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Temporal Graphs

e Graphs that change over time.

* Vertices and Edges may appear/disappear or change their properties over
time.

* Formally, temporal graph G; = (G, G,, ... G;) sequence of static graphs G;
* Each G, represents a static graph at a time instant i

* Alternatively, G; represents a static graph over a time interval [t;, t; s 1]



Contact Sequence v/s Interval Temporal Graphs
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Practical Applications of Temporal Graphs

* Analyzing information spread on social networks

* Modeling disease spread during epidemics

* Finding optimal paths in ad-hoc wireless networks and computer networks
* Finding optimal flight routes from source to destination

* Finding optimal travel path in road networks



Data structure
for Interval

Temporal
Graphs
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Optimal Paths in Temporal Graphs

Let S(s,v) be the set of all time respecting paths from ‘s’ to ‘v’. A path in
S(s,v) is

* Foremost — Arrives earliest at the vertex ‘v’

* Min-hop — Arrives at ‘v’ with minimum number of hops

 Shortest — Arrives at ‘v’ with minimum travel time




Examples of
Optimal Paths

e Optimal Paths from s to C:

* Foremost Path:
(s,0,A,1,B,3,C) arriving C at
time 4

* Min-hop Path: (s,0,B,5,C)
arriving C with 2 hops at
time 6

{([0-1],1);([2-6].3)}

{([0-8],1)}

{([10-20],8); ([25-33].4)}

{([0-6],5); ([8-25], 4)}

{([3-10],1); ([12-28],2)}



Our Foremost and Min-hop Algorithms on
I TGS

Handle variable travel times per interval while "Xuan’s assumes travel times are same across all
intervals for an edge

Used different data structure than used by Xuan to represent ITG
Foremost algorithm is a natural extension to Xuan’s for variable travel time per interval

Min-hop algorithm
* Fundamentally different Algorithm than used by Xuan
* For benchmarking,

* Fixed a bug in Xuan’s algorithm that affected correctness
* Significantly improved the efficiency of Xuan’s alg — original algorithm took excessive time

Benchmarked against ““Wu'’s algorithm as well that works only on Contact Sequence model



Koblenz
Datasets

 Temporal graphs of
different social
networks

e Have a fairly low activity
ranging from 1 to 3.67

e Travel duration on every
edge (A) was setto 1

Dataset V| |Es| cs — edges | Activity
epin 131.8K 840.8K 841.3K 1
elec 7,119 103.6K 103.6K 1

fb 63.7K 817K 817K 1
flickr 2,302.9K | 33,140K 33, 140K 1

growth 1,870.7K | 39,953K 39, 953K 1

youtube 3, 223K 9,375K 9,375K 1
digg 30.3K 85.2K 87.6K 1.02
slash 51K 130.3K 140.7K 1.07

conflict 118K 2,027.8K | 2,917.7K 1.43
arxiv 28K 3, 148K 4, 596K 1.45

wiki-en-edit | 42,640K | 255,709K | 572,591K 223
enron 87,274 320.1K 1,148K 3.58
delicious 4, 512K 81,988K | 301,186K 3.67




Synthetic
datasets

* Synthetic datasets generated based on
the social network graphs of youtube,
flickr and livejournal

* Temporal parameters introduced on
each connection for number of
Intervals, length of interval and travel
time

* Values assigned to each of these
parameters based on normal
distribution around a certain mean

Graphs with uy =4, up =5, ur =3

Dataset V] Es cs-edges Edge Activity
youtube 1,157.8K 4,945K 105, 039K 21.2
flickr 1,861K 22,613.9K 480, 172K 21.24
livejournal 5, 284K 77,402.6K | 1,643,438K 21.3
Graphs with uy =4, up =8, upr =3
youtube 1,157.8K 4, 945K 159,103.7K 32.1
flickr 1,861K 22,613.9K | 727,405.9K 32.1




Foremost Comparisons with Wu et al.

Foremost speedup over Wu - koblenz datasets Foremost speedup speeup over Wu - synthetic datasets
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Min-Hop Speedups - Koblenz Networks

Min-Hop speedups over Wu - koblenz datasets Min-Hop speedups over Xuan - koblenz datasets
7400
32000
6700
31400
6700 31400 '
0008 28000
505

5300 50 o

9e 45 »

8e 40 » 38.18

738 73
70 350
6o 57 30 »
3 258
Se 25 »
40 20 » 19.44
14M
3e 265 226 15
10 10.59
). % 10 * 869 876
155 6.66 7.024 6.74
1 : gl ] l I N l l I l
o L © & RS & & B & ) & o &
& © ® ¢ o 3 ) A & & & ¢ Q ¥ W o R4 N @ QF < & & -0
& o ‘\\‘& Q}\:ixi\ ‘\O&y b&%‘ 5 boﬂ“\\\ ’t‘\‘ ’g\\'Qb géo \('/‘00 = ‘ At Q}o ~\o\)\ S s g,o(\ ® ,9.(" & bé\o



Min-hop Speedups- Synthetic Datasets

Min-Hop speedups over Wu - synthetic datasets
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Problems with dual optimization criteria

* Min-Hop Foremost Paths (mhf) — Polynomial Algorithm for mhf paths

* Min-Wait Foremost Walks (mwf) — Proved mwf problem is NP-hard for
ITGs. Pseudopolynomial Algorithm for mwf walks

* Min-Cost Foremost Paths (mcf) — Proved mcf problem is NP-Hard for
ITGs. Pseudopolynomial algorithm for mcf would be similar to the
Algorithm for mwf walks



Example mhf paths in ITG

 Foremost Paths from atod
e P1=<a,0,c,7,d> arrives at 8

* P2=<3,0,b,1,c,7,d> arrives at 8
([0-5],7)

* P1is the only mhf path from a to d ([0-1],1)

0-2],1
([] ([71,1)

5

O



mhf Hop by Hop Algorithm (021200

* Inhop 1 pathsto (A,B,C) as (S,A) (S,B) & (S,C) are
discovered with arrival times (1,5,10) respectively

{([0-2],5)}
* Inhop 2 new path to B (S,A,B) & to C (S,B,C) are

discovered with earlier arrival times of (2,6) at {([0-1],2):([2-2],3)}
(B,C) respectively, so paths and arrival times
updated.

0-2],1
{([0-2],1)} (3511}

* In hop 3, the 2-hop path to B is extended and new
path to C (S,A,B,C) is discovered with an earlier
arrival time of 4.

* Finally, 3-hop path to Cis extend and path to D {([4-5],1)}

(S,A,B,C,D) is discovered arriving at 5
<_

* Mhf paths to all vertices from s have been
discovered.



Mwf walks

We prove mwf problem is NP-hard in
Interval Temporal Graphs

{([2,6].1)}

W(s,b)=<s,2,a,13,b> avl=17, wt=10 {(4-71,2)}
{([12,2],3); [13-15] 4}
W, .(s,b)=<s,3,a3,4,¢c,6,d,7,a,13,b>

arvl=17, wait=0 (89113 {([6-15],1)}



Linear Combination Algorithm in Contact Sequence Graphs by Bentert et
al. (2020)

e Algorithm to find walks that minimize a linear combination of multiple
criteria in contact sequence graphs

* For eg minimize cd,(v) +c,wait(s,v)+c,hops(v)

* Choose coefficients such that linear combination is formulated to produce
mhf paths and mwf walks.

 Benchmarked our mhf and mWfAIForithms on ITG against Bentert
algorithm on CSG using this formulation.

* For some of the datasets, the Bentert programs failed to run because of memory
limitations

* ITG models CSG graphs with zero duration intervals.
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Optimization Criteria for Linear Combination

Consider awalk w = {uy, t{, Uy, ty, ..., U ; k

> 2.
Edgesalongw aree; = (U, u; , 1,8, 4); 1 <i<k—1
1. Arrivaltime atu,: (t, |+ A, ;). Minis foremost

2. Hop Count k — 1: Min is min-hop

3. Start time t, : Latest departure time is reverse-foremost
4, Travel Duration ((t, ;+ A; _1)-t;): Minimum duration is fastest
5. Travel time Y%= 2;: Minimum is shortest

6. Waiting time ¥¥-1(¢t, — (t; _;+A; _1)): Minimum is min-wait walk
7. Cost Y¥=! ¢, : Minimum is min-cost walk

8.  Walk probability [T¥- p,: Max Probability same as min (3¥-1(—log(p,)). So same as Cost criteria with ¢; = (—log(pi))




Optimal walks with waiting

time constraints lin(w) = cas * (th—1 + A1)
—+ Cdep S (_tl)
w = {uy, ty, Uy, by, o Uy 1 k= 2 +cig* (Bt + A—1) — t1)
ei=(uiiui+11ti;li);1SiSk_1 k—1
+ C¢.t * Z(Az)
i=1
* Waiting time at each vertex: t,-(t; 1 + 4 1) ERA o S
k—1
« Assume min-wait and max-wait constraints at each + Cw.t * Z(tz == {f= S 4
vertex, v are a(v) and B (v), respectively =2

k—1
- r a : + Ccost * Z C;
* Therefore, min and max wait time constraints: o

ti — (tic1 + Aic1) > a(v)
ti — (ti—1 + Xi—1) < B(v)



New algorithm to minimize linear combination of optimization criteria
with waiting time constraints for CSGs with no zero-duration cycle

e Our new Algorithm faster than
Bentert et. al on all Koblenz
datasets

e Our Algorithm is based on *TRG
data structure to represent CSGs

*Extension of TRG by Gheibi, Banerjee, Ranka, Sahni, “An

effective data structure for contact sequence temporal graphs”

90

40

nnnnn

Speedups over Bentert et al.



Summary results for Path and Walk problems

Demonstrated several problems are NP-Hard for ITGs but polynomial in CSGs

Foremost path algorithm - benchmarked against Wu et al. (best known for CSG). Experimentally shown to be
up to 1800 times faster

Min-hop paths algorithm. Experimentally shown to be up to 6700 times faster.
mhf algorithm. Experimentally shown to be up to 679 times faster than Bentert et al.
Pseudopolynomial mwf algorithm. Experimentally shown to be up to 23.3 times faster than Bentert et al.

Linear Combination Algorithm with no zero-duration cycle. Experimentally shown to be up to 77 times faster
than Bentert et al.
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