
A Higher-Order Temporal H-Index for Evolving Networks

Lutz Oettershagen1 Nils M.Kriege2 Petra Mutzel3

October 24, 2024

1) University of Liverpool 2) University of Vienna 3) University of Bonn



Static H-Index

• The H-index was proposed for measuring the productivity and impact of scientists:

(J. E. Hirsch, 2005)

The maximum value of h such that the author has published at least h papers that have

each been cited at least h times

• Has been used as centrality measure for ranking nodes according to spreading ability
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Static n-th Order H-Index (Lü et al., 2016)

Let M be the set of finite multisets of integers.

• Function H : M → N0 returns for a finite multiset of integers S ⊆ {{j | j ∈ N0}} the

maximum integer i such that there are at least i elements j in S with j ≥ i .

n-th order H-index

n-th order H-index s
(n)
u of a node u ∈ V in a static graph G = (V ,E ):

Let s
(0)
u = δ(u) the degree of node u, then

s(n)u = H
(
{{s(n−1)

v | v ∈ V and v is neighbor of u}}
)

s
(1)
u corresponds to the H-index of u

Problem: Only considers static structure of network!
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Temporal Networks

Many networks change over time:

• Prominent examples: Social and online communication networks

• Highly dynamic networks

• Information spreads over time

• H-index should take the dynamics into account

We introduce n-th Order Temporal H-Index:

• Ranking nodes: Which nodes are important or central? Who can influence others well?

• Core-like decomposition: Find strongly connected subgraphs or communities?

3
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Temporal Network Model

• A temporal network is represented as G = (V , E)
– with (static) set of nodes V , and

– set of temporal edges E = {(u, v , t, λ)}, with u, v ∈ V and t, λ ∈ N

– transition time λ equals time required to traverse the edge

a

b

c

d

e

1 2 3 4 5 6 7

time
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n-th Order Temporal H-Index

What is a useful adaption of the n-th order H-index for temporal networks?

• Goal is to rank according to influence and ability to spread information

• Information spreads along temporal walks

– sequence of temporal edges, such that

– consecutive edges share a common node, and

– time stamps of temporal edges are increasing

a b c d
1 3 2

a b c d
1 2 3
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n-th Order Temporal H-Index

Temporal Neighborhood

The multisetN (v , t) contains all pairs of nodes and times (w , tw ) such that there is a temporal

edge from v to w leaving at time t ′ ≥ t and arriving at time tw .

v w

tw = t ′ + λ

t ′ ≥ t

6



n-th Order Temporal H-Index

n-th Order Temporal H-Index

The n-th order temporal H-index of a node v ∈ V is defined as h
(n)
v = h

(n)
v ,0 with

h
(n)
v ,t = H

({{
h
(n−1)
w ,tw

∣∣∣ (w , tw ) ∈ N (v , t)
}})

.

We define h
(0)
v ,t = |N (v , t)|.

• Captures node importance in terms of temporal reachability

• Nodes with high reachability are ranked high
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Example

(a) G with λ = 1 for all edges.

Depth:
0

1

2

3

4

5

f ,0

(b) The reachability tree Γ(f ) for vertex f in G.

h
(1)
f ,0 =

8



Example

(a) G with λ = 1 for all edges.

Depth:
0

1

2

3

4

5

f ,0

d,2 e,2 h,2 g ,2

(b) The reachability tree Γ(f ) for vertex f in G.

h
(1)
f ,0 = H({{h(0)d,2, h

(0)
e,2, h

(0)
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Example

(a) G with λ = 1 for all edges.

Depth:
0

1

2

3

4

5

f ,0

d,2 e,2 h,2 g ,2

e,3 a,6g ,5 d,3 h,4 e,4 i,6 j,6 g ,5 c,5 d,5 h,5

(b) The reachability tree Γ(f ) for vertex f in G.

h
(1)
f ,0 = H({{h(0)d,2, h

(0)
e,2, h

(0)
h,2, h

(0)
g ,2}}) = H({{3, 2, 4, 3}}) = 3
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Properties

(a) G with λ = 1 for all edges.

Depth:
0

1

2

3

4

5

f ,0

d,2 e,2 h,2 g ,2

e,3 a,6g ,5 d,3 h,4 e,4 i,6 j,6 g ,5 c,5 d,5 h,5

h,4 b,7 a,6g ,5 j,7 i,7 b,7 a,6 i,6 j,6

i,6 j,6 b,7 b,7 j,7 i,7

j,7 i,7

j,6i,6

i,7j,7g ,5

g ,5

(b) The reachability tree Γ(f ) for vertex f in G.

For h
(n)
v = k > 1, there are at least k(n+2)−k

k−1 descendants u of the root r in Γ(v) with d(u) ≤ n.
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Properties

(a) G with λ = 1 for all edges.

Depth:
0

1

2

3

4

5

f ,0

d,2 e,2 h,2 g ,2

e,3 a,6g ,5 d,3 h,4 e,4 i,6 j,6 g ,5 c,5 d,5 h,5

h,4 b,7 a,6g ,5 j,7 i,7 b,7 a,6 i,6 j,6

i,6 j,6 b,7 b,7 j,7 i,7

j,7 i,7

j,6i,6

i,7j,7g ,5

g ,5

(b) The reachability tree Γ(f ) for vertex f in G.

It holds that h
(n)
v = 0 for all n > ∆(G) with ∆(G) being the max. temporal walk length.
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Overview

So far:

• Adapted n-th order H-index for temporal networks

• Rank nodes according to spreading capabilities

What’s next?

• For increasing n, the static n-th order H-index converges to the core number of u

– k-core is a max. subgraph Gk of G , s.t. every node in Gk has

at least k neighbors in Gk

– Node u has core number c(u) = k if u belongs to a k-core but not the k + 1-core

• We define decomposition for the temporal variant
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Core-like Decomposition

Temporal (n, k)-Pseudocore

Let k , n ∈ N. The temporal (n, k)-pseudocore of G is a maximal induced temporal subgraph

G(n,k) of G such that for all v ∈ V (G(n,k)) the n-th order temporal H-index h
(n)
v ≥ k in G.

• (n, k)-pseudocore: Temporal subgraph containing

nodes with similar temporal activity and importance

in the network G
• For a node v in a (n, k)-pseudocore G(n,k), the

inequality h
(n)
v ≥ k does not hold necessarily with

respect to G(n,k)
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Computation

Two algorithms

• Naive recursive algorithm

• Streaming algorithm

• Single pass over edges in reverse chronological order

• Computes for each node i-th order H-indices for 0 ≤ i ≤ n

Algorithm Running Time Space Edge Trans. Times Results for ∀i ∈ [n]

Recurs O(|V |n(δmax)
2) O(|V |nδmax) individual ✗

Stream O(|E|nδmax) O(|V |nδmax) uniform ✓
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Streaming Algorithm

• Streaming algorithm of the temporal edges in reverse chronological order of time steps

• Manages for each v ∈ V and 1 ≤ i ≤ n a multiset of i-th order H-indices of the neighbors

• When edge (u, v , t) ∈ E is processed

1. Update degree |N (u, t)|
2. Append at u the (i + 1)-th order H-index of the multisets of i-th order H-indices of v

• After processing all edges, return the i-th order H-indices for each v ∈ V and 1 ≤ i ≤ n

x u v y

1 3 5
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Experiments

1. Running Times

Running times in seconds (s). OOT: out of time (time limit 12h).

Data set
Graph size n = 8 n = 16 n = 32 n = 64

|V | |E| Recurs Stream Recurs Stream Recurs Stream Recurs Stream

FacebookMsg 1 899 59 798 2.56 0.08 5.52 0.15 11.94 0.31 26.70 0.64

Infectious 10 972 415 912 18.81 1.02 39.87 1.98 76.73 4.19 144.48 8.51

FacebookWall 63 731 817 035 31.11 3.48 69.01 6.03 135.03 11.31 310.44 22.49

Enron 86 806 1 133 968 411.59 4.89 866.53 11.03 1882.11 24.45 4226.25 52.33

AskUbuntu 134 035 257 305 1.23 0.21 2.50 0.38 5.31 0.72 13.15 1.44

Digg 279 630 1 731 652 62.80 3.33 120.30 6.84 229.93 13.83 364.88 27.61

Wikipedia 1 870 709 39 953 145 4863.44 117.03 10332.81 230.70 21998.44 457.65 OOT 861.95

Flickr 2 302 925 33 140 016 870.88 168.92 1767.10 332.29 3323.15 640.81 5373.19 1282.84
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Experiments

2. Comparison of reachability scores

Let r : V × V → {0, 1} the indicator function for temporal reachability, i.e., r(u, v) = 1 iff u

can reach v via a temporal walk. For pseudocore G(n,k) = (V ′, E ′):

• global reachability score: ρg =
∑

u∈V ′,v∈V r(u,v)

|V ′|·|V | • local score: ρℓ =
∑

u,v∈V ′ r(u,v)

|V ′|2
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Experiments

3. Use Case: Influential Spreader Identification

• We computed for different infection probabilities β the mean node influence Ru over 1000

independent SIR simulations leading to the SIR node rankings

• We compare the SIR rankings with those obtained by the centrality measures using the

Kendall τb rank correlation measure
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Conclusion

• We introduced the n-th order temporal H-index

• Obtained inward and outward variants based on incoming and

outgoing temporal walks

• Highly scalable streaming algorithm

• Effective pseudocore decomposition

• We showed that the n-th order temporal H-index can be a

successful heuristic for identifying possible super-spreaders
Link to our paper
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