On Computing Large Temporal (Unilateral) Connected Components

Andrea Marino

Universitá degli Studi Firenze, Italy

Joint work with Isnard Lopes Costa¹, Raul Lopes³, and Ana Silva^{1,2} ¹Universidade Federal do Ceará, Brazil. ²Universitá degli Studi Firenze, Italy. ³LIRMM, Université de Montpellier, France.

Slides from Raul Lopes and Ana Silva.

Finanziato dall'Unione europea

Ministero dell'Università e della Ricerca

1/22

$\mathsf{XP} \text{ and } \mathsf{FPT}$

- XP problem $\Rightarrow f(k) \cdot n^{g(k)}$ time algorithm.
 - Example: $O(n^k)$.

- XP problem $\Rightarrow f(k) \cdot n^{g(k)}$ time algorithm.
 - ► Example: $O(n^k)$.
- FPT problem $\Rightarrow f(k) \cdot n^c$ time algorithm.
 - Example: $O(2^k \cdot n^2)$.

- XP problem $\Rightarrow f(k) \cdot n^{g(k)}$ time algorithm.
 - Example: O(n^k).
- FPT problem $\Rightarrow f(k) \cdot n^c$ time algorithm.
 - Example: $O(2^k \cdot n^2)$.
- Both imply polynomial running time for fixed k.

- XP problem $\Rightarrow f(k) \cdot n^{g(k)}$ time algorithm.
 - Example: O(n^k).
- FPT problem $\Rightarrow f(k) \cdot n^c$ time algorithm.
 - Example: $O(2^k \cdot n^2)$.
- Both imply polynomial running time for fixed k.
- W[1]-hard problem \Rightarrow strong evidence that it is <u>**not**</u> FPT.

- XP problem $\Rightarrow f(k) \cdot n^{g(k)}$ time algorithm.
 - Example: O(n^k).
- FPT problem $\Rightarrow f(k) \cdot n^c$ time algorithm.
 - Example: $O(2^k \cdot n^2)$.
- Both imply polynomial running time for fixed k.
- W[1]-hard problem \Rightarrow strong evidence that it is **<u>not</u>** FPT.
- *k*-Clique is W[1]-complete.

Definitions: Temporal Graph

• A temporal graph is a pair (G, λ) where G is a simple graph, and $\lambda : E(G) \to 2^{\mathbb{N}}$;

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

Definitions: Lifetime

- A temporal graph is a pair (G, λ) where G is a simple graph, and $\lambda : E(G) \to 2^{\mathbb{N}}$;
- The value $\max_{e \in E(G)} \lambda(e)$ is called the *lifetime*; will be denoted by τ .

Definitions: Temporal vertex/edge

- A temporal graph is a pair (G, λ) where G is a simple graph, and $\lambda : E(G) \to 2^{\mathbb{N}}$;
- The value $\max_{e \in E(G)} \lambda(e)$ is called the *lifetime*; will be denoted by .
- A pair (x, i) where $x \in V(G)$ and $i \in [\tau]$ is called a temporal vertex;

Definitions: Temporal vertex/edge

- A temporal graph is a pair (G, λ) where G is a simple graph, and $\lambda : E(G) \to 2^{\mathbb{N}}$;
- The value $\max_{e \in E(G)} \lambda(e)$ is called the *lifetime*; will be denoted by .
- A pair (x, i) where $x \in V(G)$ and $i \in [\tau]$ is called a temporal vertex; similarly (e, i) s.t. $e \in E(G)$ and $i \in \lambda(e)$ is called a temporal edge.

Strict Model: Valid walks are the ones whose labels are strictly increasing.

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

4 / 22

Strict Model: Valid walks are the ones whose labels are *strictly increasing*. Non-Strict Model: Valid walks are the ones whose labels are *non-strictly increasing*.

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

4 / 22

Strict Model: Valid walks are the ones whose labels are *strictly increasing*. Non-Strict Model: Valid walks are the ones whose labels are *non-strictly increasing*.

Polynomial check even with some optimization criteria.

Xuan, B. Bui, Afonso Ferreira, and Aubin Jarry.

"Computing shortest, fastest, and foremost journeys in dynamic networks.". International Journal of Foundations of Computer Science 14.02 (2003): 267-285

Wu, Huanhuan, et al.

"Efficient algorithms for temporal path computation." IEEE Transactions on

Knowledge and Data Engineering 28.11 (2016): 2927-2942.

Finanziato dall'Unione europea NextGenerationEU

Ainistero Iell'Università della Ricerca

Strict Model: Valid walks are the ones whose labels are *strictly increasing*. Non-Strict Model: Valid walks are the ones whose labels are *non-strictly increasing*.

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

4 / 22

• $v \in R(u) \implies$ exists $u \rightarrow v$ path in G.

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

UNIVERSITÀ DEGLI STUDI FIRENZE DISIA DISIA

• $v \in R(u) \implies$ exists $u \rightarrow v$ path in G.

• $v \in R(u) \iff u \in R(v)$ symmetric

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

UNIVERSITÀ DEGLI STUDI FIRENZE DISIA DISIA

5 / 22

• $v \in R(u) \implies$ exists $u \rightarrow v$ path in G.

- $v \in R(u) \iff u \in R(v)$ symmetric
- $v \in R(u) \land w \in R(v) \implies w \in R(u)$ transitive.

Finanziato dall'Unione europea NextGenerationEU

5 / 22

• $v \in R(u) \implies$ exists $u \rightarrow v$ path in G.

- $v \in R(u) \iff u \in R(v)$ symmetric
- $v \in R(u) \land w \in R(v) \implies w \in R(u)$ transitive.
- Component: maximal set of vertices C s.t. $v \in R(u)$ for all $u, v \in C$.

• $v \in R(u) \implies$ exists $u \rightarrow v$ path in G.

- $v \in R(u) \iff u \in R(v)$ symmetric
- $v \in R(u) \land w \in R(v) \implies w \in R(u)$ transitive.
- Component: maximal set of vertices C s.t. $v \in R(u)$ for all $u, v \in C$.
 - Equivalence classes of V(G).

• $v \in R(u) \implies$ exists $u \rightarrow v$ path in G.

- $v \in R(u) \iff u \in R(v)$ symmetric
- $v \in R(u) \land w \in R(v) \implies w \in R(u)$ transitive.
- Component: maximal set of vertices C s.t. $v \in R(u)$ for all $u, v \in C$.
 - Equivalence classes of V(G).
 - ► Find all components of *G* in poly-time.

- $v \in R(u) \implies$ exists $u \rightarrow v$ path in the digraph G.
- Strong component: maximal set of vertices C s.t. $v \in R(u) \land u \in R(v)$ for all $u, v \in C$.

- $v \in R(u) \implies$ exists $u \rightarrow v$ path in the digraph G.
- Strong component: maximal set of vertices C s.t. v ∈ R(u) ∧ u ∈ R(v) for all u, v ∈ C.

- $v \in R(u) \implies$ exists $u \rightarrow v$ path in the digraph G.
- Strong component: maximal set of vertices C s.t. v ∈ R(u) ∧ u ∈ R(v) for all u, v ∈ C.

- $v \in R(u) \implies$ exists $u \rightarrow v$ path in the digraph G.
- Strong component: maximal set of vertices C s.t. v ∈ R(u) ∧ u ∈ R(v) for all u, v ∈ C.

• Every path starting and ending in C can be added to C.

- $v \in R(u) \implies$ exists $u \rightarrow v$ path in the digraph G.
- Strong component: maximal set of vertices C s.t. $v \in R(u) \land u \in R(v)$ for all $u, v \in C$.

- Every path starting and ending in C can be added to C.
- Key property for strong component algorithms in digraphs

Finanziato dall'Unione europea NextGenerationEU

UNIVERSITA DEGLI STUDI FIRENZE DISIA

• $v \in R(u) \implies$ exists $u \rightarrow v$ temporal path in (G, λ) .

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

UNIVERSITÀ DEGLI STUDI FIRENZE DISIA DISIA DISIA

7 / 22

- $v \in R(u) \implies$ exists $u \rightarrow v$ temporal path in (G, λ) .
- Components in temporal graphs: maximal subset $C \subseteq V(G)$ s.t. $v \in R(u)$ for all $u, v \in C$.

- $v \in R(u) \implies$ exists $u \rightarrow v$ temporal path in (G, λ) .
- Components in temporal graphs: maximal subset $C \subseteq V(G)$ s.t. $v \in R(u)$ for all $u, v \in C$.
 - Symmetric?

- $v \in R(u) \implies$ exists $u \rightarrow v$ temporal path in (G, λ) .
- Components in temporal graphs: maximal subset $C \subseteq V(G)$ s.t. $v \in R(u)$ for all $u, v \in C$.
 - Symmetric?

Ministero dell'Università e della Ricerca

- $v \in R(u) \implies$ exists $u \rightarrow v$ temporal path in (G, λ) .
- Components in temporal graphs: maximal subset $C \subseteq V(G)$ s.t. $v \in R(u)$ for all $u, v \in C$.
 - Symmetric?
 - Transitive?

- $v \in R(u) \implies$ exists $u \rightarrow v$ temporal path in (G, λ) .
- Components in temporal graphs: maximal subset $C \subseteq V(G)$ s.t. $v \in R(u)$ for all $u, v \in C$.
 - Symmetric?
 - Transitive?

- $v \in R(u) \implies$ exists $u \rightarrow v$ temporal path in (G, λ) .
- Components in temporal graphs: maximal subset $C \subseteq V(G)$ s.t. $v \in R(u)$ for all $u, v \in C$.
 - Symmetric?
 - Transitive?

Not true that every path starting and ending in C can be added to C.

• TCC: Temporal Connected Component.

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

UNIVERSITÀ DEGLI STUDI FIRENZE DISIA

- TCC: Temporal Connected Component.
- $v \in R(u)$: exists temporal path from u to v in (G, λ) .

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

UNIVERSITÀ DEGLI STUDI FIRENZE DISIA DISIA DISIA DISIA DISIA DISIA DISIA

8 / 22

- TCC: Temporal Connected Component.
- $v \in R(u)$: exists temporal path from u to v in (G, λ) .

FIRENZE 8 / 22

- TCC: Temporal Connected Component.
- $v \in R(u)$: exists temporal path from u to v in (G, λ) .

 $\forall u, v \dots$

• <u>Closed TCC</u>: $v \in R(u) \land u \in R(v)$ <u>inside</u> C.

- TCC: Temporal Connected Component.
- $v \in R(u)$: exists temporal path from u to v in (G, λ) .

 $\forall u, v \dots$

- Closed TCC: $v \in R(u) \land u \in R(v)$ inside C.
- **<u>TCC</u>**: $v \in R(u) \land u \in R(v)$ (paths can use vertices not in *C*, like $d \to f \to e$).

- TCC: Temporal Connected Component.
- $v \in R(u)$: exists temporal path from u to v in (G, λ) .

 $\forall u, v \dots$

- <u>Closed TCC</u>: $v \in R(u) \land u \in R(v)$ <u>inside</u> C.
- **<u>TCC</u>**: $v \in R(u) \land u \in R(v)$ (paths can use vertices not in *C*, like $d \to f \to e$).
- Unilateral (closed) TCC (or TUCC): $v \in R(u) \lor u \in R(v)$.

Recall: Strict walks are the ones with labels strictly increasing. Non-strict are the ones with labels non-decreasing.

- **Strict:** Easy reduction from k-Clique, for every def of *C*. Given static *G*, give time 1 to all the edges. There is component of size $\geq k$ iff there is a clique of size $\geq k$ in *G*.
- **Non-Strict:** this reductions does not work. It is enough a vertex of degree at least *k* to make it fail. We work in this case!

Our results, for the non-strict case, build on top of and improves upon

- Sandeep Bhadra and Afonso Ferreira.
 "Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks".
 Ad-Hoc, Mobile, and Wireless Networks, Second International Conference, 2003.
 - Arnaud Casteigts, Timothée Corsini, and Writika Sarka. "Simple, strict, proper, happy: A study of reachability in temporal graphs". arXiv preprint arXiv:2208.01720, 2022.

Ministero dell'Università e della Ricerca

Our results, for the non-strict case, build on top of and improves upon

- Sandeep Bhadra and Afonso Ferreira.
 "Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks".
 Ad-Hoc, Mobile, and Wireless Networks, Second International Conference, 2003.
- Arnaud Casteigts, Timothée Corsini, and Writika Sarka. "Simple, strict, proper, happy: A study of reachability in temporal graphs". arXiv preprint arXiv:2208.01720, 2022.
- Previous results are not parameterized reductions,

Our results, for the non-strict case, build on top of and improves upon

- Sandeep Bhadra and Afonso Ferreira.
 "Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks".
 Ad-Hoc, Mobile, and Wireless Networks, Second International Conference, 2003.
- Arnaud Casteigts, Timothée Corsini, and Writika Sarka. "Simple, strict, proper, happy: A study of reachability in temporal graphs". arXiv preprint arXiv:2208.01720, 2022.
 - Previous results are not parameterized reductions,
 - and leave open cases when lifetime = 2 or 3.

For any fixed $\tau \ge 2$, given a temporal graph \mathcal{G} and an integer k, it is NP-complete to decide if \mathcal{G} has a (closed) TCC or a (closed) TUCC of size at least k, even if \mathcal{G} is the line graph of a bipartite graph.

Reduction from the Maximum Edge Biclique Problem: given a bipartite graph G and an integer k, deciding whether G has a biclique with at least k edges.

Ministero dell'Università e della Ricerca

• Swap edges in a graph by diamonds in a temporal graph to control behavior of paths.

Sandeep Bhadra and Afonso Ferreira.

• Swap edges in a graph by diamonds in a temporal graph to control behavior of paths.

Sandeep Bhadra and Afonso Ferreira.

• Swap edges in a graph by diamonds in a temporal graph to control behavior of paths.

Sandeep Bhadra and Afonso Ferreira.

• Swap edges in a graph by diamonds in a temporal graph to control behavior of paths.

• Swap edges in a graph by diamonds in a temporal graph to control behavior of paths.

• Graph G, arbitrary order e_1, \ldots, e_m for E(G).

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

13/22

- Graph G, arbitrary order e_1, \ldots, e_m for E(G).
- For each $(u, v) \in E(G)$ with label *i*, add to (G, λ) diamond with times i, m + i and m + i, i.

Ministero dell'Università e della Ricerca

- Graph G, arbitrary order e_1, \ldots, e_m for E(G).
- For each $(u, v) \in E(G)$ with label *i*, add to (G, λ) diamond with times i, m + i and m + i, i.

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

UNIVERSITA DEGLI STUDI FIRENZE DISIA

- Graph G, arbitrary order e_1, \ldots, e_m for E(G).
- For each $(u, v) \in E(G)$ with label *i*, add to (G, λ) diamond with times i, m + i and m + i, i.

Finanziato dall'Unione europea NextGenerationEU

Italiadomani PIANG NAZIONALE DI RIPRESA E RESILIENZA

- Graph G, arbitrary order e_1, \ldots, e_m for E(G).
- For each $(u, v) \in E(G)$ with label *i*, add to (G, λ) diamond with times i, m + i and m + i, i.

- Graph G, arbitrary order e_1, \ldots, e_m for E(G).
- For each $(u, v) \in E(G)$ with label *i*, add to (G, λ) diamond with times i, m + i and m + i, i.

Finanziato dall'Unione europea NextGenerationEU Mini dell'i e del

linistero ell'Università della Ricerca Italiadomani

This is not enough because we can risk to have a component made of an uncontrolled number of dummy vertices.

We solve this issue, creating a copy \mathcal{G}' of the temporal graph \mathcal{G} and connecting their corresponding vertices at time 0. Then we ask for a component of size at least 2k instead of k.

Given integer k and temporal graph $\mathcal{G} = (G, \lambda)$,

• deciding if G has a TCC of size $\geq k$ is W[1]-hard with parameter k;

Using the reduction we have just seen

Given integer k and temporal graph $\mathcal{G} = (\mathcal{G}, \lambda)$,

- deciding if G has a TCC of size $\geq k$ is W[1]-hard with parameter k;
- if G is directed, deciding if G has a TCC (TUCC) of size $\geq k$ is W[1]-hard with parameter k, even if G has lifetime 2; and

Simple directed semaphore with times 1 and 2.

Given integer k and temporal graph $\mathcal{G} = (\mathcal{G}, \lambda)$,

- deciding if G has a TCC of size $\geq k$ is W[1]-hard with parameter k;
- if G is directed, deciding if G has a TCC (TUCC) of size ≥ k is W[1]-hard with parameter k, even if G has lifetime 2; and
- if G is directed, deciding if G has a closed TCC (closed TUCC) of size $\geq k$ is W[1]-hard with parameter k, even if G has lifetime 3.

For this we can split the nodes.

Given a temporal graph $\mathcal{G} = (G, \lambda)$ on *n* vertices and with lifetime τ , and a positive integer *k*, there are algorithms running in time

• $O(k^{k \cdot \tau} \cdot n)$ that decides whether there is a TCC of size at least k;

- $O(k^{k \cdot \tau} \cdot n)$ that decides whether there is a TCC of size at least k;
- $O(2^{k^{\tau}} \cdot n)$ that decides whether there is a closed TCC of size at least k;

- $O(k^{k \cdot \tau} \cdot n)$ that decides whether there is a TCC of size at least k;
- $O(2^{k^{\tau}} \cdot n)$ that decides whether there is a closed TCC of size at least k;
- $O(k^{k^2} \cdot n)$ that decides whether there is a TUCC of size at least k; and

- $O(k^{k \cdot \tau} \cdot n)$ that decides whether there is a TCC of size at least k;
- $O(2^{k^{\tau}} \cdot n)$ that decides whether there is a closed TCC of size at least k;
- $O(k^{k^2} \cdot n)$ that decides whether there is a TUCC of size at least k; and
- $O(2^{k^k} \cdot n)$ that decides whether there is a closed TUCC of size at least k.

- $O(k^{k \cdot \tau} \cdot n)$ that decides whether there is a TCC of size at least k;
- $O(2^{k^{\tau}} \cdot n)$ that decides whether there is a closed TCC of size at least k;
- $O(k^{k^2} \cdot n)$ that decides whether there is a TUCC of size at least k; and
- $O(2^{k^k} \cdot n)$ that decides whether there is a closed TUCC of size at least k.
- Non-closed cases, a component is found.

Results

	Par. $ au$	Par. <i>k</i>	Par. $k + \tau$
тсс	p-NP $ au \geq 2$	W[1]-h Dir. $ au \geq 2$ and Undir.	W[1]-h Dir. FPT Undir.
тисс		W[1]-h Dir. $ au \geq 2$ FPT Undir.	
closed TCC		W[1]-h Dir. $ au \geq 3$	W[1]-h Dir. FPT Undir.
closed TUCC		W[1]-h Dir. $ au \geq 3$ FPT Undir.	

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

17 / 22

 Open: Parameterized complexity of deciding if an undirected temporal graph has a closed TCC (TUCC) of size ≥ k?

Ministero dell'Università e della Ricerca

- Open: Parameterized complexity of deciding if an undirected temporal graph has a closed TCC (TUCC) of size ≥ k?
- Open: Parameterized complexity of deciding if an directed temporal graph of lifetime 2 has a closed TCC (TUCC) of size ≥ k?

	Check whether $X \subseteq V$ is	Check whether $X \subseteq V$ is	
	a connected set	a component	
ТСС		$O(n^2 \cdot M)$	
TUCC	$\Theta(M^2)$		
closed TCC		NP c	
closed TUCC		141-0	

(Notation $\tilde{O}(\cdot)$ ignores polylog factors).

Theorem

Consider a temporal graph G on M temporal edges. There is no algorithm running in time $\tilde{O}(M^{2-\varepsilon})$, for some ϵ , that decides whether G is temporally (unilaterally) connected, unless SETH fails.

In the k-SAT^{*} problem, we have the formula, two sets X and Y each of half variables, and all the possible assignments for X and Y. We build a temporal graph not connected iff the formula is satisfiable.

It works both for strict and non-strict case.

Let \mathcal{G} be a (directed) temporal graph, and $Y \subseteq V(\mathcal{G})$. Deciding whether Y is a closed TCC is NP-complete. The same holds for closed TUCC.

Reduction from k-Club. We reduce from the problem of deciding whether a subset of vertices X of a given a graph G is a maximal 2-club, where a 2-club is a set of vertices C such that G[C] has diameter at most 2. It works both for strict and non-strict case.

Thanks for the attention!

email: andrea.marino@unifi.it

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

22 / 22