Parameterized Algorithms for Multi-Label Periodic Temporal Graph Realization

<u>Thomas Erlebach</u>¹, Nils Morawietz², Petra Wolf³

¹ Durham University, UK ² Friedrich Schiller University Jena, Germany ³ Université de Bordeaux, France

(slides (mostly) by Nils Morawietz)

AATG-VII, Tallinn, 7/7/24

Periodic Temporal Graph Realization

We study the problem of realizing a periodic temporal graph introduced by Klobas et al. (SAND '24).

Periodic Temporal Graph Realization

Periodic Temporal Graph Realization

Periodic Temporal Graph Realization

Periodic Temporal Graph Realization

Periodic Temporal Graph Realization

Periodic Temporal Graph Realization

Periodic Temporal Graph Realization

Multi-Label Periodic TGR Input: A graph G = (V, E), a duration matrix D, a period Δ ,

Multi-Label Periodic TGR Input: A graph G = (V, E), a duration matrix D, a period Δ , and $\ell \in \mathbb{N}$. **Question:**

Multi-Label Periodic TGR Input: A graph G = (V, E), a duration matrix D, a period Δ , and $\ell \in \mathbb{N}$.

Multi-Label Periodic TGR

Input: A graph G = (V, E), a duration matrix D, a period Δ , and $\ell \in \mathbb{N}$.

Multi-Label Periodic TGR

Input: A graph G = (V, E), a duration matrix D, a period Δ , and $\ell \in \mathbb{N}$.

Multi-Label Periodic TGR

Input: A graph G = (V, E), a duration matrix D, a period Δ , and $\ell \in \mathbb{N}$.

Multi-Label Periodic TGR

Input: A graph G = (V, E), a duration matrix D, a period Δ , and $\ell \in \mathbb{N}$.

Theorem (Klobas et al., SAND '24)

Periodic TGR is NP-hard for each $\Delta \geq 3$.

Theorem (Klobas et al., SAND '24)

Periodic TGR is NP-hard for each $\Delta \geq 3$.

Theorem

For each $\ell \ge 1$, Multi-Label Periodic TGR is NP-hard even on split graphs with $\Delta = 6$ and $d_{max} = 3$.

Theorem (Klobas et al., SAND '24)

Periodic TGR is NP-hard for each $\Delta \geq 3$.

Theorem

For each $\ell \ge 1$, Multi-Label Periodic TGR is NP-hard even on split graphs with $\Delta = 6$ and $d_{\max} = 3$.

Theorem (Klobas et al., SAND '24)

Periodic TGR is polynomial-time solvable for trees and FPT with respect to feedback edge number.

Theorem (Klobas et al., SAND '24)

Periodic TGR is NP-hard for each $\Delta \geq 3$.

Theorem

For each $\ell \ge 1$, Multi-Label Periodic TGR is NP-hard even on split graphs with $\Delta = 6$ and $d_{\max} = 3$.

Theorem (Klobas et al., SAND '24)

Periodic TGR is polynomial-time solvable for trees and FPT with respect to feedback edge number.

Theorem

For each $\ell \geq 5$, Multi-Label Periodic TGR is NP-hard on stars.

Reduction from Vertex Cover ("is there a vertex cover of size k in the graph G?")

$$k = 3$$

Reduction from Vertex Cover ("is there a vertex cover of size k in the graph G?")

$$k = 3$$

Reduction from Vertex Cover ("is there a vertex cover of size k in the graph G?")

Implications: No FPT-algorithms for (i) $k := \ell + vc$ or (ii) $k := \ell + d_{max}$.

Implications: No FPT-algorithms for (i) $k := \ell + vc$ or (ii) $k := \ell + d_{max}$.

 $vc \doteq vertex cover number$

Thomas Erlebach

Implications: No FPT-algorithms for (i) $k := \ell + vc$ or (ii) $k := \ell + d_{max}$.

→ Consider larger parameter combinations!

 $vc \doteq vertex cover number$

Thomas Erlebach
Implications: No FPT-algorithms for (i) $k := \ell + vc$ or (ii) $k := \ell + d_{max}$.

→ Consider larger parameter combinations!

Theorem

Multi-Label Periodic TGR is FPT for

 $vc \doteq vertex cover number$

Implications: No FPT-algorithms for (i) $k := \ell + vc$ or (ii) $k := \ell + d_{max}$.

→ Consider larger parameter combinations!

Theorem

Multi-Label Periodic TGR is FPT for

• the number n of vertices and

 $vc \doteq vertex cover number$

Implications: No FPT-algorithms for (i) $k := \ell + vc$ or (ii) $k := \ell + d_{max}$.

→ Consider larger parameter combinations!

Theorem

Multi-Label Periodic TGR is FPT for

- the number n of vertices and
- $vc + \Delta$.

 $vc \doteq vertex cover number$

Implications: No FPT-algorithms for (i) $k := \ell + vc$ or (ii) $k := \ell + d_{max}$.

→ Consider larger parameter combinations!

Theorem

Multi-Label Periodic TGR is FPT for

- the number n of vertices and
- $vc + \Delta$.

Theorem

Multi-Label Periodic TGR admits a polynomial kernel for $nu + d_{max}$.

 $vc \doteq vertex cover number$

Implications: No FPT-algorithms for (i) $k := \ell + vc$ or (ii) $k := \ell + d_{max}$.

→ Consider larger parameter combinations!

Theorem

Multi-Label Periodic TGR is FPT for

- the number n of vertices and
- $vc + \Delta$.

Theorem

Multi-Label Periodic TGR admits a polynomial kernel for $nu + d_{max}$.

vc $\hat{=}$ vertex cover number, nu $\hat{=}$ number of non-universal vertices

W.I.o.g.: $\ell \leq n^2$

W.l.o.g.: $\ell \leq n^2$ (if an edge receives $> n^2$ labels, one can be omitted)

W.l.o.g.: $\ell \leq n^2$ (if an edge receives $> n^2$ labels, one can be omitted) \rightsquigarrow If there is a solution, then there is one with at most $n^2 \cdot \ell \leq n^4$ non-empty snapshots

W.l.o.g.: $\ell \leq n^2$ (if an edge receives $> n^2$ labels, one can be omitted) \rightsquigarrow If there is a solution, then there is one with at most $n^2 \cdot \ell \leq n^4$ non-empty snapshots

G

W.l.o.g.: $\ell \leq n^2$ (if an edge receives $> n^2$ labels, one can be omitted) \rightsquigarrow If there is a solution, then there is one with at most $n^2 \cdot \ell \leq n^4$ non-empty snapshots

 $\overbrace{}^{\Delta}$

G

W.l.o.g.: $\ell \leq n^2$ (if an edge receives $> n^2$ labels, one can be omitted) \rightsquigarrow If there is a solution, then there is one with at most $n^2 \cdot \ell \leq n^4$ non-empty snapshots

W.l.o.g.: $\ell \leq n^2$ (if an edge receives $> n^2$ labels, one can be omitted) \rightsquigarrow If there is a solution, then there is one with at most $n^2 \cdot \ell \leq n^4$ non-empty snapshots

Guess the $\mathcal{O}(n^4)$ non-empty snapshots

Guess the $\mathcal{O}(n^4)$ non-empty snapshots (in $n^{\mathcal{O}(n^4)}$ time)

Guess the $\mathcal{O}(n^4)$ non-empty snapshots (in $n^{\mathcal{O}(n^4)}$ time) Remaining task:

Guess the $\mathcal{O}(n^4)$ non-empty snapshots (in $n^{\mathcal{O}(n^4)}$ time)

Remaining task: Determine number of empty snapshots between any two non-empty ones

Guess the $\mathcal{O}(n^4)$ non-empty snapshots (in $n^{\mathcal{O}(n^4)}$ time)

Remaining task: Determine number of empty snapshots between any two non-empty ones

 \rightsquigarrow Use an ILP with $\mathcal{O}(n^4)$ variables

Guess the $\mathcal{O}(n^4)$ non-empty snapshots (in $n^{\mathcal{O}(n^4)}$ time)

Remaining task: Determine number of empty snapshots between any two non-empty ones

 \rightsquigarrow Use an ILP with $\mathcal{O}(n^4)$ variables (takes $n^{\mathcal{O}(n^4)}$ time)

Guess the $\mathcal{O}(n^4)$ non-empty snapshots (in $n^{\mathcal{O}(n^4)}$ time)

Remaining task: Determine number of empty snapshots between any two non-empty ones

 \rightsquigarrow Use an ILP with $\mathcal{O}(n^4)$ variables (takes $n^{\mathcal{O}(n^4)}$ time)

Theorem

Multi-Label Periodic TGR can be solved in $n^{\mathcal{O}(n^4)}$ time.

8/12

Determine whether a set L of non-empty snapshots can be assigned to time steps so that the temporal graph realizes D:

• Variables *t_i*: time step for *i*-th snapshot

Determine whether a set L of non-empty snapshots can be assigned to time steps so that the temporal graph realizes D:

- Variables *t_i*: time step for *i*-th snapshot
- Guess s_{uv} for all (u, v): The layer in which the journey realizing D_{uv} starts.

Determine whether a set L of non-empty snapshots can be assigned to time steps so that the temporal graph realizes D:

- Variables *t_i*: time step for *i*-th snapshot
- Guess s_{uv} for all (u, v): The layer in which the journey realizing D_{uv} starts.
- Calculate a(u, v, i) = (j, z) so that fastest u-v-journey starting in *i*-th layer reaches v in *j*-th layer z periods later

Determine whether a set L of non-empty snapshots can be assigned to time steps so that the temporal graph realizes D:

- Variables *t_i*: time step for *i*-th snapshot
- Guess s_{uv} for all (u, v): The layer in which the journey realizing D_{uv} starts.
- Calculate a(u, v, i) = (j, z) so that fastest u-v-journey starting in *i*-th layer reaches v in *j*-th layer z periods later

ILP:

$$\begin{array}{ll} t_j + z\Delta - t_i + 1 = D_{uv}, & \forall (u, v), i = s_{uv}, a(u, v, i) = (j, z) \\ t_j + z\Delta - t_i + 1 \geq D_{uv}, & \forall (u, v), i \neq s_{uv}, a(u, v, i) = (j, z) \\ t_1 \geq 1 \\ t_i - t_{i-1} \geq 1, & \forall i : 2 \leq i \leq L \\ t_L \leq \Delta \end{array}$$

Goal: Reduce the number of vertices to at most $f(vc + \Delta)$

Goal: Reduce the number of vertices to at most $f(vc + \Delta)$

The number of neighborhood classes is bounded

Goal: Reduce the number of vertices to at most $f(vc + \Delta)$

The number of **neighborhood classes** is bounded

How to reduce the size of a neighborhood class C with $|C|>2^{\Delta\cdot \mathrm{vc}}$?

Goal: Reduce the number of vertices to at most $f(vc + \Delta)$

The number of **neighborhood classes** is bounded

How to reduce the size of a neighborhood class C with $|C| > 2^{\Delta \cdot vc}$?

C contains label twins u and v

Goal: Reduce the number of vertices to at most $f(vc + \Delta)$

The number of **neighborhood classes** is bounded

How to reduce the size of a neighborhood class C with $|C| > 2^{\Delta \cdot vc}$?

C contains **label twins** u and v (i.e. $\lambda(\{u, w\}) = \lambda(\{v, w\})$ for each $w \in N(v)$)

Goal: Reduce the number of vertices to at most $f(vc + \Delta)$

The number of **neighborhood classes** is bounded

How to reduce the size of a neighborhood class C with $|C|>2^{\Delta\cdot \mathrm{vc}}?$

C contains **label twins** u and v (i.e. $\lambda(\{u, w\}) = \lambda(\{v, w\})$ for each $w \in N(v)$)

Goal: Reduce the number of vertices to at most $f(vc + \Delta)$

The number of **neighborhood classes** is bounded

How to reduce the size of a neighborhood class C with $|C|>2^{\Delta\cdot \mathrm{vc}}?$

C contains **label twins** u and v (i.e. $\lambda(\{u, w\}) = \lambda(\{v, w\})$ for each $w \in N(v)$)

Goal: Reduce the number of vertices to at most $f(vc + \Delta)$

The number of **neighborhood classes** is bounded

How to reduce the size of a neighborhood class C with $|C|>2^{\Delta\cdot \mathrm{vc}}?$

C contains **label twins** u and v (i.e. $\lambda(\{u, w\}) = \lambda(\{v, w\})$ for each $w \in N(v)$)

Goal: Reduce the number of vertices to at most $f(vc + \Delta)$

The number of **neighborhood classes** is bounded

How to reduce the size of a neighborhood class C with $|C| > 2^{\Delta \cdot vc}$?

C contains **label twins** u and v (i.e. $\lambda(\{u, w\}) = \lambda(\{v, w\})$ for each $w \in N(v)$)

Goal: Reduce the number of vertices to at most $f(vc + \Delta)$

The number of **neighborhood classes** is bounded

How to reduce the size of a neighborhood class C with $|C| > 2^{\Delta \cdot vc}$?

C contains **label twins** u and v (i.e. $\lambda(\{u, w\}) = \lambda(\{v, w\})$ for each $w \in N(v)$)

Parameter combination vc + Δ

Goal: Reduce the number of vertices to at most $f(vc + \Delta)$

The number of **neighborhood classes** is bounded

How to reduce the size of a neighborhood class C with $|C| > 2^{\Delta \cdot vc}$?

C contains **label twins** u and v (i.e. $\lambda(\{u, w\}) = \lambda(\{v, w\})$ for each $w \in N(v)$)

The rows (columns) of label twins in D are identical

Detect identical rows & columns and remove one

Parameter combination vc + Δ

Goal: Reduce the number of vertices to at most $f(vc + \Delta)$

The number of **neighborhood classes** is bounded

How to reduce the size of a neighborhood class C with $|C| > 2^{\Delta \cdot \mathrm{vc}}$?

C contains **label twins** u and v (i.e. $\lambda(\{u, w\}) = \lambda(\{v, w\})$ for each $w \in N(v)$)

The rows (columns) of label twins in D are identical

Detect identical rows & columns and remove one

 \rightsquigarrow vertex-kernel of size $2^{\mathcal{O}(\Delta \cdot \mathrm{vc})}$

Parameter combination vc + Δ

Goal: Reduce the number of vertices to at most $f(vc + \Delta)$

The number of **neighborhood classes** is bounded

How to reduce the size of a neighborhood class C with $|{\it C}|>2^{\Delta\cdot vc}?$

C contains **label twins** u and v (i.e. $\lambda(\{u, w\}) = \lambda(\{v, w\})$ for each $w \in N(v)$)

The rows (columns) of label twins in D are identical

Detect identical rows & columns and remove one

 \rightsquigarrow vertex-kernel of size $2^{\mathcal{O}(\Delta \cdot vc)}$ (or $\Delta^{\mathcal{O}(\ell \cdot vc)}$)

We developed parameterized algorithms for Multi-Label Periodic TGR (and a non-periodic version).

We developed parameterized algorithms for Multi-Label Periodic TGR (and a non-periodic version).

Multi-Label Periodic TGR is NP-hard on stars for $\ell \geq 5$ and in P on general trees for $\ell = 1$:

We developed parameterized algorithms for Multi-Label Periodic TGR (and a non-periodic version).

Multi-Label Periodic TGR is NP-hard on stars for $\ell \ge 5$ and in P on general trees for $\ell = 1$: What is the complexity for $\ell \in \{2, 3, 4\}$?

We developed parameterized algorithms for Multi-Label Periodic TGR (and a non-periodic version).

Multi-Label Periodic TGR is NP-hard on stars for $\ell \ge 5$ and in P on general trees for $\ell = 1$: What is the complexity for $\ell \in \{2, 3, 4\}$?

Find other parameters for which the problem is FPT.

We developed parameterized algorithms for Multi-Label Periodic TGR (and a non-periodic version).

Multi-Label Periodic TGR is NP-hard on stars for $\ell \ge 5$ and in P on general trees for $\ell = 1$: What is the complexity for $\ell \in \{2, 3, 4\}$?

Find other parameters for which the problem is FPT.

Is there a polynomial kernel for n?

We developed parameterized algorithms for Multi-Label Periodic TGR (and a non-periodic version).

Multi-Label Periodic TGR is NP-hard on stars for $\ell \ge 5$ and in P on general trees for $\ell = 1$: What is the complexity for $\ell \in \{2, 3, 4\}$?

Find other parameters for which the problem is FPT.

Is there a polynomial kernel for n?

Consider other variations of the problem:

• *D* specifies only an upper bound and not the exact duration.

We developed parameterized algorithms for Multi-Label Periodic TGR (and a non-periodic version).

Multi-Label Periodic TGR is NP-hard on stars for $\ell \ge 5$ and in P on general trees for $\ell = 1$: What is the complexity for $\ell \in \{2, 3, 4\}$?

Find other parameters for which the problem is FPT.

Is there a polynomial kernel for n?

Consider other variations of the problem:

- *D* specifies only an upper bound and not the exact duration.
- Entries of *D* may contain more than one value, the duration of the fastest paths must be one of these values.

We developed parameterized algorithms for Multi-Label Periodic TGR (and a non-periodic version).

Multi-Label Periodic TGR is NP-hard on stars for $\ell \ge 5$ and in P on general trees for $\ell = 1$: What is the complexity for $\ell \in \{2, 3, 4\}$?

Find other parameters for which the problem is FPT.

Is there a polynomial kernel for n?

Consider other variations of the problem:

- D specifies only an upper bound and not the exact duration.
- Entries of *D* may contain more than one value, the duration of the fastest paths must be one of these values.
- Consider non-strict instead of strict temporal paths.

Thank you! Questions?