In Which Graph Structures Can We Efficiently Find Temporally Disjoint Paths and Walks?

Pascal Kunz Hendrilk Molter Meirav Zehavi

shutterstock.com • 306158321

Parameterized problem.

Each instance is associated with a parameter k.

Fixed-Parameter Tractabilility

$$
f(k) \cdot n^{o(1)}=O^{*}(f(k)) \quad\binom{n}{k} \ldots \text { or worse! }
$$

Fixed-Parameter Tractabilitity

$$
k \ll n
$$

$$
f(k) \cdot n^{O(1)}=O^{*}(f(k))
$$

$$
\binom{n}{k} \text {... or worse! }
$$

Unfortunately, not all problems are FPT!

Parameterized Analysis and Temporal Graphs.

- Nowadays, there is a very large number of works on this topic.
- Parameters: Solution size, structural parameters, new parameters (e.g., maximum duration).
- Classification (FPT, XP \& W[1]-hard, para-NP-hard), Optimality under (S)ETH, Kernelization. Even: Counting, FPT-approximation, ...

$$
\begin{gathered}
f(k) \cdot n^{O(1)} \\
n^{f(k)}
\end{gathered}
$$

Parameterized Analysis and Temporal Graphs.

- Nowadays, there is a very large number of works on this topic.
- Parameters: Solution size, structural parameters, new parameters (e.g., maximum duration).
- Classification (FPT, XP \& W[1]-hard, para-NP-hard), Optimality under (S)ETH, Kernelization. Even: Counting, FPT-approximation, ...

Check Hendrik Molter's works.

> Survey: "As Time Goes By: Reflections on Treewidth for Temporal Graphs" in "Treewidth, Kernels and Algorithms", 2020.

Outline

Background

(0ur Contriibution

Sone Technical Detai̊ls
Open Problens

Background

The Disjoint Paths Problem. Given a graph G and a multiset of k terminal pairs $\left\{\left(s_{j} t_{j}\right): i \in[k]\right\}$, does there exist a collection of pairwise disjoint paths $\left\{P_{i}\right.$: $i \in[k]\}$ where for every $i \in[k]$, the endpoints of P_{i} are s_{i} and t_{i} ?

Background

The Disjoint Paths Problem. Given a graph G and a multiset of k terminal pairs $\left\{\left(s_{j} t_{i}\right): i \in[k]\right\}$, does there exist a collection of pairwise disjoint paths $\left\{P_{i}\right.$: $i \in[k]\}$ where for every $i \in[k]$, the endpoints of P_{i} are s_{i} and t_{i} ?

The Graph Minors Project (23 papers, 1983-2004). Any minor-closed family of graphs can be characterized by a finite set of forbidden minors.

* The inspiration behind the birth of Parameterized Analysis.
* Yielded numerous concepts, algorithms and structural results.

Background

The Disjoint Paths Problem. Given a graph G and a multiset of k terminal pairs $\left\{\left(s_{j} t_{j}\right): i \in[k]\right\}$, does there exist a collection of pairwise disjoint paths $\left\{P_{i}\right.$: $i \in[k]\}$ where for every $i \in[k]$, the endpoints of P_{i} are s_{i} and t_{i} ?

The Graph Minors Project (23 papers, 1983-2004). Any minor-closed family of graphs can be characterized by a finite set of forbidden minors.

* The inspiration behind the birth of Parameterized Analysis.
* Yielded numerous concepts, algorithms and structural results.

Disjoint Paths Is a Central Component of the Graph Minors Project.

Background

Known Results on General Graphs.
Galactic FPT Algorithms: $f(k) n^{3}(R S, ' 95), f(k) n^{2}(K K R, ' 12)$. No Polynomial Kernel: (FHW, '80).
On Directed Graphs: NP-hard even for $k=2$ (BTY, '11).

Background

Known Results on General Graphs.
Galactic FPT Algorithms: $f(k) n^{3}(R S, ' 95), f(k) n^{2}(K K R, ' 12)$. No Polynomial Kernel: (FHW, ‘80).
On Directed Graphs: NP-hard even for $k=2$ (BTY, '11).

Extensively Studied on Special Graph Classes. E.g., planar graphs, split graphs, chordal graphs, ...

Background

Temporal Paths/Walks. A temporal walk in a temporal graph is a sequence $P=\left(\left(v_{0}, v_{1}, t_{1}\right),\left(v_{1}, v_{2}, t_{2}\right), \ldots,\left(v_{r-1}, v_{r}, t_{r}\right)\right), t_{1}<t_{2}<\ldots<t_{r}$, such that each $\left(v_{i-1}, v_{i}\right)$ is an edge in the temporal graph at time t_{i}. When no vertex is repeated, it is a temporal path.

Background

Temporal Paths/Walks. A temporal walk in a temporal graph is a sequence $P=\left(\left(v_{0}, v_{1}, t_{1}\right),\left(v_{1}, v_{2}, t_{2}\right), \ldots,\left(v_{r-1}, v_{r}, t_{r}\right)\right), t_{1}<t_{2}<\ldots<t_{r}$, such that each $\left(v_{i-1}, v_{i}\right)$ is an edge in the temporal graph at time t_{i}. When no vertex is repeated, it is a temporal path.
The walk occupies each v_{i} at time $\left[t_{i}, t_{i}+1\right]$ where $t_{0}=t_{1}$ and $t_{r+1}=t_{r}$.

Background

Temporal Paths/Walks. A temporal walk in a temporal graph is a sequence $P=\left(\left(v_{0}, v_{1}, t_{1}\right),\left(v_{1}, v_{2}, t_{2}\right), \ldots,\left(v_{r-1}, v_{r}, t_{r}\right)\right), t_{1}<t_{2}<\ldots<t_{r}$, such that each $\left(v_{i-1}, v_{i}\right)$ is an edge in the temporal graph at time t_{i}. When no vertex is repeated, it is a temporal path.
The walk occupies each v_{i} at time $\left[t_{i}, t_{i}+1\right]$ where $t_{0}=t_{1}$ and $t_{r+1}=t_{r}$.
Disjointness. Two temporal walks are temporally disjoint if there does not exist a vertex that they occupy at the same time.

Backggound

Temporal Paths/Walks. A temporal walk in a temporal graph is a sequence $P=\left(\left(v_{0}, v_{1}, t_{1}\right),\left(v_{1}, v_{2}, t_{2}\right), \ldots,\left(v_{r-1}, v_{r}, t_{r}\right)\right), t_{1}<t_{2}<\ldots<t_{r}$, such that each $\left(v_{i-1}, v_{i}\right)$ is an edge in the temporal graph at time t_{i}. When no vertex is repeated, it is a temporal path.
The walk occupies each v_{i} at time $\left[t_{i}, t_{i}+1\right]$ where $t_{0}=t_{1}$ and $t_{r+1}=t_{r}$.

Disjointness. Two temporal walks are temporally disjoint if there does not exist a vertex that they occupy at the same time.

The Temporally Disjoint Paths (Walks) Problem. Defined similarly to the Disjoint Paths problem.

Background

Known Results. The problems were introduced by Klobas, Mertzios, Molter, Niedermeir and Zschoche in IJCAI'21. They proved:

- For Temporally Disjoint Paths:
> NP-hard when $k=2$,
$>$ NP-hard on paths,
> FPT on trees wrt k.
- For Temporally Disjoint Walks:
$>\mathrm{W}[1]$-hard wrt k,
> XP wrt k.

Outline

Background

Our Contribution

Some Technical Details
Open Problems

Our Contribution

I. Temporally Disjoint Paths and Walks are W[1]-hard wrt n on stars.

Our Contrioution

I. Temporally Disjoint Paths and Walks are W[1]-hard wrt n on stars.

But what if k is part of the parameterization? (Possibly, $k \gg n$ since we are given a multiset of terminal pairs.)

Our Contribution

Recall: KMMNZ'21 proved that TDP is FPT wrt k on trees.
II. Temporally Disjoint Paths is W[1]-hard wrt $k+v c n$.
III. Temporally Disjoint Paths is FPT wrt $k+f e s$.

Our Contrioution

Recall: KMMNZ'21 proved that TDP is FPT wrt k on trees.
II. Temporally Disjoint Paths is W[1]-hard wrt $k+v c n$.
III. Temporally Disjoint Paths is FPT wrt $k+f e s$.
IV. Temporally Disjoint Walks is W[1]-hard wrt k on stars (vcn=1, fes=0).

Our Contribution

Recall: KMMNZ'21 proved that TDP is FPT wrt k on trees.
II. Temporally Disjoint Paths is W[1]-hard wrt $k+v c n$.
III. Temporally Disjoint Paths is FPT wrt $k+f e s$.
IV. Temporally Disjoint Walks is W[1]-hard wrt k on stars (vcn=1, fes=0).
$>$ Different than the behavior on general graphs: TDP is NP-hard when $k=2$, while TDW is XP wrt k KMMNZ' 21 .

Our Contribution

Recall: KMMNZ'21 proved that TDP is FPT wrt k on trees.
II. Temporally Disjoint Paths is W[1]-hard wrt $k+v c n$.
III. Temporally Disjoint Paths is FPT wrt $k+f e s$.
IV. Temporally Disjoint Walks is W[1]-hard wrt k on stars (vcn=1, fes=0).
$>$ Different than the behavior on general graphs: TDP is NP-hard when $k=2$, while TDW is XP wrt k KMMNZ'21.
> Resolves open questions by KMMNZ'21.

Our Contribution

Recall: KMMNZ'21 proved that TDP is FPT wrt k on trees.
II. Temporally Disjoint Paths is W[1]-hard wrt $k+v c n$.
III. Temporally Disjoint Paths is FPT wrt $k+f e s$.
IV. Temporally Disjoint Walks is W[1]-hard wrt k on stars (vcn=1, fes=0).
$>$ Different than the behavior on general graphs: TDP is NP-hard when $k=2$, while TDW is XP wrt k KMMNZ' 21 .
> Resolves open questions by KMMNZ'21.
IV. Temporally Disjoint Walks is FPT wrt k on paths.

Outline

Background
(0ur Contribution

Some Technical Detaills

Open Problens

Sone Techniccal Details

IV. Temporally Disjoint Walks is FPT wrt k on paths.

Sone Technical Detai̊ls

IV. Temporally Disjoint Walks is FPT wrt k on paths.

Main Component. Consider the "changes of direction" of the solution walks. We prove that there exist a solution s.t.:

- Their number is $\mathrm{O}(k)$ per walk.
- They only occur in $O(k)$-sized "regions" surrounding sources and sinks.

Sone Technical Detai̊ls

IV. Temporally Disjoint Walks is FPT wrt k on paths.

Main Component. Consider the "changes of direction" of the solution walks. We prove that there exist a solution s.t.:

- Their number is $\mathrm{O}(k)$ per walk.
- They only occur in $O(k)$-sized "regions" surrounding sources and sinks.

How to Exploit This? "Guess" where all the changes of directions occur.

Some Technical Details

IV. Temporally Disjoint Walks is FPT wrt k on paths.

Main Component. Consider the "changes of direction" of the solution walks. We prove that there exist a solution s.t.:

- Their number is $\mathrm{O}(k)$ per walk.
- They only occur in $O(k)$-sized "regions" surrounding sources and sinks.

How to Exploit This? "Guess" where all the changes of directions occur. Then, reduce to Temporally Disjoint Paths with "precedence constraints": Replace each terminal pair by a multiset of terminals pairs.
(Partition a solution walk into solution paths by "cutting" it every time it changes direction.)

Some Technical Details

IV. Temporally Disjoint Walks is FPT wrt k on paths.

Main Component. Consider the "changes of direction" of the solution walks. We prove that there exist a solution s.t.:

- Their number is $\mathrm{O}(k)$ per walk.
- They only occur in $O(k)$-sized "regions" surrounding sources and sinks.

How to Exploit This? "Guess" where all the changes of directions occur. Then, reduce to Temporally Disjoint Paths with "precedence constraints": Replace each terminal pair by a multiset of terminals pairs.
(Partition a solution walk into solution paths by "cutting" it every time it changes direction.)
Then, use an algorithm similar to that for Temporally Disjoint Paths on trees.

Sone Techni̊cal Details

Main Component. Consider the "changes of direction" of the solution walks. We prove that there exist a solution s.t.:

- Their number is $\mathrm{O}(k)$ per walk.
- They only occur in $O(k)$-sized "regions" surrounding sources and sinks. How to Prove This? Show that a walk changes direction because:

Some Technical Details

Main Component. Consider the "changes of direction" of the solution walks. We prove that there exist a solution s.t.:

- Their number is $\mathrm{O}(\mathrm{k})$ per walk.
- They only occur in $O(k)$-sized "regions" surrounding sources and sinks.

How to Prove This? Show that a walk changes direction because:

- It "surrounds" a solution walk that has just started or finished.
- It "surrounds" a solution walk that "surrounds" a solution walk that has just started or finished.
- ... [k-1 times].

Outline

Backgroound
(our Contribution

Sone Technical Detai̊ls
Open Problens

Open Problens

1. Consider parameters that are not related to vc and fes, and which are large on stars.
E.g.: Classify Temporally Disjoint Paths (Walks) wrt $k+$ cutwidth/bandwidth.

Open Problens

1. Consider parameters that are not related to $v c$ and fes, and which are large on stars.
E.g.: Classify Temporally Disjoint Paths (Walks) wrt $k+$ cutwidth/bandwidth.
2. Our hardness results hold when each of the solution's paths/walks use only constantly many edges. But, in some of them, the maximum duration of the solution's paths/walks is large. So: Consider the duration as part of the parameterization.
E.g.: Classify Temporally Disjoint Paths (Walks) wrt $k+$ maximum duration.
