Path Covers of Temporal Graphs: When is Dilworth dynamic?

Dibyayan Chakraborty School of Computing, University of Leeds

Algorithmic Aspects of Temporal Graphs VII Satellite workshop of ICALP 2024 07-07-2024

Figure: (from left) Dr. Antoine Dailly, Dr. Florent Foucaud, Prof. Ralf Klasing

- LIMOS, University of Clermont-Ferrand, France.
- School of Computing, University of Leeds, UK.
- LaBRI, University of Bordeaux.

Thanks to Antoine for the slides !

· Path Cover : ^A set of Paths that cover all Vertices of ^a (digraph. Path Cover Problem Input : ^A (disgraph Output: ^A path cover of min . Size - > Hard in general . - > Polynomial time solvable in DAGs.

Theorem [Dilworth, 1950]

The minimum size of a chain partition of a finite poset is equal to the maximum size of an antichain of this poset.

*{*1*,*2*,*3*} {*1*,*2*,*4*} {*1*,*2*}* m *{*1*} {*2*} {*4*}*

Theorem [Dilworth, 1950]

The minimum size of a path partition of a transitive DAG is equal to the maximum size of an antichain of this DAG.

Restated for graphs...

*{*1*,*2*,*3*} {*1*,*2*,*4*} {*1*,*2*}* ⊶ *{*1*} {*2*} {*4*}*

Theorem [Dilworth, 1950]

The minimum size of a path cover of a DAG is equal to the maximum size of an antichain of this DAG.

> Restated for graphs... ... and covers.

*{*1*,*2*,*3*} {*1*,*2*,*4*} {*1*,*2*}* ⊶ *{*1*} {*2*} {*4*}*

Theorem [Dilworth, 1950]

The minimum size of a path cover of a DAG is equal to the maximum size of an antichain of this DAG.

> Restated for graphs... ... and covers.

Algorithms:

Algorithmic proof (polynomial time) [Fulkerson, 1956]

Introduction: temporal (di)graphs

Many results and applications in distributed algorithms, dynamic networks (transportation, social, biological...), interest in the graph algorithms community.

• A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).

- A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).
- (Directed) temporal path : strictly increasing time labels.

- A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).
- (Directed) temporal path : strictly increasing time labels.
- A temporal path occupies a vertex during interval $[t_1, t_2]$ if it reaches it at time t_1 and leaves it at time t_2 .

- A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).
- (Directed) temporal path : strictly increasing time labels.
- A temporal path occupies a vertex during interval $[t_1, t_2]$ if it reaches it at time t_1 and leaves it at time t_2 .
- Two temporal paths intersect if they occupy the same vertex during non-disjoint intervals.

- A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).
- (Directed) temporal path : strictly increasing time labels.
- A temporal path occupies a vertex during interval $[t_1, t_2]$ if it reaches it at time t_1 and leaves it at time t_2 .
- Two temporal paths intersect if they occupy the same vertex during non-disjoint intervals. They are temporally disjoint if they do not intersect.

- A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).
- (Directed) temporal path : strictly increasing time labels.
- A temporal path occupies a vertex during interval $[t_1, t_2]$ if it reaches it at time t_1 and leaves it at time t_2 .
- Two temporal paths intersect if they occupy the same vertex during non-disjoint intervals. They are temporally disjoint if they do not intersect.
- Two vertices are temporally connected if there is a temporal path between them.

- A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying (di)graph is a DAG (resp. tree...).
- (Directed) temporal path : strictly increasing time labels.
- A temporal path occupies a vertex during interval $[t_1, t_2]$ if it reaches it at time t_1 and leaves it at time t_2 .
- Two temporal paths intersect if they occupy the same vertex during non-disjoint intervals. They are temporally disjoint if they do not intersect.
- Two vertices are temporally connected if there is a temporal path between them.
- A temporal antichain is a set of vertices who are pairwise not temporally connected.

A temporal Dilworth's theorem?

Temporal Dilworth property?

In a temporal DAG, the minimum size of a temporal path partition/cover is equal to the maximum size of a temporal antichain.

Not all temporal DAGs have the Temporal Dilworth Property.

A temporal Dilworth's theorem?

Temporal Dilworth property?

In a temporal DAG, the minimum size of a temporal path partition/cover is equal to the maximum size of a temporal antichain.

Two problems:

Temporal Path Cover (TPC)

Temporal Path Partition/Temporally Disjoint Path Cover (TD-PC) Femporal Path Cover

Temporal Path Partition/Temporally Disjo

Cover (TD-PC)

Two questions:

Two questions:

Which temporal DAGs have the Dilworth property?

) **Combinatorial** aspect

What is the complexity of those problems?

) **Algorithmic** aspect

Our results

 $*$ planar, subcubic, bipartite, girth 10, $\ell = 1$, $t_{\text{max}} = 2$

 $n =$ number of vertices

 ℓ = number of (unsorted) time labels per arc

 $t_{\text{max}} =$ total number of time-steps

Classes with polynomial-time algorithm also have the Dilworth property.

Our results

 $*$ planar, subcubic, bipartite, girth 10, $\ell = 1$, $t_{\text{max}} = 2$

 $n =$ number of vertices

 ℓ = number of (unsorted) time labels per arc

 $t_{\text{max}} =$ total number of time-steps

Classes with polynomial-time algorithm also have the Dilworth property.

Temporal oriented trees have the Dilworth property for TPC, and we can solve TPC in time $\mathcal{O}(\ell n^2 + n^3)$.

Temporal oriented trees have the Dilworth property for TPC, and we can solve TPC in time $\mathcal{O}(\ell n^2 + n^3)$.

Algorithm

• Construct an auxiliary connectivity graph: two vertices are adjacent \Leftrightarrow they are temporally connected in the tree

Temporal oriented trees have the Dilworth property for TPC, and we can solve TPC in time $\mathcal{O}(\ell n^2 + n^3)$.

Algorithm

• Construct an auxiliary connectivity graph: two vertices are adjacent \Leftrightarrow they are temporally connected in the tree Ten in t

Lemma

Clique in $G \Leftrightarrow$ Temporal Path in \mathscr{T} .

Temporal oriented trees have the Dilworth property for TPC, and we can solve TPC in time $\mathcal{O}(\ell n^2 + n^3)$.

Algorithm

• Construct an auxiliary connectivity graph: two vertices are adjacent \Leftrightarrow they are temporally connected in the tree

There are no holes of length greater than four in the connectivity graph.

There are no holes of length greater than four in the connectivity graph.

Claim

The vertices of the hole are leaves of a connected subtree T^{\prime} .

There are no holes of length greater than four in the connectivity graph.

Claim

The vertices of the hole are leaves of a connected subtree T^{\prime} .

Claim

There are no holes of length greater than four in the connectivity graph.

Claim

The vertices of the hole are leaves of a connected subtree T^{\prime} .

Claim

There are no holes of length greater than four in the connectivity graph.

Claim

The vertices of the hole are leaves of a connected subtree T^{\prime} .

Claim

There are no holes of length greater than four in the connectivity graph.

Claim

The vertices of the hole are leaves of a connected subtree T^{\prime} .

Claim

There are no holes of length greater than four in the connectivity graph.

Claim

The vertices of the hole are leaves of a connected subtree T^{\prime} .

Claim

Alternating between in-arcs and out-arcs from and to $T^{\prime}.$ \Rightarrow No odd hole

There are no holes of length greater than four in the connectivity graph.

Claim

The vertices of the hole are leaves of a connected subtree T^{\prime} .

Claim

Alternating between in-arcs and out-arcs from and to $T^{\prime}.$ \Rightarrow No odd hole

Claim

No even holes of length greater than four either (using Helly property and vertex-intersection of temporal paths).

There are no antiholes in the connectivity graph.

complement of hols ?5

There are no antiholes in the connectivity graph.

The connectivity graph is (hole,antihole)-free

The connectivity graph is (hole, antihole)-free \Rightarrow It is weakly chordal (subclass of perfect)

The connectivity graph is (hole, antihole)-free \Rightarrow It is weakly chordal (subclass of $perfect) \Rightarrow Dilworth property!$

The connectivity graph is (hole,antihole)-free \Rightarrow It is weakly chordal (subclass of $perfect) \Rightarrow Dilworth property!$

Theorem [Hayward, Spinrad & Sritharan, 2000]

There is a *O*(*mn*) algorithm for Clique Cover in weakly chordal graphs with *n* vertices and *m* edges.

The connectivity graph is (hole, antihole)-free \Rightarrow It is weakly chordal (subclass of $perfect) \Rightarrow Dilworth property!$

Theorem [Hayward, Spinrad & Sritharan, 2000]

There is a *O*(*mn*) algorithm for Clique Cover in weakly chordal graphs with *n* vertices and *m* edges.

 \Rightarrow Connectivity graph in $\mathcal{O}(n^2\ell)$, then [HSS00] in $\mathcal{O}(n^2 \times n)$.

The connectivity graph is (hole,antihole)-free \Rightarrow It is weakly chordal (subclass of $perfect) \Rightarrow Dilworth property!$

Theorem [Hayward, Spinrad & Sritharan, 2000]

There is a *O*(*mn*) algorithm for Clique Cover in weakly chordal graphs with *n* vertices and *m* edges.

 \Rightarrow Connectivity graph in $\mathcal{O}(n^2\ell)$, then [HSS00] in $\mathcal{O}(n^2 \times n)$.

Remark

The connectivity graph is not chordal (it may contain C_4).

Temporal Path Cover is NP-hard on Temporal DAGs.

Reduction from 3-DIMENSIONAL MATCHING (inspired by [Monnot and Toulous, 07])

TEMPORAL PATH COVER is NP-hard on Temporal DAGs.

Reduction from 3-DIMENSIONAL MATCHING (inspired by [Monnot and Toulous, 07])

Figure: The gadget $H(s_i)$ for each triplet s_i .

Temporal Path Cover is NP-hard on Temporal DAGs.

Reduction from 3-Dimensional Matching (inspired by [Monnot and Toulous, 07])

Figure: Vertex partition of the gadget $H(s_i)$ into length-2 paths.

Total number of timesteps $= 2$ (bounded); Treewidth is unbounded; There are Temporal DAGs (transitive tournaments) without the Dilworth Property.

Temporal Disjoint Path Cover is NP-hard on temporal oriented trees.

- Reduction from UNARY BIN PACKING (inspired by [Kunz, Molter, Zehavi, 23]);
- Treewidth $= 1$; Total number of timesteps $=$ unbounded;
- Does not have TD-Dilworth property.

TD-PC is FPT w.r.t. tw and *t*max (total number of time-steps)

Dynamic programing on a nice tree decomposition

TD-PC is FPT w.r.t. tw and *t*max (total number of time-steps)

Dynamic programing on a nice tree decomposition

Observation

Any arc of $\mathscr D$ appears in at most t_{max} paths of a TD-PC \Rightarrow At most $p = \binom{tw}{2} \cdot t_{\text{max}}$ temporally disjoint paths contain at least one arc from a given bag

TD-PC is FPT w.r.t. tw and *t*max (total number of time-steps)

Dynamic programing on a nice tree decomposition

Observation

Any arc of $\mathscr D$ appears in at most t_{max} paths of a TD-PC \Rightarrow At most $p = \binom{tw}{2} \cdot t_{\text{max}}$ temporally disjoint paths contain at least one arc from a given bag

For simplicity, duplicate the arcs such that each has only one time label (so a TD-PC uses arc-disjoint paths)

 \Rightarrow At most

A partition Q_0, Q_1, \ldots, Q_t of the arcs inside X_v (Q_i for $i \neq 0$ is in a temporal path P_i of a TD-PC, Q_0 is the unused arcs)

 \Rightarrow At most p^p

- A partition Q_0, Q_1, \ldots, Q_t of the arcs inside X_v (Q_i for $i \neq 0$ is in a temporal path P_i of a TD-PC, Q_0 is the unused arcs)
- For each Q_i , the vertices V_i of X_v that are in P_i (endpoints of arcs in Q_i and those not incident with arcs in *Qⁱ*)

 \Rightarrow At most $p^p \times 2^{\text{tw}}+1$

- A partition Q_0, Q_1, \ldots, Q_t of the arcs inside X_v (Q_i for $i \neq 0$ is in a temporal path P_i of a TD-PC, Q_0 is the unused arcs)
- For each Q_i , the vertices V_i of X_v that are in P_i (endpoints of arcs in Q_i and those not incident with arcs in *Qⁱ*)
- For each V_i , their order of occupation by P_i

 \Rightarrow At most $p^p \times 2^{tw+1} \times (tw+1)!$

- A partition Q_0, Q_1, \ldots, Q_t of the arcs inside X_v (Q_i for $i \neq 0$ is in a temporal path P_i of a TD-PC, Q_0 is the unused arcs)
- For each Q_i , the vertices V_i of X_v that are in P_i (endpoints of arcs in Q_i and those not incident with arcs in *Qⁱ*)
- For each V_i , their order of occupation by P_i
- \bullet For each Q_i , the vertices in V_i with one or two arcs outside of X_i , the time labels of those arcs, and whether the neighbour appears below or above *v* in the decomposition

$$
\Rightarrow \text{At most } p^p \times 2^{\text{tw}+1} \times (\text{tw}+1)! \times 2^{\text{tw}+2} \times t_{\text{max}}^2 \qquad \qquad \text{types for any node}
$$

- A partition Q_0, Q_1, \ldots, Q_t of the arcs inside X_v (Q_i for $i \neq 0$ is in a temporal path P_i of a TD-PC, Q_0 is the unused arcs)
- For each Q_i , the vertices V_i of X_v that are in P_i (endpoints of arcs in Q_i and those not incident with arcs in *Qⁱ*)
- For each V_i , their order of occupation by P_i
- \bullet For each Q_i , the vertices in V_i with one or two arcs outside of X_i , the time labels of those arcs, and whether the neighbour appears below or above *v* in the decomposition

 \Rightarrow At most $p^p \times 2^{tw+1} \times (tw+1)! \times 2^{tw+2} \times t_{\max}^2 \in 2^{\mathscr{O}(p \log p)}$ types for any node

Consistency of a type

- \bullet The ordered vertices V_i , the arcs of Q_i , and the information about the arcs going outside of X_v , induce temporal paths
- \bullet The arcs going outside of X_V exist in the digraph and their labels are compatible with the order
- \bullet Every vertex of X_v is in a V_i

Now, we compute from the bottom-up, maintaining consistency.

Dynamic programing using consistent types of partial solutions

- **Leaf node:** No partial solution since empty
- **Introduce node:** Check compatibility with the child (either *a* is in a path in the type, or *a* is added as a single-vertex path)
- **Forget node:** Check compatibility with child (the types are the ones obtained by removing the vertex *a*), discard those where *a* has an arc going above
- **Join node:** Check compatibility of the children (partition of arcs, order of vertices, neighbours outside of the bag, are they above or below in the decomposition, ... \Rightarrow all have to agree), don't count twice the paths that intersect the bag

Running time $2^{\mathcal{O}(p \log p)} n$, so FPT w.r.t. $p = f(tw, t_{max})$

Dynamic programing using consistent types of partial solutions

- **Leaf node:** No partial solution since empty
- **Introduce node:** Check compatibility with the child (either *a* is in a path in the type, or *a* is added as a single-vertex path)
- **Forget node:** Check compatibility with child (the types are the ones obtained by removing the vertex *a*), discard those where *a* has an arc going above
- **Join node:** Check compatibility of the children (partition of arcs, order of vertices, neighbours outside of the bag, are they above or below in the decomposition, ... \Rightarrow all have to agree), don't count twice the paths that intersect the bag

```
Running time 2^{\mathcal{O}(p \log p)} n, so FPT w.r.t. p = f(tw, t_{max})
```
And for TPC?

Same principle, but the paths can intersect
Dynamic programing using consistent types of partial solutions

- **Leaf node:** No partial solution since empty
- **Introduce node:** Check compatibility with the child (either *a* is in a path in the type, or *a* is added as a single-vertex path)
- **Forget node:** Check compatibility with child (the types are the ones obtained by removing the vertex *a*), discard those where *a* has an arc going above
- **Join node:** Check compatibility of the children (partition of arcs, order of vertices, neighbours outside of the bag, are they above or below in the decomposition, ... \Rightarrow all have to agree), don't count twice the paths that intersect the bag

```
Running time 2^{\mathcal{O}(p \log p)} n, so FPT w.r.t. p = f(tw, t_{max})
```
And for TPC?

Same principle, but the paths can intersect \Rightarrow More information in type: how many times in the solution does *Qⁱ* appear

Dynamic programing using consistent types of partial solutions

- **Leaf node:** No partial solution since empty
- **Introduce node:** Check compatibility with the child (either *a* is in a path in the type, or *a* is added as a single-vertex path)
- **Forget node:** Check compatibility with child (the types are the ones obtained by removing the vertex *a*), discard those where *a* has an arc going above
- **Join node:** Check compatibility of the children (partition of arcs, order of vertices, neighbours outside of the bag, are they above or below in the decomposition, ... \Rightarrow all have to agree), don't count twice the paths that intersect the bag

```
Running time 2^{\mathcal{O}(p \log p)} n, so FPT w.r.t. p = f(tw, t_{max})
```
And for TPC?

Same principle, but the paths can intersect \Rightarrow More information in type: how many times in the solution does Q_i appear \Rightarrow Running time $k^{\mathcal{O}(p \log p)}$ *n* where $k \in \mathcal{O}(n)$ is the solution size \Rightarrow XP w.r.t. *p*

Conclusion and future work

Conclusion and future work

Perspectives

- **Better FPT, FPT for TPC?**
- **•** Approximation?
- Classes of oriented trees where TD-PC is polynomial?
- Other temporal problems that can be reduced to a static problem?

Conclusion and future work

