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Covering graphs with paths
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· Path Cover : A set of Paths that cover all
Vertices of a (digraph.

Path Cover Problem

Input : A (disgraph

Output : A path cover of min . Size

-> Hard in general .
-> Polynomial time solvable in DAGs .



Introduction: Dilworth’s theorem

The minimum size of a chain partition of a is equal to the
maximum size of an antichain of this .p

Theorem [Dilworth, 1950]

Restated for graphs...
... and covers.

{1} {2} {4}

{1,2}

{1,2,3} {1,2,4}
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Introduction: Dilworth’s theorem

The minimum size of a path partition of a transitive DAG
is equal to the maximum size of an antichain of this DAG.p

Theorem [Dilworth, 1950]

Restated for graphs...

... and covers.
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Introduction: Dilworth’s theorem

The minimum size of a path cover of a DAG is equal to
the maximum size of an antichain of this DAG.p

Theorem [Dilworth, 1950]

Restated for graphs...
... and covers.
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Introduction: Dilworth’s theorem

The minimum size of a path cover of a DAG is equal to
the maximum size of an antichain of this DAG.p

Theorem [Dilworth, 1950]

Restated for graphs...
... and covers.

Algorithms:

Algorithmic proof (polynomial time) [Fulkerson, 1956]
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A temporal analogue of Dilworth’s theorem?
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Introduction: temporal (di)graphs

D = (V ,A1,A2, . . . ,Ak)

t = 1 t = 2 t = 3 t = 4

D = (V ,A,l )
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Many results and applications in distributed algorithms, dynamic networks
(transportation, social, biological...), interest in the graph algorithms community.
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A few definitions for this talk

A temporal DAG (resp. tree...) is a temporal (di)graph whose underlying
(di)graph is a DAG (resp. tree...).

(Directed) temporal path : strictly increasing time labels.
A temporal path occupies a vertex during interval [t1,t2] if it reaches it at time t1
and leaves it at time t2.
Two temporal paths intersect if they occupy the same vertex during non-disjoint
intervals. They are temporally disjoint if they do not intersect.
Two vertices are temporally connected if there is a temporal path between them.
A temporal antichain is a set of vertices who are pairwise not temporally
connected.
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[1,3] [3,4]

[4]
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A temporal Dilworth’s theorem?

In a temporal DAG, the minimum size of a temporal path
partition/cover is equal to the maximum size of a temporal
antichain.

Temporal Dilworth property?

Not all temporal DAGs have the Temporal Dilworth Property.

3
2

1

1

1

2

Two problems:

Temporal Path Cover
(TPC)

Temporal Path Partition/Temporally Disjoint Path
Cover (TD-PC)

Two questions:

Which temporal DAGs have the
Dilworth property?

) Combinatorial aspect

What is the complexity of
those problems?

) Algorithmic aspect

TPC Temporal path covers 8 / 23



A temporal Dilworth’s theorem?

In a temporal DAG, the minimum size of a temporal path
partition/cover is equal to the maximum size of a temporal
antichain.

Temporal Dilworth property?

Two problems:

Temporal Path Cover
(TPC)

Temporal Path Partition/Temporally Disjoint Path
Cover (TD-PC)

Two questions:

Which temporal DAGs have the
Dilworth property?

) Combinatorial aspect

What is the complexity of
those problems?

) Algorithmic aspect

TPC Temporal path covers 8 / 23

-
-



Our results

Temporal class TPC TD-PC
Oriented paths O(`n) O(`n)
Rooted trees O(`n2) O(`n2)

Oriented trees O(`n2 +n3) NP-hard
DAGs⇤ NP-hard NP-hard

Digraphs XP (tw and tmax)
nO(tw2

tmax log(tw tmax))
FPT (tw and tmax)

2O(tw2
tmax log(tw tmax))n

⇤ planar, subcubic, bipartite, girth 10, ` = 1, tmax = 2

n = number of vertices
` = number of (unsorted) time labels per arc

tmax = total number of time-steps

Classes with polynomial-time algorithm also have the Dilworth property.

TPC Temporal path covers 9 / 23
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Path Cover of temporal oriented trees (1) Back to static

Temporal oriented trees have the Dilworth property for TPC, and we can solve TPC
in time O(`n2 +n3).

Theorem [CDFK, 2024+]

Algorithm
Construct an auxiliary connectivity graph: two vertices are adjacent , they are
temporally connected in the tree

T =

1

2
2,4

3

3

= G

Clique in G , Temporal Path in T .
Lemma
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· clique Cover in the Connectivity graph
· (Min clique Cover) < (Min Path Cover) of the free
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Temporal oriented trees have the Dilworth property for TPC, and we can solve TPC
in time O(`n2 +n3).

Theorem [CDFK, 2024+]

Algorithm
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Path Cover of temporal oriented trees (2) Holes

There are no holes of length greater than four in the connectivity graph.
Lemma

The vertices of the hole are leaves of a connected subtree
T 0.

Claim

Alternating between in-arcs and out-arcs from and to T 0.

) No odd hole

Claim

No even holes of length greater than four either (using
Helly property and vertex-intersection of temporal paths).

Claim

G

T

T 0
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Path Cover of temporal oriented trees (3) Antiholes

There are no antiholes in the connectivity graph.
Lemma

G

T

Case 1

) The temporal path of this
edge does not exist in T .

Case 2

) Each has to be complete bipartite in G , only
possible if order  7, which we then manage.

) Each has to be complete bipartite in G , only
possible if order  7, which we then manage.

TPC Temporal path covers 14 / 23
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Path Cover of temporal oriented trees (4) Conclusion

The connectivity graph is (hole,antihole)-free

) It is weakly chordal (subclass of
perfect)

) Dilworth property!

Lemmas

There is a O(mn) algorithm for Clique Cover in weakly chordal graphs with n vertices
and m edges.

Theorem [Hayward, Spinrad & Sritharan, 2000]

) Connectivity graph in O(n2`), then [HSS00] in O(n2 ⇥n).

Remark
The connectivity graph is not chordal
(it may contain C4).

1
2

2
1

TPC Temporal path covers 15 / 23
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Hardness results (1)
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Hardness results (1)

Temporal Path Cover is NP-hard on Temporal DAGs.

Theorem [CDFK, 2024+]

Reduction from 3-Dimensional Matching (inspired by [Monnot and Toulous, 07])
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2 2 2

Figure: The gadget H(si ) for each triplet si .
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Figure: Vertex partition of the gadget H(si ) into length-2 paths.

Total number of timesteps = 2 (bounded); Treewidth is unbounded; There are
Temporal DAGs (transitive tournaments) without the Dilworth Property.
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Hardness results (2)

Temporal Disjoint Path Cover is NP-hard on temporal oriented trees.

Theorem [CDFK, 2024+]

Reduction from Unary Bin Packing (inspired by [Kunz, Molter, Zehavi, 23]);
Treewidth = 1; Total number of timesteps = unbounded;
Does not have TD-Dilworth property.

. . .

. . .
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Parameterized complexity of Temporal (Disjoint) Path Cover
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Parameterized complexity for Temporal Disjoint Path Cover

TD-PC is FPT w.r.t. tw and tmax (total number of time-steps)

Theorem [CDFK, 2024+]

Dynamic programing on a nice tree decomposition

Observation
Any arc of D appears in at most tmax paths of a TD-PC ) At most p =

�tw
2
�
· tmax

temporally disjoint paths contain at least one arc from a given bag

For simplicity, duplicate the arcs such that each has only one time label (so a TD-PC
uses arc-disjoint paths)

TPC Temporal path covers 19 / 23
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Parameterized complexity for TD-PC (2) Type

Type: necessary information at each node v

A partition Q0,Q1, . . . ,Qt of the arcs inside Xv (Qi for i 6= 0 is in a temporal path
Pi of a TD-PC, Q0 is the unused arcs)
For each Qi , the vertices Vi of Xv that are in Pi (endpoints of arcs in Qi and
those not incident with arcs in Qi )
For each Vi , their order of occupation by Pi

For each Qi , the vertices in Vi with one or two arcs outside of Xv , the time labels
of those arcs, and whether the neighbour appears below or above v in the
decomposition

) At most

pp ⇥2tw+1 ⇥ (tw+1)!⇥2tw+2 ⇥ t2
max 2 2O(p logp)

types for any node

TPC Temporal path covers 20 / 23
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Parameterized complexity for TD-PC (3) Consistency

Consistency of a type
The ordered vertices Vi , the arcs of Qi , and the information about the arcs going
outside of Xv , induce temporal paths
The arcs going outside of Xv exist in the digraph and their labels are compatible
with the order
Every vertex of Xv is in a Vi

Now, we compute from the bottom-up, maintaining consistency.
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Parameterized complexity for TD-PC (4) Computation

Dynamic programing using consistent types of partial solutions
Leaf node: No partial solution since empty
Introduce node: Check compatibility with the child (either a is in a path in the
type, or a is added as a single-vertex path)
Forget node: Check compatibility with child (the types are the ones obtained by
removing the vertex a), discard those where a has an arc going above
Join node: Check compatibility of the children (partition of arcs, order of vertices,
neighbours outside of the bag, are they above or below in the decomposition, ...
) all have to agree), don’t count twice the paths that intersect the bag

Running time 2O(p logp)n, so FPT w.r.t. p = f (tw,tmax)

And for TPC?
Same principle, but the paths can intersect

) More information in type: how many
times in the solution does Qi appear ) Running time kO(p logp)n where k 2 O(n) is
the solution size ) XP w.r.t. p

TPC Temporal path covers 22 / 23
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Conclusion and future work

Temporal class TPC TD-PC
Oriented paths O(`n) O(`n)
Rooted trees O(`n2) O(`n2)

Oriented trees O(`n2 +n3) NP-hard
DAGs⇤ NP-hard NP-hard

Digraphs XP (tw and tmax)
nO(tw2

tmax log(tw tmax))
FPT (tw and tmax)

2O(tw2
tmax log(tw tmax))n

Perspectives
Better FPT, FPT for TPC?
Approximation?
Classes of oriented trees where TD-PC is
polynomial?
Other temporal problems that can be
reduced to a static problem?
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