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Motivations

Temporal graphs allow us to model many things in time sensitive
networks such as transport or disease spread.

2



Motivations

Reality may not reflect a perfect model.

Figure 1: Plot of punctuality and reliability of trains in the UK.1

1UK Government Rail Factsheet 2022. 3



Temporal Graphs
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A temporal graph
is pair consisting of an underlying
graph G = (V, E) with the function
λ : E→ 2N that maps edges to times
during which they are said to be active.

A strict temporal
path is a path of edges e0, ..., ek
such that each ei is assigned a time
by λ where t(ei−1) < t(ei) for 1 ≤ i ≤ k.

4



Temporal Graphs

3, 5
1

8

1, 7

1, 7

b

a

b

A temporal graph
is pair consisting of an underlying
graph G = (V, E) with the function
λ : E→ 2N that maps edges to times
during which they are said to be active.

A strict temporal
path is a path of edges e0, ..., ek
such that each ei is assigned a time
by λ where t(ei−1) < t(ei) for 1 ≤ i ≤ k.

4



Temporal Graphs

3, 5
1

8

1, 8

1, 7

b

a
A temporal graph
is pair consisting of an underlying
graph G = (V, E) with the function
λ : E→ 2N that maps edges to times
during which they are said to be active.

A strict temporal
path is a path of edges e0, ..., ek
such that each ei is assigned a time
by λ where t(ei−1) < t(ei) for 1 ≤ i ≤ k.

4



Temporal Graphs

1, 5
1

8

1, 8

1, 7

b

a
A temporal graph
is pair consisting of an underlying
graph G = (V, E) with the function
λ : E→ 2N that maps edges to times
during which they are said to be active.

A strict temporal
path is a path of edges e0, ..., ek
such that each ei is assigned a time
by λ where t(ei−1) < t(ei) for 1 ≤ i ≤ k.

4



Perturbations

(G, λ) (G, λ′)
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Given a temporal graph
(G, λ), we call a temporal assignment
λ′ a δ-perturbation of λ if there
is a bijection p : (E(G), λ) → (E(G), λ′),
p((e, t)) = (e, t′)
where t′ ∈ [t− δ, t+ δ] for all t.

We call a perturbation λ′ of a temporal
assignment λ a (δ, ζ)-perturbation if
it is a δ-perturbation and the number
of changed time-edges is at most ζ .
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Temporal Reachability
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The reachability set of a vertex
vs is the set of all vertices reachable
from vs by (strict) temporal path.
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Uncertainty
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Changing the temporal assignment by a little can cause unbounded
increase in temporal reachability.
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Question

TEMPORAL REACHABILITY WITH LIMITED PERTURBATION (TRLP)
Input: A temporal graph (G, λ), a vertex vs and positive integers
ζ , k, and δ.
Question: Is there a (δ, ζ)-perturbation (G, λ′) of (G, λ) such that
temporal reachability of vs in (G, λ′) ≥ k?

8



Without Uncertainty

If there is no uncertainty in the input (i.e. δ = ζ = 0), the problem is
solvable in polynomial time.
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If ζ is large
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vs
If our budget for perturbations
is at least k− 1, then we can ignore it.

We do this by relabelling each edge
e with the times [λ(e)− δ, λ(e) + δ]

and calculating the maximum temporal
reachability of the new temporal graph.

This can be done in polynomial time.
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Known Perturbations
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If we know
which time-edges are perturbed, we
can solve the problems in polynomial
time by just relabelling those edges.
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When both δ and ζ are large
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When
ζ ≥ k− 1 and δ is at least the lifetime
of the temporal graph, we can reorder
the appearances of the edges in G.
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Unknown Perturbations

If ζ < k− 1 and we do not know which edges are perturbed TRLP is
NP-hard, even if δ = 1.

Furthermore, the problem is W[2]-hard with respect to ζ .
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Set Cover

SET COVER
Input: A universe U = {u1, . . . ,uz}, a set S = {S1, . . . , Sy} of
subsets of U , and an integer c.
Question: Is there a subset C ⊆ S satisfying |C| = c and∪
Si∈C Si = U?
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TRLP Reduction Gadget
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TRLP Reduction Gadget
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TRLP Reduction Gadget

v0 v v1 v2 si uj
1 1 2 3 4

6
uj

uj

4

si

si

si

19



20



Creating a temporal path using perturbations
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t = 6, δ = 4

Given a path in a temporal
graph and a time t, we can determine
how many δ-perturbations are needed
to make it a strict temporal path
that arrives by t in polynomial time.

This is done by
a dynamic program which works from
the end vertex back to the beginning.

At each vertex, keep track of the time
by which we need to arrive and how
many perturbations we have made.
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TRLP on Trees

We show that TRLP is solvable in polynomial time when the
underlying graph G is a tree.

This is done by a dynamic program which works from the leaves to
the root of the tree. A state consists of

1. the number of perturbations made below;
2. the maximum of vertices reachable below that vertex given this
many perturbations;

3. the time of departure from that vertex;
4. the number of perturbations needed to get from the root to that
vertex at that time.
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Shortest, Foremost, Fastest
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The shortest
temporal path between two vertices
is the path consisting of fewest edges.

The foremost
temporal path between two vertices
is the path with earliest arrival time.

The fastest
temporal path between two vertices
is the path with the smallest difference
between departure and arrival times.
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Temporal Eccentricity
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vs has temporal
shortest eccentricity k if the shortest
temporal path from vs to every other
vertex in (G, λ) has length at most k.
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Temporal Eccentricity
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vs has temporal
foremost eccentricity k if the foremost
temporal path from vs to every
other vertex in (G, λ) arrives by time k.
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Temporal Eccentricity
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vs has temporal
fastest eccentricity k if the fastest
temporal path from vs to every other
vertex in (G, λ) has duration at most k.
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Uncertainty

We can perturb a small number of time-edges to cause a large
increase in temporal eccentricity.
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Question

TEMPORAL (∗) ECCENTRICITY UNDER PERTURBATION (TEP)
Input: A temporal graph (G, λ), a source vertex vs ∈ V(G), and
positive integers ζ , k, and δ.
Question: Is there a (δ, ζ)-perturbation (G, λ′) of (G, λ) such that
temporal (∗) eccentricity of vs in (G, λ′) is k?
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TEP Results

Shortest Foremost Fastest
No uncertainty2 poly(n) poly(n) poly(n)

Large ζ NP-complete poly(n) NP-complete
Large ζ and δ poly(n) poly(n) poly(n)
No restrictions W[2]-hard W[2]-hard W[2]-hard

2Xuan, Ferreira, and Jarry, “Computing shortest, fastest, and foremost journeys in
dynamic networks”.
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Ongoing Work

This work was motivated by work on modification problems on
temporal graphs. A natural question is “Can we modify a temporal
graph to make it robust to (δ, ζ)-perturbations?”

There are many other problems on temporal graphs which
uncertainty could be applied to.
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Thanks for listening! Any questions?

34


