


Parameterized problem.
Each instance is associated with a parameter k.

k

Parameterized Algorithms © Meirav Zehavi



k << n

… or worse!f(k)·nO(1) = O*(f(k))
!
"

k

Parameterized Algorithms © Meirav Zehavi



k << n

… or worse!f(k)·nO(1) = O*(f(k))
!
"

k

Unfortunately, not all 
problems are FPT!

Parameterized Algorithms © Meirav Zehavi



Parameterized Analysis and Temporal Graphs.

• Nowadays, there is a very large number of works on this topic.
• Parameters: Solution size, structural parameters, new parameters (e.g., 

maximum duration).
• Classification (FPT, XP & W[1]-hard, para-NP-hard), Optimality under

(S)ETH, Kernelization. Even: Counting, FPT-approximation, …

f(k)·nO(1)

nf(k)



Parameterized Analysis and Temporal Graphs.

• Nowadays, there is a very large number of works on this topic.
• Parameters: Solution size, structural parameters, new parameters (e.g., 

maximum duration).
• Classification (FPT, XP & W[1]-hard, para-NP-hard), Optimality under

(S)ETH, Kernelization. Even: Counting, FPT-approximation, …

Check Hendrik Molter’s works.
Ø Survey: ``As Time Goes By: Reflections on Treewidth for Temporal 

Graphs’’ in ``Treewidth, Kernels and Algorithms’’, 2020. 





The Disjoint Paths Problem. Given a graph G and a multiset of k terminal
pairs {(si,ti): i∈[k]}, does there exist a collection of pairwise disjoint paths {Pi:
i∈[k]} where for every i∈[k], the endpoints of Pi are si and ti?



The Disjoint Paths Problem. Given a graph G and a multiset of k terminal
pairs {(si,ti): i∈[k]}, does there exist a collection of pairwise disjoint paths {Pi:
i∈[k]} where for every i∈[k], the endpoints of Pi are si and ti?

The Graph Minors Project (23 papers, 1983-2004). Any minor-closed family 
of graphs can be characterized by a finite set of forbidden minors.
v The inspiration behind the birth of Parameterized Analysis.
v Yielded numerous concepts, algorithms and structural results. 



The Disjoint Paths Problem. Given a graph G and a multiset of k terminal
pairs {(si,ti): i∈[k]}, does there exist a collection of pairwise disjoint paths {Pi:
i∈[k]} where for every i∈[k], the endpoints of Pi are si and ti?

The Graph Minors Project (23 papers, 1983-2004). Any minor-closed family 
of graphs can be characterized by a finite set of forbidden minors.
v The inspiration behind the birth of Parameterized Analysis.
v Yielded numerous concepts, algorithms and structural results. 

Disjoint Paths Is a Central Component of the Graph Minors Project.



Known Results on General Graphs.
Galactic FPT Algorithms: f(k)n3 (RS, ’95), f(k)n2 (KKR, ’12). 
No Polynomial Kernel: (FHW, ‘80).
On Directed Graphs: NP-hard even for k=2 (BTY, ‘11).



Known Results on General Graphs.
Galactic FPT Algorithms: f(k)n3 (RS, ’95), f(k)n2 (KKR, ’12). 
No Polynomial Kernel: (FHW, ‘80).
On Directed Graphs: NP-hard even for k=2 (BTY, ‘11).

Extensively Studied on Special Graph Classes. E.g., planar graphs, split 
graphs, chordal graphs, …



Temporal Paths/Walks. A temporal walk in a temporal graph is a sequence
P=((v0,v1,t1),(v1,v2,t2),…,(vr-1,vr,tr)), t1<t2<…<tr, such that each (vi-1,vi) is an
edge in the temporal graph at time ti. When no vertex is repeated, it is a
temporal path.



Temporal Paths/Walks. A temporal walk in a temporal graph is a sequence
P=((v0,v1,t1),(v1,v2,t2),…,(vr-1,vr,tr)), t1<t2<…<tr, such that each (vi-1,vi) is an
edge in the temporal graph at time ti. When no vertex is repeated, it is a
temporal path.
The walk occupies each vi at time [ti,ti+1] where t0=t1 and tr+1=tr.



Temporal Paths/Walks. A temporal walk in a temporal graph is a sequence
P=((v0,v1,t1),(v1,v2,t2),…,(vr-1,vr,tr)), t1<t2<…<tr, such that each (vi-1,vi) is an
edge in the temporal graph at time ti. When no vertex is repeated, it is a
temporal path.
The walk occupies each vi at time [ti,ti+1] where t0=t1 and tr+1=tr.

Disjointness. Two temporal walks are temporally disjoint if there does not
exist a vertex that they occupy at the same time.



Temporal Paths/Walks. A temporal walk in a temporal graph is a sequence
P=((v0,v1,t1),(v1,v2,t2),…,(vr-1,vr,tr)), t1<t2<…<tr, such that each (vi-1,vi) is an
edge in the temporal graph at time ti. When no vertex is repeated, it is a
temporal path.
The walk occupies each vi at time [ti,ti+1] where t0=t1 and tr+1=tr.

Disjointness. Two temporal walks are temporally disjoint if there does not
exist a vertex that they occupy at the same time.

The Temporally Disjoint Paths (Walks) Problem. Defined similarly to the
Disjoint Paths problem.



Known Results. The problems were introduced by Klobas, Mertzios, Molter, 
Niedermeir and Zschoche in IJCAI’21. They proved:
• For Temporally Disjoint Paths:

Ø NP-hard when k=2,
Ø NP-hard on paths,
Ø FPT on trees wrt k. 

• For Temporally Disjoint Walks:
Ø W[1]-hard wrt k,
Ø XP wrt k.





I. Temporally Disjoint Paths and Walks are W[1]-hard wrt n on stars.



I. Temporally Disjoint Paths and Walks are W[1]-hard wrt n on stars.

But what if k is part of the parameterization? (Possibly, k>>n since we are
given a multiset of terminal pairs.)



Recall: KMMNZ’21 proved that TDP is FPT wrt k on trees.

II. Temporally Disjoint Paths is W[1]-hard wrt k+vcn.

III. Temporally Disjoint Paths is FPT wrt k+fes.



Recall: KMMNZ’21 proved that TDP is FPT wrt k on trees.

II. Temporally Disjoint Paths is W[1]-hard wrt k+vcn.

IV. Temporally Disjoint Walks is W[1]-hard wrt k on stars (vcn=1, fes=0).

III. Temporally Disjoint Paths is FPT wrt k+fes.



Recall: KMMNZ’21 proved that TDP is FPT wrt k on trees.

II. Temporally Disjoint Paths is W[1]-hard wrt k+vcn.

Ø Different than the behavior on general graphs: TDP is NP-hard when
k=2, while TDW is XP wrt k KMMNZ’21.

IV. Temporally Disjoint Walks is W[1]-hard wrt k on stars (vcn=1, fes=0).

III. Temporally Disjoint Paths is FPT wrt k+fes.



II. Temporally Disjoint Paths is W[1]-hard wrt k+vcn.

Ø Different than the behavior on general graphs: TDP is NP-hard when
k=2, while TDW is XP wrt k KMMNZ’21.

Ø Resolves open questions by KMMNZ’21.

III. Temporally Disjoint Paths is FPT wrt k+fes.

Recall: KMMNZ’21 proved that TDP is FPT wrt k on trees.

IV. Temporally Disjoint Walks is W[1]-hard wrt k on stars (vcn=1, fes=0).



II. Temporally Disjoint Paths is W[1]-hard wrt k+vcn.

Ø Different than the behavior on general graphs: TDP is NP-hard when
k=2, while TDW is XP wrt k KMMNZ’21.

Ø Resolves open questions by KMMNZ’21.

III. Temporally Disjoint Paths is FPT wrt k+fes.

Recall: KMMNZ’21 proved that TDP is FPT wrt k on trees.

IV. Temporally Disjoint Walks is W[1]-hard wrt k on stars (vcn=1, fes=0).

IV. Temporally Disjoint Walks is FPT wrt k on paths.





IV. Temporally Disjoint Walks is FPT wrt k on paths.



IV. Temporally Disjoint Walks is FPT wrt k on paths.

Main Component. Consider the ``changes of direction’’ of the solution 
walks. We prove that there exist a solution s.t.:
• Their number is O(k) per walk.
• They only occur in O(k)-sized ``regions’’ surrounding sources and sinks.



IV. Temporally Disjoint Walks is FPT wrt k on paths.

Main Component. Consider the ``changes of direction’’ of the solution 
walks. We prove that there exist a solution s.t.:
• Their number is O(k) per walk.
• They only occur in O(k)-sized ``regions’’ surrounding sources and sinks.

How to Exploit This? ``Guess’’ where all the changes of directions occur.



IV. Temporally Disjoint Walks is FPT wrt k on paths.

Main Component. Consider the ``changes of direction’’ of the solution 
walks. We prove that there exist a solution s.t.:
• Their number is O(k) per walk.
• They only occur in O(k)-sized ``regions’’ surrounding sources and sinks.

How to Exploit This? ``Guess’’ where all the changes of directions occur.
Then, reduce to Temporally Disjoint Paths with ``precedence constraints’’:
Replace each terminal pair by a multiset of terminals pairs.
(Partition a solution walk into solution paths by ``cutting’’ it every time it
changes direction.)



IV. Temporally Disjoint Walks is FPT wrt k on paths.

Main Component. Consider the ``changes of direction’’ of the solution 
walks. We prove that there exist a solution s.t.:
• Their number is O(k) per walk.
• They only occur in O(k)-sized ``regions’’ surrounding sources and sinks.

How to Exploit This? ``Guess’’ where all the changes of directions occur.
Then, reduce to Temporally Disjoint Paths with ``precedence constraints’’:
Replace each terminal pair by a multiset of terminals pairs.
(Partition a solution walk into solution paths by ``cutting’’ it every time it
changes direction.)
Then, use an algorithm similar to that for Temporally Disjoint Paths on trees.



Main Component. Consider the ``changes of direction’’ of the solution 
walks. We prove that there exist a solution s.t.:
• Their number is O(k) per walk.
• They only occur in O(k)-sized ``regions’’ surrounding sources and sinks.
How to Prove This? Show that a walk changes direction because:



Main Component. Consider the ``changes of direction’’ of the solution 

walks. We prove that there exist a solution s.t.:

• Their number is O(k) per walk.

• They only occur in O(k)-sized ``regions’’ surrounding sources and sinks.

How to Prove This? Show that a walk changes direction because:

• It ``surrounds’’ a solution walk that has just started or finished.

• It ``surrounds’’ a solution walk that ``surrounds’’ a solution walk that has

just started or finished.

• … [k-1 times].





1. Consider parameters that are not related to vc and fes, and which are 
large on stars.
E.g.: Classify Temporally Disjoint Paths (Walks) wrt k + cutwidth/bandwidth.



1. Consider parameters that are not related to vc and fes, and which are 
large on stars.
E.g.: Classify Temporally Disjoint Paths (Walks) wrt k + cutwidth/bandwidth.

2. Our hardness results hold when each of the solution’s paths/walks use
only constantly many edges. But, in some of them, the maximum duration
of the solution’s paths/walks is large. So: Consider the duration as part of
the parameterization.
E.g.: Classify Temporally Disjoint Paths (Walks) wrt k + maximum duration.


