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Problem Setting

Imagine you are given a train track system.

Your task is to design a (periodic) schedule for the trains,
such that travel times are sufficiently fast.
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Restriction: Transportation Trees

Restriction: Train track system has a tree structure.
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Problem Definition

Temporal Tree Realization (TTR)

Input:

A tree G = (V ,E) with n vertices.

A n×n distance matrix D.

A period length ∆.

Simplifying Assumptions:

Each connection (edge) is scheduled once
per period.

Connections are bidirectional (undirected)
and have traversal time one (strict setting).

Task:
Find a label te ∈ {1, . . . ,∆} for each edge
e ∈ E such that for all u,v ∈ V :

Travel time from u to v is at most D(u,v).

Travel time:

Labels define periodic temporal graph
G = (V ,E ,λ ) where for all e ∈ E :

λ (e) = {te, te +∆, te +2∆, te +3∆, . . .}

Travel time δ (u,v) from u to v is duration of
fastest temporal path from u to v in G .
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Example

Duration of a fastest path: Last label − first label + one.

∆= 4

a b c d

e

Distance matrix (excerpt):

D(a,c) = 3 D(a,d) = 6 D(d ,a) = 5 D(b,e) = 3 D(e,b) = 3

Actual travel times:

δ (a,c) = 3 δ (a,d) = 6 δ (d ,a) = 4 δ (b,e) = 3 δ (e,b) = 3
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Our Results

Theorem

TTR is NP-hard even on trees with constant diameter and if ∆ is constant.

Theorem

TTR is NP-hard even on trees with constant maximum degree and if ∆ is constant.

Theorem

TTR is fixed-parameter tractable w.r.t. the number of leaves of the tree.
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Previous Work

Temporal Graph Realization with Exact Distances
[N. Klobas, G. B. Mertzios, H. Molter, P. G. Spirakis; SAND 2024]

NP-hard even if ∆ is constant.

W[1]-hard w.r.t. the feedback vertex number of the graph.

FPT w.r.t. the feedback edge number of the graph.

Temporal Graph Realization with Exact Distances and Multiple Labels per Period
[T. Erlebach, N. Morawietz, P. Wolf; SAND 2024]

NP-hard on stars even if the number of labels per edge is a constant.

FPT w.r.t. the number of vertices of the graph.

FPT w.r.t. the vertex cover number of the graph combined with ∆.

Further results.
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Main Techniques for FPT Algorithm

Idea: Reduction to Mixed Integer Linear Programming.

Mixed Integer Linear Programming (MILP)

Input: A vector x of n variables of which some are considered integer variables, a
constraint matrix A ∈ Rm×n, two vectors b ∈ Rm, c ∈ Rn, and a target value t ∈ R.

Question: Is there an assignment to the variables such that all integer variables are set to
integer values, c⊺x ≥ t , Ax ≤ b, and x ≥ 0?

Theorem [Lenstra ’83]

MILP is fixed-parameter tractable w.r.t. the number of integer variables.

Lemma

If the constraint matrix for the fractional variables is totally unimodular, then the MILP
admits an optimal solution where all variables are set to integer values.
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Travel Delays

Travel Delays: Let v be a vertex and u,w be neighbors of v . Let t{u,v} denote the label on
edge {u,v} and let t{v ,w} denote the label on edge {v ,w}.

u v w
t{u,v} t{v ,w}

Then the travel delay τ
u,w
v from u to w at vertex v is defined as follows.

τ
u,w
v =

{
t{v ,w}− t{u,v}, if t{v ,w} > t{u,v},

t{v ,w}− t{u,v}+∆, otherwise.

Duration of a fastest path: Sum of travel delays + one.

Labels computable from travel delays!
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MILP Formulation I

Main Idea: Create a fractional variable for each travel delay.
Add constraint for each vertex pair s, t checking that δ (s, t)≤ D(s, t).

Problem: High degree vertices (degree larger than two).

τ
a,b
v = 1

τ
a,c
v = 1

τ
b,c
v = 1

Travel delays not
realizable!

∆= 3

a v b

c

1

Observation

Let G be a tree with ℓ leaves. Then the following holds.

The maximum degree of G is at most ℓ.

The number of vertices with degree larger than two is at most ℓ.
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MILP Formulation II

Main Idea:

Create a fractional variable xa,b
v for each travel delay from a to b at vertex v .

Assume vertices are ordered and a < b.

Create an integer variable for each label of an edge incident with a high degree vertex.

For each high-degree vertex, guess ordering of labels of edges incident with the vertex.

Use integer variables to ensure travel delays of high degree vertices are realizable.

Duration Constraints: For each pair of vertices s, t we have the following constraint.

∑
v has deg 2 and is traversed forward

xa,b
v + ∑

v has deg 2 and is traversed backward
(∆− xa,b

v ) +

∑
v has high deg and is traversed forward

xa,b
v + ∑

v has high deg and is traversed backward
(∆− xa,b

v ) ≤ D(s, t)−1
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MILP Formulation II

Observation: Variables for travel delays of high degree vertices have integer values, due to
realizability constraints.

Duration Constraints: For each pair of vertices s, t we have the following constraint.

∑
v has deg 2 and is traversed forward

xa,b
v + ∑

v has deg 2 and is traversed backward
(∆−xa,b

v ) ≤ D(s, t)−1+C

Observation: Duration constraints form a network matrix, which are totally unimodular.
Informal Requirement:

Every constraint corresponds to a path in a directed tree. Variables correspond to arcs.

If arc appears forward, then coefficient is one.

If arc appears backward, then coefficient is minus one.
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MILP Formulation III

Formal construction of the directed tree:

v1

v2

v3

v4

v5

v6

v7

Tree G.

e1

e2

e3

e4

e5

e6

e1

e2

e3

e4

e5

e6

Line graph L(G). Directed tree T .

v2

v4 v6
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Conclusion and Future Research

Summary:

New temporal graph realization setting (upper bounds).

Surprising differences in computational complexity to setting with
exact distances.

Technique for showing that MILPs admit optimal integer solutions (all
variables) useful in many other contexts.

Future Work:

How to generalize algorithmic result to multiple labels?

How to generalize algorithmic result to non-trees?

Many other temporal graph realization settings are waiting to be
investigated!

Link to arXiv.

Thank you!
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