


Parameterized problem.
Each instance is associated with a parameter k.
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Unfortunately, not all 
problems are FPT!
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Parameterized Analysis and Temporal Graphs.

• Nowadays, there is a very large number of works on this topic.
• Parameters: Solution size, structural parameters, new parameters (e.g., 

maximum duration).
• Classification (FPT, XP & W[1]-hard, para-NP-hard), Optimality under

(S)ETH, Kernelization. Even: Counting, FPT-approximation, …
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• Nowadays, there is a very large number of works on this topic.
• Parameters: Solution size, structural parameters, new parameters (e.g., 

maximum duration).
• Classification (FPT, XP & W[1]-hard, para-NP-hard), Optimality under

(S)ETH, Kernelization. Even: Counting, FPT-approximation, …

Check Hendrik Molter’s works.
Ø Survey: ``As Time Goes By: Reflections on Treewidth for Temporal 

Graphs’’ in ``Treewidth, Kernels and Algorithms’’, 2020. 





The Disjoint Paths Problem. Given a graph G and a multiset of k terminal
pairs {(si,ti): i∈[k]}, does there exist a collection of pairwise disjoint paths {Pi:
i∈[k]} where for every i∈[k], the endpoints of Pi are si and ti?
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The Graph Minors Project (23 papers, 1983-2004). Any minor-closed family 
of graphs can be characterized by a finite set of forbidden minors.
v The inspiration behind the birth of Parameterized Analysis.
v Yielded numerous concepts, algorithms and structural results. 

Disjoint Paths Is a Central Component of the Graph Minors Project.



Known Results on General Graphs.
Galactic FPT Algorithms: f(k)n3 (RS, ’95), f(k)n2 (KKR, ’12). 
No Polynomial Kernel: (FHW, ‘80).
On Directed Graphs: NP-hard even for k=2 (BTY, ‘11).
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Galactic FPT Algorithms: f(k)n3 (RS, ’95), f(k)n2 (KKR, ’12). 
No Polynomial Kernel: (FHW, ‘80).
On Directed Graphs: NP-hard even for k=2 (BTY, ‘11).

Extensively Studied on Special Graph Classes. E.g., planar graphs, split 
graphs, chordal graphs, …
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Temporal Paths/Walks. A temporal walk in a temporal graph is a sequence
P=((v0,v1,t1),(v1,v2,t2),…,(vr-1,vr,tr)), t1<t2<…<tr, such that each (vi-1,vi) is an
edge in the temporal graph at time ti. When no vertex is repeated, it is a
temporal path.
The walk occupies each vi at time [ti,ti+1] where t0=t1 and tr+1=tr.

Disjointness. Two temporal walks are temporally disjoint if there does not
exist a vertex that they occupy at the same time.

The Temporally Disjoint Paths (Walks) Problem. Defined similarly to the
Disjoint Paths problem.



Known Results. The problems were introduced by Klobas, Mertzios, Molter, 
Niedermeir and Zschoche in IJCAI’21. They proved:
• For Temporally Disjoint Paths:

Ø NP-hard when k=2,
Ø NP-hard on paths,
Ø FPT on trees wrt k. 

• For Temporally Disjoint Walks:
Ø W[1]-hard wrt k,
Ø XP wrt k.





I. Temporally Disjoint Paths and Walks are W[1]-hard wrt n on stars.
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But what if k is part of the parameterization? (Possibly, k>>n since we are
given a multiset of terminal pairs.)
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Main Component. Consider the ``changes of direction’’ of the solution 

walks. We prove that there exist a solution s.t.:

• Their number is O(k) per walk.

• They only occur in O(k)-sized ``regions’’ surrounding sources and sinks.

How to Prove This? Show that a walk changes direction because:

• It ``surrounds’’ a solution walk that has just started or finished.

• It ``surrounds’’ a solution walk that ``surrounds’’ a solution walk that has

just started or finished.

• … [k-1 times].
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large on stars.
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large on stars.
E.g.: Classify Temporally Disjoint Paths (Walks) wrt k + cutwidth/bandwidth.

2. Our hardness results hold when each of the solution’s paths/walks use
only constantly many edges. But, in some of them, the maximum duration
of the solution’s paths/walks is large. So: Consider the duration as part of
the parameterization.
E.g.: Classify Temporally Disjoint Paths (Walks) wrt k + maximum duration.


