Simple, strict, proper, happy: A study of reachability in temporal graphs

Timothée Corsini joint work with A. Casteigts and W. Sarkar

LaBRI - University of Bordeaux

ICALP Workshop 2023

July 10th 2023

A temporal graph is a graph that changes with time. $\mathcal{G} = (V, E, \lambda)$ with $\lambda : E \to 2^{\tau}$. *n* vertices, *m* edges, τ the lifetime.

Reachability in Temporal Graphs

A journey (or temporal path) is a path that traverses the edges chronologically.

A journey (or temporal path) is a path that traverses the edges chronologically.

A journey (or temporal path) is a path that traverses the edges chronologically.

• journey from b to e but not from e to b

A journey (or temporal path) is a path that traverses the edges chronologically.

- journey from b to e but not from e to b
- ullet $\mathcal G$ is not temporally connected

Temporal Reachability

u can reach v if there is a journey from u to v.

Temporal connectivity

Every vertex can reach the others.

Journeys use at most one edge at a timestamp.

Journeys use at most one edge at a timestamp.

Properness

No adjacent edges at the same time.

Journeys use at most one edge at a timestamp.

Properness

No adjacent edges at the same time.

Simpleness

Each edge has exactly one label.

Journeys use at most one edge at a timestamp.

Properness

No adjacent edges at the same time.

Simpleness

Each edge has exactly one label.

"Happine<u>ss</u>"

Both simple and proper.

Journeys use at most one edge at a timestamp.

Properness

No adjacent edges at the same time.

Simpleness

Each edge has exactly one label.

"Happiness"

Both simple and proper.

More Inportant than it seems!

- \mathcal{G}_2 is a non-strict min-labelled spanner
- $\bullet \ \mathcal{G}_3$ is a strict min-labelled spanner
- $\bullet \ {\cal G}_4$ is a strict min-edge spanner

- \mathcal{G}_2 is a non-strict min-labelled spanner
- $\bullet \ \mathcal{G}_3$ is a strict min-labelled spanner
- $\bullet \ {\cal G}_4$ is a strict min-edge spanner

- \mathcal{G}_2 is a non-strict min-labelled spanner
- $\bullet \ \mathcal{G}_3$ is a strict min-labelled spanner
- $\bullet \ {\mathcal G}_4$ is a strict min-edge spanner
- $\bullet \ \mathcal{G}_5$ is a strict min spanner of itself

Outline

Outline

What concept captures expressitivy?

How to compare expressitivy ?

What concept captures expressitivy?

Reachability graph

A directed graph H = (V, E') s.t. $(u, v) \in E'$ iff u can reach v in the original graph.

How to compare expressitivy ?

What concept captures expressitivy?

Reachability graph

A directed graph H = (V, E') s.t. $(u, v) \in E'$ iff u can reach v in the original graph.

How to compare expressitivy ?

What concept captures expressitivy?

Reachability graph

A directed graph H = (V, E') s.t. $(u, v) \in E'$ iff u can reach v in the original graph.

Reachability graph expressitivy

Can a given reachability graph be obtained from a given setting?

Separating the settings

Outline

Outline

From "strict and simple" to "non-strict"

The "simple and strict" setting cannot be realized in the "non-strict" setting.

Transformations between settings

Goal : Turn a graph from "non-strict" to "strict" with the same reachability.

Saturation method

 $\mathcal{G} \to \mathcal{H}$ such that there is a contact $(\{u, v\}, t)$ in \mathcal{H} if and only if $\{u, v\}$ are connected at time t in \mathcal{G} .

Goal : Turn a graph from "non-strict" to "strict" with the same reachability.

Saturation method

 $\mathcal{G} \to \mathcal{H}$ such that there is a contact $(\{u, v\}, t)$ in \mathcal{H} if and only if $\{u, v\}$ are connected at time t in \mathcal{G} .

Goal : Turn a graph from "non-strict" to "strict" with the same reachability.

Saturation method

 $\mathcal{G} \to \mathcal{H}$ such that there is a contact $(\{u, v\}, t)$ in \mathcal{H} if and only if $\{u, v\}$ are connected at time t in \mathcal{G} .

Goal : Turn a graph from "non-strict" to "strict" with the same reachability.

Saturation method

 $\mathcal{G} \to \mathcal{H}$ such that there is a contact $(\{u, v\}, t)$ in \mathcal{H} if and only if $\{u, v\}$ are connected at time t in \mathcal{G} .

 \exists Strict (u, v)-journey in \mathcal{H} if and only if \exists non-strict (u, v)-journey in \mathcal{G}

Goal : Turn a graph from "non-strict" to "proper" with the same reachability.

Time dilation method

Turn $\mathcal G$ into $\mathcal H$ such that the journeys use the same support (same sequence of edges).

Goal : Turn a graph from "non-strict" to "proper" with the same reachability.

Time dilation method

Turn ${\cal G}$ into ${\cal H}$ such that the journeys use the same support (same sequence of edges).

Step 1 : Duplicate the snapshots

Goal : Turn a graph from "non-strict" to "proper" with the same reachability.

Time dilation method

Turn ${\cal G}$ into ${\cal H}$ such that the journeys use the same support (same sequence of edges).

Step 1 : Duplicate the snapshots

 G_2

Goal : Turn a graph from "non-strict" to "proper" with the same reachability.

Time dilation method

Turn ${\cal G}$ into ${\cal H}$ such that the journeys use the same support (same sequence of edges).

Step 1 : Duplicate the snapshots

Timothée Corsini

Reachability in Temporal Graphs

Goal : Turn a graph from "non-strict" to "proper" with the same reachability.

Time dilation method

Turn ${\cal G}$ into ${\cal H}$ such that the journeys use the same support (same sequence of edges).

Step 1 : Duplicate the snapshots

Goal : Turn a graph from "non-strict" to "proper" with the same reachability.

Time dilation method

Turn ${\cal G}$ into ${\cal H}$ such that the journeys use the same support (same sequence of edges).

Goal : Turn a graph from "non-strict" to "proper" with the same reachability.

Time dilation method

Turn ${\cal G}$ into ${\cal H}$ such that the journeys use the same support (same sequence of edges).

Goal : Turn a graph from "non-strict" to "proper" with the same reachability.

Time dilation method

Turn $\mathcal G$ into $\mathcal H$ such that the journeys use the same support (same sequence of edges).

Goal : Turn a graph from "non-strict" to "proper" with the same reachability.

Time dilation method

Turn $\mathcal G$ into $\mathcal H$ such that the journeys use the same support (same sequence of edges).

Goal : Turn a graph from "non-strict" to "proper" with the same reachability.

Time dilation method

Turn $\mathcal G$ into $\mathcal H$ such that the journeys use the same support (same sequence of edges).

Goal : Turn a graph from "non-strict" to "proper" with the same reachability.

Time dilation method

Turn ${\cal G}$ into ${\cal H}$ such that the journeys use the same support (same sequence of edges).

Step 3 : Normalize the time labels

Goal : Turn a graph from "non-strict" to "proper" with the same reachability.

Time dilation method

Turn $\mathcal G$ into $\mathcal H$ such that the journeys use the same support (same sequence of edges).

Step 3 : Normalize the time labels

Goal : Turn a graph from "non-strict" to "proper" with the same reachability.

Time dilation method

Turn $\mathcal G$ into $\mathcal H$ such that the journeys use the same support (same sequence of edges).

Step 3 : Normalize the time labels

Lemma

 ${\mathcal G}$ and ${\mathcal H}$ have the same reachability.

Timothée Corsini

July 10th 2023

Нарру

Observations

- Happy is the least expressive
- Strict is the most expressive

Conclusion

Conclusion

Thanks for your attention !

