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Temporal Graph

Graphs that vary over time.

Definition (Temporal graphs)
A temporal graph G over a set of vertices V is a sequence
G = (G1, G2, . . . , GL) of graphs such that for all t ∈ [L],
V (Gt) = V .

▶ Lifetime L

▶ Snapshot graph Gt, t ∈ [L]
▶ Underlying graph G = (V, E) with E =

⋃
t∈[L] E(Gt)

▶ m =
∑

t∈[L] |E(Gt)|
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Non-Strict Temporal Walk

Find temporal walks that starting in vertex v in time-step 0, visit
every vertex of input temporal graph.

Non-strict temporal walk: cross arbitrary many edges per
time-step.

Example:
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Temporal Exploration

Definition (Non-Strict Temporal Exploration (NS-TEXP))
Input: Temporal graph G = (G1, G2, . . . , GL), vertex v ∈ V (G).
Question: Does there exist a non-strict temporal walk in G that
starts in v and visits all vertices in V (G)?

k-arb NS-TEXP: visit at least k vertices.

Definition (Weighted k-arb NS-TEXP)
Input: Temporal graph G = (G1, G2, . . . , GL), vertex v ∈ V (G),
weight function w : V → N, integer k.
Question: Does there exist a non-strict temporal walk in G that
starts in v and visits vertices {v1, v2, . . . , vℓ} ⊆ V (G) with weight∑

1≤i≤ℓ w(vi) ≥ k?

Petra Wolf Kernelizing Temporal Exploration Problems 4/20



Temporal Exploration

Definition (Non-Strict Temporal Exploration (NS-TEXP))
Input: Temporal graph G = (G1, G2, . . . , GL), vertex v ∈ V (G).
Question: Does there exist a non-strict temporal walk in G that
starts in v and visits all vertices in V (G)?

k-arb NS-TEXP: visit at least k vertices.

Definition (Weighted k-arb NS-TEXP)
Input: Temporal graph G = (G1, G2, . . . , GL), vertex v ∈ V (G),
weight function w : V → N, integer k.
Question: Does there exist a non-strict temporal walk in G that
starts in v and visits vertices {v1, v2, . . . , vℓ} ⊆ V (G) with weight∑

1≤i≤ℓ w(vi) ≥ k?

Petra Wolf Kernelizing Temporal Exploration Problems 4/20



Temporal Exploration

Definition (Non-Strict Temporal Exploration (NS-TEXP))
Input: Temporal graph G = (G1, G2, . . . , GL), vertex v ∈ V (G).
Question: Does there exist a non-strict temporal walk in G that
starts in v and visits all vertices in V (G)?

k-arb NS-TEXP: visit at least k vertices.

Definition (Weighted k-arb NS-TEXP)
Input: Temporal graph G = (G1, G2, . . . , GL), vertex v ∈ V (G),
weight function w : V → N, integer k.
Question: Does there exist a non-strict temporal walk in G that
starts in v and visits vertices {v1, v2, . . . , vℓ} ⊆ V (G) with weight∑

1≤i≤ℓ w(vi) ≥ k?

Petra Wolf Kernelizing Temporal Exploration Problems 4/20



Problem History

▶ [Michail & Spirakis, TCS 16] introduced Strict Temporal
Exploration (cross only one edge per time-step) and showed
NP-hardness.

▶ [Erlebach & Spooner, SIROCCO 20] introduced NS-TEXP
and showed NP-hardness.

▶ [Erlebach & Spooner, SAND 22] NS-TEXP is FPT in L and
k-arb NS-TEXT is FPT in k.

Question
▶ Is NS-TEXP FPT/XP in parameter maximal number of

connected components per time-step?

- No!

▶ Is k-arb NS-TEXT FPT in L?

- No!
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Parameterized Complexity of k-arb NS-TEXP

Param FPT Kernel

n FPT in k (Erlebach & Spooner, 2022) no poly kernel
L W[1]-hard no poly kernel
k O∗((2e)kklog k) (Erlebach & Spooner, 2022) no poly kernel
L + k FPT in k (Erlebach & Spooner, 2022) no poly kernel
γ in P for ≤ 2 (Erlebach & Spooner, 2022), -

NP-hard for ≥ 5
L + γ O(γLnO(1)) no poly kernel

for γ ≥ 6
k + γ FPT in k (Erlebach & Spooner, 2022) no poly kernel
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Two easy examples as a warm up
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Easy?

Theorem
NS-TEXP is NP-complete for temporal graphs where the
underlying graph consists of two stars connected with a bridge.

Theorem
NS-TEXP is NP-complete for temporal graphs where each edge
appears only once.
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Temporal Sparsity

Lemma
If the underlying graph is a tree, and every edge appears only
once, then we can find a maximum weight non-strict temporal
walk from a vertex x to a vertex y in polynomial time.

Definition

p(G) = m − n + 1

Notations:

▶ Blue edges: edges that appear only once
▶ Red edges: edges that appear at least twice.
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Kernel in p(G): Bounded Feedback Edge Set

Lemma

Let G be a temporal graph. Then, the underlying graph G of G
has a feedback edge set S of size at most p such that all the red
edges are in S.
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Kernel in p(G): Structure of the Underlying Graph

X

v

|X| ≤ 4p
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Kernel in p(G): Reduction Rule (Tree compression)

X
v

x
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Kernel in p(G): Reduction Rule (Tree compression)

X
v

x y z
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Kernel in p(G): Reduction Rule (Non usable edge)

X

v

v0

v3
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Kernel in p(G): Reduction Rule (Short cut)

X

v

v0

v3
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Kernel in p(G): Reduction Rule (Long path)

X

v

v0

v5
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Kernel in p(G): Reduction Rule (Long path)

X

v

v0

v5

w(v0 → v0)

Petra Wolf Kernelizing Temporal Exploration Problems 15/20



Kernel in p(G): Reduction Rule (Long path)

X

v

v0

v5

w(v0 → v0)

w(v5 → v5)

Petra Wolf Kernelizing Temporal Exploration Problems 15/20



Kernel in p(G): Reduction Rule (Long path)

X

v

v0

v5

w(v0 → v5)

w(v0 → v0)

w(v5 → v5)

Petra Wolf Kernelizing Temporal Exploration Problems 15/20



Kernel in p(G): Reduction Rule (Long path)
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Kernel in p(G): Frank and Tardos magic algorithm

Proposition (Frank & Tardos, 1987)
There is an algorithm that, given a vector w ∈ Qr and an
integer N , in polynomial time finds a vector w ∈ Zr with
∥w∥∞ ≤ 24r3

N r(r+2) such that sign(w · b) = sign(w · b) for all
vectors b ∈ Zr with ∥b∥1 ≤ N − 1.

Reduction Rule (Weights reduction)
Apply this algorithm for w = (k, w(v0), . . . , w(vn)) and
N = r + 1 and find the vector w = (w0, . . . , wn). Set k := w0

and set w(vi) := wi for i ∈ [n].
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Kernel in p(G): Reduction Rule (Livetime)

Reduction Rule (Livetime)
For all t ∈ [L], if Gt has no edge, then remove Gt from G.
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Kernel in p(G)

Theorem
Weighted k-arb NS-TEXP admits a kernel of size O(p4) for
connected underlying graphs such that for the output instance
(G = (G1, . . . , GL), w, v, k), G has O(p) vertices and edges, and
L ∈ O(p).

Petra Wolf Kernelizing Temporal Exploration Problems 18/20



Conclusion

▶ Adaption for Strict Temporal Exploration possible for many of
our result including the kernel.

▶ Our parameter applicable to other problems?
▶ What are good parameters for temporal graphs?
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Thank you!

Kernelizing Temporal Exploration Problems
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Our contributions: k-arb NS-TEXP

Param FPT Kernel

p 2O(p)(nL)O(1) O(p4)⋆

n FPT in k (Erlebach & Spooner, 2022) no poly kernel
L W[1]-hard no poly kernel
k O∗((2e)kklog k) (Erlebach & Spooner, 2022) no poly kernel
L + k FPT in k (Erlebach & Spooner, 2022) no poly kernel
γ in P for ≤ 2 (Erlebach & Spooner, 2022), -

NP-hard for ≥ 5
L + γ O(γLnO(1)) no poly kernel

for γ ≥ 6
k + γ FPT in k (Erlebach & Spooner, 2022) no poly kernel

Petra Wolf Kernelizing Temporal Exploration Problems



Easy?

Theorem
NS-TEXP is NP-complete for temporal graphs where the
underlying graph consists of two stars connected with a bridge.

Petra Wolf Kernelizing Temporal Exploration Problems



Easy?

Theorem
NS-TEXP is NP-complete for temporal graphs where the
underlying graph consists of two stars connected with a bridge.

Petra Wolf Kernelizing Temporal Exploration Problems



Proof

Reduction from Monotone SAT (each clause either contains
only positive or only negative literals)

Φ =(x2 ∨ x4) ∧ (x1 ∨ x2) ∧ (x3 ∨ x4)
∧ (¬x1 ∨ ¬x4) ∧ (¬x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3)

(x2∨x4) (x1∨x2) (x3∨x4) (¬x1∨¬x4) (¬x2∨¬x4) (¬x1∨¬x3)
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x3 ¬x3

(x2∨x4) (x1∨x2) (x3∨x4) (¬x1∨¬x4) (¬x2∨¬x4) (¬x1∨¬x3)
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∧ (¬x1 ∨ ¬x4) ∧ (¬x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3)

x4 ¬x4
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Proof

Reduction from Monotone SAT (each clause either contains
only positive or only negative literals)

Φ =(x2 ∨ x4) ∧ (x1 ∨ x2) ∧ (x3 ∨ x4)
∧ (¬x1 ∨ ¬x4) ∧ (¬x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x3)

x4 ¬x4

(x2∨x4) (x1∨x2) (x3∨x4) (¬x1∨¬x4) (¬x2∨¬x4) (¬x1∨¬x3)
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(Non-)Strict Temporal Walk

Find temporal walks that starting in vertex v in time-step 0, visit
every vertex of input temporal graph.

Strict temporal walk: cross at most one edge per time-step.

Example:
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