LEVERHULME
\qquad

On inefficient temporal graphs

```
Esteban Christiann estebanc@protonmail.ch
Eric Sanlaville \({ }^{1}\) eric.sanlaville@univ-lehavre.fr
Jason Schoeters \({ }^{12}{ }^{2}\) js2807@cam.ac.uk
Algorithmic Aspects of Temporal Graphs VI, Paderborn, July 10, 2023
```


[^0]
Context

Temporal graphs

Context

Temporal graphs

- faulty networks

Context

Temporal graphs

- faulty networks
- swarms of drones

Context

Temporal graphs

- faulty networks
- swarms of drones
- interacting population

Preliminaries

Definition temporal graph
Edges appear and disappear over the lifetime of the graph

Preliminaries

Definition temporal graph

Edges appear and disappear over the lifetime of the graph

Preliminaries

Definition temporal graph

Edges appear and disappear over the lifetime of the graph

Definition footprint (or underlying graph)
Union of all snapshots G_{i}

Preliminaries

Definition temporal graph

Edges appear and disappear over the lifetime of the graph

Definition footprint (or underlying graph)
Union of all snapshots G_{i}
Definition journey (or temporal path)
Path in temporal graph with increasing labels on the edges

Preliminaries

Definition temporal graph

Edges appear and disappear over the lifetime of the graph

Definition footprint (or underlying graph)
Union of all snapshots G_{i}
Definition journey (or temporal path)
Path in temporal graph with increasing labels on the edges

Preliminaries

Definition temporal graph

Edges appear and disappear over the lifetime of the graph

Definition footprint (or underlying graph)
Union of all snapshots G_{i}
Definition journey (or temporal path)
Path in temporal graph with increasing labels on the edges
Definition temporal connectivity ($\mathcal{T C}$)
A temporal graph is temporally connected
iff for all pairs of vertices (u, v) there exists a journey $u \rightsquigarrow v$

Preliminaries

Temporal graph design problem

Input: graph $G=(V, E)$, temporal graph property \mathcal{P}
Question: does a labelling $\lambda: E \rightarrow \mathbb{N}$ exist such that temporal graph $\mathcal{G}=(G, L)$ have property \mathcal{P} ?

Preliminaries

Temporal graph design problem

Input: graph $G=(V, E)$, temporal graph property \mathcal{P}
Question: does a labelling $\lambda: E \rightarrow \mathbb{N}$ exist such that temporal graph $\mathcal{G}=(G, L)$ have property \mathcal{P} ?

Examples of property \mathcal{P}

- $\mathcal{T C}$ with amount of labels $\leq 2 n-2$?

Preliminaries

Temporal graph design problem

Input: graph $G=(V, E)$, temporal graph property \mathcal{P}
Question: does a labelling $\lambda: E \rightarrow \mathbb{N}$ exist such that temporal graph $\mathcal{G}=(G, L)$ have property \mathcal{P} ?

Examples of property \mathcal{P}

- $\mathcal{T C}$ with amount of labels $\leq 2 n-2$?

Preliminaries

Temporal graph design problem

Input: graph $G=(V, E)$, temporal graph property \mathcal{P}
Question: does a labelling $\lambda: E \rightarrow \mathbb{N}$ exist such that temporal graph $\mathcal{G}=(G, L)$ have property \mathcal{P} ?

Examples of property \mathcal{P}

- $\mathcal{T C}$ with amount of labels $\leq 2 n-2$? $2 n-3$?

Preliminaries

Temporal graph design problem

Input: graph $G=(V, E)$, temporal graph property \mathcal{P}
Question: does a labelling $\lambda: E \rightarrow \mathbb{N}$ exist such that temporal graph $\mathcal{G}=(G, L)$ have property \mathcal{P} ?

Examples of property \mathcal{P}

- $\mathcal{T C}$ with amount of labels $\leq 2 n-2$? $2 n-3$? $2 n-4$?

Preliminaries

Temporal graph design problem

Input: graph $G=(V, E)$, temporal graph property \mathcal{P}
Question: does a labelling $\lambda: E \rightarrow \mathbb{N}$ exist such that temporal graph
$\mathcal{G}=(G, L)$ have property \mathcal{P} ?

Examples of property \mathcal{P}

- $\mathcal{T C}$ with amount of labels $\leq 2 n-2$? $2 n-3$? $2 n-4$? $2 n-5$? [2]

Preliminaries

Temporal graph design problem

Input: graph $G=(V, E)$, temporal graph property \mathcal{P}
Question: does a labelling $\lambda: E \rightarrow \mathbb{N}$ exist such that temporal graph
$\mathcal{G}=(G, L)$ have property \mathcal{P} ?

Examples of property \mathcal{P}

- $\mathcal{T C}$ with amount of labels $\leq 2 n-2$? $2 n-3$? $2 n-4$? $2 n-5$? [2]
- and with at most some lifetime L ? [6]

Preliminaries

Temporal graph design problem

Input: graph $G=(V, E)$, temporal graph property \mathcal{P}
Question: does a labelling $\lambda: E \rightarrow \mathbb{N}$ exist such that temporal graph
$\mathcal{G}=(G, L)$ have property \mathcal{P} ?

Examples of property \mathcal{P}

- $\mathcal{T C}$ with amount of labels $\leq 2 n-2$? $2 n-3$? $2 n-4$? $2 n-5$? [2]
- and with at most some lifetime L ? [6]
- Reachability of at most some R ? [4]

Preliminaries

Temporal graph design problem

Input: graph $G=(V, E)$, temporal graph property \mathcal{P}
Question: does a labelling $\lambda: E \rightarrow \mathbb{N}$ exist such that temporal graph
$\mathcal{G}=(G, L)$ have property \mathcal{P} ?

Examples of property \mathcal{P}

- $\mathcal{T C}$ with amount of labels $\leq 2 n-2$? $2 n-3$? $2 n-4$? $2 n-5$? [2]
- and with at most some lifetime L ? [6]
- Reachability of at most some R ? [4]

Remark

The amount of labels used in these problems is always minimized or given

Problem formulation

Sparse labelling problem

Input: graph G, integer k
Question: Does a labelling λ using at most k labels exist such that temporal graph $\mathcal{G}=(G, \lambda)$ is $\mathcal{T C}$?

Problem formulation

Dense labelling problem
Input: graph G, integer k
Question: Does a labelling λ using at least k labels exist such that temporal graph $\mathcal{G}=(G, \lambda)$ is $\mathcal{T C}$?

Problem formulation

Dense labelling problem

Input: graph G, integer k
Question: Does a labelling λ using at least k labels exist such that temporal graph $\mathcal{G}=(G, \lambda)$ is $\mathcal{T C}$?

Problem formulation

Dense labelling problem

Input: graph G, integer k
Question: Does a labelling λ using at least k labels exist such that temporal graph $\mathcal{G}=(G, \lambda)$ is $\mathcal{T C}$?

Definitions

- A label is necessary iff reachability reduces when removed
- A labelling is necessary iff it consists of only necessary labels
- A labelling is proper iff incident edges have distinct labels

Problem formulation

Dense labelling problem

Input: graph G, integer k
Question: Does a proper necessary labelling λ using at least k labels exist such that temporal graph $\mathcal{G}=(G, \lambda)$ is $\mathcal{T C}$?

Definitions

- A label is necessary iff reachability reduces when removed
- A labelling is necessary iff it consists of only necessary labels
- A labelling is proper iff incident edges have distinct labels

Problem formulation

Dense labelling problem

Input: graph G, integer k
Question: Does a proper necessary labelling λ using at least k labels exist such that temporal graph $\mathcal{G}=(G, \lambda)$ is $\mathcal{T C}$?

Definitions

- A label is necessary iff reachability reduces when removed
- A labelling is necessary iff it consists of only necessary labels
- A labelling is proper iff incident edges have distinct labels

Motivation

- Represents potential power of an adversary trying to waste precious network resources (even if restricted)
- Worst case scenarios for temporal spanners and greedy algorithms

Global and local measures

Measures

of a temporal graph \mathcal{G} [6]:

- Temporal cost T : total amount of labels in \mathcal{G}

Global and local measures

Measures

of a temporal graph \mathcal{G} [6]:

- Temporal cost T : total amount of labels in \mathcal{G}
- Temporality τ : maximum amount of labels on some edge of \mathcal{G}

Global and local measures

Measures

of a temporal graph \mathcal{G} [6]:

- Temporal cost T : total amount of labels in \mathcal{G}
- Temporality τ : maximum amount of labels on some edge of \mathcal{G}

Global and local measures

Measures

of a temporal graph \mathcal{G} [6]:

- Temporal cost T : total amount of labels in \mathcal{G}
- Temporality τ : maximum amount of labels on some edge of \mathcal{G}
of a (static) graph G :

Global and local measures

Measures

of a temporal graph \mathcal{G} [6]:

- Temporal cost T : total amount of labels in \mathcal{G}
- Temporality τ : maximum amount of labels on some edge of \mathcal{G}
of a (static) graph G :
- Maximum temporal cost T^{+}: maximum temporal cost of temporally connected $\mathcal{G}=(G, \lambda)$ among all necessary labellings λ

Global and local measures

Measures

of a temporal graph \mathcal{G} [6]:

- Temporal cost T : total amount of labels in \mathcal{G}
- Temporality τ : maximum amount of labels on some edge of \mathcal{G}
of a (static) graph G :
- Maximum temporal cost T^{+}: maximum temporal cost of temporally connected $\mathcal{G}=(G, \lambda)$ among all necessary labellings λ
- Maximum temporality τ^{+}: maximum temporality of temporally connected $\mathcal{G}=(G, \lambda)$ among all necessary labellings λ

Global and local measures

Measures

of a temporal graph \mathcal{G} [6]:

- Temporal cost T : total amount of labels in \mathcal{G}
- Temporality τ : maximum amount of labels on some edge of \mathcal{G}
of a (static) graph G :
- Maximum temporal cost T^{+}: maximum temporal cost of temporally connected $\mathcal{G}=(G, \lambda)$ among all necessary labellings λ
- Maximum temporality τ^{+}: maximum temporality of temporally connected $\mathcal{G}=(G, \lambda)$ among all necessary labellings λ

Global and local measures

Measures

of a temporal graph \mathcal{G} [6]:

- Temporal cost T : total amount of labels in \mathcal{G}
- Temporality τ : maximum amount of labels on some edge of \mathcal{G}
of a (static) graph G :
- Maximum temporal cost T^{+}: maximum temporal cost of temporally connected $\mathcal{G}=(G, \lambda)$ among all necessary labellings λ
- Maximum temporality τ^{+}: maximum temporality of temporally connected $\mathcal{G}=(G, \lambda)$ among all necessary labellings λ

Bounds

Bounds on largest τ^{+}and T^{+}

- $2 ? \leq \tau^{+}$ and

$$
\tau^{+} \leq n-1
$$

Bounds

Bounds on largest τ^{+}and T^{+}

- $2 ? \leq \tau^{+}$ and

$$
\tau^{+} \leq n-1
$$

Bounds

Bounds on largest τ^{+}and T^{+}

- 2 ? $\leq \tau^{+} \quad$ and $\tau^{+} \leq n-1$

Bounds

Bounds on largest τ^{+}and T^{+}

- 2 ? $\leq \tau^{+}$
and

$$
\tau^{+} \leq n-1
$$

Bounds

Bounds on largest τ^{+}and T^{+}

- 2 ? $\leq \tau^{+}$
and

$$
\tau^{+} \leq n-1
$$

Bounds

Bounds on largest τ^{+}and T^{+}

- 2 ? $\leq \tau^{+}$
and

$$
\tau^{+} \leq n-1
$$

Bounds

Bounds on largest τ^{+}and T^{+}

- 2 ? $\leq \tau^{+}$
and

$$
\tau^{+} \leq n-1
$$

Bounds

Bounds on largest τ^{+}and T^{+}

- 2 ? $\leq \tau^{+}$
- $\frac{1}{18} n^{2}+O(n) \leq T^{+}[1]$
and
and

$$
\begin{array}{r}
\tau^{+} \leq n-1 \\
T^{+}<(n-1)\binom{n}{2}
\end{array}
$$

The simple case of trees

Definition

A bridge edge is an edge which disconnects the graph when removed

The simple case of trees

Definition

A bridge edge is an edge which disconnects the graph when removed

Lemma

In any necessary labelling, there are at most 2 labels on a bridge edge

The simple case of trees

Definition

A bridge edge is an edge which disconnects the graph when removed

Lemma

In any necessary labelling, there are at most 2 labels on a bridge edge

The simple case of trees

Definition

A bridge edge is an edge which disconnects the graph when removed

Lemma

In any necessary labelling, there are at most 2 labels on a bridge edge

The simple case of trees

Definition

A bridge edge is an edge which disconnects the graph when removed

Lemma

In any necessary labelling, there are at most 2 labels on a bridge edge

Theorem

For any tree graph on n vertices, $\tau^{+}=2$ and $T^{+}=2 n-3$

Is $\tau^{+}>2$ even possible?

Is $\tau^{+}>2$ even possible?

Ad-hoc construction for $\tau^{+} \geq 3$

- suppose some edge e exists with 3 necessary labels;

10, 20, 30

Is $\tau^{+}>2$ even possible?

Ad-hoc construction for $\tau^{+} \geq 3$

- suppose some edge e exists with 3 necessary labels;
- so those labels are necessary for some (distinct) journeys;

Is $\tau^{+}>2$ even possible?

Ad-hoc construction for $\tau^{+} \geq 3$

- suppose some edge e exists with 3 necessary labels;
- so those labels are necessary for some (distinct) journeys;
- add edges/labels to make sure graph is $\mathcal{T C}$

Is $\tau^{+}>2$ even possible?

Ad-hoc construction for $\tau^{+} \geq 3$

- suppose some edge e exists with 3 necessary labels;
- so those labels are necessary for some (distinct) journeys;
- add edges/labels to make sure graph is $\mathcal{T C}$

Theorem

The ad-hoc construction allows for $\tau^{+} \geq \frac{1}{3} n$ and $T^{+} \geq \frac{1}{18} n^{2}+O(n)$

Odd/even alternating labelling

Theorem

The odd/even alternating labelling allows for $\tau^{+}=\frac{1}{4} n$ and $T^{+}=\frac{1}{4} n^{2}$

Remark

Contrary to trees, cycles allow for large τ^{+}and T^{+}, but can we do better?

Necessary labelling generator

Idea

Extend STGen [3], a happy labelling generator using techniques based on matchings, isomorphisms, and automorphisms, to generate, given a graph, all its proper necessary labellings

Necessary labelling generator

Idea

Extend STGen [3], a happy labelling generator using techniques based on matchings, isomorphisms, and automorphisms, to generate, given a graph, all its proper necessary labellings

Some details

- Non-necessary labellings and $\mathcal{T C}$ labellings are "final", efficiently cutting branches of search space;
- Amortized constant time complexity for $\mathcal{T C}$ testing and necessity testing;
- Freely available at https://gitlab.com/echrstnn/max-temporality (Rust);

Necessary labelling generator

Idea

Extend STGen [3], a happy labelling generator using techniques based on matchings, isomorphisms, and automorphisms, to generate, given a graph, all its proper necessary labellings

Some details

- Non-necessary labellings and $\mathcal{T C}$ labellings are "final", efficiently cutting branches of search space;
- Amortized constant time complexity for $\mathcal{T C}$ testing and necessity testing;
- Freely available at https://gitlab.com/echrstnn/max-temporality (Rust);

Result

Enumerated all necessary labellings of cycles of size up to $n=14$ included, giving us the intuition for the following (empirically optimal) labelling

Odd/even distributing labelling

Definition Odd/even distributing labelling

- Let $L_{1}=(1,3,5, \ldots, n-1), L_{2}=(2,4, \ldots, n-2)$ and $P_{1}, P_{2}=\emptyset$;
- Choose some edge e, and let $e_{\ell}, e_{r}=e$;
- Do $\frac{n}{2}$ times:
- Assign P_{1} to both edges e_{ℓ} and e_{r};
- Distribute L_{1} to e_{ℓ} and e_{r}, move $\min \left(L_{1}\right)$ to P_{1} and remove $\max \left(L_{1}\right)$;
- Set e_{ℓ} and e_{r} to the next clockwise and counter-clockwise edges;
- Swap L_{1} and L_{2}, as well as P_{1} and P_{2};
- Assign P_{1} to e_{ℓ}, as well as label $\max \left(P_{1}\right)+2$

Odd/even distributing labelling

Definition Odd/even distributing labelling

- Let $L_{1}=(1,3,5, \ldots, n-1), L_{2}=(2,4, \ldots, n-2)$ and $P_{1}, P_{2}=\emptyset$;
- Choose some edge e, and let $e_{\ell}, e_{r}=e$;
- Do $\frac{n}{2}$ times:
- Assign P_{1} to both edges e_{ℓ} and e_{r};
- Distribute L_{1} to e_{ℓ} and e_{r}, move $\min \left(L_{1}\right)$ to P_{1} and remove $\max \left(L_{1}\right)$;
- Set e_{ℓ} and e_{r} to the next clockwise and counter-clockwise edges;
- Swap L_{1} and L_{2}, as well as P_{1} and P_{2};
- Assign P_{1} to e_{ℓ}, as well as label $\max \left(P_{1}\right)+2$

Odd/even distributing labelling

Definition Odd/even distributing labelling

- Let $L_{1}=(1,3,5, \ldots, n-1), L_{2}=(2,4, \ldots, n-2)$ and $P_{1}, P_{2}=\emptyset$;
- Choose some edge e, and let $e_{\ell}, e_{r}=e$;
- Do $\frac{n}{2}$ times:
- Assign P_{1} to both edges e_{ℓ} and e_{r};
- Distribute L_{1} to e_{ℓ} and e_{r}, move $\min \left(L_{1}\right)$ to P_{1} and remove $\max \left(L_{1}\right)$;
- Set e_{ℓ} and e_{r} to the next clockwise and counter-clockwise edges;
- Swap L_{1} and L_{2}, as well as P_{1} and P_{2};
- Assign P_{1} to e_{ℓ}, as well as label $\max \left(P_{1}\right)+2$

Odd/even distributing labelling

Definition Odd/even distributing labelling

- Let $L_{1}=(1,3,5, \ldots, n-1), L_{2}=(2,4, \ldots, n-2)$ and $P_{1}, P_{2}=\emptyset$;
- Choose some edge e, and let $e_{\ell}, e_{r}=e$;
- Do $\frac{n}{2}$ times:
- Assign P_{1} to both edges e_{ℓ} and e_{r};
- Distribute L_{1} to e_{ℓ} and e_{r}, move $\min \left(L_{1}\right)$ to P_{1} and remove $\max \left(L_{1}\right)$;
- Set e_{ℓ} and e_{r} to the next clockwise and counter-clockwise edges;
- Swap L_{1} and L_{2}, as well as P_{1} and P_{2};
- Assign P_{1} to e_{ℓ}, as well as label $\max \left(P_{1}\right)+2$

Odd/even distributing labelling

Definition Odd/even distributing labelling

- Let $L_{1}=(1,3,5, \ldots, n-1), L_{2}=(2,4, \ldots, n-2)$ and $P_{1}, P_{2}=\emptyset$;
- Choose some edge e, and let $e_{\ell}, e_{r}=e$;
- Do $\frac{n}{2}$ times:
- Assign P_{1} to both edges e_{ℓ} and e_{r};
- Distribute L_{1} to e_{ℓ} and e_{r}, move $\min \left(L_{1}\right)$ to P_{1} and remove $\max \left(L_{1}\right)$;
- Set e_{ℓ} and e_{r} to the next clockwise and counter-clockwise edges;
- Swap L_{1} and L_{2}, as well as P_{1} and P_{2};
- Assign P_{1} to e_{ℓ}, as well as label $\max \left(P_{1}\right)+2$

Odd/even distributing labelling

Definition Odd/even distributing labelling

- Let $L_{1}=(1,3,5, \ldots, n-1), L_{2}=(2,4, \ldots, n-2)$ and $P_{1}, P_{2}=\emptyset$;
- Choose some edge e, and let $e_{\ell}, e_{r}=e$;
- Do $\frac{n}{2}$ times:
- Assign P_{1} to both edges e_{ℓ} and e_{r};
- Distribute L_{1} to e_{ℓ} and e_{r}, move $\min \left(L_{1}\right)$ to P_{1} and remove $\max \left(L_{1}\right)$;
- Set e_{ℓ} and e_{r} to the next clockwise and counter-clockwise edges;
- Swap L_{1} and L_{2}, as well as P_{1} and P_{2};
- Assign P_{1} to e_{ℓ}, as well as label $\max \left(P_{1}\right)+2$

Odd/even distributing labelling

Definition Odd/even distributing labelling

- Let $L_{1}=(1,3,5, \ldots, n-1), L_{2}=(2,4, \ldots, n-2)$ and $P_{1}, P_{2}=\emptyset$;
- Choose some edge e, and let $e_{\ell}, e_{r}=e$;
- Do $\frac{n}{2}$ times:
- Assign P_{1} to both edges e_{ℓ} and e_{r};
- Distribute L_{1} to e_{ℓ} and e_{r}, move $\min \left(L_{1}\right)$ to P_{1} and remove $\max \left(L_{1}\right)$;
- Set e_{ℓ} and e_{r} to the next clockwise and counter-clockwise edges;
- Swap L_{1} and L_{2}, as well as P_{1} and P_{2};
- Assign P_{1} to e_{ℓ}, as well as label $\max \left(P_{1}\right)+2$

Odd/even distributing labelling

Definition Odd/even distributing labelling

- Let $L_{1}=(1,3,5, \ldots, n-1), L_{2}=(2,4, \ldots, n-2)$ and $P_{1}, P_{2}=\emptyset$;
- Choose some edge e, and let $e_{\ell}, e_{r}=e$;
- Do $\frac{n}{2}$ times:
- Assign P_{1} to both edges e_{ℓ} and e_{r};
- Distribute L_{1} to e_{ℓ} and e_{r}, move $\min \left(L_{1}\right)$ to P_{1} and remove $\max \left(L_{1}\right)$;
- Set e_{ℓ} and e_{r} to the next clockwise and counter-clockwise edges;
- Swap L_{1} and L_{2}, as well as P_{1} and P_{2};
- Assign P_{1} to e_{ℓ}, as well as label $\max \left(P_{1}\right)+2$

Odd/even distributing labelling

Definition Odd/even distributing labelling

- Let $L_{1}=(1,3,5, \ldots, n-1), L_{2}=(2,4, \ldots, n-2)$ and $P_{1}, P_{2}=\emptyset$;
- Choose some edge e, and let $e_{\ell}, e_{r}=e$;
- Do $\frac{n}{2}$ times:
- Assign P_{1} to both edges e_{ℓ} and e_{r};
- Distribute L_{1} to e_{ℓ} and e_{r}, move $\min \left(L_{1}\right)$ to P_{1} and remove $\max \left(L_{1}\right)$;
- Set e_{ℓ} and e_{r} to the next clockwise and counter-clockwise edges;
- Swap L_{1} and L_{2}, as well as P_{1} and P_{2};
- Assign P_{1} to e_{ℓ}, as well as label $\max \left(P_{1}\right)+2$

Odd/even distributing labelling

Definition Odd/even distributing labelling

- Let $L_{1}=(1,3,5, \ldots, n-1), L_{2}=(2,4, \ldots, n-2)$ and $P_{1}, P_{2}=\emptyset$;
- Choose some edge e, and let $e_{\ell}, e_{r}=e$;
- Do $\frac{n}{2}$ times:
- Assign P_{1} to both edges e_{ℓ} and e_{r};
- Distribute L_{1} to e_{ℓ} and e_{r}, move $\min \left(L_{1}\right)$ to P_{1} and remove $\max \left(L_{1}\right)$;
- Set e_{ℓ} and e_{r} to the next clockwise and counter-clockwise edges;
- Swap L_{1} and L_{2}, as well as P_{1} and P_{2};
- Assign P_{1} to e_{ℓ}, as well as label $\max \left(P_{1}\right)+2$

Correctness proof of odd/even distributing labelling

Theorem

The odd/even distributing labelling induces $\tau^{+} \geq \frac{1}{2} n$ and $T^{+} \geq \frac{1}{4} n^{2}+1$

Correctness proof of odd/even distributing labelling

Theorem

The odd/even distributing labelling induces $\tau^{+} \geq \frac{1}{2} n$ and $T^{+} \geq \frac{1}{4} n^{2}+1$
Link Stream (Latapy et al. [5])
Use one axis for the vertices, and a second axis for time, allowing one to plot the time-edges (and journeys) in this two-dimensional space

Correctness proof of odd/even distributing labelling

Definition

A journey is:

- (counter-)clockwise iff it only uses edges towards the right (resp. left);

15

Correctness proof of odd/even distributing labelling

Definition

A journey is:

- (counter-)clockwise iff it only uses edges towards the right (resp. left);
- prefix-foremost iff it always uses the earliest edges possible;

Correctness proof of odd/even distributing labelling

Definition

A journey is:

- (counter-)clockwise iff it only uses edges towards the right (resp. left);
- prefix-foremost iff it always uses the earliest edges possible;

Correctness proof of odd/even distributing labelling

Definition

A journey is:

- (counter-)clockwise iff it only uses edges towards the right (resp. left);
- prefix-foremost iff it always uses the earliest edges possible;
- dominant iff no (same direction) journey covers its vertices or more

Correctness proof of odd/even distributing labelling

Lemma

A pair of clockwise and counter-clockwise journeys is necessary if:

- both start at some same vertex v;
- both are prefix-foremost;
- both are a suffix of a dominant journey;
- together they cover the whole vertex set without crossing

Correctness proof of odd/even distributing labelling

Theorem

The odd/even distributing labelling is necessary for all even cycles
Proof idea by induction

- base case: prove it is a necessary labelling for C_{4} with Lemma
- inductive step (C_{n} to C_{n+2}): adds a "layer" on the link stream, lengthening journeys by 1 , and adding journeys obeying Lemma

Correctness proof of odd/even distributing labelling

Theorem

The odd/even distributing labelling is necessary for all even cycles

Proof idea by induction

- base case: prove it is a necessary labelling for C_{4} with Lemma
- inductive step (C_{n} to C_{n+2}): adds a "layer" on the link stream, lengthening journeys by 1, and adding journeys obeying Lemma

15

10

5

1

Correctness proof of odd/even distributing labelling

Theorem

The odd/even distributing labelling is necessary for all even cycles

Proof idea by induction

- base case: prove it is a necessary labelling for C_{4} with Lemma
- inductive step (C_{n} to C_{n+2}): adds a "layer" on the link stream, lengthening journeys by 1, and adding journeys obeying Lemma

15

10

5

1

Correctness proof of odd/even distributing labelling

Theorem

The odd/even distributing labelling is necessary for all even cycles

Proof idea by induction

- base case: prove it is a necessary labelling for C_{4} with Lemma
- inductive step (C_{n} to C_{n+2}): adds a "layer" on the link stream, lengthening journeys by 1, and adding journeys obeying Lemma

15

10

5

Correctness proof of odd/even distributing labelling

Theorem

The odd/even distributing labelling is necessary for all even cycles

Proof idea by induction

- base case: prove it is a necessary labelling for C_{4} with Lemma
- inductive step (C_{n} to C_{n+2}): adds a "layer" on the link stream, lengthening journeys by 1, and adding journeys obeying Lemma

Correctness proof of odd/even distributing labelling

Theorem

The odd/even distributing labelling is necessary for all even cycles

Proof idea by induction

- base case: prove it is a necessary labelling for C_{4} with Lemma
- inductive step (C_{n} to C_{n+2}): adds a "layer" on the link stream, lengthening journeys by 1, and adding journeys obeying Lemma

And finally: cactus graphs

Definition

A cactus graph is a tree graph with some vertices/edges replaced by cycles

Theorem

For any cactus graph on n vertices and circumference c (length of longest simple cycle), $\tau^{+} \geq \frac{1}{2} c$, and $T^{+} \geq \frac{1}{4} c^{2}+2(n-c)+1$

And finally: cactus graphs

Definition

A cactus graph is a tree graph with some vertices/edges replaced by cycles

Theorem

For any cactus graph on n vertices and circumference c (length of longest simple cycle), $\tau^{+} \geq \frac{1}{2} c$, and $T^{+} \geq \frac{1}{4} c^{2}+2(n-c)+1$

And finally: cactus graphs

Definition

A cactus graph is a tree graph with some vertices/edges replaced by cycles

Theorem

For any cactus graph on n vertices and circumference c (length of longest simple cycle), $\tau^{+} \geq \frac{1}{2} c$, and $T^{+} \geq \frac{1}{4} c^{2}+2(n-c)+1$

And finally: cactus graphs

Definition

A cactus graph is a tree graph with some vertices/edges replaced by cycles

Theorem

For any cactus graph on n vertices and circumference c (length of longest simple cycle), $\tau^{+} \geq \frac{1}{2} c$, and $T^{+} \geq \frac{1}{4} c^{2}+2(n-c)+1$

Conclusion

Theorem

For any tree graph on n vertices, $\tau^{+}=2$ and $T^{+}=2 n-3$

Corollary

For any connected graph on n vertices, $\tau^{+} \geq 2$ and $T^{+} \geq 2 n-3$

Theorem

For any cycle graph on n vertices, $\tau^{+} \geq \frac{1}{2} n$ and $T^{+} \geq \frac{1}{4} n^{2}+1$

Corollary

For any Hamiltonian graph on n vertices, $\tau^{+} \geq \frac{1}{2} n$ and $T^{+} \geq \frac{1}{4} n^{2}+1$

Theorem

For any cactus graph on n vertices and circumference $c, \tau^{+} \geq \frac{1}{2} c$, and $T^{+} \geq \frac{1}{4} c^{2}+2(n-c)+1$

Corollary

For any graph on n vertices and circumference $c, \tau^{+} \geq \frac{1}{2} c$, and $T^{+} \geq \frac{1}{4} c^{2}+2(n-c)+1$

Conclusion

Future work and open questions

- Reduce upper bound of τ^{+}in cycles, currently $n-1$ (to a tight $\frac{1}{2} n$?) by showing forbidden configurations of dominating journeys
- Can cactus graphs beat $\tau^{+}=\frac{1}{2} c$?
- We adapted our labelling generator to work for general graphs, and $\tau^{+} \leq \frac{1}{2} n$ (empirically) seems to hold in general as well
- Given a general graph, is it NP-hard to compute τ^{+}or T^{+}?

Measure \backslash Labelling	Proper	Happy	Strict
τ^{+}	$\geq \frac{1}{2} n$	1 (by definition)	$>\frac{1}{2} n ?$ (empirically)
T^{+}	$\geq \frac{1}{4} n^{2}+1$	$\geq \frac{1}{18} n^{2}+O(n)$	$\geq \frac{1}{2} n^{2}+O(n)$

Conclusion

Future work and open questions

- Reduce upper bound of τ^{+}in cycles, currently $n-1$ (to a tight $\frac{1}{2} n$?) by showing forbidden configurations of dominating journeys
- Can cactus graphs beat $\tau^{+}=\frac{1}{2} c$?
- We adapted our labelling generator to work for general graphs, and $\tau^{+} \leq \frac{1}{2} n$ (empirically) seems to hold in general as well
- Given a general graph, is it NP-hard to compute τ^{+}or T^{+}?

Measure \backslash Labelling	Proper	Happy	Strict
τ^{+}	$\geq \frac{1}{2} n$	1 (by definition)	$>\frac{1}{2} n ?$ (empirically)
T^{+}	$\geq \frac{1}{4} n^{2}+1$	$\geq \frac{1}{18} n^{2}+O(n)$	$\geq \frac{1}{2} n^{2}+O(n)$

Thank you for your attention

Bibliography i

F. K. Axiotis and D. Fotakis, On the size and the approximability of minimum temporally connected subgraphs, arXiv preprint:1602.06411, (2016).

唔 B. BAKER, Gossips and telephones* brenda baker and robert shostak \dagger discrete mathematics 2 (1972) 191-193 the following problem has circulated lately among mathematicians. other solutions have been given independently by rt bumby and by a. hajnal, ec milner and e. szemerédi., Discrete Mathematics, 2 (1972), pp. 191-193.

R A. CASTEIGTS, Efficient generation of simple temporal graphs up to isomorphism, (2020).

- J. Enright, K. Meeks, and F. Skerman, Assigning times to minimise reachability in temporal graphs, Journal of Computer and System Sciences, 115 (2021), pp. 169-186.

Bibliography ii

M. Latapy, T. Viard, and C. Magnien, Stream graphs and link streams for the modeling of interactions over time, Social Network Analysis and Mining, 8 (2018), pp. 1-29.

围
G. B. Mertzios, O. Michail, I. Chatzigiannakis, and P. G. SPIRAKIS, Temporal network optimization subject to connectivity constraints, in International Colloquium on Automata, Languages, and Programming, Springer, 2013, pp. 657-668.

[^0]: ${ }^{1}$ Supported by the RIN Tremplin Région Normandie project DynNet.
 ${ }^{2}$ Supported by the Leverhulme Trust International Professorship in Neuroeconomics.

