Covering Timeline in Temporal Graphs: Complexity and Algorithms¹

Riccardo Dondi

Università degli Studi di Bergamo

July 10, 2023

¹The talk is based on joint works with Alexandru Popa (University of Bucharest) and Manuel Lafond (Université de Sherbrooke)

Riccardo Dondi

Covering Timeline in Temporal Graphs

July 10, 2023 1 / 30

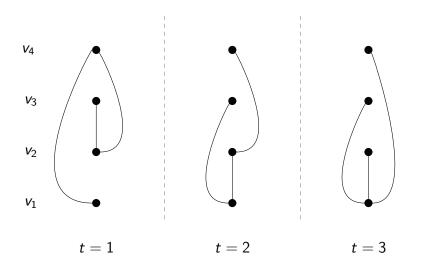
Overview

- 2 Previous Work
- 3 Approximation Algorithm for MINTCOVER
- 4 Approximation Algorithm for 1-MINTCOVER
- 5 An FPT Algorithm for MINTCOVER

1 Definitions

- 2 Previous Work
- 3 Approximation Algorithm for MINTCOVER
- 4 Approximation Algorithm for 1-MINTCOVER
- 5 An FPT Algorithm for MINTCOVER

Temporal Graphs



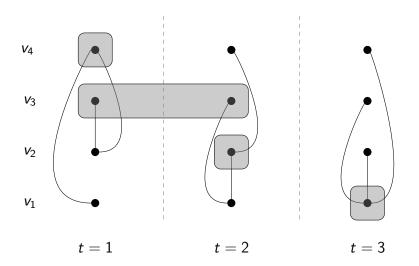
Vertex Interval Activity

For each vertex we have to define:

- Interval activity: time interval where the vertex is considered active (it covers edges)
- **Span** of a vertex: length 1 of its interval activity

An **activity timeline**: a set of interval activities (one for each vertex) that **covers** edges of the temporal graph

Interval Activity



Problem Definition

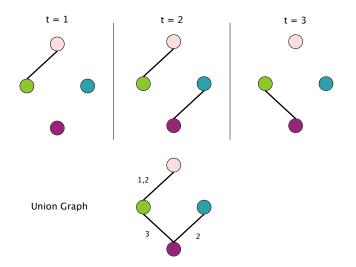
Problem (MINTCOVER)

Input: A temporal graph G = (V, E, T)**Output:** An activity timeline of minimum span that covers G

Problem (1-MINTCOVER)

At most one temporal edge is present in each timestamp

Union Graph



1 Definitions

2 Previous Work

- 3 Approximation Algorithm for MINTCOVER
- 4 Approximation Algorithm for 1-MINTCOVER
- 5 An FPT Algorithm for MINTCOVER

Previous Work

Hardness results:

- MINTCOVER (Rozenshtein, Tatti, Gionis 2021)
- MINTCOVER on two timestamps (Froese, Kunz, Zschoche 2022)
- MINTCOVER on three timestamps with bounded degree and 1-MINTCOVER (Dondi 2022)

We can compute in **polynomial time** whether there exists a solution of MINTCOVER that has **span equal to** 0 (Rozenshtein, Tatti, Gionis 2021)

Other Related Work

Parameterized complexity (Froese, Kunz, Zschoche 2022)

- MINTCOVER on two timestamps FPT parameterized by the span (via a reduction to Almost 2-SAT)
- Different other parameters (even for other variants)

Approximation (Froese, Kunz, Zschoche 2022)

- $\hfill MINTCOVER$ on two timestamps cannot be approximated within a constant factor
- $O(\sqrt{\log n})$ factor for MINTCOVER on two timestamps

Other Related Work

Other variants of the problem

- More than one interval for vertex activity (Rozenshtein, Tatti, Gionis 2021) and (Froese, Kunz, Zschoche 2022)
- Different objective function: minimizing maximum span (Rozenshtein, Tatti, Gionis 2021)

Other temporal variants of vertex cover

 (Akrida, Mertzios, Spirakis, Zamaraev 2020), (Hamm, Klobas, Mertzios, Spirakis 2022)

1 Definitions

2 Previous Work

3 Approximation Algorithm for MINTCOVER

4 Approximation Algorithm for 1-MINTCOVER

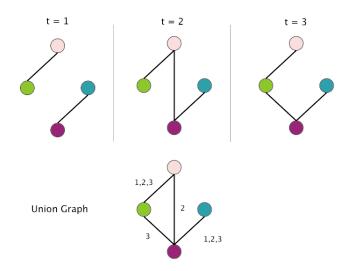
5 An FPT Algorithm for MINTCOVER

Approximation Algorithm

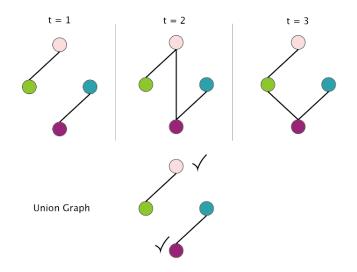
Combination of two approximation algorithms for the following cases:

- 1 Edges that occur at least 3 times
 - Select a vertex cover in the union graph
- 2 Edges that occur at most 2 times
 - Main technique: randomized rounding of an ILP formulation

Edges Occur at Least 3 Times



27 Approximation: Edges Occur at Least 3 Times



Edges that Occur at Most 2 Times

$$\begin{array}{ll} \text{minimize} \sum_{v \in V} (\sum_{t=1}^{T} x_v^t - 1) & (1) \\ \text{subject to} & \sum_{t=1}^{T} x_v^t \ge 1 & \forall v \in V & (2) \\ & x_v^t + x_u^t \ge 1 & \forall \{u, v, t\} \in E & (3) \\ & x_v^t \in \{0, 1\} & \forall v \in V, \ \forall t \in \{1, 2, \dots, T\} & (4) \end{array}$$

Figure: ILP formulation for the timeline cover problem for a variant called $\rm Min\text{-}NC\text{-}TCOVER}$ problem

$O(T \log n)$ Approximation Algorithm: Edges Occur at Most 2 Times

- 1 Solve the LP relaxation
- **2** Assign 1 to a boolean variable X_v^t with probability x_v^t
- **3** For every vertex v such that there exist at least two variables of value 1, let t_{min} be the smallest t such that $X_v^t = 1$ and t_{max} be the maximum t such that $X_v^t = 1$. We make the vertex v active in interval $[t_{min}, t_{max}]$

- 1 Definitions
- 2 Previous Work
- 3 Approximation Algorithm for MINTCOVER
- 4 Approximation Algorithm for 1-MINTCOVER
- 5 An FPT Algorithm for MINTCOVER
- 6 Open Problems

1-MINTCOVER: Properties

Lemma

- G : instance of span k $\mathcal{D} \subseteq V$ vertices of degree > 2
 - 1 $|\mathcal{D}| \leq 2k$
 - **2** Let $G' = G \setminus D$. Then, the union graph G'_U consists of a set of disjoint paths

Lemma

Optimal 1-MINTCOVER on G has a span of $k \iff$ feedback vertex set of G_U is at most 2k

4(T-1)-approximation algorithm for 1-MINTCOVER

- **1** Compute a 2-approximate feedback vertex set F of G_U (Bafna, Berman, Fujito 1999)
- **2** Make each vertex $v \in F$ active in the time interval [1, T]
- **3** G F is acyclic

1 Definitions

- 2 Previous Work
- 3 Approximation Algorithm for MINTCOVER
- 4 Approximation Algorithm for 1-MINTCOVER
- **5** An FPT Algorithm for MINTCOVER

FPT Algorithm for $\operatorname{MINTCOVER}$

 FPT algorithm for $\mathrm{MinTCover}$ for parameter the span of the solution

- The algorithm consists of two parts:
 - **1** Iterative compression
 - 2 An FPT reduction to the DIRECTED PAIR CUT problem

Iterative Compression

High level idea of the iterative compression part:

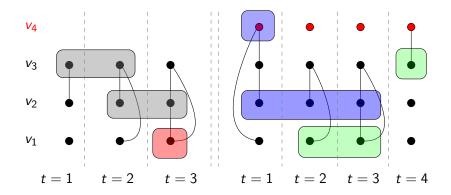
- **1** Consider a solution S_h of MINTCOVER on the temporal subgraph induced by $\{v_1, \ldots, v_h\}$
- 2 Compute whether there exists a solution S_{h+1} of MINTCOVER on the the temporal subgraph induced by {v₁,..., v_h} ⊎ {v_{h+1}}

Iterative Compression

Some details on the computation of S_{h+1} from S_h :

- **1** Branch on the **interval activity of vertex** v_{h+1}
- 2 Branch on interval activity of some vertices with **positive span** in S_h : N_h
- **3** FPT reduction to DIRECTED PAIR CUT for the definition of timeline activity of other vertices

Iterative Compression



FPT reduction to DIRECTED PAIR CUT

Problem (DIRECTED PAIR CUT)

Input: A directed graph D, a source vertex s and a set \mathcal{P} of pairs **Output:** A cut of at most k arcs such that for each $(u, v) \in \mathcal{P}$ at most one of u and v is reachable from s

Some details on the reduction to DIRECTED PAIR CUT

- **1** For each vertex not in $N_h \uplus \{v_{h+1}\}$, construct a gadget
- 2 Pairs are used to force edges to be covered

1 Definitions

- 2 Previous Work
- 3 Approximation Algorithm for MINTCOVER
- 4 Approximation Algorithm for 1-MINTCOVER
- 5 An FPT Algorithm for MINTCOVER

Open Problems

Open problems for $\operatorname{MINTCOVER:}$

- Approximation complexity: analyze the dependency on *T* of the approximation factor for MINTCOVER and 1-MINTCOVER
- **2 Parameterized complexity**: Extend the technique to the case where vertex activity is defined as > 1 interval?

Thank you!