Distance to Transitivity: New Parameters for Taming Reachability in Temporal Graphs

Arnaud Casteigts¹, Nils Morawietz², Petra Wolf³

University of Geneva, Switzerland
Friedrich Schiller University Jena, Germany
Université de Bordeaux, France

AATG 2024

Strongly Connected Components

The unique partitioned into a a collection of sccs can be found in linear time. [Tarjan '72]

Temporally connected components (tcc) $\hat{=}$ between any two vertices there is a strict temporal path

Temporally connected components (tcc) $\hat{=}$ between any two vertices there is a strict temporal path

Temporally connected components (tcc) $\hat{=}$ between any two vertices there is a strict temporal path

Temporally connected components (tcc) $\hat{=}$ between any two vertices there is a strict temporal path

Temporally connected components (tcc) $\hat{=}$ between any two vertices there is a strict temporal path

Temporally connected components (tcc) $\hat{=}$ between any two vertices there is a strict temporal path

Strict temporal path $\hat{=}$ sequence of consecutive time edges with strictly increasing time labels

It is NP-hard to find large tccs. [Bhadra and Ferreira '03]

Temporally connected components (tcc) $\hat{=}$ between any two vertices there is a strict temporal path

Strict temporal path $\hat{=}$ sequence of consecutive time edges with strictly increasing time labels

It is NP-hard to find large tccs. [Bhadra and Ferreira '03] Reason: Equivalent to finding cliques in the reachability graph.

Temporally connected components (tcc) $\hat{=}$ between any two vertices there is a strict temporal path

Strict temporal path $\hat{=}$ sequence of consecutive time edges with strictly increasing time labels

It is NP-hard to find large tccs. [Bhadra and Ferreira '03]

Reason: Equivalent to finding cliques in the reachability graph.

Reachability graph of $\mathcal{G} \doteq$ directed static graph containing arc (u, v) iff there is a strict temporal path from u to v in \mathcal{G}

Temporally connected components (tcc) $\hat{=}$ between any two vertices there is a strict temporal path

Strict temporal path $\hat{=}$ sequence of consecutive time edges with strictly increasing time labels

It is NP-hard to find large tccs. [Bhadra and Ferreira '03]

Reason: Equivalent to finding cliques in the reachability graph.

Reachability graph of $\mathcal{G} \doteq$ directed static graph containing arc (u, v) iff there is a strict temporal path from u to v in \mathcal{G}

Temporally connected components (tcc) $\hat{=}$ between any two vertices there is a strict temporal path

Strict temporal path $\hat{=}$ sequence of consecutive time edges with strictly increasing time labels

It is NP-hard to find large tccs. [Bhadra and Ferreira '03]

Reason: Equivalent to finding cliques in the reachability graph.

Reachability graph of $\mathcal{G} \triangleq$ directed static graph containing arc (u, v) iff there is a strict temporal path from u to v in \mathcal{G}

Temporally Connected Component (TCC) Input: A temporal graph \mathcal{G} and $k \in \mathbb{N}$. **Question:** Is there a tcc of size k in \mathcal{G} ?

Temporally Connected Component (TCC) Input: A temporal graph \mathcal{G} and $k \in \mathbb{N}$. **Question:** Is there a tcc of size k in \mathcal{G} ?

Theorem (Bhadra and Ferreira '03)

Temporally Connected Component (TCC) Input: A temporal graph \mathcal{G} and $k \in \mathbb{N}$. **Question:** Is there a tcc of size k in \mathcal{G} ?

Theorem (Bhadra and Ferreira '03)

Temporally Connected Component (TCC) Input: A temporal graph \mathcal{G} and $k \in \mathbb{N}$. **Question:** Is there a tcc of size k in \mathcal{G} ?

Theorem (Bhadra and Ferreira '03)

Temporally Connected Component (TCC) Input: A temporal graph \mathcal{G} and $k \in \mathbb{N}$. **Question:** Is there a tcc of size k in \mathcal{G} ?

Theorem (Bhadra and Ferreira '03)

Temporally Connected Component (TCC) Input: A temporal graph \mathcal{G} and $k \in \mathbb{N}$. **Question:** Is there a tcc of size k in \mathcal{G} ?

Theorem (Bhadra and Ferreira '03)

TCC is NP-hard and W[1]-hard for k even on temporal graphs with lifetime 1.

It is easy if the reachability graph is transitive!

Temporally Connected Component (TCC) Input: A temporal graph \mathcal{G} and $k \in \mathbb{N}$. **Question:** Is there a tcc of size k in \mathcal{G} ?

Theorem (Bhadra and Ferreira '03)

Temporally Connected Component (TCC) Input: A temporal graph \mathcal{G} and $k \in \mathbb{N}$. **Question:** Is there a tcc of size k in \mathcal{G} ?

Theorem (Bhadra and Ferreira '03)

We introduce two new parameters for modifying the **reachability graph** $G_{\rm R} = (V, A)$:

We introduce two new parameters for modifying the **reachability graph** $G_{\rm R} = (V, A)$:

the vertex-deletion distance to transitivity δ_{vd}: size of a smallest vertex set S ⊆ V such that G_R[V \ S] is transitive and

We introduce two new parameters for modifying the **reachability graph** $G_{\rm R} = (V, A)$:

- the vertex-deletion distance to transitivity δ_{vd}: size of a smallest vertex set S ⊆ V such that G_R[V \ S] is transitive and
- the arc-modification distance to transitivity δ_{am}: size of a smallest arc-modification set M ⊆ V × V such that (V, AΔM) is transitive.

We introduce two new parameters for modifying the **reachability graph** $G_{\rm R} = (V, A)$:

- the vertex-deletion distance to transitivity δ_{vd}: size of a smallest vertex set S ⊆ V such that G_R[V \ S] is transitive and
- the arc-modification distance to transitivity δ_{am}: size of a smallest arc-modification set M ⊆ V × V such that (V, AΔM) is transitive.

Desirable properties of the parameters:

• the structure of the underlying graph or the snapshots is not limited if the parameters are small, and

We introduce two new parameters for modifying the **reachability graph** $G_{\rm R} = (V, A)$:

- the vertex-deletion distance to transitivity δ_{vd}: size of a smallest vertex set S ⊆ V such that G_R[V \ S] is transitive and
- the arc-modification distance to transitivity δ_{am}: size of a smallest arc-modification set M ⊆ V × V such that (V, AΔM) is transitive.

Desirable properties of the parameters:

- the structure of the underlying graph or the snapshots is not limited if the parameters are small, and
- the parameters are sensitive to reshuffling of the snapshots.

We introduce two new parameters for modifying the **reachability graph** $G_{\rm R} = (V, A)$:

- the vertex-deletion distance to transitivity δ_{vd}: size of a smallest vertex set S ⊆ V such that G_R[V \ S] is transitive and
- the arc-modification distance to transitivity δ_{am}: size of a smallest arc-modification set M ⊆ V × V such that (V, AΔM) is transitive.

Desirable properties of the parameters:

- the structure of the underlying graph or the snapshots is not limited if the parameters are small, and
- the parameters are sensitive to reshuffling of the snapshots.

We introduce two new parameters for modifying the **reachability graph** $G_{\rm R} = (V, A)$:

- the vertex-deletion distance to transitivity δ_{vd}: size of a smallest vertex set S ⊆ V such that G_R[V \ S] is transitive and
- the arc-modification distance to transitivity δ_{am}: size of a smallest arc-modification set M ⊆ V × V such that (V, AΔM) is transitive.

Desirable properties of the parameters:

- the structure of the underlying graph or the snapshots is not limited if the parameters are small, and
- the parameters are sensitive to reshuffling of the snapshots.

- $\delta_{vd}:$ vertex-deletion distance to transitivity
- $\delta_{am}:$ arc-modification distance to transitivity

 $\delta_{vd}:$ vertex-deletion distance to transitivity $\delta_{am}:$ arc-modification distance to transitivity

Observation: $\delta_{\rm vd} \leq 2 \cdot \delta_{\rm am}$

 $\delta_{vd}:$ vertex-deletion distance to transitivity $\delta_{am}:$ arc-modification distance to transitivity

Observation: $\delta_{\rm vd} \leq 2 \cdot \delta_{\rm am}$

Theorem

TCC can be solved in $3^{\delta_{vd}} \cdot n^{\mathcal{O}(1)}$ time.

 $\delta_{vd}:$ vertex-deletion distance to transitivity $\delta_{am}:$ arc-modification distance to transitivity

Observation: $\delta_{\rm vd} \leq 2 \cdot \delta_{\rm am}$

Theorem

TCC can be solved in $3^{\delta_{vd}} \cdot n^{\mathcal{O}(1)}$ time.

Theorem

TCC admits a kernel of size $O(|M|^3)$, where M is a given arc-modification set towards a transitive reachability graph.
Recall: We search for bidirectional cliques

Recall: We search for bidirectional cliques

Compute a transitivity modulator S.

Recall: We search for bidirectional cliques

Compute a transitivity modulator S.

Recall: We search for bidirectional cliques

Compute a transitivity modulator S.

Recall: We search for bidirectional cliques

Compute a transitivity modulator S.

Iterate over each subset $X \subseteq S$ and find the largest scc in $G_{\rm R} - S$ that can extend X.

Recall: We search for bidirectional cliques

Compute a transitivity modulator S.

Iterate over each subset $X \subseteq S$ and find the largest scc in $G_{\rm R} - S$ that can extend X.

Recall: We search for bidirectional cliques

Compute a transitivity modulator S.

Iterate over each subset $X \subseteq S$ and find the largest scc in $G_{\rm R} - S$ that can extend X.

Recall: We search for bidirectional cliques

Compute a transitivity modulator S.

Iterate over each subset $X \subseteq S$ and find the largest scc in $G_{\rm R} - S$ that can extend X.

Theorem

TCC can be solved in $3^{\delta_{vd}} \cdot n^{\mathcal{O}(1)}$ time.

Recall: We search for bidirectional cliques

Compute a transitivity modulator S.

Iterate over each subset $X \subseteq S$ and find the largest scc in $G_{\rm R} - S$ that can extend X.

Theorem

TCC can be solved in $3^{\delta_{vd}} \cdot n^{\mathcal{O}(1)}$ time.

Theorem

TCC does not admit a polynomial kernel for δ_{vd} , unless $NP \subseteq coNP/poly$.

Nils Morawietz, Uni Jena

Closed tcc $\hat{=}$ a tcc S such that $\mathcal{G}[S]$ is temporally connected

 $\{a, c, d\}$ is an open tcc but not a closed tcc. Reason: The only temporal path from a to d visits b.

Closed tcc $\hat{=}$ a tcc S such that $\mathcal{G}[S]$ is temporally connected

 $\{a, c, d\}$ is an open tcc but not a closed tcc. Reason: The only temporal path from a to d visits b.

Each closed tcc is a cliques in $G_{\rm R}$, but not each clique in $G_{\rm R}$ is a closed tcc.

Closed tcc $\hat{=}$ a tcc S such that $\mathcal{G}[S]$ is temporally connected

Each closed tcc is a cliques in $G_{\rm R}$, but not each clique in $G_{\rm R}$ is a closed tcc.

Closed Temporally Connected Component (CTCC) Input: A temporal graph \mathcal{G} and $k \in \mathbb{N}$. **Question:** Is there a closed tcc of size k in \mathcal{G} ?

Closed tcc $\hat{=}$ a tcc S such that $\mathcal{G}[S]$ is temporally connected

Each closed tcc is a cliques in $G_{\rm R}$, but not each clique in $G_{\rm R}$ is a closed tcc.

Closed Temporally Connected Component (CTCC) Input: A temporal graph \mathcal{G} and $k \in \mathbb{N}$. **Question:** Is there a closed tcc of size k in \mathcal{G} ?

CTCC is NP-hard and W[1]-hard when parameterized by k. [Casteigts '13] [Costa et al. '23]

Closed tcc $\hat{=}$ a tcc S such that $\mathcal{G}[S]$ is temporally connected

Each closed tcc is a cliques in $G_{\rm R}$, but not each clique in $G_{\rm R}$ is a closed tcc.

Closed Temporally Connected Component (CTCC) Input: A temporal graph \mathcal{G} and $k \in \mathbb{N}$. Question: Is there a closed tcc of size k in \mathcal{G} ?

CTCC is NP-hard and W[1]-hard when parameterized by k. [Casteigts '13] [Costa et al. '23]

Theorem

CTCC is NP-hard and W[1]-hard when parameterized by k even if $\delta_{vd} = \delta_{am} = 1$.

$$(x_1) \xrightarrow{L+n+2} (x_2) \xrightarrow{L+n+3} (x_3)$$

Our (positive) results work for all versions of TCC (strict/non-strict, directed/undirected)

Our (positive) results work for all versions of TCC (strict/non-strict, directed/undirected)

Is a kernel for non-strict undirected possible for parameter "vertex deletion to transitive"?

Our (positive) results work for all versions of TCC (strict/non-strict, directed/undirected)

Is a kernel for non-strict undirected possible for parameter "vertex deletion to transitive"?

An arc-modification set needs to be provided for our kernel:

Our (positive) results work for all versions of TCC (strict/non-strict, directed/undirected)

Is a kernel for non-strict undirected possible for parameter "vertex deletion to transitive"?

An arc-modification set needs to be provided for our kernel: Can we approximate a small arc-modification set?

Our (positive) results work for all versions of TCC (strict/non-strict, directed/undirected)

Is a kernel for non-strict undirected possible for parameter "vertex deletion to transitive"?

An arc-modification set needs to be provided for our kernel: Can we approximate a small arc-modification set?

Are there other problems for which our parameters provide efficient algorithms?
Outlook

Our (positive) results work for all versions of TCC (strict/non-strict, directed/undirected)

Is a kernel for non-strict undirected possible for parameter "vertex deletion to transitive"?

An arc-modification set needs to be provided for our kernel: Can we approximate a small arc-modification set?

Are there other problems for which our parameters provide efficient algorithms?

What about closed TCCs with parameter "arc deletion to transitive"?

Outlook

Our (positive) results work for all versions of TCC (strict/non-strict, directed/undirected)

Is a kernel for non-strict undirected possible for parameter "vertex deletion to transitive"?

An arc-modification set needs to be provided for our kernel: Can we approximate a small arc-modification set?

Are there other problems for which our parameters provide efficient algorithms? What about closed TCCs with parameter "arc deletion to transitive"?

How about modification distances on the **temporal graph** to obtain transitive reachability?

Outlook

Our (positive) results work for all versions of TCC (strict/non-strict, directed/undirected)

Is a kernel for non-strict undirected possible for parameter "vertex deletion to transitive"?

An arc-modification set needs to be provided for our kernel: Can we approximate a small arc-modification set?

Are there other problems for which our parameters provide efficient algorithms?

What about closed TCCs with parameter "arc deletion to transitive"?

How about modification distances on the **temporal graph** to obtain transitive reachability?

General goal: define other useful parameters that are sensitive to reshuffling of the snapshots.