
On Computing Large Temporal (Unilateral) Connected
Components

Andrea Marino

Universitá degli Studi Firenze, Italy

Joint work with
Isnard Lopes Costa1, Raul Lopes3, and Ana Silva1,2

1Universidade Federal do Ceará, Brazil.
2Universitá degli Studi Firenze, Italy.

3LIRMM, Université de Montpellier, France.
Slides from Raul Lopes and Ana Silva.

1 / 22



XP and FPT

Problem with input size n, associated parameter k :

XP problem ⇒ f (k) · ng(k) time algorithm.
▶ Example: O(nk).

FPT problem ⇒ f (k) · nc time algorithm.

▶ Example: O(2k · n2).

Both imply polynomial running time for fixed k .
W[1]-hard problem ⇒ strong evidence that it is not FPT.
k-Clique is W[1]-complete.

2 / 22



XP and FPT

Problem with input size n, associated parameter k :

XP problem ⇒ f (k) · ng(k) time algorithm.
▶ Example: O(nk).

FPT problem ⇒ f (k) · nc time algorithm.
▶ Example: O(2k · n2).

Both imply polynomial running time for fixed k .
W[1]-hard problem ⇒ strong evidence that it is not FPT.
k-Clique is W[1]-complete.

2 / 22



XP and FPT

Problem with input size n, associated parameter k :

XP problem ⇒ f (k) · ng(k) time algorithm.
▶ Example: O(nk).

FPT problem ⇒ f (k) · nc time algorithm.
▶ Example: O(2k · n2).

Both imply polynomial running time for fixed k .

W[1]-hard problem ⇒ strong evidence that it is not FPT.
k-Clique is W[1]-complete.

2 / 22



XP and FPT

Problem with input size n, associated parameter k :

XP problem ⇒ f (k) · ng(k) time algorithm.
▶ Example: O(nk).

FPT problem ⇒ f (k) · nc time algorithm.
▶ Example: O(2k · n2).

Both imply polynomial running time for fixed k .
W[1]-hard problem ⇒ strong evidence that it is not FPT.

k-Clique is W[1]-complete.

2 / 22



XP and FPT

Problem with input size n, associated parameter k :

XP problem ⇒ f (k) · ng(k) time algorithm.
▶ Example: O(nk).

FPT problem ⇒ f (k) · nc time algorithm.
▶ Example: O(2k · n2).

Both imply polynomial running time for fixed k .
W[1]-hard problem ⇒ strong evidence that it is not FPT.
k-Clique is W[1]-complete.

2 / 22



Temporal Graph

1

1, 3
2

1, 2

2, 3
1, 3

3
u

t

yx

s

τ = 3

Definitions: Temporal Graph
A temporal graph is a pair (G , λ) where G is a simple graph, and λ : E(G) → 2N;

The value maxe∈E(G) λ(e) is called the ; will be denoted by .

A pair (x , i) where x ∈ V (G) and i ∈ [τ ] is called a temporal vertex;

similarly (e, i)
s.t. e ∈ E(G) and i ∈ λ(e) is called a temporal edge.

3 / 22



Temporal Graph

1

1, 3
2

1, 2

2, 3
1, 3

3
u

t

yx

s

τ = 3

Definitions: Lifetime
A temporal graph is a pair (G , λ) where G is a simple graph, and λ : E(G) → 2N;

The value maxe∈E(G) λ(e) is called the lifetime; will be denoted by τ .

A pair (x , i) where x ∈ V (G) and i ∈ [τ ] is called a temporal vertex;

similarly (e, i)
s.t. e ∈ E(G) and i ∈ λ(e) is called a temporal edge.

3 / 22



Temporal Graph

1

1, 3
2

1, 2

2, 3
1, 3

3
u

t

yx

s

τ = 3

Definitions: Temporal vertex/edge
A temporal graph is a pair (G , λ) where G is a simple graph, and λ : E(G) → 2N;

The value maxe∈E(G) λ(e) is called the lifetime; will be denoted by .

A pair (x , i) where x ∈ V (G) and i ∈ [τ ] is called a temporal vertex;

similarly (e, i)
s.t. e ∈ E(G) and i ∈ λ(e) is called a temporal edge.

3 / 22



Temporal Graph

1

1, 3
2

1, 2

2, 3
1, 3

3
u

t

yx

s

τ = 3

Definitions: Temporal vertex/edge
A temporal graph is a pair (G , λ) where G is a simple graph, and λ : E(G) → 2N;

The value maxe∈E(G) λ(e) is called the lifetime; will be denoted by .

A pair (x , i) where x ∈ V (G) and i ∈ [τ ] is called a temporal vertex; similarly (e, i)
s.t. e ∈ E(G) and i ∈ λ(e) is called a temporal edge.

3 / 22



Understanding temporal paths

3

1 2

4 4

s t

u

v

Strict Model: Valid walks are the ones whose labels are strictly increasing.

Non-Strict Model: Valid walks are the ones whose labels are non-strictly increasing.

4 / 22



Understanding temporal paths

3

1 2

4 4

s t

u

v

Strict Model: Valid walks are the ones whose labels are strictly increasing.
Non-Strict Model: Valid walks are the ones whose labels are non-strictly increasing.

4 / 22



Understanding temporal paths

3

1 2

4 4

s t

u

v

Strict Model: Valid walks are the ones whose labels are strictly increasing.
Non-Strict Model: Valid walks are the ones whose labels are non-strictly increasing.

Polynomial check even with some optimization criteria.

Xuan, B. Bui, Afonso Ferreira, and Aubin Jarry.
"Computing shortest, fastest, and foremost journeys in dynamic networks.".
International Journal of Foundations of Computer Science 14.02 (2003): 267-285

Wu, Huanhuan, et al.
"Efficient algorithms for temporal path computation." IEEE Transactions on
Knowledge and Data Engineering 28.11 (2016): 2927-2942.

4 / 22



Understanding temporal paths

3

1 2

4 4

s t

u

v

Strict Model: Valid walks are the ones whose labels are strictly increasing.
Non-Strict Model: Valid walks are the ones whose labels are non-strictly increasing.

4 / 22



Components in Static Undirected Graphs

v ∈ R(u) =⇒ exists u → v path in G .

▶ v ∈ R(u) ⇐⇒ u ∈ R(v) symmetric
▶ v ∈ R(u) ∧ w ∈ R(v) =⇒ w ∈ R(u) transitive.

Component: maximal set of vertices C s.t. v ∈ R(u) for all u, v ∈ C .

▶ Equivalence classes of V (G).
▶ Find all components of G in poly-time.

u wv

5 / 22



Components in Static Undirected Graphs

v ∈ R(u) =⇒ exists u → v path in G .
▶ v ∈ R(u) ⇐⇒ u ∈ R(v) symmetric

▶ v ∈ R(u) ∧ w ∈ R(v) =⇒ w ∈ R(u) transitive.

Component: maximal set of vertices C s.t. v ∈ R(u) for all u, v ∈ C .

▶ Equivalence classes of V (G).
▶ Find all components of G in poly-time.

u wv

5 / 22



Components in Static Undirected Graphs

v ∈ R(u) =⇒ exists u → v path in G .
▶ v ∈ R(u) ⇐⇒ u ∈ R(v) symmetric
▶ v ∈ R(u) ∧ w ∈ R(v) =⇒ w ∈ R(u) transitive.

Component: maximal set of vertices C s.t. v ∈ R(u) for all u, v ∈ C .

▶ Equivalence classes of V (G).
▶ Find all components of G in poly-time.

u wv

5 / 22



Components in Static Undirected Graphs

v ∈ R(u) =⇒ exists u → v path in G .
▶ v ∈ R(u) ⇐⇒ u ∈ R(v) symmetric
▶ v ∈ R(u) ∧ w ∈ R(v) =⇒ w ∈ R(u) transitive.

Component: maximal set of vertices C s.t. v ∈ R(u) for all u, v ∈ C .

▶ Equivalence classes of V (G).
▶ Find all components of G in poly-time.

u wv

5 / 22



Components in Static Undirected Graphs

v ∈ R(u) =⇒ exists u → v path in G .
▶ v ∈ R(u) ⇐⇒ u ∈ R(v) symmetric
▶ v ∈ R(u) ∧ w ∈ R(v) =⇒ w ∈ R(u) transitive.

Component: maximal set of vertices C s.t. v ∈ R(u) for all u, v ∈ C .
▶ Equivalence classes of V (G).

▶ Find all components of G in poly-time.

u wv

5 / 22



Components in Static Undirected Graphs

v ∈ R(u) =⇒ exists u → v path in G .
▶ v ∈ R(u) ⇐⇒ u ∈ R(v) symmetric
▶ v ∈ R(u) ∧ w ∈ R(v) =⇒ w ∈ R(u) transitive.

Component: maximal set of vertices C s.t. v ∈ R(u) for all u, v ∈ C .
▶ Equivalence classes of V (G).
▶ Find all components of G in poly-time.

u wv

5 / 22



Components in Static Directed Graphs

v ∈ R(u) =⇒ exists u → v path in the digraph G .

Strong component: maximal set of vertices C s.t. v ∈ R(u) ∧ u ∈ R(v) for all
u, v ∈ C .

Every path starting and ending in C can be added to C .

Key property for strong component algorithms in digraphs

6 / 22



Components in Static Directed Graphs

v ∈ R(u) =⇒ exists u → v path in the digraph G .

Strong component: maximal set of vertices C s.t. v ∈ R(u) ∧ u ∈ R(v) for all
u, v ∈ C .

strong

Every path starting and ending in C can be added to C .

Key property for strong component algorithms in digraphs

6 / 22



Components in Static Directed Graphs

v ∈ R(u) =⇒ exists u → v path in the digraph G .

Strong component: maximal set of vertices C s.t. v ∈ R(u) ∧ u ∈ R(v) for all
u, v ∈ C .

strong

Every path starting and ending in C can be added to C .

Key property for strong component algorithms in digraphs

6 / 22



Components in Static Directed Graphs

v ∈ R(u) =⇒ exists u → v path in the digraph G .

Strong component: maximal set of vertices C s.t. v ∈ R(u) ∧ u ∈ R(v) for all
u, v ∈ C .

x

strong component

Every path starting and ending in C can be added to C .

Key property for strong component algorithms in digraphs

6 / 22



Components in Static Directed Graphs

v ∈ R(u) =⇒ exists u → v path in the digraph G .

Strong component: maximal set of vertices C s.t. v ∈ R(u) ∧ u ∈ R(v) for all
u, v ∈ C .

x

strong component

Every path starting and ending in C can be added to C .

Key property for strong component algorithms in digraphs

6 / 22



Translation to temporal graphs

v ∈ R(u) =⇒ exists u → v temporal path in (G , λ).

Components in temporal graphs: maximal subset C ⊆ V (G ) s.t. v ∈ R(u)
for all u, v ∈ C .

▶

▶

1 2u wv

No w → u temporal path.

7 / 22



Translation to temporal graphs

v ∈ R(u) =⇒ exists u → v temporal path in (G , λ).
Components in temporal graphs: maximal subset C ⊆ V (G ) s.t. v ∈ R(u)
for all u, v ∈ C .

▶

▶

1 2u wv

No w → u temporal path.

7 / 22



Translation to temporal graphs

v ∈ R(u) =⇒ exists u → v temporal path in (G , λ).
Components in temporal graphs: maximal subset C ⊆ V (G ) s.t. v ∈ R(u)
for all u, v ∈ C .

▶ Symmetric?

▶

1 2u wv

No w → u temporal path.

7 / 22



Translation to temporal graphs

v ∈ R(u) =⇒ exists u → v temporal path in (G , λ).
Components in temporal graphs: maximal subset C ⊆ V (G ) s.t. v ∈ R(u)
for all u, v ∈ C .

▶ Symmetric?

▶

1 2u wv

No w → u temporal path.

7 / 22



Translation to temporal graphs

v ∈ R(u) =⇒ exists u → v temporal path in (G , λ).
Components in temporal graphs: maximal subset C ⊆ V (G ) s.t. v ∈ R(u)
for all u, v ∈ C .

▶ Symmetric?
▶ Transitive?

1 2u wv

No w → u temporal path.

7 / 22



Translation to temporal graphs

v ∈ R(u) =⇒ exists u → v temporal path in (G , λ).
Components in temporal graphs: maximal subset C ⊆ V (G ) s.t. v ∈ R(u)
for all u, v ∈ C .

▶ Symmetric?
▶ Transitive?

1 2u wv

No w → u temporal path.

7 / 22



Translation to temporal graphs

v ∈ R(u) =⇒ exists u → v temporal path in (G , λ).
Components in temporal graphs: maximal subset C ⊆ V (G ) s.t. v ∈ R(u)
for all u, v ∈ C .

▶ Symmetric?
▶ Transitive?

1 2u wv

No w → u temporal path.

Not true that every path starting and ending in C can be added to C .

7 / 22



Temporal component

TCC: Temporal Connected Component.

v ∈ R(u): exists temporal path from u to v in (G , λ).

∀u, v . . .

Closed TCC: v ∈ R(u) ∧ u ∈ R(v) inside C .

TCC: v ∈ R(u) ∧ u ∈ R(v) (paths can use vertices not in C , like d → f → e).

Unilateral (closed) TCC (or TUCC): v ∈ R(u) ∨ u ∈ R(v).

8 / 22



Temporal component

TCC: Temporal Connected Component.

v ∈ R(u): exists temporal path from u to v in (G , λ).

∀u, v . . .

Closed TCC: v ∈ R(u) ∧ u ∈ R(v) inside C .

TCC: v ∈ R(u) ∧ u ∈ R(v) (paths can use vertices not in C , like d → f → e).

Unilateral (closed) TCC (or TUCC): v ∈ R(u) ∨ u ∈ R(v).

8 / 22



Temporal component

TCC: Temporal Connected Component.

v ∈ R(u): exists temporal path from u to v in (G , λ).

a

b
c

d

e

f

g

1, 5 1

2, 6 2

2

1, 3

1, 2

2

3

3

4

∀u, v . . .

Closed TCC: v ∈ R(u) ∧ u ∈ R(v) inside C .

TCC: v ∈ R(u) ∧ u ∈ R(v) (paths can use vertices not in C , like d → f → e).

Unilateral (closed) TCC (or TUCC): v ∈ R(u) ∨ u ∈ R(v).

8 / 22



Temporal component

TCC: Temporal Connected Component.

v ∈ R(u): exists temporal path from u to v in (G , λ).

a

b
c

d

e

f

g

1, 5 1

2, 6 2

2

1, 3

1, 2

2

3

3

4

∀u, v . . .

Closed TCC: v ∈ R(u) ∧ u ∈ R(v) inside C .

TCC: v ∈ R(u) ∧ u ∈ R(v) (paths can use vertices not in C , like d → f → e).

Unilateral (closed) TCC (or TUCC): v ∈ R(u) ∨ u ∈ R(v).

8 / 22



Temporal component

TCC: Temporal Connected Component.

v ∈ R(u): exists temporal path from u to v in (G , λ).

a

b
c

d

e

f

g

1, 5 1

2, 6 2

2

1, 3

1, 2

2

3

3

4

∀u, v . . .

Closed TCC: v ∈ R(u) ∧ u ∈ R(v) inside C .

TCC: v ∈ R(u) ∧ u ∈ R(v) (paths can use vertices not in C , like d → f → e).

Unilateral (closed) TCC (or TUCC): v ∈ R(u) ∨ u ∈ R(v).

8 / 22



Temporal component

TCC: Temporal Connected Component.

v ∈ R(u): exists temporal path from u to v in (G , λ).

a

b
c

d

e

f

g

1, 5 1

2, 6 2

2

1, 3

1, 2

2

3

3

4

∀u, v . . .

Closed TCC: v ∈ R(u) ∧ u ∈ R(v) inside C .

TCC: v ∈ R(u) ∧ u ∈ R(v) (paths can use vertices not in C , like d → f → e).

Unilateral (closed) TCC (or TUCC): v ∈ R(u) ∨ u ∈ R(v).

8 / 22



Strict vs non-Strict Components

Recall: Strict walks are the ones with labels strictly increasing. Non-strict are the
ones with labels non-decreasing.

Strict: Easy reduction from k-Clique, for every def of C . Given static G , give
time 1 to all the edges. There is component of size ≥ k iff there is a clique
of size ≥ k in G .
Non-Strict: this reductions does not work. It is enough a vertex of degree at
least k to make it fail. We work in this case!

9 / 22



Hardness results

Our results, for the non-strict case, build on top of and improves upon

Sandeep Bhadra and Afonso Ferreira.
"Complexity of connected components in evolving graphs and the
computation of multicast trees in dynamic networks".
Ad-Hoc, Mobile, and Wireless Networks, Second International Conference,
2003.

Arnaud Casteigts, Timothée Corsini, and Writika Sarka.
"Simple, strict, proper, happy: A study of reachability in temporal graphs".
arXiv preprint arXiv:2208.01720, 2022.

Previous results are not parameterized reductions,
and leave open cases when lifetime = 2 or 3.

10 / 22



Hardness results

Our results, for the non-strict case, build on top of and improves upon

Sandeep Bhadra and Afonso Ferreira.
"Complexity of connected components in evolving graphs and the
computation of multicast trees in dynamic networks".
Ad-Hoc, Mobile, and Wireless Networks, Second International Conference,
2003.

Arnaud Casteigts, Timothée Corsini, and Writika Sarka.
"Simple, strict, proper, happy: A study of reachability in temporal graphs".
arXiv preprint arXiv:2208.01720, 2022.
Previous results are not parameterized reductions,

and leave open cases when lifetime = 2 or 3.

10 / 22



Hardness results

Our results, for the non-strict case, build on top of and improves upon

Sandeep Bhadra and Afonso Ferreira.
"Complexity of connected components in evolving graphs and the
computation of multicast trees in dynamic networks".
Ad-Hoc, Mobile, and Wireless Networks, Second International Conference,
2003.

Arnaud Casteigts, Timothée Corsini, and Writika Sarka.
"Simple, strict, proper, happy: A study of reachability in temporal graphs".
arXiv preprint arXiv:2208.01720, 2022.
Previous results are not parameterized reductions,
and leave open cases when lifetime = 2 or 3.

10 / 22



Theorem
For any fixed τ ≥ 2, given a temporal graph G and an integer k , it is
NP-complete to decide if G has a (closed) TCC or a (closed) TUCC of size at
least k , even if G is the line graph of a bipartite graph.

Reduction from the Maximum Edge Biclique Problem: given a bipartite graph G
and an integer k , deciding whether G has a biclique with at least k edges.

11 / 22



Other Reductions: the semaphore technique

Swap edges in a graph by diamonds in a temporal graph to control behavior of
paths.

Sandeep Bhadra and Afonso Ferreira.
"Complexity of connected components in evolving graphs and the computation of
multicast trees in dynamic networks". Ad-Hoc, Mobile, and Wireless Networks,
Second International Conference, 2003.

12 / 22



Other Reductions: the semaphore technique

Swap edges in a graph by diamonds in a temporal graph to control behavior of
paths.

Sandeep Bhadra and Afonso Ferreira.
"Complexity of connected components in evolving graphs and the computation of
multicast trees in dynamic networks". Ad-Hoc, Mobile, and Wireless Networks,
Second International Conference, 2003.

12 / 22



Other Reductions: the semaphore technique

Swap edges in a graph by diamonds in a temporal graph to control behavior of
paths.

3

4

4

3

Sandeep Bhadra and Afonso Ferreira.
"Complexity of connected components in evolving graphs and the computation of
multicast trees in dynamic networks". Ad-Hoc, Mobile, and Wireless Networks,
Second International Conference, 2003.

12 / 22



Other Reductions: the semaphore technique

Swap edges in a graph by diamonds in a temporal graph to control behavior of
paths.

3

4

4

3≤ 3

Sandeep Bhadra and Afonso Ferreira.
"Complexity of connected components in evolving graphs and the computation of
multicast trees in dynamic networks". Ad-Hoc, Mobile, and Wireless Networks,
Second International Conference, 2003.

12 / 22



Other Reductions: the semaphore technique

Swap edges in a graph by diamonds in a temporal graph to control behavior of
paths.

3

4

4

3

≤ 3

Sandeep Bhadra and Afonso Ferreira.
"Complexity of connected components in evolving graphs and the computation of
multicast trees in dynamic networks". Ad-Hoc, Mobile, and Wireless Networks,
Second International Conference, 2003.

12 / 22



Example: from k-Clique to undir. open TCC

Graph G , arbitrary order e1, . . . , em for E (G ).

For each (u, v) ∈ E (G ) with label i , add to (G , λ) diamond with times
i ,m + i and m + i , i .

u v

w

5
2 4

a b

c

1 6

3

(x , y) ∈ E (G ) ⇐⇒ temporal x → y and y → x paths in (G , λ).
no u → b temporal path.

▶ Cliques in G are temporal connected sets in (G , λ).

13 / 22



Example: from k-Clique to undir. open TCC

Graph G , arbitrary order e1, . . . , em for E (G ).
For each (u, v) ∈ E (G ) with label i , add to (G , λ) diamond with times
i ,m + i and m + i , i .

u v

w

5
2 4

a b

c

1 6

3

u v
5

u v
5 11

511

(x , y) ∈ E (G ) ⇐⇒ temporal x → y and y → x paths in (G , λ).
no u → b temporal path.

▶ Cliques in G are temporal connected sets in (G , λ).

13 / 22



Example: from k-Clique to undir. open TCC

Graph G , arbitrary order e1, . . . , em for E (G ).
For each (u, v) ∈ E (G ) with label i , add to (G , λ) diamond with times
i ,m + i and m + i , i .

u v

w

5
2 4

a b

c

1 6

3

u v
5

b
6

u v
5 11

511 b

6 12

612

(x , y) ∈ E (G ) ⇐⇒ temporal x → y and y → x paths in (G , λ).
no u → b temporal path.

▶ Cliques in G are temporal connected sets in (G , λ).

13 / 22



Example: from k-Clique to undir. open TCC

Graph G , arbitrary order e1, . . . , em for E (G ).
For each (u, v) ∈ E (G ) with label i , add to (G , λ) diamond with times
i ,m + i and m + i , i .

u v

w

5
2 4

a b

c

1 6

3

u v
5

b
6

u v
5 11

511 b

6 12

612

(x , y) ∈ E (G ) ⇐⇒ temporal x → y and y → x paths in (G , λ).

no u → b temporal path.

▶ Cliques in G are temporal connected sets in (G , λ).

13 / 22



Example: from k-Clique to undir. open TCC

Graph G , arbitrary order e1, . . . , em for E (G ).
For each (u, v) ∈ E (G ) with label i , add to (G , λ) diamond with times
i ,m + i and m + i , i .

u v

w

5
2 4

a b

c

1 6

3

u v
5

b
6

u v
5 11

511 b

6 12

612

(x , y) ∈ E (G ) ⇐⇒ temporal x → y and y → x paths in (G , λ).
no u → b temporal path.

▶ Cliques in G are temporal connected sets in (G , λ).

13 / 22



Example: from k-Clique to undir. open TCC

Graph G , arbitrary order e1, . . . , em for E (G ).
For each (u, v) ∈ E (G ) with label i , add to (G , λ) diamond with times
i ,m + i and m + i , i .

u v

w

5
2 4

a b

c

1 6

3

u v
5

b
6

u v
5 11

511 b

6 12

612

(x , y) ∈ E (G ) ⇐⇒ temporal x → y and y → x paths in (G , λ).
no u → b temporal path.

▶ Cliques in G are temporal connected sets in (G , λ).

13 / 22



This is not enough because we can risk to have a component made of an uncontrolled
number of dummy vertices.

u v

5 11

511 b

6 12

612a

17

1 7

We solve this issue, creating a copy G′ of the temporal graph G and connecting their
corresponding vertices at time 0. Then we ask for a component of size at least 2k in-
stead of k.

u v
huv

hvu

i

i

m + i

m + i

u′ v ′
h′uv

h′vu

2m + i

2m + i

3m + i

3m + i

0 0

14 / 22



Theorem
Given integer k and temporal graph G = (G , λ),

deciding if G has a TCC of size ≥ k is W[1]-hard with parameter k ;

if G is directed, deciding if G has a TCC (TUCC) of size ≥ k is W[1]-hard
with parameter k , even if G has lifetime 2; and
if G is directed, deciding if G has a closed TCC (closed TUCC) of size ≥ k is
W[1]-hard with parameter k , even if G has lifetime 3.

Using the reduction we have just seen

15 / 22



Theorem
Given integer k and temporal graph G = (G , λ),

deciding if G has a TCC of size ≥ k is W[1]-hard with parameter k ;
if G is directed, deciding if G has a TCC (TUCC) of size ≥ k is W[1]-hard
with parameter k , even if G has lifetime 2; and

if G is directed, deciding if G has a closed TCC (closed TUCC) of size ≥ k is
W[1]-hard with parameter k , even if G has lifetime 3.

Simple directed semaphore with times 1 and 2.

15 / 22



Theorem
Given integer k and temporal graph G = (G , λ),

deciding if G has a TCC of size ≥ k is W[1]-hard with parameter k ;
if G is directed, deciding if G has a TCC (TUCC) of size ≥ k is W[1]-hard
with parameter k , even if G has lifetime 2; and
if G is directed, deciding if G has a closed TCC (closed TUCC) of size ≥ k is
W[1]-hard with parameter k , even if G has lifetime 3.

For this we can split the nodes.

z

v

u

uout

uin

v in

vout

zout

z in

2 2

2 2

1, 31, 31, 3 1, 3 1, 3 1, 3

15 / 22



Positive results

Theorem
Given a temporal graph G = (G , λ) on n vertices and with lifetime τ , and a
positive integer k , there are algorithms running in time

O(kk·τ · n) that decides whether there is a TCC of size at least k ;

O(2k
τ · n) that decides whether there is a closed TCC of size at least k ;

O(kk2 · n) that decides whether there is a TUCC of size at least k ; and

O(2k
k · n) that decides whether there is a closed TUCC of size at least k .

Non-closed cases, a component is found.

16 / 22



Positive results

Theorem
Given a temporal graph G = (G , λ) on n vertices and with lifetime τ , and a
positive integer k , there are algorithms running in time

O(kk·τ · n) that decides whether there is a TCC of size at least k ;
O(2k

τ · n) that decides whether there is a closed TCC of size at least k ;

O(kk2 · n) that decides whether there is a TUCC of size at least k ; and

O(2k
k · n) that decides whether there is a closed TUCC of size at least k .

Non-closed cases, a component is found.

16 / 22



Positive results

Theorem
Given a temporal graph G = (G , λ) on n vertices and with lifetime τ , and a
positive integer k , there are algorithms running in time

O(kk·τ · n) that decides whether there is a TCC of size at least k ;
O(2k

τ · n) that decides whether there is a closed TCC of size at least k ;

O(kk2 · n) that decides whether there is a TUCC of size at least k ; and

O(2k
k · n) that decides whether there is a closed TUCC of size at least k .

Non-closed cases, a component is found.

16 / 22



Positive results

Theorem
Given a temporal graph G = (G , λ) on n vertices and with lifetime τ , and a
positive integer k , there are algorithms running in time

O(kk·τ · n) that decides whether there is a TCC of size at least k ;
O(2k

τ · n) that decides whether there is a closed TCC of size at least k ;

O(kk2 · n) that decides whether there is a TUCC of size at least k ; and

O(2k
k · n) that decides whether there is a closed TUCC of size at least k .

Non-closed cases, a component is found.

16 / 22



Positive results

Theorem
Given a temporal graph G = (G , λ) on n vertices and with lifetime τ , and a
positive integer k , there are algorithms running in time

O(kk·τ · n) that decides whether there is a TCC of size at least k ;
O(2k

τ · n) that decides whether there is a closed TCC of size at least k ;

O(kk2 · n) that decides whether there is a TUCC of size at least k ; and

O(2k
k · n) that decides whether there is a closed TUCC of size at least k .

Non-closed cases, a component is found.

16 / 22



Results

Par. τ Par. k Par. k + τ

TCC

p-NP τ ≥ 2

W[1]-h Dir. τ ≥ 2
and Undir. W[1]-h Dir.

TUCC W[1]-h Dir. τ ≥ 2 FPT Undir.
FPT Undir.

closed TCC W[1]-h Dir. τ ≥ 3 W[1]-h Dir.

closed TUCC W[1]-h Dir. τ ≥ 3 FPT Undir.
FPT Undir.

17 / 22



Open: Parameterized complexity of deciding if an undirected temporal graph
has a closed TCC (TUCC) of size ≥ k?

Open: Parameterized complexity of deciding if an directed temporal graph of
lifetime 2 has a closed TCC (TUCC) of size ≥ k?

18 / 22



Open: Parameterized complexity of deciding if an undirected temporal graph
has a closed TCC (TUCC) of size ≥ k?
Open: Parameterized complexity of deciding if an directed temporal graph of
lifetime 2 has a closed TCC (TUCC) of size ≥ k?

18 / 22



Other results

Check whether X ⊆ V is Check whether X ⊆ V is
a connected set a component

TCC

Θ(M2)
O(n2 ·M)TUCC

closed TCC NP-cclosed TUCC

19 / 22



Checking connectivity cannot be subquadratic

(Notation Õ(·) ignores polylog factors).

Theorem
Consider a temporal graph G on M temporal edges. There is no algorithm
running in time Õ(M2−ε), for some ϵ, that decides whether G is temporally
(unilaterally) connected, unless SETH fails.

In the k-SAT∗ problem, we have the formula, two sets X and Y each of half vari-
ables, and all the possible assignments for X and Y . We build a temporal graph
not connected iff the formula is satisfiable.
It works both for strict and non-strict case.

20 / 22



Checking maximality is hard

Theorem
Let G be a (directed) temporal graph, and Y ⊆ V (G). Deciding whether Y is a
closed TCC is NP-complete. The same holds for closed TUCC.

Reduction from k-Club. We reduce from the problem of deciding whether a sub-
set of vertices X of a given a graph G is a maximal 2-club, where a 2-club is a
set of vertices C such that G [C ] has diameter at most 2.
It works both for strict and non-strict case.

21 / 22



Thanks for the attention!

email: andrea.marino@unifi.it

22 / 22


