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Covering graphs with paths
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Introduction: Dilworth's theorem

{1,2,3} {1,2,4}

/]

{1,2}

{1} {2} {4}

TPC Temporal path covers 4 /23



Introduction: Dilworth's theorem

Theorem [Dilworth, 1950] )

The minimum size of a chain partition of a finite poset is
equal to the maximum size of an antichain of this poset.
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Introduction: Dilworth's theorem

Theorem [Dilworth, 1950] )

The minimum size of a path partition of a transitive DAG
is equal to the maximum size of an antichain of this DAG.

Restated for graphs...
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Introduction: Dilworth's theorem

Theorem [Dilworth, 1950] )

The minimum size of a path cover of a DAG is equal to
the maximum size of an antichain of this DAG.

Restated for graphs...
. and covers.
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Introduction: Dilworth's theorem

Theorem [Dilworth, 1950] )

The minimum size of a path cover of a DAG is equal to
the maximum size of an antichain of this DAG.

Restated for graphs...
. and covers.

Algorithms:

@ Algorithmic proof (polynomial time) [Fulkerson, 1956]
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A temporal analogue of Dilworth's theorem?
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Introduction: temporal (di)graphs

2 =(V,A1,Az,..., Ax)

N
/
N

Many results and applications in distributed algorithms, dynamic networks
(transportation, social, biological...), interest in the graph algorithms community.
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A few definitions for this talk

o A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying
(di)graph is a DAG (resp. tree...).
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TPC Temporal path covers 7/23



A few definitions for this talk

o A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying
(di)graph is a DAG (resp. tree...).

o (Directed) temporal path : strictly increasing time labels.

@ A temporal path occupies a vertex during interval [t;, tp] if it reaches it at time t;
and leaves it at time tp.

@ Two temporal paths intersect if they occupy the same vertex during non-disjoint
intervals.

TPC Temporal path covers 7/23



A few definitions for this talk

o A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying
(di)graph is a DAG (resp. tree...).

o (Directed) temporal path : strictly increasing time labels.

@ A temporal path occupies a vertex during interval [t;, tp] if it reaches it at time t;
and leaves it at time tp.

@ Two temporal paths intersect if they occupy the same vertex during non-disjoint
intervals. They are temporally disjoint if they do not intersect.

TPC Temporal path covers 7/23



A few definitions for this talk

o A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying
(di)graph is a DAG (resp. tree...).

(Directed) temporal path : strictly increasing time labels.

A temporal path occupies a vertex during interval [t1, to] if it reaches it at time t;
and leaves it at time tp.

@ Two temporal paths intersect if they occupy the same vertex during non-disjoint
intervals. They are temporally disjoint if they do not intersect.

@ Two vertices are temporally connected if there is a temporal path between them.

TPC Temporal path covers 7/23



A few definitions for this talk

o A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying
(di)graph is a DAG (resp. tree...).

(Directed) temporal path : strictly increasing time labels.

A temporal path occupies a vertex during interval [t1, to] if it reaches it at time t;
and leaves it at time tp.

@ Two temporal paths intersect if they occupy the same vertex during non-disjoint
intervals. They are temporally disjoint if they do not intersect.

Two vertices are temporally connected if there is a temporal path between them.

A temporal antichain is a set of vertices who are pairwise not temporally
connected.
3
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A temporal Dilwo theorem?

Temporal Dilworth property?}

In a temporal DAG, the minimum size of a temporal path
partition/cover is equal to the maximum size of a temporal
antichain.

Not all temporal DAGs have the Temporal Dilworth Property.
1

TPC Temporal path covers 8/23



A temporal Dilworth’s theorem?

Temporal Dilworth property?}

In a temporal DAG, the minimum size of a temporal path
partition/cover is equal to the maximum size of a temporal
antichain.

Two problems:

Temporal Path Cover Temporal Path Partition/Temporally Disjoint Path
(TPC) Cover (TD-PC) -

/ Two questions:

Which temporal DAGs have the What is the complexity of
Dilworth property? those problems?

= Combinatorial aspect = Algorithmic aspect
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Our results

<Te~nPo'roJ- Fuf'kao> < Tuw}»mur 'Dil-j- Path &,‘,«’9

Temporal class TPC TD-PC
[ Oriented paths O(Ln) O(Ln)
\| Rooted trees O(Ln?) O(Ln?)
N| Oriented trees O(tn? +n%) NP-hard
~ DAGs* NP-hard NP-hard
. XP (tw and tmax) FPT (tw and tmax)
Digraphs 0 (W tinax log (tw timax)) 20(tw? tmax log(tw tmax)) py

* planar, subcubic, bipartite, girth 10, £ =1, tmax =2

n= number of vertices
£ = number of (unsorted) time labels per arc
tmax = total number of time-steps

Classes with polynomial-time algorithm also have the Dilworth property.
—~——
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Path Cover of temporal oriented trees (1) Back to static

Theorem [CDFK, 2024—1—]]

Temporal oriented trees have the Dilworth property for TPC, and we can solve TPC
in time &(¢n?+ n3).
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Theorem [CDFK, 2024—1—]]

Temporal oriented trees have the Dilworth property for TPC, and we can solve TPC
in time &(¢n?+ n3).

Algorithm

o Construct an auxiliary connectivity graph: two vertices are adjacent < they are
temporally connected in the tree

el

'C)?/u.n— Goven. in tha Comxuzlﬂn%]
Q\uw Sigpa- Cover) & (Min Pocth Goven) o %Mm,

Temporal path covers 12 /23




Path Cover of temporal oriented trees (1) Back to static
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Temporal oriented trees have the Dilworth property for TPC, and we can solve TPC
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Algorithm

o Construct an auxiliary connectivity graph: two vertices are adjacent < they are

temporally connected in the tree
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Clique in G < Temporal Path in 7. ]
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Path Cover of temporal oriented trees (1) Back to static

Theorem [CDFK, 2024—1—]]

Temporal oriented trees have the Dilworth property for TPC, and we can solve TPC
in time &(¢n?+ n3).

Algorithm

o Construct an auxiliary connectivity graph: two vertices are adjacent < they are

temporally connected in the tree
— % =G

Clique Cover in G < Temporal Path Cover in J. ]
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Path Cover of temporal oriented trees (2) Holes

There are no holes of length greater than four in the connectivity graph. ]
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Path Cover of temporal oriented trees (2) Holes

There are no holes of length greater than four in the connectivity graph. ]

The vertices of the hole are leaves of a connected subtree
T
G
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Path Cover of temporal oriented trees (2) Holes

There are no holes of length greater than four in the connectivity graph. ]

Claim N % )

The vertices of the hole are leaves of a connected subtree
T
. J G
Claim
,_[ ) <
Alternating between in-arcs and out-arcs from and to T". \L &
L J x
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Path Cover of temporal oriented trees (2) Holes

There are no holes of length greater than four in the connectivity graph. ]

Claim

,_( ) <
The vertices of the hole are leaves of a connected subtree
T

. J G

Claim <

Alternating between in-arcs and out-arcs from and to T".
= No odd hole
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Path Cover of temporal oriented trees (2) Holes

There are no holes of length greater than four in the connectivity graph. ]

Claim N

The vertices of the hole are leaves of a connected subtree
T

|
Claim <

Alternating between in-arcs and out-arcs from and to T".
= No odd hole

|\ J

Claim N T

No even holes of length greater than four either (using
Helly property and vertex-intersection of temporal paths).

r
-
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Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph. ]

Ccm\%z,w} of hdsg 25
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Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph. ]

= The temporal path of this
edge does not exist in 7.
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Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph. ]
o—0—0—0—0
G
o*—0——0—0—>0
Case 2
Case 1
°© °

= The temporal path of this
edge does not exist in 7.
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Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph. ]

= The temporal path of this = Each has to be complete bipartite in G, only
edge does not exist in 7. possible if order < 7, which we then manage.

TPC Temporal path covers 14 / 23



Path Cover of temporal oriented trees (4) Conclusion

The connectivity graph is (hole,antihole)-free
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Theorem [Hayward, Spinrad & Sritharan, 2000]]

There is a &(mn) algorithm for Clique Cover in weakly chordal graphs with n vertices
and m edges.
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Path Cover of temporal oriented trees (4) Conclusion

The connectivity graph is (holeantihole)-free = It is weakly chordal (subclass of
perfect) = Dilworth property!

Theorem [Hayward, Spinrad & Sritharan, 2000]]

There is a &(mn) algorithm for Clique Cover in weakly chordal graphs with n vertices
and m edges.

= Connectivity graph in &(n?¢), then [HSS00] in &(n? x n).

(@)
Remark 1 2 N
The connectivity graph is not chordal 1 C ’
(it may contain Cy). 2

(@)
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Hardness results (1)
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Hardness results (1)

Theorem [CDFK, 2024-+])

TEMPORAL PATH COVER is NP-hard on Temporal DAGs.

Reduction from 3-DIMENSIONAL MATCHING (inspired by [Monnot and Toulous, 07])
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Theorem [CDFK, 2024-+])

TEMPORAL PATH COVER is NP-hard on Temporal DAGs.

Reduction from 3-DIMENSIONAL MATCHING (inspired by [Monnot and Toulous, 07])

Figure: The gadget H(s;) for each triplet s;.
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Hardness results (1)

Theorem [CDFK, 2024+]]

TEMPORAL PATH COVER is NP-hard on Temporal DAGs.

Reduction from 3-DIMENSIONAL MATCHING (inspired by [Monnot and Toulous, 07])

=)

&
@

@)
(a) sieM (b) sigM

Figure: Vertex partition of the gadget H(s;) into length-2 paths.

Total number of timesteps = 2 (bounded); Treewidth is unbounded; There are
Temporal DAGs (transitive tournaments) without the Dilworth Property.
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Hardness results (2)

Theorem [CDFK, 2024-+])

TEMPORAL DI1sJOINT PATH COVER is NP-hard on temporal oriented trees.

@ Reduction from UNARY BIN PACKING (inspired by [Kunz, Molter, Zehavi, 23]);
o Treewidth = 1; Total number of timesteps = unbounded;

@ Does not have TD-Dilworth property.
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Parameterized complexity of TEMPORAL (Di1sJOINT) PATH COVER
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Parameterized complexity for TEMPORAL DISJOINT PATH COVER

Theorem [CDFK, 2024-+])

TD-PCis FPT w.r.t. tw and tmax (total number of time-steps)

Dynamic programing on a nice tree decomposition
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Parameterized complexity for TEMPORAL DisJOINT PATH COVER

Theorem [CDFK, 2024-+])

TD-PCis FPT w.r.t. tw and tmax (total number of time-steps)

Dynamic programing on a nice tree decomposition

Observation

Any arc of & appears in at most tmax paths of a TD-PC = At most p = (tév) - tmax
temporally disjoint paths contain at least one arc from a given bag

For simplicity, duplicate the arcs such that each has only one time label (so a TD-PC
uses arc-disjoint paths)
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Parameterized complexity for TD-PC (2) Type

Type: necessary information at each node v

= At most types for any node
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@ A partition Qp, Q1,..., Q¢ of the arcs inside X, (Q; for i # 0 is in a temporal path
P; of a TD-PC, Qg is the unused arcs)

@ For each Q;, the vertices V; of X, that are in P; (endpoints of arcs in Q; and
those not incident with arcs in Q;)

o For each V;, their order of occupation by P;

@ For each Q;, the vertices in V; with one or two arcs outside of X,,, the time labels
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Parameterized complexity for TD-PC (3) Consistency

Consistency of a type

@ The ordered vertices V;, the arcs of Q;, and the information about the arcs going
outside of X, induce temporal paths

@ The arcs going outside of X, exist in the digraph and their labels are compatible
with the order

o Every vertex of X, isin a V;

Now, we compute from the bottom-up, maintaining consistency.

TPC Temporal path covers 21 /23



Parameterized complexity for TD-PC (4) Computation

Dynamic programing using consistent types of partial solutions
o Leaf node: No partial solution since empty

@ Introduce node: Check compatibility with the child (either a is in a path in the
type, or a is added as a single-vertex path)

o Forget node: Check compatibility with child (the types are the ones obtained by
removing the vertex a), discard those where a has an arc going above

@ Join node: Check compatibility of the children (partition of arcs, order of vertices,
neighbours outside of the bag, are they above or below in the decomposition, ...
= all have to agree), don’t count twice the paths that intersect the bag

Running time 20(plogp) 5o FPT w.r.t. p = f(tw, tmax)
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Dynamic programing using consistent types of partial solutions
o Leaf node: No partial solution since empty

@ Introduce node: Check compatibility with the child (either a is in a path in the
type, or a is added as a single-vertex path)

o Forget node: Check compatibility with child (the types are the ones obtained by
removing the vertex a), discard those where a has an arc going above

@ Join node: Check compatibility of the children (partition of arcs, order of vertices,
neighbours outside of the bag, are they above or below in the decomposition, ...
= all have to agree), don’t count twice the paths that intersect the bag

Running time 20(plogp) 5o FPT w.r.t. p = f(tw, tmax)

And for TPC?

Same principle, but the paths can intersect = More information in type: how many
times in the solution does Q; appear = Running time k?(P1%8P) n where k € &(n) is
the solution size = XP w.r.t. p
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Conclusion and future work

Temporal class TPC TD-PC
Oriented paths O(Ln) O(Ln)
Rooted trees O ((n?) O (tn?)
Oriented trees O(n?+ n3) NP-hard
DAGs* NP-hard NP-hard
Di h XP (tw and tmax) FPT (tw and tmax)
grapns 10 (W2 tryas 10g (B trnar)) 2O(tW? trnar 108 (tW o)) 1y
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