# Kernelizing Temporal Exploration Problems

Emmanuel Arrighi<sup>†</sup> Fedor V. Fomin<sup>\*</sup> Petr Golovach<sup>\*</sup> <u>Petra Wolf</u><sup>\*</sup> Algorithmic Aspects of Temporal Graphs VI

\*University of Bergen, Norway

<sup>†</sup>University of Trier, Germany

## Graphs that vary over time.

# Definition (Temporal graphs)

A temporal graph  $\mathcal{G}$  over a set of vertices V is a sequence  $\mathcal{G} = (G_1, G_2, \dots, G_L)$  of graphs such that for all  $t \in [L]$ ,  $V(G_t) = V$ .

- ► Lifetime L
- Snapshot graph  $G_t$ ,  $t \in [L]$
- Underlying graph G = (V, E) with  $E = \bigcup_{t \in [L]} E(G_t)$

• 
$$\mathfrak{m} = \sum_{t \in [L]} |E(G_t)|$$

Non-strict temporal walk: cross arbitrary many edges per time-step.





Non-strict temporal walk: cross arbitrary many edges per time-step.





Non-strict temporal walk: cross arbitrary many edges per time-step.





Non-strict temporal walk: cross arbitrary many edges per time-step.





Non-strict temporal walk: cross arbitrary many edges per time-step.





Non-strict temporal walk: cross arbitrary many edges per time-step.





Non-strict temporal walk: cross arbitrary many edges per time-step.





Non-strict temporal walk: cross arbitrary many edges per time-step.





Non-strict temporal walk: cross arbitrary many edges per time-step.

Example:



**Definition (Non-Strict Temporal Exploration (NS-TEXP))** Input: Temporal graph  $\mathcal{G} = (G_1, G_2, \dots, G_L)$ , vertex  $v \in V(\mathcal{G})$ . Question: Does there exist a *non-strict temporal walk* in  $\mathcal{G}$  that starts in v and visits all vertices in  $V(\mathcal{G})$ ? **Definition (Non-Strict Temporal Exploration (NS-TEXP))** Input: Temporal graph  $\mathcal{G} = (G_1, G_2, \dots, G_L)$ , vertex  $v \in V(\mathcal{G})$ . Question: Does there exist a *non-strict temporal walk* in  $\mathcal{G}$  that starts in v and visits all vertices in  $V(\mathcal{G})$ ?

k-ARB NS-TEXP: visit at least k vertices.

**Definition (Non-Strict Temporal Exploration (NS-TEXP))** Input: Temporal graph  $\mathcal{G} = (G_1, G_2, \dots, G_L)$ , vertex  $v \in V(\mathcal{G})$ . Question: Does there exist a *non-strict temporal walk* in  $\mathcal{G}$  that starts in v and visits all vertices in  $V(\mathcal{G})$ ?

k-ARB NS-TEXP: visit at least k vertices.

**Definition (Weighted** *k*-arb NS-TEXP) Input: Temporal graph  $\mathcal{G} = (G_1, G_2, \ldots, G_L)$ , vertex  $v \in V(\mathcal{G})$ , weight function  $w \colon V \to \mathbb{N}$ , integer *k*. Question: Does there exist a *non-strict temporal walk* in  $\mathcal{G}$  that starts in v and visits vertices  $\{v_1, v_2, \ldots, v_\ell\} \subseteq V(\mathcal{G})$  with weight  $\sum_{1 \le i \le \ell} w(v_i) \ge k$ ?  [Michail & Spirakis, TCS 16] introduced Strict Temporal Exploration (cross only one edge per time-step) and showed NP-hardness.

- [Michail & Spirakis, TCS 16] introduced Strict Temporal Exploration (cross only one edge per time-step) and showed NP-hardness.
- [Erlebach & Spooner, SIROCCO 20] introduced NS-TEXP and showed NP-hardness.

- [Michail & Spirakis, TCS 16] introduced Strict Temporal Exploration (cross only one edge per time-step) and showed NP-hardness.
- [Erlebach & Spooner, SIROCCO 20] introduced NS-TEXP and showed NP-hardness.
- ▶ [Erlebach & Spooner, SAND 22] NS-TEXP is FPT in *L* and *k*-ARB NS-TEXT is FPT in *k*.

- [Michail & Spirakis, TCS 16] introduced Strict Temporal Exploration (cross only one edge per time-step) and showed NP-hardness.
- [Erlebach & Spooner, SIROCCO 20] introduced NS-TEXP and showed NP-hardness.
- ▶ [Erlebach & Spooner, SAND 22] NS-TEXP is FPT in *L* and *k*-ARB NS-TEXT is FPT in *k*.

Question

Is NS-TEXP FPT/XP in parameter maximal number of connected components per time-step?

- [Michail & Spirakis, TCS 16] introduced Strict Temporal Exploration (cross only one edge per time-step) and showed NP-hardness.
- [Erlebach & Spooner, SIROCCO 20] introduced NS-TEXP and showed NP-hardness.
- ▶ [Erlebach & Spooner, SAND 22] NS-TEXP is FPT in *L* and *k*-ARB NS-TEXT is FPT in *k*.

### Question

- Is NS-TEXP FPT/XP in parameter maximal number of connected components per time-step?
- ► Is k-ARB NS-TEXT FPT in L?

- [Michail & Spirakis, TCS 16] introduced Strict Temporal Exploration (cross only one edge per time-step) and showed NP-hardness.
- [Erlebach & Spooner, SIROCCO 20] introduced NS-TEXP and showed NP-hardness.
- ▶ [Erlebach & Spooner, SAND 22] NS-TEXP is FPT in *L* and *k*-ARB NS-TEXT is FPT in *k*.

### Question

- Is NS-TEXP FPT/XP in parameter maximal number of connected components per time-step? - No!
- ► Is k-ARB NS-TEXT FPT in L? No!

| Param        | FPT                                                           | Kernel              |
|--------------|---------------------------------------------------------------|---------------------|
| n            | FPT in $k$ (Erlebach & Spooner, 2022)                         | no poly kernel      |
| L            | W[1]-hard                                                     | no poly kernel      |
| k            | $\mathcal{O}^*((2e)^k k^{\log k})$ (Erlebach & Spooner, 2022) | no poly kernel      |
| L+k          | FPT in $k$ (Erlebach & Spooner, 2022)                         | no poly kernel      |
| $\gamma$     | in P for $\leq 2$ (Erlebach & Spooner, 2022),                 | -                   |
|              | NP-hard for $\geq 5$                                          |                     |
| $L + \gamma$ | $\mathcal{O}(\gamma^L n^{\mathcal{O}(1)})$                    | no poly kernel      |
|              |                                                               | for $\gamma \geq 6$ |
| $k + \gamma$ | FPT in $k$ (Erlebach & Spooner, 2022)                         | no poly kernel      |

Kernelizing Temporal Exploration Problems

# Two easy examples as a warm up



# Two easy examples as a warm up







### Theorem

*NS-TEXP is* NP-complete for temporal graphs where the underlying graph consists of two stars connected with a bridge.



### Theorem

NS-TEXP is NP-complete for temporal graphs where the underlying graph consists of two stars connected with a bridge.

### Theorem

NS-TEXP is NP-complete for temporal graphs where each edge appears only once.

If the underlying graph is a tree, and every edge appears only once, then we can find a maximum weight non-strict temporal walk from a vertex x to a vertex y in polynomial time.

If the underlying graph is a tree, and every edge appears only once, then we can find a maximum weight non-strict temporal walk from a vertex x to a vertex y in polynomial time.

### Definition

$$p(\mathcal{G}) = \mathfrak{m} - n + 1$$

If the underlying graph is a tree, and every edge appears only once, then we can find a maximum weight non-strict temporal walk from a vertex x to a vertex y in polynomial time.

### Definition

$$p(\mathcal{G}) = \mathfrak{m} - n + 1$$

Notations:

- Blue edges: edges that appear only once
- ► Red edges: edges that appear at least twice.

Let  $\mathcal{G}$  be a temporal graph. Then, the underlying graph G of  $\mathcal{G}$  has a feedback edge set S of size at most p such that all the red edges are in S.

# Kernel in p(G): Structure of the Underlying Graph



# Kernel in $p(\mathcal{G})$ : Structure of the Underlying Graph



 $|X| \le 4p$ 

#### Kernelizing Temporal Exploration Problems
































































# Kernel in $p(\mathcal{G})$ : Reduction Rule (Long path)



# Kernel in $p(\mathcal{G})$ : Reduction Rule (Long path)



# Kernel in $p(\mathcal{G})$ : Reduction Rule (Long path)







#### Proposition (Frank & Tardos, 1987)

There is an algorithm that, given a vector  $\mathbf{w} \in \mathbb{Q}^r$  and an integer N, in polynomial time finds a vector  $\overline{\mathbf{w}} \in \mathbb{Z}^r$  with  $\|\overline{\mathbf{w}}\|_{\infty} \leq 2^{4r^3} N^{r(r+2)}$  such that  $\operatorname{sign}(\mathbf{w} \cdot b) = \operatorname{sign}(\overline{\mathbf{w}} \cdot b)$  for all vectors  $b \in \mathbb{Z}^r$  with  $\|b\|_1 \leq N - 1$ .

#### Proposition (Frank & Tardos, 1987)

There is an algorithm that, given a vector  $\mathbf{w} \in \mathbb{Q}^r$  and an integer N, in polynomial time finds a vector  $\overline{\mathbf{w}} \in \mathbb{Z}^r$  with  $\|\overline{\mathbf{w}}\|_{\infty} \leq 2^{4r^3} N^{r(r+2)}$  such that  $\operatorname{sign}(\mathbf{w} \cdot b) = \operatorname{sign}(\overline{\mathbf{w}} \cdot b)$  for all vectors  $b \in \mathbb{Z}^r$  with  $\|b\|_1 \leq N - 1$ .

#### Reduction Rule (Weights reduction)

Apply this algorithm for  $w = (k, w(v_0), \dots, w(v_n))$  and N = r + 1 and find the vector  $\overline{w} = (\overline{w}_0, \dots, \overline{w}_n)$ . Set  $k := \overline{w}_0$ and set  $w(v_i) := \overline{w}_i$  for  $i \in [n]$ .

Petra Wolf

Kernelizing Temporal Exploration Problems

#### Reduction Rule (Livetime)

For all  $t \in [L]$ , if  $G_t$  has no edge, then remove  $G_t$  from  $\mathcal{G}$ .
#### Theorem

WEIGHTED *k*-ARB NS-TEXP admits a kernel of size  $\mathcal{O}(p^4)$  for connected underlying graphs such that for the output instance  $(\mathcal{G} = (G_1, \ldots, G_L), w, v, k), \mathcal{G}$  has  $\mathcal{O}(p)$  vertices and edges, and  $L \in \mathcal{O}(p).$  Adaption for Strict Temporal Exploration possible for many of our result including the kernel.

- Adaption for Strict Temporal Exploration possible for many of our result including the kernel.
- Our parameter applicable to other problems?
- ► What are good parameters for temporal graphs?

# Thank you!



## Kernelizing Temporal Exploration Problems

### References

Erlebach, Thomas, & Spooner, Jakob T. 2022. **Parameterized temporal exploration problems.** *CoRR*, abs/2212.01594.

Frank, András, & Tardos, Éva. 1987.
An application of simultaneous Diophantine approximation in combinatorial optimization. *Comb.*, 7(1), 49–65.

| Param        | FPT                                                           | Kernel                     |
|--------------|---------------------------------------------------------------|----------------------------|
| p            | $2^{\mathcal{O}(p)}(nL)^{\mathcal{O}(1)}$                     | $\mathcal{O}(p^4)^{\star}$ |
| n            | FPT in $k$ (Erlebach & Spooner, 2022)                         | no poly kernel             |
| L            | W[1]-hard                                                     | no poly kernel             |
| k            | $\mathcal{O}^*((2e)^k k^{\log k})$ (Erlebach & Spooner, 2022) | no poly kernel             |
| L+k          | FPT in $k$ (Erlebach & Spooner, 2022)                         | no poly kernel             |
| $\gamma$     | in P for $\leq 2$ (Erlebach & Spooner, 2022),                 | -                          |
|              | NP-hard for $\geq 5$                                          |                            |
| $L + \gamma$ | $\mathcal{O}(\gamma^L n^{\mathcal{O}(1)})$                    | no poly kernel             |
|              |                                                               | for $\gamma \geq 6$        |
| $k+\gamma$   | FPT in $k$ (Erlebach & Spooner, 2022)                         | no poly kernel             |

Petra Wolf

-

Kernelizing Temporal Exploration Problems



Petra Wolf

Kernelizing Temporal Exploration Problems



#### Theorem

*NS-TEXP* is NP-complete for temporal graphs where the underlying graph consists of two stars connected with a bridge.

$$\Phi = (x_2 \lor x_4) \land (x_1 \lor x_2) \land (x_3 \lor x_4)$$
$$\land (\neg x_1 \lor \neg x_4) \land (\neg x_2 \lor \neg x_4) \land (\neg x_1 \lor \neg x_3)$$

$$\Phi = (x_2 \lor x_4) \land (x_1 \lor x_2) \land (x_3 \lor x_4)$$
$$\land (\neg x_1 \lor \neg x_4) \land (\neg x_2 \lor \neg x_4) \land (\neg x_1 \lor \neg x_3)$$



$$\Phi = (x_2 \lor x_4) \land (x_1 \lor x_2) \land (x_3 \lor x_4)$$
$$\land (\neg x_1 \lor \neg x_4) \land (\neg x_2 \lor \neg x_4) \land (\neg x_1 \lor \neg x_3)$$



$$\Phi = (x_2 \lor x_4) \land (x_1 \lor x_2) \land (x_3 \lor x_4)$$
$$\land (\neg x_1 \lor \neg x_4) \land (\neg x_2 \lor \neg x_4) \land (\neg x_1 \lor \neg x_3)$$



$$\Phi = (x_2 \lor x_4) \land (x_1 \lor x_2) \land (x_3 \lor x_4)$$
$$\land (\neg x_1 \lor \neg x_4) \land (\neg x_2 \lor \neg x_4) \land (\neg x_1 \lor \neg x_3)$$



$$\Phi = (x_2 \lor x_4) \land (x_1 \lor x_2) \land (x_3 \lor x_4)$$
$$\land (\neg x_1 \lor \neg x_4) \land (\neg x_2 \lor \neg x_4) \land (\neg x_1 \lor \neg x_3)$$



$$\Phi = (x_2 \lor x_4) \land (x_1 \lor x_2) \land (x_3 \lor x_4)$$
$$\land (\neg x_1 \lor \neg x_4) \land (\neg x_2 \lor \neg x_4) \land (\neg x_1 \lor \neg x_3)$$



$$\Phi = (x_2 \lor x_4) \land (x_1 \lor x_2) \land (x_3 \lor x_4)$$
$$\land (\neg x_1 \lor \neg x_4) \land (\neg x_2 \lor \neg x_4) \land (\neg x_1 \lor \neg x_3)$$



$$\Phi = (x_2 \lor x_4) \land (x_1 \lor x_2) \land (x_3 \lor x_4)$$
$$\land (\neg x_1 \lor \neg x_4) \land (\neg x_2 \lor \neg x_4) \land (\neg x_1 \lor \neg x_3)$$



$$\Phi = (x_2 \lor x_4) \land (x_1 \lor x_2) \land (x_3 \lor x_4)$$
$$\land (\neg x_1 \lor \neg x_4) \land (\neg x_2 \lor \neg x_4) \land (\neg x_1 \lor \neg x_3)$$



Strict temporal walk: cross at most one edge per time-step.



Strict temporal walk: cross at most one edge per time-step.



Strict temporal walk: cross at most one edge per time-step.



Strict temporal walk: cross at most one edge per time-step.



Strict temporal walk: cross at most one edge per time-step.



Strict temporal walk: cross at most one edge per time-step.



Strict temporal walk: cross at most one edge per time-step.



Strict temporal walk: cross at most one edge per time-step.



Strict temporal walk: cross at most one edge per time-step.

