
parameters for dense temporal graphs

Jess Enright, Sam Hand, Laura Larios-Jones, Kitty Meeks,
July 5, 2024

School of Computing Science, University of Glagow



the executive summary

We like to do parameterised algorithmics on temporal graphs.

The parameters we had previously used for temporal graphs either
requires sparseness of activity or don’t work well.

We have started using a few generalisations from static parameters
that allow denseness and give some tractability results.
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parameterised complexity

We consider parameterisations that capture properties of the input
(e.g. graph structure) or desired solution (e.g. solution size).

Aim is algorithms for NP-hard problems whose running time is
bounded by

f(k) · nc,

∙ instances of total size n
∙ with parameter value k
∙ f is any (computable) function and
∙ c is a fixed constant that does not depend on k

Parameterised problems admitting such an algorithm belong to the
class FPT.
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temporal graphs
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A temporal graph is a pair (G, λ) where G is a graph and λ maps
edges of G to non-empty subsets of N.

Given e ∈ E(G) and t ∈ λ(e), we call (e, t) a time-edge or edge
appearance.

The lifetime is latest time at which any edge appears.

A (strict) temporal walk requires increasing times
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everything is harder on temporal graphs

StarExp
Input: A temporal graph (Sn, λ), where Sn is a star with n leaves.
Question: Does there exist a temporal walk, starting and ending at
the centre of the star, that visits every vertex?
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so we need parameterised approaches!

How might we parameterise?

∙ Restrict the underlying graph
∙ Restrict the temporal structure
∙ Restrict something else: e.g. solution size
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restricting the underlying structure

∙ Maximum Temporal Matching is NP-hard even when G is a path
(Mertzios, Molter, Niedermeier, Zamaraev & Zschoche, 2020).

∙ TempEuler is NP-complete even if:
∙ each edge appears at only 2 times (Marino & Silva, 2021);
∙ each edge appears at only 3 times, and G has feedback vertex number
one (Bumpus & Meeks, 2021);

∙ each edge appears at only 4 times, and G has vertex cover number 2
(Bumpus & Meeks, 2021).

∙ StarExp is solvable in polynomial time if each edge appears at
most 3 times (Akrida, Mertzios & Spirakis, 2019), but NP-complete if
edges are allowed to appear 4 or more times (Bumpus & Meeks,
2021); G is always a tree of vertex-cover number 1.
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we need to consider temporal structure

Obvious temporal parameters:

∙ lifetime
∙ maximum number of times at which any edge appears
∙ maximum number of edges appearing at any one time

Parameters combining times and graph structure:

∙ timed feedback vertex number
∙ temporal feedback edge/connection number
∙ several different temporal interpretations of treewidth
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edge-interval-membership-width

The (edge) interval membership sequence of a temporal graph (G, λ)
with lifetime Λ is the sequence (Ft)t∈[Λ] of edge-subsets of G where
Ft := {e ∈ E(G) : minλ(e) ≤ t ≤ maxλ(e)}.
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The (edge)-interval-membership-width of (G, λ) is the integer
imw(G, λ) := maxt∈[Λ] |Ft|.
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edge-interval-membership-width

Theorem (Bumpus & Meeks, 2021)
StarExp can be solved in time O(w323wΛ) where Λ and w are
respectively the lifetime and edge-interval-membership-width of the
input graph (G, λ).

And gives progress on quite a few other problems, particularly if you
look at its more-powerful cousin vertex-interval-membership-width.

∙ including Temporal Graph Burning

But these require sparseness of activity, and we want to be able to
deal with graphs where a lot of edges can be active at the same time.
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we wanted parameters for ‘denser’ temporal graphs

We have started using a few generalisations from static parameters
that allow lots of active edges at a time and give some tractability
results.
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neighbourhood diversity

The neighbourhood diversity of a graph G = (V, E) is the smallest
integer k such that V can be partitioned into sets V1, . . . , Vk with the
property that, if x, y ∈ Vi for any i then N(x) \ {y} = N(y) \ {x}.
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temporal neighbourhood diversity

The temporal neighbourhood diversity of a temporal graph
(G = (V, E), λ) is the smallest integer k such that V can be partitioned
into sets V1, . . . , Vk with the property that, if x, y ∈ Vi for any i then, for
all times t and all vertices z /∈ {x, y}, t ∈ λ(xz) if and only if t ∈ λ(yz).
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tractability with temporal neighbourhood diversity

SingMinReachDelete
Input: A temporal graph (G, λ), a vertex s ∈ V(G) and positive integers
k and h.
Question: Is it possible to delete at most k time-edges from (G, λ) so
that no more than h vertices are reachable from S?

Theorem
SingMinReachDelete is in FPT parameterised simultaneously by the
temporal neighbourhood diversity of the input graph and the
maximum number of appearances of any edge.
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tractability with temporal neighbourhood diversity

Temporal Graph Burning:

1. At time t = 0 a fire is placed at a chosen vertex. All other vertices
are unburnt.

2. At all times t ≥ 1, the fire spreads, burning all vertices u adjacent
to an already burning vertex v where the edge between u and v is
active at time t. Then, another fire is placed at a chosen vertex.

3. This process ends once all vertices are burning.

Temporal Graph Burning
Input: A temporal graph (G, λ) and an integer `.
Question: Does there exist a successful burning strategy for (G, λ) of
length less than or equal to `?
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tractability with temporal neighbourhood diversity

Temporal Graph Burning
Input: A temporal graph (G, λ) and an integer `.
Question: Does there exist a successful burning strategy for (G, λ) of
length less than or equal to `?

Theorem
Temporal Graph Burning admits an FPT algorithm parameterised by
the temporal neighbourhood diversity of the input graph.
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generalisation i: temporal modular width
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generalisation i: temporal modular width

Theorem
Temporal Graph Burning is NP-hard even when restricted to graphs
with constant temporal modular-width.
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generalisation i: temporal modular width

Theorem
Temporal Graph Burning is NP-hard even when restricted to graphs
with constant temporal modular-width.

Theorem
StarExp is solvable in time (kτ)!(kτ)O(1) when the temporal
modular-width of the graph is at most k and every edge appears at
most τ times.
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generalisation ii: temporal cliquewidth

∙ Cliquewidth is a further generalisation of modular width, which
allows an additional “relabelling” operation

∙ Graphs of bounded modular width cannot contain long induced
paths, whereas an n-vertex path has cliquewidth 3 for arbitrarily
large n

∙ We define a natural temporal analogue as for the previous
parameters
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allows an additional “relabelling” operation

∙ Graphs of bounded modular width cannot contain long induced
paths, whereas an n-vertex path has cliquewidth 3 for arbitrarily
large n

∙ We define a natural temporal analogue as for the previous
parameters

Theorem
StarExp is NP-hard on temporal graphs with temporal cliquewidth 3.
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generalisation ii: temporal cliquewidth

Temporal ∆ Clique
Input: A temporal graph G = (V, E, λ) and two integers ∆ and h.
Question: Is there a set V′ ⊆ V of at least r vertices such that, for
every u, v ∈ V′ and every window of ∆ consecutive timesteps, the
edge uv appears at least once in the window?

Theorem
Temporal ∆ Clique is in FPT parameterised by the temporal
cliquewidth of the input graph (provided that we are given a
temporal cliquewidth construction of the input graph).
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generalisation ii: temporal cliquewidth

Conjecture
Any temporal graph property expressible in first-order logic admits
an FPT algorithm parameterised simultaneously by the temporal
cliquewidth and the length of the formula.
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the executive summary - again!

We like to do parameterised algorithmics on temporal graphs.

The parameters we had previously used for temporal graphs either
requires sparseness of activity or don’t work well.

We have started using a few generalisations from static parameters
that allow denseness and give some tractability results.
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thanks and future directions

∙ Find more problems that are tractable parameterised by these
parameters

∙ Is there a Courcelle-style metatheorem for temporal cliquewidth?

∙ Investigate the values of these parameters on real-world temporal
networks

Figure 1: arxiv.org/abs/2404.19453 19


