Realizing Temporal Transportation Trees

George B. Mertzios <u>Hendrik Molter</u> Paul G. Spirakis

Department of Computer Science, Ben-Gurion University of the Negev, Israel

Algorithmic Aspects of Temporal Graphs VII

Problem Setting

Imagine you are given a train track system.

Problem Setting

Imagine you are given a train track system.

Your task is to design a (periodic) schedule for the trains, such that travel times are sufficiently fast.

Temporal Tree Realization (TTR)

Temporal Tree Realization (TTR)

Input:

■ A tree G = (V, E) with n vertices.

Temporal Tree Realization (TTR)

Input:

- A tree G = (V, E) with n vertices.
- \blacksquare A $n \times n$ distance matrix D.

Temporal Tree Realization (TTR)

Input:

- A tree G = (V, E) with n vertices.
- **A** $n \times n$ distance matrix D.
- \blacksquare A period length \triangle .

Temporal Tree Realization (TTR)

Input:

- A tree G = (V, E) with n vertices.
- **A** $n \times n$ distance matrix D.
- \blacksquare A period length \triangle .

Simplifying Assumptions:

Each connection (edge) is scheduled once per period.

Temporal Tree Realization (TTR)

Input:

- A tree G = (V, E) with n vertices.
- **A** $n \times n$ distance matrix D.
- \blacksquare A period length \triangle .

Simplifying Assumptions:

- Each connection (edge) is scheduled once per period.
- Connections are bidirectional (undirected) and have traversal time one (strict setting).

Temporal Tree Realization (TTR)

Input:

- A tree G = (V, E) with n vertices.
- \blacksquare A $n \times n$ distance matrix D.
- \blacksquare A period length \triangle .

Simplifying Assumptions:

- Each connection (edge) is scheduled once per period.
- Connections are bidirectional (undirected) and have traversal time one (strict setting).

Task:

Find a label $t_e \in \{1, ..., \Delta\}$ for each edge $e \in E$ such that for all $u, v \in V$:

■ Travel time from u to v is **at most** D(u, v).

Temporal Tree Realization (TTR)

Input:

- A tree G = (V, E) with n vertices.
- \blacksquare A $n \times n$ distance matrix D.
- \blacksquare A period length \triangle .

Simplifying Assumptions:

- Each connection (edge) is scheduled once per period.
- Connections are bidirectional (undirected) and have traversal time one (strict setting).

Task:

Find a label $t_e \in \{1, ..., \Delta\}$ for each edge $e \in E$ such that for all $u, v \in V$:

■ Travel time from u to v is at most D(u, v).

Travel time:

Labels define **periodic temporal graph** $\mathscr{G} = (V, E, \lambda)$ where for all $e \in E$:

$$\lambda(e) = \{t_e, t_e + \Delta, t_e + 2\Delta, t_e + 3\Delta, \ldots\}$$

Temporal Tree Realization (TTR)

Input:

- A tree G = (V, E) with n vertices.
- \blacksquare A $n \times n$ distance matrix D.
- \blacksquare A period length \triangle .

Simplifying Assumptions:

- Each connection (edge) is scheduled once per period.
- Connections are bidirectional (undirected) and have traversal time one (strict setting).

Task:

Find a label $t_e \in \{1, ..., \Delta\}$ for each edge $e \in E$ such that for all $u, v \in V$:

Travel time from u to v is at most D(u, v).

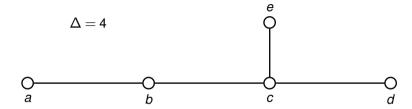
Travel time:

Labels define **periodic temporal graph** $\mathscr{G} = (V, E, \lambda)$ where for all $e \in E$:

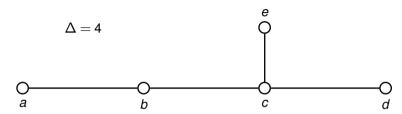
$$\lambda(e) = \{t_e, t_e + \Delta, t_e + 2\Delta, t_e + 3\Delta, \ldots\}$$

Travel time $\delta(u, v)$ from u to v is **duration** of **fastest** temporal path from u to v in \mathcal{G} .

Duration of a fastest path: Last label - first label + one.



Duration of a fastest path: Last label - first label + one.



Distance matrix (excerpt):

$$D(a,c) = 3$$

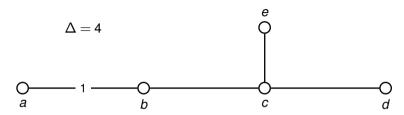
$$D(a,d) = 0$$

■
$$D(a,d) = 6$$
 ■ $D(d,a) = 5$ ■ $D(b,e) = 3$ ■ $D(e,b) = 3$

$$D(b,e) = 3$$

$$D(e,b) = 3$$

Duration of a fastest path: Last label - first label + one.



Distance matrix (excerpt):

$$D(a,c) = 3$$

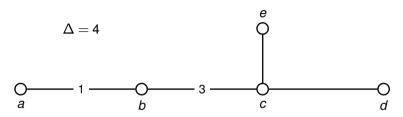
$$D(a,d) = 6$$

■
$$D(a,d) = 6$$
 ■ $D(d,a) = 5$ ■ $D(b,e) = 3$ ■ $D(e,b) = 3$

$$D(b,e)=3$$

$$D(e,b) = 3$$

Duration of a fastest path: Last label - first label + one.



Distance matrix (excerpt):

$$D(a,c) = 3$$

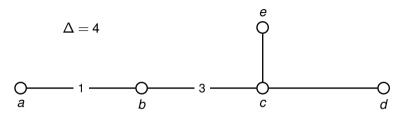
$$D(a,d) = 6$$

$$D(d,a) = 5$$

■
$$D(a,d) = 6$$
 ■ $D(d,a) = 5$ ■ $D(b,e) = 3$

$$D(e,b) = 3$$

Duration of a fastest path: Last label - first label + one.



Distance matrix (excerpt):

$$D(a,c) = 3$$

$$D(a,d) = 6$$

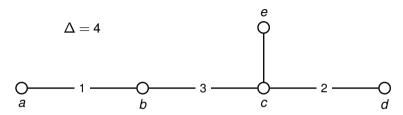
■
$$D(a,d) = 6$$
 ■ $D(d,a) = 5$ ■ $D(b,e) = 3$ ■ $D(e,b) = 3$

$$D(b,e) = 3$$

$$D(e,b) = 3$$

$$\delta(a,c) = 3$$

Duration of a fastest path: Last label - first label + one.



Distance matrix (excerpt):

$$D(a,c) = 3$$

$$D(a,d) = 0$$

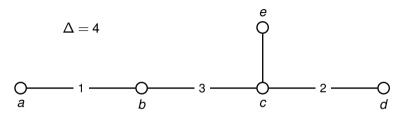
■
$$D(a,d) = 6$$
 ■ $D(d,a) = 5$ ■ $D(b,e) = 3$ ■ $D(e,b) = 3$

$$D(b,e) = 3$$

$$D(e,b)=3$$

$$\delta(a,c)=3$$

Duration of a fastest path: Last label - first label + one.



Distance matrix (excerpt):

$$D(a,c) = 3$$

$$D(a,d) = 6$$

■
$$D(a,d) = 6$$
 ■ $D(d,a) = 5$ ■ $D(b,e) = 3$ ■ $D(e,b) = 3$

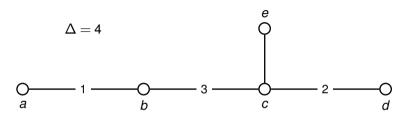
$$D(b,e) = 3$$

$$D(e,b) = 3$$

$$\delta(a,c)=3$$

$$\delta(a,d) = 6$$

Duration of a fastest path: Last label - first label + one.



Distance matrix (excerpt):

$$D(a,c) = 3$$

$$D(a,d) = 6$$

$$D(d,a) =$$

$$D(b,e) = 3$$

■
$$D(a,d) = 6$$
 ■ $D(d,a) = 5$ ■ $D(b,e) = 3$ ■ $D(e,b) = 3$

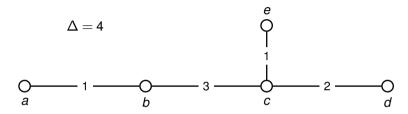
$$\delta(a,c)=3$$

$$\delta(a,d) = 6$$

$$\delta(d,a)=4$$

Duration of a fastest path:

Last label - first label + one.



Distance matrix (excerpt):

$$D(a,c) = 3$$

$$D(a,d) = 6$$

$$D(d,a) = 5$$

■
$$D(a,d) = 6$$
 ■ $D(d,a) = 5$ ■ $D(b,e) = 3$ ■ $D(e,b) = 3$

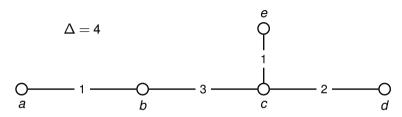
$$D(e,b) = 3$$

$$\delta(a,c)=3$$

■
$$\delta(a,d) = 6$$
 ■ $\delta(d,a) = 4$

$$\delta(d,a)=4$$

Duration of a fastest path: Last label - first label + one.



Distance matrix (excerpt):

$$D(a,c) = 3$$

$$D(a,d) = 6$$

■
$$D(a,d) = 6$$
 ■ $D(d,a) = 5$

$$D(b,e) = 3$$

$$D(e,b) = 3$$

$$\delta(a,c)=3$$

$$\delta(a,d) = 6$$

$$\delta(d,a)=4$$

$$\delta(b,e) = 3$$

$$\delta(e,b) = 3$$

Our Results

Theorem

TTR is **NP-hard** even on trees with constant diameter and if Δ is constant.

Our Results

Theorem

TTR is **NP-hard** even on trees with constant diameter and if Δ is constant.

Theorem

TTR is **NP-hard** even on trees with constant maximum degree and if Δ is constant.

Our Results

Theorem

TTR is **NP-hard** even on trees with constant diameter and if Δ is constant.

Theorem

TTR is **NP-hard** even on trees with constant maximum degree and if Δ is constant.

Theorem

TTR is **fixed-parameter tractable** w.r.t. the **number of leaves of the tree**.

Temporal Graph Realization with Exact Distances

[N. Klobas, G. B. Mertzios, H. Molter, P. G. Spirakis; SAND 2024]

Temporal Graph Realization with Exact Distances

[N. Klobas, G. B. Mertzios, H. Molter, P. G. Spirakis; SAND 2024]

■ NP-hard even if Δ is constant.

Temporal Graph Realization with Exact Distances

[N. Klobas, G. B. Mertzios, H. Molter, P. G. Spirakis; SAND 2024]

- NP-hard even if Δ is constant.
- W[1]-hard w.r.t. the feedback vertex number of the graph.

Temporal Graph Realization with Exact Distances

[N. Klobas, G. B. Mertzios, H. Molter, P. G. Spirakis; SAND 2024]

- NP-hard even if Δ is constant.
- W[1]-hard w.r.t. the feedback vertex number of the graph.
- FPT w.r.t. the feedback edge number of the graph.

Temporal Graph Realization with Exact Distances

[N. Klobas, G. B. Mertzios, H. Molter, P. G. Spirakis; SAND 2024]

- NP-hard even if Δ is constant.
- W[1]-hard w.r.t. the feedback vertex number of the graph.
- FPT w.r.t. the feedback edge number of the graph.

Temporal Graph Realization with Exact Distances and Multiple Labels per Period [T. Erlebach, N. Morawietz, P. Wolf; SAND 2024]

Temporal Graph Realization with Exact Distances

[N. Klobas, G. B. Mertzios, H. Molter, P. G. Spirakis; SAND 2024]

- \blacksquare NP-hard even if \triangle is constant.
- W[1]-hard w.r.t. the feedback vertex number of the graph.
- FPT w.r.t. the feedback edge number of the graph.

Temporal Graph Realization with Exact Distances and Multiple Labels per Period [T. Erlebach, N. Morawietz, P. Wolf; SAND 2024]

■ NP-hard on stars even if the number of labels per edge is a constant.

Previous Work

Temporal Graph Realization with Exact Distances

[N. Klobas, G. B. Mertzios, H. Molter, P. G. Spirakis; SAND 2024]

- \blacksquare NP-hard even if \triangle is constant.
- W[1]-hard w.r.t. the feedback vertex number of the graph.
- FPT w.r.t. the feedback edge number of the graph.

Temporal Graph Realization with Exact Distances and Multiple Labels per Period [T. Erlebach, N. Morawietz, P. Wolf; SAND 2024]

- NP-hard on stars even if the number of labels per edge is a constant.
- FPT w.r.t. the number of vertices of the graph.

Previous Work

Temporal Graph Realization with Exact Distances

[N. Klobas, G. B. Mertzios, H. Molter, P. G. Spirakis; SAND 2024]

- NP-hard even if Δ is constant.
- W[1]-hard w.r.t. the feedback vertex number of the graph.
- FPT w.r.t. the feedback edge number of the graph.

Temporal Graph Realization with Exact Distances and Multiple Labels per Period [T. Erlebach, N. Morawietz, P. Wolf; SAND 2024]

- NP-hard on stars even if the number of labels per edge is a constant.
- FPT w.r.t. the number of vertices of the graph.
- FPT w.r.t. the vertex cover number of the graph combined with Δ .

Previous Work

Temporal Graph Realization with Exact Distances

[N. Klobas, G. B. Mertzios, H. Molter, P. G. Spirakis; SAND 2024]

- NP-hard even if Δ is constant.
- W[1]-hard w.r.t. the feedback vertex number of the graph.
- FPT w.r.t. the feedback edge number of the graph.

Temporal Graph Realization with Exact Distances and Multiple Labels per Period IT. Erlebach, N. Morawietz, P. Wolf: SAND 2024

- NP-hard on stars even if the number of labels per edge is a constant.
- FPT w.r.t. the number of vertices of the graph.
- FPT w.r.t. the vertex cover number of the graph combined with Δ .
- Further results.

Idea: Reduction to Mixed Integer Linear Programming.

Idea: Reduction to Mixed Integer Linear Programming.

Mixed Integer Linear Programming (MILP)

Input: A vector x of n variables of which some are considered integer variables, a constraint matrix $A \in \mathbb{R}^{m \times n}$, two vectors $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, and a target value $t \in \mathbb{R}$.

Question: Is there an assignment to the variables such that all integer variables are set to integer values, $c^Tx \ge t$, $Ax \le b$, and $x \ge 0$?

Idea: Reduction to Mixed Integer Linear Programming.

Mixed Integer Linear Programming (MILP)

Input: A vector x of n variables of which some are considered integer variables, a constraint matrix $A \in \mathbb{R}^{m \times n}$, two vectors $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, and a target value $t \in \mathbb{R}$.

Question: Is there an assignment to the variables such that all integer variables are set to integer values. $c^{T}x > t$. Ax < b. and x > 0?

Theorem [Lenstra '83]

MILP is fixed-parameter tractable w.r.t. the number of integer variables.

Idea: Reduction to Mixed Integer Linear Programming.

Mixed Integer Linear Programming (MILP)

Input: A vector x of n variables of which some are considered integer variables, a constraint matrix $A \in \mathbb{R}^{m \times n}$, two vectors $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, and a target value $t \in \mathbb{R}$.

Question: Is there an assignment to the variables such that all integer variables are set to integer values, $c^{T}x > t$, Ax < b, and x > 0?

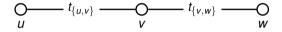
Theorem [Lenstra '83]

MILP is fixed-parameter tractable w.r.t. the number of integer variables.

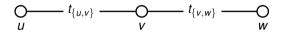
Lemma

If the constraint matrix for the fractional variables is **totally unimodular**, then the MILP admits an optimal solution where **all variables are set to integer values**.

Travel Delays: Let v be a vertex and u, w be neighbors of v. Let $t_{\{u,v\}}$ denote the label on edge $\{u,v\}$ and let $t_{\{v,w\}}$ denote the label on edge $\{v,w\}$.



Travel Delays: Let v be a vertex and u, w be neighbors of v. Let $t_{\{u,v\}}$ denote the label on edge $\{u,v\}$ and let $t_{\{v,w\}}$ denote the label on edge $\{v,w\}$.



Then the **travel delay** $\tau_v^{u,w}$ from u to w at vertex v is defined as follows.

$$\tau_{\mathbf{v}}^{u,\mathbf{w}} = \begin{cases} t_{\{\mathbf{v},\mathbf{w}\}} - t_{\{u,\mathbf{v}\}}, & \text{if } t_{\{\mathbf{v},\mathbf{w}\}} > t_{\{u,\mathbf{v}\}}, \\ t_{\{\mathbf{v},\mathbf{w}\}} - t_{\{u,\mathbf{v}\}} + \Delta, & \text{otherwise}. \end{cases}$$

Travel Delays: Let v be a vertex and u, w be neighbors of v. Let $t_{\{u,v\}}$ denote the label on edge $\{u,v\}$ and let $t_{\{v,w\}}$ denote the label on edge $\{v,w\}$.

$$\bigcup_{U} t_{\{u,v\}} \longrightarrow \bigcup_{V} t_{\{v,w\}} \longrightarrow \bigcup_{W}$$

Then the **travel delay** $\tau_v^{u,w}$ from u to w at vertex v is defined as follows.

$$\tau_{v}^{u,w} = \begin{cases} t_{\{v,w\}} - t_{\{u,v\}}, & \text{if } t_{\{v,w\}} > t_{\{u,v\}}, \\ t_{\{v,w\}} - t_{\{u,v\}} + \Delta, & \text{otherwise}. \end{cases}$$

Duration of a fastest path: Sum of travel delays + one.

Travel Delays: Let v be a vertex and u, w be neighbors of v. Let $t_{\{u,v\}}$ denote the label on edge $\{u,v\}$ and let $t_{\{v,w\}}$ denote the label on edge $\{v,w\}$.

$$\bigcup_{U} t_{\{u,v\}} \longrightarrow \bigcup_{V} t_{\{v,w\}} \longrightarrow \bigcup_{W}$$

Then the **travel delay** $\tau_v^{u,w}$ from u to w at vertex v is defined as follows.

$$\tau_{v}^{u,w} = \begin{cases} t_{\{v,w\}} - t_{\{u,v\}}, & \text{if } t_{\{v,w\}} > t_{\{u,v\}}, \\ t_{\{v,w\}} - t_{\{u,v\}} + \Delta, & \text{otherwise}. \end{cases}$$

Duration of a fastest path: Sum of travel delays + one.

Labels computable from travel delays!

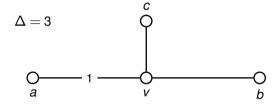
Main Idea: Create a **fractional variable** for each travel delay. Add constraint for each vertex pair s, t checking that $\delta(s, t) \leq D(s, t)$.

Main Idea: Create a fractional variable for each travel delay.

Add constraint for each vertex pair s,t checking that $\delta(s,t) \leq D(s,t)$.

Main Idea: Create a fractional variable for each travel delay.

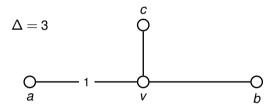
Add constraint for each vertex pair s, t checking that $\delta(s, t) \leq D(s, t)$.



Main Idea: Create a fractional variable for each travel delay.

Add constraint for each vertex pair s,t checking that $\delta(s,t) \leq D(s,t)$.

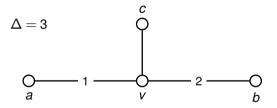
$$au$$
 $au_{v}^{a,b}=1$



Main Idea: Create a fractional variable for each travel delay.

Add constraint for each vertex pair s, t checking that $\delta(s, t) \leq D(s, t)$.

$$au$$
 $au_v^{a,b}=1$

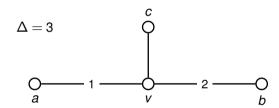


Main Idea: Create a fractional variable for each travel delay.

Add constraint for each vertex pair s, t checking that $\delta(s, t) \leq D(s, t)$.

$$au$$
 $au_v^{a,b}=1$

$$au$$
 $au_v^{a,c}=1$

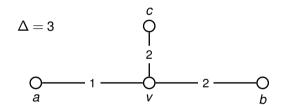


Main Idea: Create a fractional variable for each travel delay.

Add constraint for each vertex pair s, t checking that $\delta(s, t) \leq D(s, t)$.

$$au$$
 $au_{v}^{a,b}=1$

$$au$$
 $au_{v}^{a,c}=1$



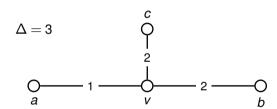
Main Idea: Create a fractional variable for each travel delay.

Add constraint for each vertex pair s, t checking that $\delta(s, t) \leq D(s, t)$.

$$au$$
 $au_{v}^{a,b}=1$

$$\tau_{v}^{a,c}=1$$

$$au$$
 $au_{v}^{b,c}=1$



Main Idea: Create a fractional variable for each travel delay.

Add constraint for each vertex pair s, t checking that $\delta(s, t) \leq D(s, t)$.

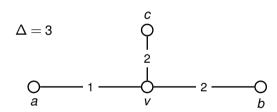
Problem: High degree vertices (degree larger than two).

$$au$$
 $au_{v}^{a,b}=1$

$$au$$
 $au_{v}^{a,c}=1$

$$au$$
 $au_{v}^{b,c}=1$

Travel delays not realizable!



Main Idea: Create a **fractional variable** for each travel delay.

Add constraint for each vertex pair s, t checking that $\delta(s, t) \leq D(s, t)$.

Problem: High degree vertices (degree larger than two).

$$\tau_{v}^{a,b} = 1$$

$$au$$
 $au_{v}^{a,c}=1$

$$au$$
 $au_{v}^{b,c}=1$

Travel delays not realizable!

Observation

Let G be a tree with ℓ leaves. Then the following holds.

- The maximum degree of G is at most ℓ .
- The number of vertices with degree larger than two is at most ℓ .

Main Idea:

■ Create a **fractional variable** $x_v^{a,b}$ for each travel delay from a to b at vertex v. Assume vertices are ordered and a < b.

Main Idea:

- Create a **fractional variable** $x_v^{a,b}$ for each travel delay from a to b at vertex v. Assume vertices are ordered and a < b.
- Create an **integer variable** for each label of an edge incident with a high degree vertex.

Main Idea:

- Create a **fractional variable** $x_v^{a,b}$ for each travel delay from a to b at vertex v. Assume vertices are ordered and a < b.
- Create an integer variable for each label of an edge incident with a high degree vertex.
- For each high-degree vertex, guess ordering of labels of edges incident with the vertex.

Main Idea:

- Create a **fractional variable** $x_v^{a,b}$ for each travel delay from a to b at vertex v. Assume vertices are ordered and a < b.
- Create an integer variable for each label of an edge incident with a high degree vertex.
- For each high-degree vertex, guess ordering of labels of edges incident with the vertex.
- Use integer variables to ensure travel delays of high degree vertices are realizable.

Main Idea:

- Create a **fractional variable** $x_v^{a,b}$ for each travel delay from a to b at vertex v. Assume vertices are ordered and a < b.
- Create an **integer variable** for each label of an edge incident with a high degree vertex.
- For each high-degree vertex, guess ordering of labels of edges incident with the vertex.
- Use integer variables to ensure travel delays of high degree vertices are realizable.

Duration Constraints: For each pair of vertices s, t we have the following constraint.

Main Idea:

- Create a **fractional variable** $x_v^{a,b}$ for each travel delay from a to b at vertex v. Assume vertices are ordered and a < b.
- Create an integer variable for each label of an edge incident with a high degree vertex.
- For each high-degree vertex, guess ordering of labels of edges incident with the vertex.
- Use integer variables to ensure travel delays of high degree vertices are realizable.

Duration Constraints: For each pair of vertices s, t we have the following constraint.

$$\sum_{v \text{ has deg 2 and is traversed forward}} x_v^{a,b} + \sum_{v \text{ has deg 2 and is traversed backward}} (\Delta - x_v^{a,b}) + \sum_{v \text{ has high deg and is traversed forward}} (\Delta - x_v^{a,b}) + \sum_{v \text{ has high deg and is traversed backward}} (\Delta - x_v^{a,b}) \leq D(s,t) - 1$$

Observation: Variables for travel delays of high degree vertices have integer values, due to realizability constraints.

Observation: Variables for travel delays of high degree vertices have integer values, due to realizability constraints.

Duration Constraints: For each pair of vertices *s*, *t* we have the following constraint.

$$\sum_{v ext{ has deg 2 and is traversed forward}} x_v^{a,b} + \sum_{v ext{ has deg 2 and is traversed backward}} (\Delta - x_v^{a,b}) \leq D(s,t) - 1 + C$$

Observation: Variables for travel delays of high degree vertices have integer values, due to realizability constraints.

Duration Constraints: For each pair of vertices *s*, *t* we have the following constraint.

$$\sum_{v \text{ has deg 2 and is traversed forward}} x_v^{a,b} + \sum_{v \text{ has deg 2 and is traversed backward}} (\Delta - x_v^{a,b}) \leq D(s,t) - 1 + C$$

Observation: Duration constraints form a network matrix, which are totally unimodular.

Observation: Variables for travel delays of high degree vertices have integer values, due to realizability constraints.

Duration Constraints: For each pair of vertices *s*, *t* we have the following constraint.

$$\sum_{v \text{ has deg 2 and is traversed forward}} x_v^{a,b} + \sum_{v \text{ has deg 2 and is traversed backward}} (\Delta - x_v^{a,b}) \leq D(s,t) - 1 + C$$

Observation: Duration constraints form a **network matrix**, which are **totally unimodular**. **Informal Requirement:**

Every constraint corresponds to a path in a directed tree. Variables correspond to arcs.

Observation: Variables for travel delays of high degree vertices have integer values, due to realizability constraints.

Duration Constraints: For each pair of vertices *s*, *t* we have the following constraint.

$$\sum_{v ext{ has deg 2 and is traversed forward}} x_v^{a,b} + \sum_{v ext{ has deg 2 and is traversed backward}} (\Delta - x_v^{a,b}) \leq D(s,t) - 1 + C$$

Observation: Duration constraints form a **network matrix**, which are **totally unimodular**. **Informal Requirement:**

- Every constraint corresponds to a path in a directed tree. Variables correspond to arcs.
- If arc appears forward, then coefficient is one.

Observation: Variables for travel delays of high degree vertices have integer values, due to realizability constraints.

Duration Constraints: For each pair of vertices *s*, *t* we have the following constraint.

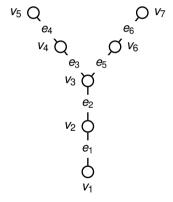
$$\sum_{v ext{ has deg 2 and is traversed forward}} x_v^{a,b} + \sum_{v ext{ has deg 2 and is traversed backward}} (\Delta - x_v^{a,b}) \leq D(s,t) - 1 + C$$

Observation: Duration constraints form a **network matrix**, which are **totally unimodular**. **Informal Requirement:**

- Every constraint corresponds to a path in a directed tree. Variables correspond to arcs.
- If arc appears forward, then coefficient is one.
- If arc appears backward, then coefficient is minus one.

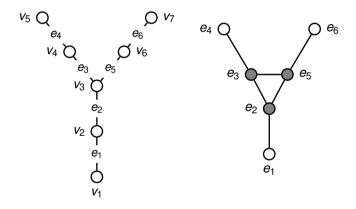
Formal construction of the directed tree:

Formal construction of the directed tree:



Tree G.

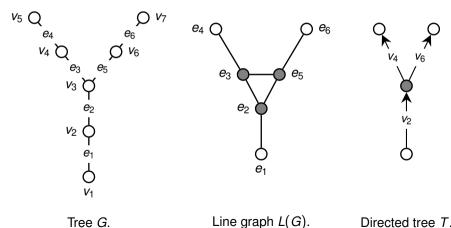
Formal construction of the directed tree:



Tree G.

Line graph L(G).

Formal construction of the directed tree:



Realizing Temporal Transportation Trees Hendrik Molter, BGU

Summary:

■ New temporal graph realization setting (upper bounds).

Summary:

- New temporal graph realization setting (upper bounds).
- Surprising differences in computational complexity to setting with exact distances.

Summary:

- New temporal graph realization setting (upper bounds).
- Surprising differences in computational complexity to setting with exact distances.
- Technique for showing that MILPs admit optimal integer solutions (all variables) useful in many other contexts.

Summary:

- New temporal graph realization setting (upper bounds).
- Surprising differences in computational complexity to setting with exact distances.
- Technique for showing that MILPs admit optimal integer solutions (all variables) useful in many other contexts.

Future Work:

How to generalize algorithmic result to multiple labels?

Summary:

- New temporal graph realization setting (upper bounds).
- Surprising differences in computational complexity to setting with exact distances.
- Technique for showing that MILPs admit optimal integer solutions (all variables) useful in many other contexts.

Future Work:

- How to generalize algorithmic result to multiple labels?
- How to generalize algorithmic result to non-trees?

Summary:

- New temporal graph realization setting (upper bounds).
- Surprising differences in computational complexity to setting with exact distances.
- Technique for showing that MILPs admit optimal integer solutions (all variables) useful in many other contexts.

Future Work:

- How to generalize algorithmic result to multiple labels?
- How to generalize algorithmic result to non-trees?
- Many other temporal graph realization settings are waiting to be investigated!

Summary:

- New temporal graph realization setting (upper bounds).
- Surprising differences in computational complexity to setting with exact distances.
- Technique for showing that MILPs admit optimal integer solutions (all variables) useful in many other contexts.

Future Work:

- How to generalize algorithmic result to multiple labels?
- How to generalize algorithmic result to non-trees?
- Many other temporal graph realization settings are waiting to be investigated!

Link to arXiv.

Summary:

- New temporal graph realization setting (upper bounds).
- Surprising differences in computational complexity to setting with exact distances.
- Technique for showing that MILPs admit optimal integer solutions (all variables) useful in many other contexts.

Future Work:

- How to generalize algorithmic result to multiple labels?
- How to generalize algorithmic result to non-trees?
- Many other temporal graph realization settings are waiting to be investigated!

Link to arXiv.

Thank you!