \ge k$  in  $\mathcal{G}$ .

- (n, k)-pseudocore: Temporal subgraph containing nodes with similar temporal activity and importance in the network G
- For a node v in a (n, k)-pseudocore  $\mathcal{G}_{(n,k)}$ , the inequality  $h_{v}^{(n)} \geq k$  does not hold necessarily with respect to  $\mathcal{G}_{(n,k)}$



# Computation

# Two algorithms

- Naive recursive algorithm
- Streaming algorithm
  - Single pass over edges in reverse chronological order
  - Computes for each node i-th order H-indices for  $0 \le i \le n$

| Algorithm | Running Time | Edge Trans. Times | Results for $\forall i \in [n]$ |
|-----------|--------------|-------------------|---------------------------------|
|           |              |                   | ×                               |
|           |              |                   | $\checkmark$                    |

# Computation

# Two algorithms

- Naive recursive algorithm
- Streaming algorithm
  - Single pass over edges in reverse chronological order
  - Computes for each node i-th order H-indices for  $0 \le i \le n$

| Algorithm | Running Time | Edge Trans. Times | Results for $\forall i \in [n]$ |
|-----------|--------------|-------------------|---------------------------------|
|           |              |                   | ×                               |
|           |              |                   | $\checkmark$                    |

# Computation

# Two algorithms

- Naive recursive algorithm
- Streaming algorithm
  - Single pass over edges in reverse chronological order
  - Computes for each node i-th order H-indices for  $0 \le i \le n$

| Algorithm | Running Time                              | Space                           | Edge Trans. Times | Results for $\forall i \in [n]$ |
|-----------|-------------------------------------------|---------------------------------|-------------------|---------------------------------|
| RECURS    | $\mathcal{O}( V n(\delta_{\max})^2)$      | $\mathcal{O}( V n\delta_{max})$ | individual        | ×                               |
| Stream    | $\mathcal{O}( \mathcal{E} n\delta_{max})$ | $\mathcal{O}( V n\delta_{max})$ | uniform           | $\checkmark$                    |

# • Streaming algorithm of the temporal edges in reverse chronological order of time steps

- Manages for each  $v \in V$  and  $1 \le i \le n$  a multiset of *i*-th order H-indices of the neighbors
- When edge  $(u, v, t) \in \mathcal{E}$  is processed
  - 1. Update degree  $|\mathcal{N}(u, t)|$
  - 2. Append at u the (i + 1)-th order H-index of the multisets of i-th order H-indices of v
- After processing all edges, return the *i*-th order H-indices for each  $v \in V$  and  $1 \le i \le n$



- Streaming algorithm of the temporal edges in reverse chronological order of time steps
- Manages for each  $v \in V$  and  $1 \le i \le n$  a multiset of *i*-th order H-indices of the neighbors
- When edge  $(u, v, t) \in \mathcal{E}$  is processed
  - 1. Update degree  $|\mathcal{N}(u, t)|$
  - 2. Append at u the (i + 1)-th order H-index of the multisets of i-th order H-indices of v
- After processing all edges, return the *i*-th order H-indices for each  $v \in V$  and  $1 \le i \le n$



- Streaming algorithm of the temporal edges in reverse chronological order of time steps
- Manages for each  $v \in V$  and  $1 \le i \le n$  a multiset of *i*-th order H-indices of the neighbors
- When edge  $(u, v, t) \in \mathcal{E}$  is processed
  - 1. Update degree  $|\mathcal{N}(u, t)|$
  - 2. Append at u the (i + 1)-th order H-index of the multisets of *i*-th order H-indices of v
- After processing all edges, return the *i*-th order H-indices for each  $v \in V$  and  $1 \le i \le n$



- Streaming algorithm of the temporal edges in reverse chronological order of time steps
- Manages for each  $v \in V$  and  $1 \le i \le n$  a multiset of *i*-th order H-indices of the neighbors
- When edge  $(u, v, t) \in \mathcal{E}$  is processed
  - 1. Update degree  $|\mathcal{N}(u, t)|$
  - 2. Append at u the (i + 1)-th order H-index of the multisets of i-th order H-indices of v
- After processing all edges, return the *i*-th order H-indices for each  $v \in V$  and  $1 \le i \le n$



- Streaming algorithm of the temporal edges in reverse chronological order of time steps
- Manages for each  $v \in V$  and  $1 \le i \le n$  a multiset of *i*-th order H-indices of the neighbors
- When edge  $(u, v, t) \in \mathcal{E}$  is processed
  - 1. Update degree  $|\mathcal{N}(u, t)|$
  - 2. Append at u the (i + 1)-th order H-index of the multisets of *i*-th order H-indices of v

• After processing all edges, return the *i*-th order H-indices for each  $v \in V$  and  $1 \le i \le n$ 



- Streaming algorithm of the temporal edges in reverse chronological order of time steps
- Manages for each  $v \in V$  and  $1 \le i \le n$  a multiset of *i*-th order H-indices of the neighbors
- When edge  $(u, v, t) \in \mathcal{E}$  is processed
  - 1. Update degree  $|\mathcal{N}(u, t)|$
  - 2. Append at u the (i + 1)-th order H-index of the multisets of *i*-th order H-indices of v
- After processing all edges, return the *i*-th order H-indices for each  $v \in V$  and  $1 \le i \le n$



# 1. Running Times

| Data set     | Graph size |                 | <i>n</i> = 8 |        | n = 16 |        | <i>n</i> = 32 |        | <i>n</i> : | <i>n</i> = 64 |  |
|--------------|------------|-----------------|--------------|--------|--------|--------|---------------|--------|------------|---------------|--|
|              | V          | $ \mathcal{E} $ | Recurs       | Stream | Recurs | Stream | RECURS        | Stream | Recurs     | Stream        |  |
| FacebookMsg  | 1 899      | 59798           | 2.56         | 0.08   | 5.52   | 0.15   | 11.94         | 0.31   | 26.70      | 0.64          |  |
| Infectious   | 10972      | 415 912         |              |        |        |        |               |        |            |               |  |
| FacebookWall | 63731      | 817 035         |              |        |        |        |               |        |            |               |  |
| Enron        | 86 806     | 1133968         |              |        |        |        |               |        |            |               |  |
| AskUbuntu    | 134 035    | 257 305         |              |        |        |        |               |        |            |               |  |
| Digg         | 279 630    | 1731652         |              |        |        |        |               |        |            |               |  |
| Wikipedia    | 1870709    | 39 953 145      |              |        |        |        |               |        |            |               |  |
| Flickr       | 2 302 925  | 33 140 016      |              |        |        |        |               |        |            |               |  |

#### Running times in seconds (s). OOT: out of time (time limit 12h).

# 1. Running Times

| Data set     | Graph size |                 | <i>n</i> = 8 |        | n = 16 |        |        | <i>n</i> = 32 |        | <i>n</i> = 64 |  |
|--------------|------------|-----------------|--------------|--------|--------|--------|--------|---------------|--------|---------------|--|
|              | V          | $ \mathcal{E} $ | Recurs       | Stream | Recurs | Stream | Recurs | Stream        | Recurs | Stream        |  |
| FacebookMsg  | 1 899      | 59 798          | 2.56         | 0.08   | 5.52   | 0.15   | 11.94  | 0.31          | 26.70  | 0.64          |  |
| Infectious   | 10972      | 415 912         | 18.81        | 1.02   |        |        |        |               |        |               |  |
| FacebookWall | 63731      | 817 035         | 31.11        | 3.48   |        |        |        |               |        |               |  |
| Enron        | 86 806     | 1133968         | 411.59       | 4.89   |        |        |        |               |        |               |  |
| AskUbuntu    | 134 035    | 257 305         | 1.23         | 0.21   |        |        |        |               |        |               |  |
| Digg         | 279 630    | 1731652         | 62.80        | 3.33   |        |        |        |               |        |               |  |
| Wikipedia    | 1870709    | 39 953 145      | 4863.44      | 117.03 |        |        |        |               |        |               |  |
| Flickr       | 2 302 925  | 33 140 016      | 870.88       | 168.92 |        |        |        |               |        |               |  |

#### Running times in seconds (s). OOT: out of time (time limit 12h).

# 1. Running Times

| Data set     | Graph size |                 |         | <i>n</i> = 8 |          | n = 16 |          | <i>n</i> = 32 |         | <i>n</i> = 64 |  |
|--------------|------------|-----------------|---------|--------------|----------|--------|----------|---------------|---------|---------------|--|
|              | V          | $ \mathcal{E} $ | Recurs  | Stream       | Recurs   | Stream | Recurs   | Stream        | Recurs  | Stream        |  |
| FacebookMsg  | 1 899      | 59 798          | 2.56    | 0.08         | 5.52     | 0.15   | 11.94    | 0.31          | 26.70   | 0.64          |  |
| Infectious   | 10972      | 415 912         | 18.81   | 1.02         | 39.87    | 1.98   | 76.73    | 4.19          | 144.48  | 8.51          |  |
| FacebookWall | 63731      | 817 035         | 31.11   | 3.48         | 69.01    | 6.03   | 135.03   | 11.31         | 310.44  | 22.49         |  |
| Enron        | 86 806     | 1133968         | 411.59  | 4.89         | 866.53   | 11.03  | 1882.11  | 24.45         | 4226.25 | 52.33         |  |
| AskUbuntu    | 134 035    | 257 305         | 1.23    | 0.21         | 2.50     | 0.38   | 5.31     | 0.72          | 13.15   | 1.44          |  |
| Digg         | 279 630    | 1731652         | 62.80   | 3.33         | 120.30   | 6.84   | 229.93   | 13.83         | 364.88  | 27.61         |  |
| Wikipedia    | 1870709    | 39 953 145      | 4863.44 | 117.03       | 10332.81 | 230.70 | 21998.44 | 457.65        | OOT     | 861.95        |  |
| Flickr       | 2 302 925  | 33 140 016      | 870.88  | 168.92       | 1767.10  | 332.29 | 3323.15  | 640.81        | 5373.19 | 1282.84       |  |

#### Running times in seconds (s). OOT: out of time (time limit 12h).

#### 2. Comparison of reachability scores

Let  $r: V \times V \to \{0, 1\}$  the indicator function for temporal reachability, i.e., r(u, v) = 1 iff u can reach v via a temporal walk. For pseudocore  $\mathcal{G}_{(n,k)} = (V', \mathcal{E}')$ :

• global reachability score: 
$$\rho_g = \frac{\sum_{u \in V', v \in V} r(u,v)}{|V'| \cdot |V|}$$
 • local score:  $\rho_\ell = \frac{\sum_{u, v \in V'} r(u,v)}{|V'|^2}$ 

#### 2. Comparison of reachability scores

Let  $r: V \times V \to \{0, 1\}$  the indicator function for temporal reachability, i.e., r(u, v) = 1 iff u can reach v via a temporal walk. For pseudocore  $\mathcal{G}_{(n,k)} = (V', \mathcal{E}')$ :

• global reachability score:  $\rho_g = \frac{\sum_{u \in V', v \in V} r(u,v)}{|V'| \cdot |V|}$  • local score:  $\rho_\ell = \frac{\sum_{u, v \in V'} r(u,v)}{|V'|^2}$ 



- 3. Use Case: Influential Spreader Identification
  - We computed for different infection probabilities  $\beta$  the mean node influence  $R_u$  over 1000 independent SIR simulations leading to the SIR node rankings
  - We compare the SIR rankings with those obtained by the centrality measures using the Kendall  $\tau_b$  rank correlation measure

- 3. Use Case: Influential Spreader Identification
  - We computed for different infection probabilities  $\beta$  the mean node influence  $R_u$  over 1000 independent SIR simulations leading to the SIR node rankings
  - We compare the SIR rankings with those obtained by the centrality measures using the Kendall  $\tau_b$  rank correlation measure

- 3. Use Case: Influential Spreader Identification
  - We computed for different infection probabilities  $\beta$  the mean node influence  $R_u$  over 1000 independent SIR simulations leading to the SIR node rankings
  - We compare the SIR rankings with those obtained by the centrality measures using the Kendall  $\tau_b$  rank correlation measure



(a) Malawi

(b) FacebookMsg

(c) Email

# • We introduced the *n*-th order temporal H-index

- Obtained inward and outward variants based on incoming and outgoing temporal walks
- Highly scalable streaming algorithm
- Effective pseudocore decomposition
- We showed that the *n*-th order temporal H-index can be a successful heuristic for identifying possible super-spreaders



- We introduced the *n*-th order temporal H-index
- Obtained inward and outward variants based on incoming and outgoing temporal walks
- Highly scalable streaming algorithm
- Effective pseudocore decomposition
- We showed that the *n*-th order temporal H-index can be a successful heuristic for identifying possible super-spreaders



- We introduced the *n*-th order temporal H-index
- Obtained inward and outward variants based on incoming and outgoing temporal walks
- Highly scalable streaming algorithm
- Effective pseudocore decomposition
- We showed that the *n*-th order temporal H-index can be a successful heuristic for identifying possible super-spreaders



- We introduced the *n*-th order temporal H-index
- Obtained inward and outward variants based on incoming and outgoing temporal walks
- Highly scalable streaming algorithm
- Effective pseudocore decomposition
- We showed that the *n*-th order temporal H-index can be a successful heuristic for identifying possible super-spreaders



- We introduced the *n*-th order temporal H-index
- Obtained inward and outward variants based on incoming and outgoing temporal walks
- Highly scalable streaming algorithm
- Effective pseudocore decomposition
- We showed that the *n*-th order temporal H-index can be a successful heuristic for identifying possible super-spreaders



Link to our paper