

Nowcasting Temporal Trends Using Indirect Surveys

Ajitesh Srivastava¹, Juan Marcos Ramírez², Sergio Díaz Aranda^{2,3}, José Aguilar², Antonio Ortega¹, Antonio Fernández Anta², Rosa Elvira Lillo³ ¹USC ²IMDEA Networks ³UC3M

El País, March 13th, 2020

COVID-19, March 14th, 2020

Official # cases: 6,391 ~ 0.0136%

72.7%

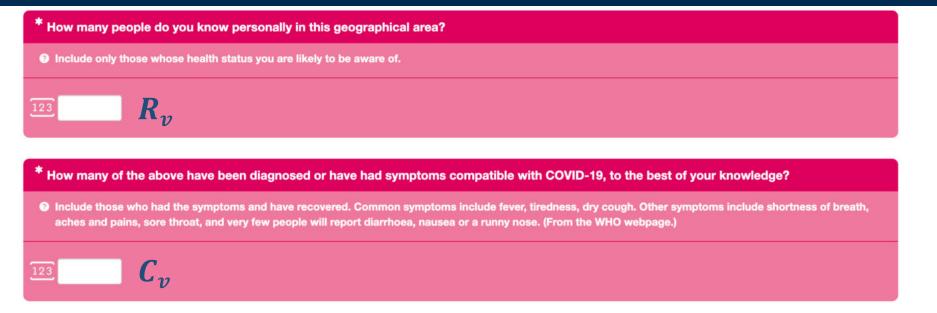
11.3%

8.2%

7.8%

Antonio Fernández @Afdezanta

Querría estimar cuánta gente con síntomas del coronavirus hay hoy en España. Por favor, dime cuántas personas cercanas conoces que sepas que tienen los síntomas (o la enfermedad).


Translate Tweet

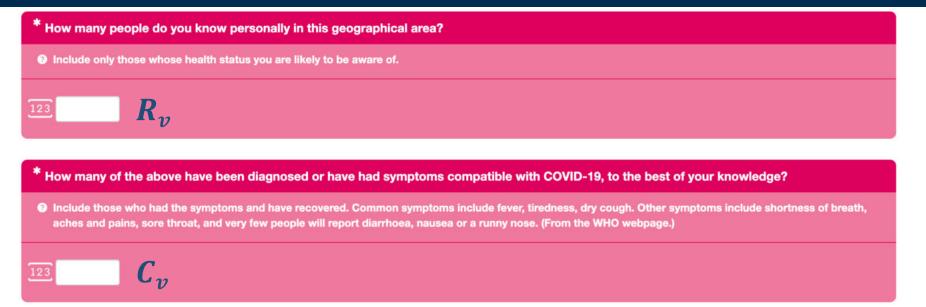
0
1
2
3 o más
732 votes · Final results
4:10 PM · Mar 13, 2020 · Twitter Web App

732 responses report 374 cases Я know ~36,600 persons (Dunbar # of 50 friends) 480,000 cases ~ 1% 14 days onset to death 1.38% Case Fatality Ratio 5,982 deaths (March 28th) 433,478 cases ~ 0.92%

Aggregated Relational Data

Aggregated Relational Data (ARD): Data collected from a survey of indirect questions:

- Privacy is preserved
- Each response reports the status of many individuals


Developing

Science of Netwo

Responses can be biased

Network Scale-up Metod (NSUM)

The prevalence *f* is estimated with the Network Scale-up Method (NSUM) [Bernard et al, 1991; Laga et al, 2021]:

Mean of Ratios (MoR):
$$\hat{f} = \frac{1}{|S|} \sum_{v \in S} \frac{C_v}{R_v}$$

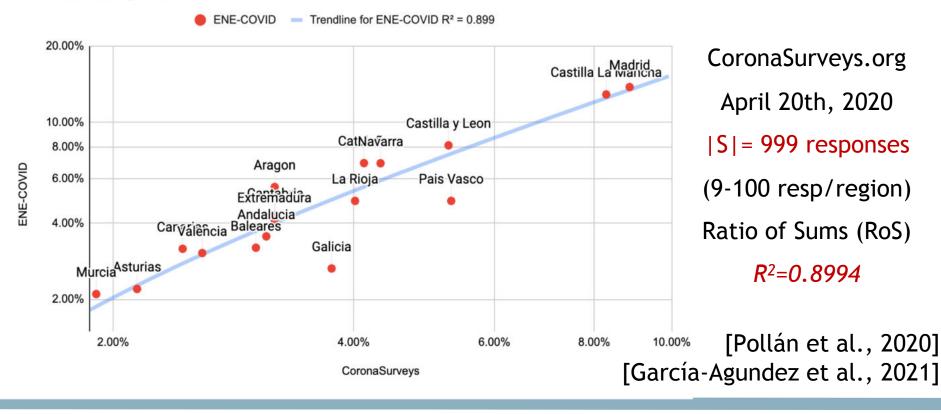
Developing ti

Science of Networks

Applications

ARD collected in one-shot surveys to estimate:

- Casualties in an earthquake [Bernard et al. 1989]
- Female sex workers conditions [Jing et al. 2018]
- Prevalence of drug use [Salganik et al. 2010]
- Prevalence of HIV [Teo et al. 2019]
- Prevalence of COVID-19 [Garcia-Agundez et al. 2021]


Opportunity of online indirect surveys for continuous ARD collection and trend nowcasting

Validation: ENE-COVID

Serology (IgG) study in Spain with ~60,000 people on April 27th to May 11th, 2020: ENE-COVID

CoronaSurveys vs ENE-COVID

Contributions

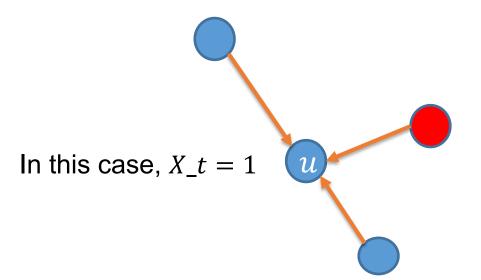
- Latent dynamic graph formulation to prove that the estimated prevalence is proportional to the real prevalence
- ARD provides better prevalence estimate than a direct survey (w/ assumptions on degree variance of latent graph)
- Weighted moving average provides better estimates than a series of individual estimates
- Validate claims via simulations and real COVID-19 data

Latent Dynamic Graph

- Population N
- At time *t*:
 - Infected population H_t , and prevalence $f_t = \frac{|H_t|}{|N|}$
 - Graph $G_t = (N, E_t)$, where $(v, u) \in E_t$ if u knows whether v is infected

 \mathcal{V}

Developing the


Science of Net

- Assumptions:
 - In-degree distribution of all G_t have the same mean μ and variance σ^2 (supported empirically [Dunbar 2010])
 - If $(v, u) \in E_t$, $Pr(v \in H_t)$ does not depend on the in-degree of u in G_t

Sampling

- Select a node u at time t from G_t uniformly at random
- Let X_t be the (random variable of) number of infected in-neighbors of u

Developing the

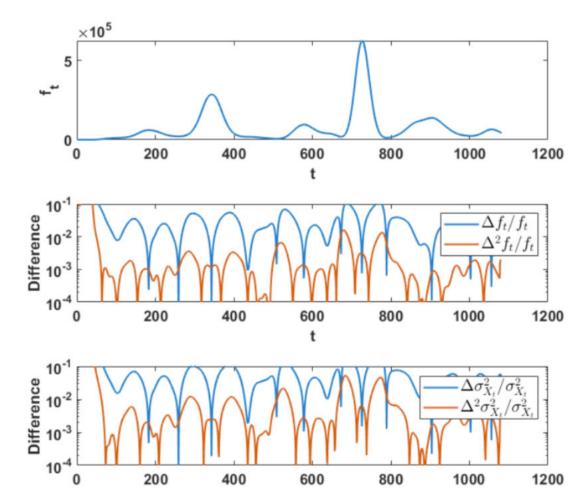
Science of Networks

Theorem: $E(X_t) = \mu \cdot f_t$

- I.e., the expectation of the indirect response X_t is proportional to the prevalence f_t we wish to estimate
- The time series $E(X_t)$ is proportional to the time series of f_t , with μ as the constant of proportionality
- The trend of f_t can be estimated without knowing μ
- If precise f_t values are needed, μ can be estimated (once) from reliable data

Indirect versus Direct Reporting

- $\begin{array}{l} Y_t : \text{random variable of whether node } u \text{ is infected} \\ \overline{Y}_t : \text{sampled mean of } Y_t \\ \overline{X}_t : \text{sampled mean of } X_t \\ \phi_t : \text{ probability of co-infection} \\ |S| = n : \text{ large sample size (Central Limit Thm)} \\ \hline \text{Theorem: For any } \lambda > 0, \text{ if} \\ \sigma^2 \leq \frac{\mu(\mu 1)(1 \phi_t)}{\phi_t} \end{array}$
 - then $\Pr(|\overline{X}_t/\mu f_t| > \lambda) \leq \Pr(|\overline{Y}_t f_t| > \lambda)$


I.e., indirect surveys are better than direct surveys for same sample size n

Advantage of Smoothing

Assumption: $|\Delta f_t| \leq \varepsilon_f f_t$ $|\Delta \sigma_{X_t}^2| \leq \varepsilon_\sigma \sigma_{X_t}^2$ for small $\varepsilon_f, \varepsilon_\sigma \geq 0$ $(f_t \text{ and } \sigma_{X_t}^2 \text{ change}$ slowly over time)

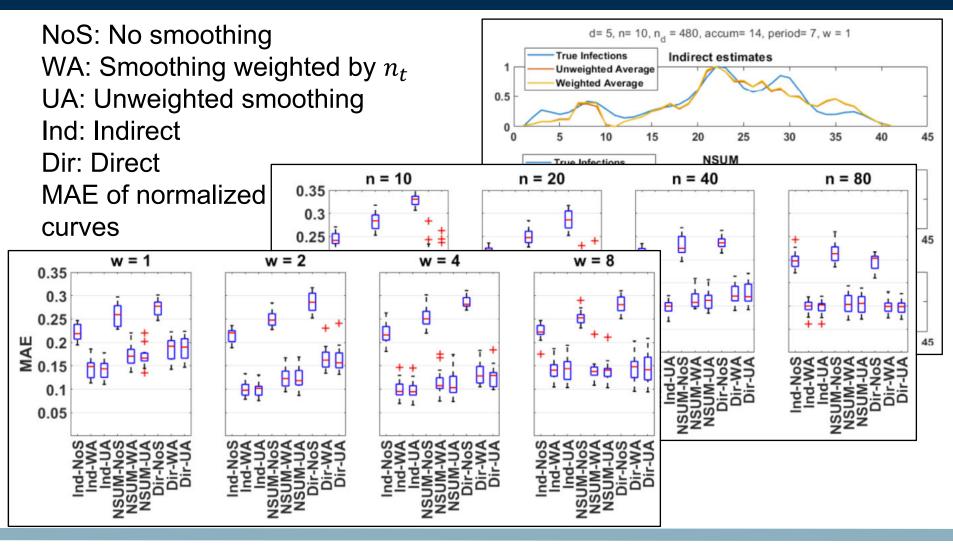
Ex: COVID-19 cases in California

Advantage of Smoothing

$$\overline{X}_{t,w}$$
: mean of X_t on $[t - w, t + w]$
 n_t : number of samples at time t
 n_w : sum of n_t on $[t - w, t + w]$

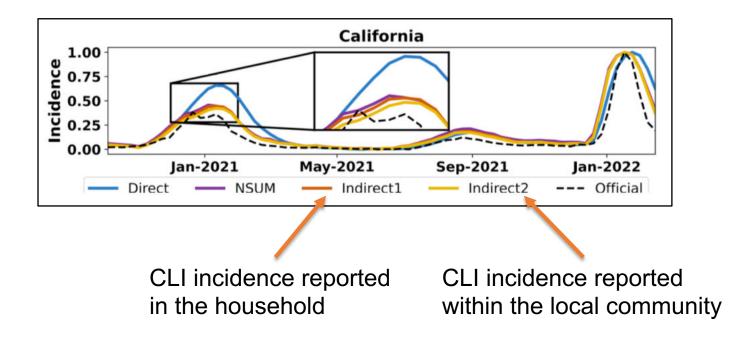
Theorem: If

$$\lambda \ge \frac{w \,\varepsilon_f}{1 - \left(\frac{1}{1 - w \,\varepsilon_\sigma}\right) \sqrt{\frac{n_t}{n_w}}}$$


then

$$\Pr(|\bar{X}_{t,w}/\mu - f_t| \ge \lambda f_t) \le \Pr(|\bar{X}_t/\mu - f_t| \ge \lambda f_t)$$

I.e., the smoothed estimate $\overline{X}_{t,w}/\mu$ is less likely to deviate by λ from the true value than the instantaneous value \overline{X}_t/μ



Simulations of an Epidemic Model

Real COVID-19 Data

US COVID-19 Trends and Impact Survey (CTIS) [Salomon et al. 2021]

Real COVID-19 Data

accum	w	state	Direct	NSUM	Indirect1	Indirect2	CLI incidence reported
		CA	0.0703	0.0443	0.0341 🗲	0.0292	in the household
	1	TX	0.0661	0.0379	0.0289	0.0270	
		NY	0.0785	0.0315	0.0301	0.0299	
		PN	0.0572	0.0368	0.0300	0.0263	CLI incidence reported
		CA	0.1148	0.0988	0.0881	0.0811	within the local
7 3	2	TX	0.1236	0.0890	0.0813	0.0782	community
	3	NY	0.1210	0.0930	0.0910	0.0886 📕	
		PN	0.0956	0.0907	0.0816	0.0691	
		CA	0.0836	0.0624	0.0524	0.0477	
	1	TX	0.0779	0.0385	0.0343	0.0336	
	1	NY	0.0929	0.0520	0.0504	0.0500	
		PN	0.0689	0.0389	0.0391	0.0429	
14	3	CA	0.1441	0.1217	<u>0.1116</u>	0.1059	
		TX	0.1349	0.1058	<u>0.1042</u>	0.1027	MAE of the
		NY	0.1571	0.1165	<u>0.1126</u>	0.1090	normalized COVID-19
		PN	0.1349	0.1182	<u>0.1110</u>	0.1005	incidence curves

US COVID-19 Trends and Impact Survey (CTIS) [Salomon et al. 2021]

Conclusions

- Indirect surveys are a useful tool to monitor society
- Provide good estimates even with limited number of responses
- Can be easily used to monitor trends
- Limits and assumptions that make it applicable have to be explored
- Not widely exploited over time and space: opportunities for research in dynamic networks

Future Work

- Monitoring of social phenomena:
 - Epidemics (COVID-19, monkey pox, malaria)
 - Harassment and bullying incidence
 - Customer opinions and marketing
 - Vote intention
- Evolution over time of these phenomena
- We need to understand better the limitations of the method both for one-shot and continuous monitoring:
 - Worst cases
 - Average practical cases

Thank you!

Impact track at AAAI-2024 Ajitesh Srivastava, Juan Marcos Ramirez, Sergio Día Anta, Antonio Ortega, Rosa Elvira Lillo: Nowcasting Temporal Trends Using Indirect Surveys. AAAI 2024: 22359-22367 https://doi.org/10.48550/arXiv.2307.06643

MINISTERIO DE CIENCIA E INNOVACIÓN **Financiado por** Plan de Recuperación Transformación y Resiliencia AGENCIA ESTATAL DE INVESTIGACIÓI la Unión Europea NextGenerationEU

onorable Mention to Best

Paper for the Al for Social

coronasurveys.org

This research was supported by SocialProbing project (TED2021-131264B-I00), and PID2019-104901RB-I00 funded by MCIN/AEI /10.13039/501100011033 and the European Union-NextGenerationEU/PRTR.

