
On inefficient temporal graphs

Esteban Christiann estebanc@protonmail.ch
Eric Sanlaville1eric.sanlaville@univ-lehavre.fr
Jason Schoeters1 2 js2807@cam.ac.uk

Algorithmic Aspects of Temporal Graphs VI, Paderborn, July 10, 2023

1Supported by the RIN Tremplin Région Normandie project DynNet.
2Supported by the Leverhulme Trust International Professorship in Neuroeconomics.



Context

Temporal graphs

• faulty networks

• swarms of drones

• interacting population

, 1/16



Context

Temporal graphs

• faulty networks

• swarms of drones

• interacting population

, 1/16



Context

Temporal graphs

• faulty networks

• swarms of drones

• interacting population

, 1/16



Context

Temporal graphs

• faulty networks

• swarms of drones

• interacting population

, 1/16



Preliminaries

Definition temporal graph
Edges appear and disappear
over the lifetime of the graph

Definition footprint (or underlying graph)
Union of all snapshots Gi

Definition journey (or temporal path)
Path in temporal graph with increasing labels on the edges

Definition temporal connectivity (T C)
A temporal graph is temporally connected
iff for all pairs of vertices (u, v) there exists a journey u v

0,1,2

2,3

2,3

0

0

1,2

0,1

, 2/16



Preliminaries

Definition temporal graph
Edges appear and disappear
over the lifetime of the graph

Definition footprint (or underlying graph)
Union of all snapshots Gi

Definition journey (or temporal path)
Path in temporal graph with increasing labels on the edges

Definition temporal connectivity (T C)
A temporal graph is temporally connected
iff for all pairs of vertices (u, v) there exists a journey u v

0,1,2

2,3

2,3

0

0

1,2

0,1

, 2/16



Preliminaries

Definition temporal graph
Edges appear and disappear
over the lifetime of the graph

Definition footprint (or underlying graph)
Union of all snapshots Gi

Definition journey (or temporal path)
Path in temporal graph with increasing labels on the edges

Definition temporal connectivity (T C)
A temporal graph is temporally connected
iff for all pairs of vertices (u, v) there exists a journey u v

0,1,2

2,3

2,3

0

0

1,2

0,1

, 2/16



Preliminaries

Definition temporal graph
Edges appear and disappear
over the lifetime of the graph

Definition footprint (or underlying graph)
Union of all snapshots Gi

Definition journey (or temporal path)
Path in temporal graph with increasing labels on the edges

Definition temporal connectivity (T C)
A temporal graph is temporally connected
iff for all pairs of vertices (u, v) there exists a journey u v

0,1,2

2,3

2,3

0

0

1,2

0,1

, 2/16



Preliminaries

Definition temporal graph
Edges appear and disappear
over the lifetime of the graph

Definition footprint (or underlying graph)
Union of all snapshots Gi

Definition journey (or temporal path)
Path in temporal graph with increasing labels on the edges

Definition temporal connectivity (T C)
A temporal graph is temporally connected
iff for all pairs of vertices (u, v) there exists a journey u v

0,1,2

2,3

2,3

0

0

1,2

0,1

, 2/16



Preliminaries

Definition temporal graph
Edges appear and disappear
over the lifetime of the graph

Definition footprint (or underlying graph)
Union of all snapshots Gi

Definition journey (or temporal path)
Path in temporal graph with increasing labels on the edges

Definition temporal connectivity (T C)
A temporal graph is temporally connected
iff for all pairs of vertices (u, v) there exists a journey u v

0,1,2

2,3

2,3

0

0

1,2

0,1

, 2/16



Preliminaries

Temporal graph design problem
Input: graph G = (V,E), temporal graph property P
Question: does a labelling λ : E → N exist such that temporal graph
G = (G,L) have property P?

Examples of property P

• T C with amount of labels ≤ 2n− 2?

2n− 3? 2n− 4? 2n− 5? [2]
• and with at most some lifetime L? [6]

• Reachability of at most some R? [4]

Remark
The amount of labels used in these problems is always minimized or given

, 3/16



Preliminaries

Temporal graph design problem
Input: graph G = (V,E), temporal graph property P
Question: does a labelling λ : E → N exist such that temporal graph
G = (G,L) have property P?

Examples of property P

• T C with amount of labels ≤ 2n− 2?

2n− 3? 2n− 4? 2n− 5? [2]
• and with at most some lifetime L? [6]

• Reachability of at most some R? [4]

Remark
The amount of labels used in these problems is always minimized or given

, 3/16



Preliminaries

Temporal graph design problem
Input: graph G = (V,E), temporal graph property P
Question: does a labelling λ : E → N exist such that temporal graph
G = (G,L) have property P?

Examples of property P

• T C with amount of labels ≤ 2n− 2?

2n− 3? 2n− 4? 2n− 5? [2]
• and with at most some lifetime L? [6]

• Reachability of at most some R? [4]

5,6

4,7

3,8

2,9

1,10

Remark
The amount of labels used in these problems is always minimized or given

, 3/16



Preliminaries

Temporal graph design problem
Input: graph G = (V,E), temporal graph property P
Question: does a labelling λ : E → N exist such that temporal graph
G = (G,L) have property P?

Examples of property P

• T C with amount of labels ≤ 2n− 2? 2n− 3?

2n− 4? 2n− 5? [2]
• and with at most some lifetime L? [6]

• Reachability of at most some R? [4]

5

4,7

3,8

2,9

1,10

Remark
The amount of labels used in these problems is always minimized or given

, 3/16



Preliminaries

Temporal graph design problem
Input: graph G = (V,E), temporal graph property P
Question: does a labelling λ : E → N exist such that temporal graph
G = (G,L) have property P?

Examples of property P

• T C with amount of labels ≤ 2n− 2? 2n− 3? 2n− 4?

2n− 5? [2]
• and with at most some lifetime L? [6]

• Reachability of at most some R? [4]

5

4,7

3,8

2,9

1,10

Remark
The amount of labels used in these problems is always minimized or given

, 3/16



Preliminaries

Temporal graph design problem
Input: graph G = (V,E), temporal graph property P
Question: does a labelling λ : E → N exist such that temporal graph
G = (G,L) have property P?

Examples of property P

• T C with amount of labels ≤ 2n− 2? 2n− 3? 2n− 4? 2n− 5? [2]

• and with at most some lifetime L? [6]

• Reachability of at most some R? [4]

5

4,7

3,8

2,9

1,10

Remark
The amount of labels used in these problems is always minimized or given

, 3/16



Preliminaries

Temporal graph design problem
Input: graph G = (V,E), temporal graph property P
Question: does a labelling λ : E → N exist such that temporal graph
G = (G,L) have property P?

Examples of property P

• T C with amount of labels ≤ 2n− 2? 2n− 3? 2n− 4? 2n− 5? [2]
• and with at most some lifetime L? [6]

• Reachability of at most some R? [4]

Remark
The amount of labels used in these problems is always minimized or given

, 3/16



Preliminaries

Temporal graph design problem
Input: graph G = (V,E), temporal graph property P
Question: does a labelling λ : E → N exist such that temporal graph
G = (G,L) have property P?

Examples of property P

• T C with amount of labels ≤ 2n− 2? 2n− 3? 2n− 4? 2n− 5? [2]
• and with at most some lifetime L? [6]

• Reachability of at most some R? [4]

Remark
The amount of labels used in these problems is always minimized or given

, 3/16



Preliminaries

Temporal graph design problem
Input: graph G = (V,E), temporal graph property P
Question: does a labelling λ : E → N exist such that temporal graph
G = (G,L) have property P?

Examples of property P

• T C with amount of labels ≤ 2n− 2? 2n− 3? 2n− 4? 2n− 5? [2]
• and with at most some lifetime L? [6]

• Reachability of at most some R? [4]

Remark
The amount of labels used in these problems is always minimized or given

, 3/16



Problem formulation

Sparse labelling problem
Input: graph G, integer k
Question: Does a labelling λ using at most k labels exist such that
temporal graph G = (G,λ) is T C?

Definitions

• A label is necessary iff reachability reduces when removed

• A labelling is necessary iff it consists of only necessary labels

• A labelling is proper iff incident edges have distinct labels

Motivation

• Represents potential power of an adversary trying to waste precious
network resources (even if restricted)

• Worst case scenarios for temporal spanners and greedy algorithms

, 4/16



Problem formulation

Dense labelling problem
Input: graph G, integer k
Question: Does a labelling λ using at least k labels exist such that
temporal graph G = (G,λ) is T C?

Definitions

• A label is necessary iff reachability reduces when removed

• A labelling is necessary iff it consists of only necessary labels

• A labelling is proper iff incident edges have distinct labels

Motivation

• Represents potential power of an adversary trying to waste precious
network resources (even if restricted)

• Worst case scenarios for temporal spanners and greedy algorithms

, 4/16



Problem formulation

Dense labelling problem
Input: graph G, integer k
Question: Does a labelling λ using at least k labels exist such that
temporal graph G = (G,λ) is T C?

N
N N N

N

N N
N
N

N
N
N

N
N

N

Definitions

• A label is necessary iff reachability reduces when removed

• A labelling is necessary iff it consists of only necessary labels

• A labelling is proper iff incident edges have distinct labels

Motivation

• Represents potential power of an adversary trying to waste precious
network resources (even if restricted)

• Worst case scenarios for temporal spanners and greedy algorithms

, 4/16



Problem formulation

Dense labelling problem
Input: graph G, integer k
Question: Does a labelling λ using at least k labels exist such that
temporal graph G = (G,λ) is T C?

Definitions

• A label is necessary iff reachability reduces when removed

• A labelling is necessary iff it consists of only necessary labels

• A labelling is proper iff incident edges have distinct labels

Motivation

• Represents potential power of an adversary trying to waste precious
network resources (even if restricted)

• Worst case scenarios for temporal spanners and greedy algorithms

, 4/16



Problem formulation

Dense labelling problem
Input: graph G, integer k
Question: Does a proper necessary labelling λ using at least k labels
exist such that temporal graph G = (G,λ) is T C?

Definitions

• A label is necessary iff reachability reduces when removed

• A labelling is necessary iff it consists of only necessary labels

• A labelling is proper iff incident edges have distinct labels

Motivation

• Represents potential power of an adversary trying to waste precious
network resources (even if restricted)

• Worst case scenarios for temporal spanners and greedy algorithms

, 4/16



Problem formulation

Dense labelling problem
Input: graph G, integer k
Question: Does a proper necessary labelling λ using at least k labels
exist such that temporal graph G = (G,λ) is T C?

Definitions

• A label is necessary iff reachability reduces when removed

• A labelling is necessary iff it consists of only necessary labels

• A labelling is proper iff incident edges have distinct labels

Motivation

• Represents potential power of an adversary trying to waste precious
network resources (even if restricted)

• Worst case scenarios for temporal spanners and greedy algorithms

, 4/16



Global and local measures

Measures
of a temporal graph G [6]:

• Temporal cost T : total amount of labels in G

• Temporality τ : maximum amount of labels on some edge of G

of a (static) graph G:

• Maximum temporal cost T+: maximum temporal cost of temporally
connected G = (G,λ) among all necessary labellings λ

• Maximum temporality τ+: maximum temporality of temporally
connected G = (G,λ) among all necessary labellings λ

, 5/16



Global and local measures

Measures
of a temporal graph G [6]:

• Temporal cost T : total amount of labels in G

• Temporality τ : maximum amount of labels on some edge of G

of a (static) graph G:

• Maximum temporal cost T+: maximum temporal cost of temporally
connected G = (G,λ) among all necessary labellings λ

• Maximum temporality τ+: maximum temporality of temporally
connected G = (G,λ) among all necessary labellings λ

, 5/16



Global and local measures

Measures
of a temporal graph G [6]:

• Temporal cost T : total amount of labels in G

• Temporality τ : maximum amount of labels on some edge of G

of a (static) graph G:

• Maximum temporal cost T+: maximum temporal cost of temporally
connected G = (G,λ) among all necessary labellings λ

• Maximum temporality τ+: maximum temporality of temporally
connected G = (G,λ) among all necessary labellings λ

1

2 3 1,23

, 5/16



Global and local measures

Measures
of a temporal graph G [6]:

• Temporal cost T : total amount of labels in G

• Temporality τ : maximum amount of labels on some edge of G

of a (static) graph G:

• Maximum temporal cost T+: maximum temporal cost of temporally
connected G = (G,λ) among all necessary labellings λ

• Maximum temporality τ+: maximum temporality of temporally
connected G = (G,λ) among all necessary labellings λ

, 5/16



Global and local measures

Measures
of a temporal graph G [6]:

• Temporal cost T : total amount of labels in G

• Temporality τ : maximum amount of labels on some edge of G

of a (static) graph G:

• Maximum temporal cost T+: maximum temporal cost of temporally
connected G = (G,λ) among all necessary labellings λ

• Maximum temporality τ+: maximum temporality of temporally
connected G = (G,λ) among all necessary labellings λ

, 5/16



Global and local measures

Measures
of a temporal graph G [6]:

• Temporal cost T : total amount of labels in G

• Temporality τ : maximum amount of labels on some edge of G

of a (static) graph G:

• Maximum temporal cost T+: maximum temporal cost of temporally
connected G = (G,λ) among all necessary labellings λ

• Maximum temporality τ+: maximum temporality of temporally
connected G = (G,λ) among all necessary labellings λ

, 5/16



Global and local measures

Measures
of a temporal graph G [6]:

• Temporal cost T : total amount of labels in G

• Temporality τ : maximum amount of labels on some edge of G

of a (static) graph G:

• Maximum temporal cost T+: maximum temporal cost of temporally
connected G = (G,λ) among all necessary labellings λ

• Maximum temporality τ+: maximum temporality of temporally
connected G = (G,λ) among all necessary labellings λ

, 5/16



Global and local measures

Measures
of a temporal graph G [6]:

• Temporal cost T : total amount of labels in G

• Temporality τ : maximum amount of labels on some edge of G

of a (static) graph G:

• Maximum temporal cost T+: maximum temporal cost of temporally
connected G = (G,λ) among all necessary labellings λ

• Maximum temporality τ+: maximum temporality of temporally
connected G = (G,λ) among all necessary labellings λ

1,2 3

, 5/16



Bounds

Bounds on largest τ+ and T+

• 2 ? ≤ τ+ and τ+ ≤ n− 1

• 1
18
n2 +O(n) ≤ T+ [1] and T+ < (n− 1)

(
n

2

)

, 6/16



Bounds

Bounds on largest τ+ and T+

• 2 ? ≤ τ+ and τ+ ≤ n− 1

• 1
18
n2 +O(n) ≤ T+ [1] and T+ < (n− 1)

(
n

2

)

, 6/16



Bounds

Bounds on largest τ+ and T+

• 2 ? ≤ τ+ and τ+ ≤ n− 1

• 1
18
n2 +O(n) ≤ T+ [1] and T+ < (n− 1)

(
n

2

)

e

, 6/16



Bounds

Bounds on largest τ+ and T+

• 2 ? ≤ τ+ and τ+ ≤ n− 1

• 1
18
n2 +O(n) ≤ T+ [1] and T+ < (n− 1)

(
n

2

)

e

, 6/16



Bounds

Bounds on largest τ+ and T+

• 2 ? ≤ τ+ and τ+ ≤ n− 1

• 1
18
n2 +O(n) ≤ T+ [1] and T+ < (n− 1)

(
n

2

)

u

e

, 6/16



Bounds

Bounds on largest τ+ and T+

• 2 ? ≤ τ+ and τ+ ≤ n− 1

• 1
18
n2 +O(n) ≤ T+ [1] and T+ < (n− 1)

(
n

2

)

`1 < `2 < `3

e

u

, 6/16



Bounds

Bounds on largest τ+ and T+

• 2 ? ≤ τ+ and τ+ ≤ n− 1

• 1
18
n2 +O(n) ≤ T+ [1] and T+ < (n− 1)

(
n

2

)

`1

e

u

, 6/16



Bounds

Bounds on largest τ+ and T+

• 2 ? ≤ τ+ and τ+ ≤ n− 1

• 1
18
n2 +O(n) ≤ T+ [1] and T+ < (n− 1)

(
n

2

)

, 6/16



The simple case of trees

Definition
A bridge edge is an edge which disconnects the graph when removed

Lemma
In any necessary labelling, there are at most 2 labels on a bridge edge

G1 G2

Theorem

For any tree graph on n vertices, τ+ = 2 and T+ = 2n− 3

, 7/16



The simple case of trees

Definition
A bridge edge is an edge which disconnects the graph when removed

Lemma
In any necessary labelling, there are at most 2 labels on a bridge edge

G1 G2

Theorem

For any tree graph on n vertices, τ+ = 2 and T+ = 2n− 3

, 7/16



The simple case of trees

Definition
A bridge edge is an edge which disconnects the graph when removed

Lemma
In any necessary labelling, there are at most 2 labels on a bridge edge

G1 G2

`1 < `2 < `3 < `4

Theorem

For any tree graph on n vertices, τ+ = 2 and T+ = 2n− 3

, 7/16



The simple case of trees

Definition
A bridge edge is an edge which disconnects the graph when removed

Lemma
In any necessary labelling, there are at most 2 labels on a bridge edge

G1 G2

`4

Theorem

For any tree graph on n vertices, τ+ = 2 and T+ = 2n− 3

, 7/16



The simple case of trees

Definition
A bridge edge is an edge which disconnects the graph when removed

Lemma
In any necessary labelling, there are at most 2 labels on a bridge edge

G1 G2

`4

Theorem

For any tree graph on n vertices, τ+ = 2 and T+ = 2n− 3

, 7/16



Is τ+ > 2 even possible?

Ad-hoc construction for τ+ ≥ 3

• suppose some edge e exists with 3 necessary labels;

• so those labels are necessary for some (distinct) journeys;

• add edges/labels to make sure graph is T C

Theorem

The ad-hoc construction allows for τ+ ≥ 1
3
n and T+ ≥ 1

18
n2 +O(n)

, 8/16



Is τ+ > 2 even possible?

Ad-hoc construction for τ+ ≥ 3

• suppose some edge e exists with 3 necessary labels;

• so those labels are necessary for some (distinct) journeys;

• add edges/labels to make sure graph is T C

10, 20, 30

Theorem

The ad-hoc construction allows for τ+ ≥ 1
3
n and T+ ≥ 1

18
n2 +O(n)

, 8/16



Is τ+ > 2 even possible?

Ad-hoc construction for τ+ ≥ 3

• suppose some edge e exists with 3 necessary labels;

• so those labels are necessary for some (distinct) journeys;

• add edges/labels to make sure graph is T C

9

19

29

11

21

31

10, 20, 30

u1

u2

u3

v1

v2

v3

Theorem

The ad-hoc construction allows for τ+ ≥ 1
3
n and T+ ≥ 1

18
n2 +O(n)

, 8/16



Is τ+ > 2 even possible?

Ad-hoc construction for τ+ ≥ 3

• suppose some edge e exists with 3 necessary labels;

• so those labels are necessary for some (distinct) journeys;

• add edges/labels to make sure graph is T C

2
2

0 0

11101

100

102

100

100

10027

28

18

9

19

29

11

21

31

10, 20, 30

Theorem

The ad-hoc construction allows for τ+ ≥ 1
3
n and T+ ≥ 1

18
n2 +O(n)

, 8/16



Is τ+ > 2 even possible?

Ad-hoc construction for τ+ ≥ 3

• suppose some edge e exists with 3 necessary labels;

• so those labels are necessary for some (distinct) journeys;

• add edges/labels to make sure graph is T C

2
2

0 0

11101

100

102

100

100

10027

28

18

9

19

29

11

21

31

10, 20, 30

Theorem

The ad-hoc construction allows for τ+ ≥ 1
3
n and T+ ≥ 1

18
n2 +O(n)

, 8/16



Odd/even alternating labelling

1, 3, 5

2, 4, 6

1, 3, 5

1, 3, 5
1, 3, 5

1, 3, 5

1, 3, 5

2, 4, 6

2, 4, 6

2, 4, 6
2, 4, 6

2, 4, 6

Theorem

The odd/even alternating labelling allows for τ+ = 1
4
n and T+ = 1

4
n2

Remark

Contrary to trees, cycles allow for large τ+ and T+, but can we do better?

, 9/16



Necessary labelling generator

Idea
Extend STGen [3], a happy labelling generator using techniques based on
matchings, isomorphisms, and automorphisms, to generate, given a graph,
all its proper necessary labellings

Some details

• Non-necessary labellings and T C labellings are “final”,
efficiently cutting branches of search space;

• Amortized constant time complexity for T C testing and necessity testing;

• Freely available at https://gitlab.com/echrstnn/max-temporality (Rust);

Result
Enumerated all necessary labellings of cycles of size up to n = 14 included,
giving us the intuition for the following (empirically optimal) labelling

, 10/16



Necessary labelling generator

Idea
Extend STGen [3], a happy labelling generator using techniques based on
matchings, isomorphisms, and automorphisms, to generate, given a graph,
all its proper necessary labellings

Some details

• Non-necessary labellings and T C labellings are “final”,
efficiently cutting branches of search space;

• Amortized constant time complexity for T C testing and necessity testing;

• Freely available at https://gitlab.com/echrstnn/max-temporality (Rust);

Result
Enumerated all necessary labellings of cycles of size up to n = 14 included,
giving us the intuition for the following (empirically optimal) labelling

, 10/16



Necessary labelling generator

Idea
Extend STGen [3], a happy labelling generator using techniques based on
matchings, isomorphisms, and automorphisms, to generate, given a graph,
all its proper necessary labellings

Some details

• Non-necessary labellings and T C labellings are “final”,
efficiently cutting branches of search space;

• Amortized constant time complexity for T C testing and necessity testing;

• Freely available at https://gitlab.com/echrstnn/max-temporality (Rust);

Result
Enumerated all necessary labellings of cycles of size up to n = 14 included,
giving us the intuition for the following (empirically optimal) labelling

, 10/16



Odd/even distributing labelling

Definition Odd/even distributing labelling

• Let L1 = (1, 3, 5, ..., n− 1), L2 = (2, 4, ..., n− 2) and P1, P2 = ∅;

• Choose some edge e, and let e`, er = e;
• Do n

2
times:

• Assign P1 to both edges e` and er ;
• Distribute L1 to e` and er , move min(L1) to P1 and remove max(L1);
• Set e` and er to the next clockwise and counter-clockwise edges;
• Swap L1 and L2, as well as P1 and P2;

• Assign P1 to e`, as well as label max(P1) + 2

, 11/16



Odd/even distributing labelling

Definition Odd/even distributing labelling

• Let L1 = (1, 3, 5, ..., n− 1), L2 = (2, 4, ..., n− 2) and P1, P2 = ∅;

• Choose some edge e, and let e`, er = e;
• Do n

2
times:

• Assign P1 to both edges e` and er ;
• Distribute L1 to e` and er , move min(L1) to P1 and remove max(L1);
• Set e` and er to the next clockwise and counter-clockwise edges;
• Swap L1 and L2, as well as P1 and P2;

• Assign P1 to e`, as well as label max(P1) + 2

1, 3, 5, 7, 9, 11, 13, 15

, 11/16



Odd/even distributing labelling

Definition Odd/even distributing labelling

• Let L1 = (1, 3, 5, ..., n− 1), L2 = (2, 4, ..., n− 2) and P1, P2 = ∅;

• Choose some edge e, and let e`, er = e;
• Do n

2
times:

• Assign P1 to both edges e` and er ;
• Distribute L1 to e` and er , move min(L1) to P1 and remove max(L1);
• Set e` and er to the next clockwise and counter-clockwise edges;
• Swap L1 and L2, as well as P1 and P2;

• Assign P1 to e`, as well as label max(P1) + 2

1, 3, 5, 7, 9, 11, 13, 15

2, 6, 10, 14

4, 8, 12

, 11/16



Odd/even distributing labelling

Definition Odd/even distributing labelling

• Let L1 = (1, 3, 5, ..., n− 1), L2 = (2, 4, ..., n− 2) and P1, P2 = ∅;

• Choose some edge e, and let e`, er = e;
• Do n

2
times:

• Assign P1 to both edges e` and er ;
• Distribute L1 to e` and er , move min(L1) to P1 and remove max(L1);
• Set e` and er to the next clockwise and counter-clockwise edges;
• Swap L1 and L2, as well as P1 and P2;

• Assign P1 to e`, as well as label max(P1) + 2

1, 3, 5, 7, 9, 11, 13, 15

2, 6, 10, 14

4, 8, 12

1, 5, 9, 13

1, 3, 7, 11

, 11/16



Odd/even distributing labelling

Definition Odd/even distributing labelling

• Let L1 = (1, 3, 5, ..., n− 1), L2 = (2, 4, ..., n− 2) and P1, P2 = ∅;

• Choose some edge e, and let e`, er = e;
• Do n

2
times:

• Assign P1 to both edges e` and er ;
• Distribute L1 to e` and er , move min(L1) to P1 and remove max(L1);
• Set e` and er to the next clockwise and counter-clockwise edges;
• Swap L1 and L2, as well as P1 and P2;

• Assign P1 to e`, as well as label max(P1) + 2

1, 3, 5, 7, 9, 11, 13, 15

2, 6, 10, 14

4, 8, 12

1, 5, 9, 13

1, 3, 7, 11

2, 4, 8, 12

2, 6, 10

, 11/16



Odd/even distributing labelling

Definition Odd/even distributing labelling

• Let L1 = (1, 3, 5, ..., n− 1), L2 = (2, 4, ..., n− 2) and P1, P2 = ∅;

• Choose some edge e, and let e`, er = e;
• Do n

2
times:

• Assign P1 to both edges e` and er ;
• Distribute L1 to e` and er , move min(L1) to P1 and remove max(L1);
• Set e` and er to the next clockwise and counter-clockwise edges;
• Swap L1 and L2, as well as P1 and P2;

• Assign P1 to e`, as well as label max(P1) + 2

1, 3, 5, 7, 9, 11, 13, 15

2, 6, 10, 14

4, 8, 12

1, 5, 9, 13

1, 3, 7, 11

2, 4, 8, 12

2, 6, 10
1, 3, 7, 11

1, 3, 5, 9

, 11/16



Odd/even distributing labelling

Definition Odd/even distributing labelling

• Let L1 = (1, 3, 5, ..., n− 1), L2 = (2, 4, ..., n− 2) and P1, P2 = ∅;

• Choose some edge e, and let e`, er = e;
• Do n

2
times:

• Assign P1 to both edges e` and er ;
• Distribute L1 to e` and er , move min(L1) to P1 and remove max(L1);
• Set e` and er to the next clockwise and counter-clockwise edges;
• Swap L1 and L2, as well as P1 and P2;

• Assign P1 to e`, as well as label max(P1) + 2

1, 3, 5, 7, 9, 11, 13, 15

2, 6, 10, 14

4, 8, 12

1, 5, 9, 13

1, 3, 7, 11

2, 4, 8, 12

2, 6, 10
1, 3, 7, 11

1, 3, 5, 9

2, 4, 8

2, 4, 6, 10 , 11/16



Odd/even distributing labelling

Definition Odd/even distributing labelling

• Let L1 = (1, 3, 5, ..., n− 1), L2 = (2, 4, ..., n− 2) and P1, P2 = ∅;

• Choose some edge e, and let e`, er = e;
• Do n

2
times:

• Assign P1 to both edges e` and er ;
• Distribute L1 to e` and er , move min(L1) to P1 and remove max(L1);
• Set e` and er to the next clockwise and counter-clockwise edges;
• Swap L1 and L2, as well as P1 and P2;

• Assign P1 to e`, as well as label max(P1) + 2

1, 3, 5, 7, 9, 11, 13, 15

2, 6, 10, 14

4, 8, 12

1, 5, 9, 13

1, 3, 7, 11

2, 4, 8, 12

2, 6, 10
1, 3, 7, 11

1, 3, 5, 9

2, 4, 8

2, 4, 6, 10

1, 3, 5, 9

1, 3, 5, 7

, 11/16



Odd/even distributing labelling

Definition Odd/even distributing labelling

• Let L1 = (1, 3, 5, ..., n− 1), L2 = (2, 4, ..., n− 2) and P1, P2 = ∅;

• Choose some edge e, and let e`, er = e;
• Do n

2
times:

• Assign P1 to both edges e` and er ;
• Distribute L1 to e` and er , move min(L1) to P1 and remove max(L1);
• Set e` and er to the next clockwise and counter-clockwise edges;
• Swap L1 and L2, as well as P1 and P2;

• Assign P1 to e`, as well as label max(P1) + 2

1, 3, 5, 7, 9, 11, 13, 15

2, 6, 10, 14

4, 8, 12

1, 5, 9, 13

1, 3, 7, 11

2, 4, 8, 12

2, 6, 10
1, 3, 7, 11

1, 3, 5, 9

2, 4, 8

2, 4, 6, 10

1, 3, 5, 9

1, 3, 5, 7

2, 4, 6, 8

2, 4, 6

, 11/16



Odd/even distributing labelling

Definition Odd/even distributing labelling

• Let L1 = (1, 3, 5, ..., n− 1), L2 = (2, 4, ..., n− 2) and P1, P2 = ∅;

• Choose some edge e, and let e`, er = e;
• Do n

2
times:

• Assign P1 to both edges e` and er ;
• Distribute L1 to e` and er , move min(L1) to P1 and remove max(L1);
• Set e` and er to the next clockwise and counter-clockwise edges;
• Swap L1 and L2, as well as P1 and P2;

• Assign P1 to e`, as well as label max(P1) + 2

1, 3, 5, 7, 9, 11, 13, 15

2, 6, 10, 14

4, 8, 12

1, 5, 9, 13

1, 3, 7, 11

2, 4, 8, 12

2, 6, 10
1, 3, 7, 11

1, 3, 5, 9

2, 4, 8

2, 4, 6, 10

1, 3, 5, 9

1, 3, 5, 7

2, 4, 6, 8

2, 4, 6

1, 3, 5, 7, 9

, 11/16



Correctness proof of odd/even distributing labelling

Theorem

The odd/even distributing labelling induces τ+ ≥ 1
2
n and T+ ≥ 1

4
n2 + 1

Link Stream (Latapy et al. [5])
Use one axis for the vertices, and a second axis for time, allowing one to
plot the time-edges (and journeys) in this two-dimensional space

e

1

5

10

15

, 12/16



Correctness proof of odd/even distributing labelling

Theorem

The odd/even distributing labelling induces τ+ ≥ 1
2
n and T+ ≥ 1

4
n2 + 1

Link Stream (Latapy et al. [5])
Use one axis for the vertices, and a second axis for time, allowing one to
plot the time-edges (and journeys) in this two-dimensional space

e

1

5

10

15

, 12/16



Correctness proof of odd/even distributing labelling

Definition
A journey is:

• (counter-)clockwise iff it only uses edges towards the right (resp. left);

• prefix-foremost iff it always uses the earliest edges possible;

• dominant iff no (same direction) journey covers its vertices or more

e

1

5

10

15

, 13/16



Correctness proof of odd/even distributing labelling

Definition
A journey is:

• (counter-)clockwise iff it only uses edges towards the right (resp. left);

• prefix-foremost iff it always uses the earliest edges possible;

• dominant iff no (same direction) journey covers its vertices or more

e

1

5

10

15

, 13/16



Correctness proof of odd/even distributing labelling

Definition
A journey is:

• (counter-)clockwise iff it only uses edges towards the right (resp. left);

• prefix-foremost iff it always uses the earliest edges possible;

• dominant iff no (same direction) journey covers its vertices or more

e

1

5

10

15

, 13/16



Correctness proof of odd/even distributing labelling

Definition
A journey is:

• (counter-)clockwise iff it only uses edges towards the right (resp. left);

• prefix-foremost iff it always uses the earliest edges possible;

• dominant iff no (same direction) journey covers its vertices or more

e

15

1

5

10

... ...

, 13/16



Correctness proof of odd/even distributing labelling

Lemma
A pair of clockwise and counter-clockwise journeys is necessary if:

• both start at some same vertex v;

• both are prefix-foremost;

• both are a suffix of a dominant journey;

• together they cover the whole vertex set without crossing

e

15

1

5

10

... ...

, 13/16



Correctness proof of odd/even distributing labelling

Theorem
The odd/even distributing labelling is necessary for all even cycles

Proof idea by induction

• base case: prove it is a necessary labelling for C4 with Lemma

• inductive step (Cn to Cn+2): adds a “layer” on the link stream,
lengthening journeys by 1, and adding journeys obeying Lemma

1

e

2

3

... ...

, 14/16



Correctness proof of odd/even distributing labelling

Theorem
The odd/even distributing labelling is necessary for all even cycles

Proof idea by induction

• base case: prove it is a necessary labelling for C4 with Lemma

• inductive step (Cn to Cn+2): adds a “layer” on the link stream,
lengthening journeys by 1, and adding journeys obeying Lemma

e

15

1

5

10

... ...
, 14/16



Correctness proof of odd/even distributing labelling

Theorem
The odd/even distributing labelling is necessary for all even cycles

Proof idea by induction

• base case: prove it is a necessary labelling for C4 with Lemma

• inductive step (Cn to Cn+2): adds a “layer” on the link stream,
lengthening journeys by 1, and adding journeys obeying Lemma

e

15

1

5

10

... ...
, 14/16



Correctness proof of odd/even distributing labelling

Theorem
The odd/even distributing labelling is necessary for all even cycles

Proof idea by induction

• base case: prove it is a necessary labelling for C4 with Lemma

• inductive step (Cn to Cn+2): adds a “layer” on the link stream,
lengthening journeys by 1, and adding journeys obeying Lemma

e

15

1

5

10

... ...
, 14/16



Correctness proof of odd/even distributing labelling

Theorem
The odd/even distributing labelling is necessary for all even cycles

Proof idea by induction

• base case: prove it is a necessary labelling for C4 with Lemma

• inductive step (Cn to Cn+2): adds a “layer” on the link stream,
lengthening journeys by 1, and adding journeys obeying Lemma

e

15

1

5

10

... ...
, 14/16



Correctness proof of odd/even distributing labelling

Theorem
The odd/even distributing labelling is necessary for all even cycles

Proof idea by induction

• base case: prove it is a necessary labelling for C4 with Lemma

• inductive step (Cn to Cn+2): adds a “layer” on the link stream,
lengthening journeys by 1, and adding journeys obeying Lemma

e

15

1

5

10

... ...
, 14/16



And finally: cactus graphs

Definition
A cactus graph is a tree graph with some vertices/edges replaced by cycles

Theorem
For any cactus graph on n vertices and circumference c (length of longest
simple cycle), τ+ ≥ 1

2
c, and T+ ≥ 1

4
c2 + 2(n− c) + 1

, 15/16



And finally: cactus graphs

Definition
A cactus graph is a tree graph with some vertices/edges replaced by cycles

Theorem
For any cactus graph on n vertices and circumference c (length of longest
simple cycle), τ+ ≥ 1

2
c, and T+ ≥ 1

4
c2 + 2(n− c) + 1

1

1

1

1 1

2

3
2

34

5

2

6

, 15/16



And finally: cactus graphs

Definition
A cactus graph is a tree graph with some vertices/edges replaced by cycles

Theorem
For any cactus graph on n vertices and circumference c (length of longest
simple cycle), τ+ ≥ 1

2
c, and T+ ≥ 1

4
c2 + 2(n− c) + 1

7,9,11

10

8

7,9

7

8, 10

, 15/16



And finally: cactus graphs

Definition
A cactus graph is a tree graph with some vertices/edges replaced by cycles

Theorem
For any cactus graph on n vertices and circumference c (length of longest
simple cycle), τ+ ≥ 1

2
c, and T+ ≥ 1

4
c2 + 2(n− c) + 1

13

12
17

1816

15

14

12

12

13

18 19

14

, 15/16



Conclusion

Theorem

For any tree graph on n vertices, τ+ = 2 and T+ = 2n− 3

Corollary

For any connected graph on n vertices, τ+ ≥ 2 and T+ ≥ 2n− 3

Theorem

For any cycle graph on n vertices, τ+ ≥ 1
2
n and T+ ≥ 1

4
n2 + 1

Corollary

For any Hamiltonian graph on n vertices, τ+ ≥ 1
2
n and T+ ≥ 1

4
n2 + 1

Theorem

For any cactus graph on n vertices and circumference c, τ+ ≥ 1
2
c, and

T+ ≥ 1
4
c2 + 2(n− c) + 1

Corollary

For any graph on n vertices and circumference c, τ+ ≥ 1
2
c, and

T+ ≥ 1
4
c2 + 2(n− c) + 1

Thank you for your attention

, 16/16



Conclusion

Future work and open questions

• Reduce upper bound of τ+ in cycles, currently n− 1 (to a tight 1
2
n?)

by showing forbidden configurations of dominating journeys

• Can cactus graphs beat τ+ = 1
2
c?

• We adapted our labelling generator to work for general graphs, and
τ+ ≤ 1

2
n (empirically) seems to hold in general as well

• Given a general graph, is it NP-hard to compute τ+ or T+?

Measure \ Labelling Proper Happy Strict

τ+ ≥ 1
2
n

1

(by definition)
> 1

2
n ?

(empirically)
T+ ≥ 1

4
n2 + 1 ≥ 1

18
n2 +O(n) ≥ 1

2
n2 +O(n)

Thank you for your attention

, 16/16



Conclusion

Future work and open questions

• Reduce upper bound of τ+ in cycles, currently n− 1 (to a tight 1
2
n?)

by showing forbidden configurations of dominating journeys

• Can cactus graphs beat τ+ = 1
2
c?

• We adapted our labelling generator to work for general graphs, and
τ+ ≤ 1

2
n (empirically) seems to hold in general as well

• Given a general graph, is it NP-hard to compute τ+ or T+?

Measure \ Labelling Proper Happy Strict

τ+ ≥ 1
2
n

1

(by definition)
> 1

2
n ?

(empirically)
T+ ≥ 1

4
n2 + 1 ≥ 1

18
n2 +O(n) ≥ 1

2
n2 +O(n)

Thank you for your attention

, 16/16



Bibliography i

K. AXIOTIS AND D. FOTAKIS, On the size and the approximability of
minimum temporally connected subgraphs, arXiv preprint:1602.06411,
(2016).

B. BAKER, Gossips and telephones* brenda baker and robert shostak†
discrete mathematics 2 (1972) 191–193 the following problem has
circulated lately among mathematicians. other solutions have been given
independently by rt bumby and by a. hajnal, ec milner and e. szemerédi.,
Discrete Mathematics, 2 (1972), pp. 191–193.

A. CASTEIGTS, Efficient generation of simple temporal graphs up to
isomorphism, (2020).

J. ENRIGHT, K. MEEKS, AND F. SKERMAN, Assigning times to minimise
reachability in temporal graphs, Journal of Computer and System
Sciences, 115 (2021), pp. 169–186.

, 16/16



Bibliography ii

M. LATAPY, T. VIARD, AND C. MAGNIEN, Stream graphs and link streams
for the modeling of interactions over time, Social Network Analysis and
Mining, 8 (2018), pp. 1–29.

G. B. MERTZIOS, O. MICHAIL, I. CHATZIGIANNAKIS, AND P. G.
SPIRAKIS, Temporal network optimization subject to connectivity
constraints, in International Colloquium on Automata, Languages, and
Programming, Springer, 2013, pp. 657–668.

, 16/16


